1
|
Silva NC, Alvarez AM, DeOcesano-Pereira C, Fortes-Dias CL, Moreira V. Catalytically active phospholipase A 2 myotoxin from Crotalus durissus terrificus induces proliferation and differentiation of myoblasts dependent on prostaglandins produced by both COX-1 and COX-2 pathways. Int J Biol Macromol 2021; 187:603-613. [PMID: 34314795 DOI: 10.1016/j.ijbiomac.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023]
Abstract
Although crotoxin B (CB) is a well-established catalytically active secretory phospholipase A2 group IIA (sPLA2-IIA) myotoxin, we investigated its potential stimulatory effect on myogenesis with the involvement of prostaglandins (PGs) produced by cyclooxygenase (COX)-1 and -2 pathways. Myoblast C2C12 were cultured in proliferation or commitment protocols and incubated with CB followed by lumiracoxib (selective COX-2 inhibitor) or valeryl salicylate (selective COX-1 inhibitor) and subjected to analysis of PG release, cell proliferation and activation of myogenic regulatory factors (MRFs). Our data showed that CB in non-cytotoxic concentrations induces an increase of COX-2 protein expression and stimulates the activity of both COX isoforms to produce PGE2, PGD2 and 15d-PGJ2. CB induced an increase in the proliferation of C2C12 myoblast cells dependent on PGs from both COX-1 and COX-2 pathways. In addition, CB stimulated the activity of Pax7, MyoD, Myf5 and myogenin in proliferated cells. Otherwise, CB increased myogenin activity but not MyoD in committed cells. Our findings evidence the role of COX-1- and COX-2-derived PGs in modulating CB-induced activation of MRFs. This study contributes to the knowledge that CB promote early myogenic events via regulatory mechanisms on PG-dependent COX pathways, showing new concepts about the effect of sPLA2-IIA in skeletal muscle repair.
Collapse
Affiliation(s)
- Nadine C Silva
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil
| | - Angela M Alvarez
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil; Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP 05503-900, Brazil.
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP 05503-900, Brazil.
| | | | - Vanessa Moreira
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
2
|
Murphy RC, Lai Y, Nolin JD, Aguillon Prada RA, Chakrabarti A, Novotny MV, Seeds MC, Altemeier WA, Gelb MH, Hite RD, Hallstrand TS. Exercise-induced alterations in phospholipid hydrolysis, airway surfactant, and eicosanoids and their role in airway hyperresponsiveness in asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L705-L714. [PMID: 33533300 DOI: 10.1152/ajplung.00546.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Ying Lai
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - James D Nolin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Robier A Aguillon Prada
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Arindam Chakrabarti
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Michael V Novotny
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio.,Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Michael C Seeds
- Section on Molecular Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - William A Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington.,Department of Biochemistry, University of Washington, Seattle, Washington
| | - Robert Duncan Hite
- Division of Pulmonary Disease & Critical Care Medicine, Department of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington.,Center for Lung Biology, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Antimalarial Activity of Human Group IIA Secreted Phospholipase A 2 in Relation to Enzymatic Hydrolysis of Oxidized Lipoproteins. Infect Immun 2019; 87:IAI.00556-19. [PMID: 31405958 DOI: 10.1128/iai.00556-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The level of human group IIA secreted phospholipase A2 (hGIIA sPLA2) is increased in the plasma of malaria patients, but its role is unknown. In parasite culture with normal plasma, hGIIA is inactive against Plasmodium falciparum, contrasting with hGIIF, hGV, and hGX sPLA2s, which readily hydrolyze plasma lipoproteins, release nonesterified fatty acids (NEFAs), and inhibit parasite growth. Here, we revisited the anti-Plasmodium activity of hGIIA under conditions closer to those of malaria physiopathology where lipoproteins are oxidized. In parasite culture containing oxidized lipoproteins, hGIIA sPLA2 was inhibitory, with a 50% inhibitory concentration value of 150.0 ± 40.8 nM, in accordance with its capacity to release NEFAs from oxidized particles. With oxidized lipoproteins, hGIIF, hGV, and hGX sPLA2s were also more potent, by 4.6-, 2.1-, and 1.9-fold, respectively. Using specific immunoassays, we found that hGIIA sPLA2 is increased in plasma from 41 patients with malaria over levels for healthy donors (median [interquartile range], 1.6 [0.7 to 3.4] nM versus 0.0 [0.0 to 0.1] nM, respectively; P < 0.0001). Other sPLA2s were not detected. Malaria plasma, but not normal plasma, contains oxidized lipoproteins and was inhibitory to P. falciparum when spiked with hGIIA sPLA2 Injection of recombinant hGIIA into mice infected with P. chabaudi reduced the peak of parasitemia, and this was effective only when the level of plasma peroxidation was increased during infection. In conclusion, we propose that malaria-induced oxidation of lipoproteins converts these into a preferential substrate for hGIIA sPLA2, promoting its parasite-killing effect. This mechanism may contribute to host defense against P. falciparum in malaria where high levels of hGIIA are observed.
Collapse
|
4
|
Sukocheva O, Menschikowski M, Hagelgans A, Yarla NS, Siegert G, Reddanna P, Bishayee A. Current insights into functions of phospholipase A2 receptor in normal and cancer cells: More questions than answers. Semin Cancer Biol 2019; 56:116-127. [PMID: 29104026 DOI: 10.1016/j.semcancer.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
Abstract
Lipid signaling network was proposed as a potential target for cancer prevention and treatment. Several recent studies revealed that phospholipid metabolising enzyme, phospholipase A2 (PLA2), is a critical regulator of cancer accelerating pathologies and apoptosis in several types of cancers. In addition to functioning as an enzyme, PLA2 can activate a phospholipase A2 receptor (PLA2R1) in plasma membrane. While the list of PLA2 targets extends to glucose homeostasis, intracellular energy balance, adipocyte development, and hepatic lipogenesis, the PLA2R1 downstream effectors are few and scarcely investigated. Among the most addressed PLA2R1 effects are regulation of pro-inflammatory signaling, autoimmunity, apoptosis, and senescence. Localized in glomeruli podocytes, the receptor can be identified by circulating anti-PLA2R1 autoantibodies leading to development of membranous nephropathy, a strong autoimmune inflammatory cascade. PLA2R1 was shown to induce activation of Janus-kinase 2 (JAK2) and estrogen-related receptor α (ERRα)-controlled mitochondrial proteins, as well as increasing the accumulation of reactive oxygen species, thus leading to apoptosis and senescence. These findings indicate the potential role of PLA2R1 as tumor suppressor. Epigenetic investigations addressed the role of DNA methylation, histone modifications, and specific microRNAs in the regulation of PLA2R1 expression. However, involvement of PLA2R1 in suppression of malignant growth and metastasis remains controversial. In this review, we summarize the recent findings that highlight the role of PLA2R1 in the regulation of carcinogenesis-related intracellular signaling.
Collapse
Affiliation(s)
- Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia.
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Abhithaj J, Arun KG, Sharanya CS, Haridas M, Jayadevi Variyar E. Isozymes inhibited by active site blocking: versatility of calcium indifferent hesperidin binding to phospholipase A 2 and its significance. J Recept Signal Transduct Res 2019; 39:60-66. [PMID: 31084404 DOI: 10.1080/10799893.2019.1606239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
sPLA2 is released under inflammatory conditions from neutrophils, basophils and T-cells. They cleave the cellular phospholipids leading to the release of arachidonic acid and there by provide intermediates for biosynthesis of inflammatory mediators. The focus of this study is on the interaction of hesperidin, a natural flavonoid with Group IB, IIA, and V and X isozymes of sPLA2. Affinity of hesperidin towards PLA2 isozymes was analyzed through enzymatic studies and molecular modeling. The experiments showed that hesperidin competitively inhibited PLA2 with IC50 of 5.1 µM. Molecular modeling studies revealed the association of hesperidin with the docking scores -6.90, -9.53, -5.63 and -8.29 kcal for isozymes Group IB, IIA, V and X of PLA2 respectively. Their binding energy values were calculated as -20.25, -21.63, -21.66 and -33.43 kcal for the Group IB, IIA, V and X respectively. Structural model for Group V was made by homology modeling since no structural coordinates were available. Molecular dynamics studies were carried out to evaluate the structural stability of protein ligand complex. The analyses showed that hesperidin blocked the entry of the substrate to the active site of PLA2 and it was indifferent to the differences of the isozymes. Hence, hesperidin might serve as lead for designing highly specific anti-inflammatory drugs directed to the PLA2 isozyme specific to various diseases, with IC50 value of therapeutic significance.
Collapse
Affiliation(s)
- J Abhithaj
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - K G Arun
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - C S Sharanya
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - M Haridas
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| | - E Jayadevi Variyar
- a Department of Biotechnology & Microbiology , Inter University Centre for Bioscience, Kannur University , Palayad , India
| |
Collapse
|
6
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
7
|
Dore E, Boilard E. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:789-802. [PMID: 30905346 DOI: 10.1016/j.bbalip.2018.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as "non-pancreatic", "synovial", "platelet-type", "inflammatory", and "bactericidal" sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.
Collapse
Affiliation(s)
- Etienne Dore
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada; Canadian National Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Selectivity of phospholipid hydrolysis by phospholipase A 2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:772-783. [PMID: 30010011 DOI: 10.1016/j.bbalip.2018.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.
Collapse
|
9
|
Yamaguchi M, Zacharia J, Laidlaw TM, Balestrieri B. PLA2G5 regulates transglutaminase activity of human IL-4-activated M2 macrophages through PGE2 generation. J Leukoc Biol 2016; 100:131-41. [PMID: 26936936 DOI: 10.1189/jlb.3a0815-372r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/12/2016] [Indexed: 12/22/2022] Open
Abstract
Phospholipases A2 are enzymes that liberate membrane-bound lipids in a tissue and cell-specific fashion. Group V secretory phospholipase A2 is necessary for the development of M2 macrophages and their effector functions in a mouse model of the T-helper-2 allergic airway inflammation. However, the function of group V phospholipase A2 in human M2 activation and T-helper-2 inflammation is ill-defined. Transglutaminase-2, a protein cross-linking enzyme, is a newly identified marker of both human and mouse interleukin-4-activated M2 macrophages and is also found in the lungs of patients with asthma. We report that group V phospholipase A2 and transglutaminase-2 colocalized in macrophages of human nasal polyp tissue obtained from patients with T-helper-2 eosinophilic inflammation, and their coexpression positively correlated with the number of eosinophils in each tissue specimen. We demonstrate that in human monocyte-derived macrophages activated by interleukin-4, group V phospholipase A2 translocated and colocalized with transglutaminase-2 in the cytoplasm and on the membrane of macrophages. Moreover, knocking down group V phospholipase A2 with small interfering ribonucleic acid reduced macrophage transglutaminase activity, whereas mass spectrometry analysis of lipids also showed reduced prostaglandin E2 production. Finally, exogenous prostaglandin E2 restored transglutaminase activity of group V phospholipase A2-small interfering ribonucleic acid-treated macrophages. Thus, our study shows a novel function of group V phospholipase A2 in regulating the transglutaminase activity of human interleukin-4-activated M2 macrophages through prostaglandin E2 generation and suggests that group V phospholipase A2 is a functionally relevant enzyme that may have therapeutic value for the treatment of human T-helper-2 inflammatory disorders.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jennifer Zacharia
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Boston Massachusetts, USA; and the Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Silva-Filho JL, Peruchetti DB, Moraes-Santos F, Landgraf SS, Silva LS, Sirtoli GM, Zamith-Miranda D, Takiya CM, Pinheiro AAS, Diaz BL, Caruso-Neves C. Group V Secretory Phospholipase A2 Is Involved in Tubular Integrity and Sodium Handling in the Kidney. PLoS One 2016; 11:e0147785. [PMID: 26820468 PMCID: PMC4731149 DOI: 10.1371/journal.pone.0147785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 01/08/2023] Open
Abstract
Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2) enzymes. This enzyme has been identified in several organs, including the kidney. However, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear. We used mice lacking the gene encoding GV sPLA2 (Pla2g5−/−) and wild-type breeding pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine was collected for biochemical assays. Kidney samples were evaluated for glomerular morphology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We observed that plasma creatinine levels were increased in Pla2g5−/− mice following by a decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5−/− mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa+) were also increased in Pla2g5−/− mice. The increased FENa+ observed in Pla2g5−/− mice was correlated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney from Pla2g5−/− mice showed accumulation of matrix in corticomedullary glomeruli and tubulointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular cell function and integrity, promoting sodium retention through increased cortical (Na+ + K+)-ATPase expression and activity.
Collapse
Affiliation(s)
- João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Moraes-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sharon Schilling Landgraf
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Leandro Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriela Modenesi Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Zamith-Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, RJ, Brazil
| | - Bruno Lourenço Diaz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
11
|
Menschikowski M, Hagelgans A, Nacke B, Jandeck C, Mareninova OA, Asatryan L, Siegert G. Epigenetic control of group V phospholipase A2 expression in human malignant cells. Tumour Biol 2015; 37:8097-105. [PMID: 26715269 DOI: 10.1007/s13277-015-4670-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/16/2015] [Indexed: 12/27/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in downregulation of GV-PLA2 expression in cancer cells.
Collapse
Affiliation(s)
- Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Brit Nacke
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Olga A Mareninova
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, CA, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA, USA
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| |
Collapse
|
12
|
Tanabe T, Shimokawaji T, Kanoh S, Rubin BK. Secretory phospholipases A2 are secreted from ciliated cells and increase mucin and eicosanoid secretion from goblet cells. Chest 2015; 147:1599-1609. [PMID: 25429648 DOI: 10.1378/chest.14-0258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Secretory phospholipases A2 (sPLA2) initiate the biosynthesis of eicosanoids, are increased in the airways of people with severe asthma, and induce mucin hypersecretion. We used IL-13-transformed, highly enriched goblet cells and differentiated (ciliary cell-enriched) human bronchial epithelial cell culture to evaluate the relative contribution of ciliated and goblet cells to airway sPLA2 generation and response. We wished to determine the primary source(s) of sPLA2 and leukotrienes in human airway epithelial cells. METHODS Human bronchial epithelial cells from subjects without lung disease were differentiated to a ciliated-enriched or goblet-enriched cell phenotype. Synthesis of sPLA2, cysteinyl leukotrienes (cysLTs), and airway mucin messenger RNA and protein was measured by real-time-polymerase chain reaction and an enzyme-linked immunosorbent assay, and the localization of mucin and sPLA2 to specific cells types was confirmed by confocal microscopy. RESULTS sPLA2 group IIa, V, and X messenger RNA expression was increased in ciliated-enriched cells (P < .001) but not in goblet-enriched cells. sPLA2 were secreted from the apical (air) side of ciliated-enriched cells but not goblet-enriched cells (P < .001). Immunostaining of sPLA2 V was strongly positive in ciliated-enriched cells but not in goblet-enriched cells. sPLA2 released cysLTs from goblet-enriched cells but not from ciliated-enriched cells, and this result was greatest with sPLA2 V (P < .05). sPLA2 V increased goblet-enriched cell mucin secretion, which was inhibited by inhibitors of lipoxygenase or cyclooxygenase (P < .02). CONCLUSIONS sPLA2 are secreted from ciliated cells and appear to induce mucin and cysLT secretion from goblet cells, strongly suggesting that airway goblet cells are proinflammatory effector cells.
Collapse
Affiliation(s)
- Tsuyoshi Tanabe
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA.
| | - Tadasuke Shimokawaji
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Soichiro Kanoh
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bruce K Rubin
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
13
|
Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. J Allergy Clin Immunol 2015; 137:268-277.e8. [PMID: 26139511 DOI: 10.1016/j.jaci.2015.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phospholipase A2s mediate the rate-limiting step in the formation of eicosanoids such as cysteinyl leukotrienes (CysLTs). Group IVA cytosolic PLA2α (cPLA2α) is thought to be the dominant PLA2 in eosinophils; however, eosinophils also have secreted PLA2 (sPLA2) activity that has not been fully defined. OBJECTIVES To examine the expression of sPLA2 group X (sPLA2-X) in eosinophils, the participation of sPLA2-X in the formation of CysLTs, and the mechanism by which sPLA2-X initiates the synthesis of CysLTs in eosinophils. METHODS Peripheral blood eosinophils were obtained from volunteers with asthma and/or allergy. A rabbit polyclonal anti-sPLA2-X antibody identified sPLA2-X by Western blot. We used confocal microscopy to colocalize the sPLA2-X to intracellular structures. An inhibitor of sPLA2-X (ROC-0929) that does not inhibit other mammalian sPLA2s, as well as inhibitors of the mitogen-activated kinase cascade (MAPK) and cPLA2α, was used to examine the mechanism of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated formation of CysLT. RESULTS Eosinophils express the mammalian sPLA2-X gene (PLA2G10). The sPLA2-X protein is located in the endoplasmic reticulum, golgi, and granules of eosinophils and moves to the granules and lipid bodies during fMLP-mediated activation. Selective sPLA2-X inhibition attenuated the fMLP-mediated release of arachidonic acid and CysLT formation by eosinophils. Inhibitors of p38, extracellular-signal-regulated kinases 1/2 (p44/42 MAPK), c-Jun N-terminal kinase, and cPLA2α also attenuated the fMLP-mediated formation of CysLT. The sPLA2-X inhibitor reduced the phosphorylation of p38 and extracellular-signal-regulated kinases 1/2 (p44/42 MAPK) as well as cPLA2α during cellular activation, indicating that sPLA2-X is involved in activating the MAPK cascade leading to the formation of CysLT via cPLA2α. We further demonstrate that sPLA2-X is activated before secretion from the cell during activation. Short-term priming with IL-13 and TNF/IL-1β increased the expression of PLA2G10 by eosinophils. CONCLUSIONS These results demonstrate that sPLA2-X plays a significant role in the formation of CysLTs by human eosinophils. The predominant role of the enzyme is the regulation of MAPK activation that leads to the phosphorylation of cPLA2α. The sPLA2-X protein is regulated by proteolytic cleavage, suggesting that an inflammatory environment may promote the formation of CysLTs through this mechanism. These results have important implications for the treatment of eosinophilic disorders such as asthma.
Collapse
|
14
|
Kelvin AA, Degousee N, Banner D, Stefanski E, Leόn AJ, Angoulvant D, Paquette SG, Huang SSH, Danesh A, Robbins CS, Noyan H, Husain M, Lambeau G, Gelb M, Kelvin DJ, Rubin BB. Lack of group X secreted phospholipase A₂ increases survival following pandemic H1N1 influenza infection. Virology 2014; 454-455:78-92. [PMID: 24725934 PMCID: PMC4106042 DOI: 10.1016/j.virol.2014.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/11/2013] [Accepted: 01/28/2014] [Indexed: 02/05/2023]
Abstract
The role of Group X secreted phospholipase A2 (GX-sPLA2) during influenza infection has not been previously investigated. We examined the role of GX-sPLA2 during H1N1 pandemic influenza infection in a GX-sPLA2 gene targeted mouse (GX(-/-)) model and found that survival after infection was significantly greater in GX(-/-) mice than in GX(+/+) mice. Downstream products of GX-sPLA2 activity, PGD2, PGE2, LTB4, cysteinyl leukotrienes and Lipoxin A4 were significantly lower in GX(-/-) mice BAL fluid. Lung microarray analysis identified an earlier and more robust induction of T and B cell associated genes in GX(-/-) mice. Based on the central role of sPLA2 enzymes as key initiators of inflammatory processes, we propose that activation of GX-sPLA2 during H1N1pdm infection is an early step of pulmonary inflammation and its inhibition increases adaptive immunity and improves survival. Our findings suggest that GX-sPLA2 may be a potential therapeutic target during influenza.
Collapse
Affiliation(s)
| | - Norbert Degousee
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Eva Stefanski
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Alberto J Leόn
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Denis Angoulvant
- Division of Cardiology, Trousseau Hospital, Tours University Hospital Center and EA 4245, Francois Rabelais University, Tours, France
| | - Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S H Huang
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ali Danesh
- Blood Systems Research Institute, San Francisco, CA 2-Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Clinton S Robbins
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hossein Noyan
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mansoor Husain
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Heart & Stroke Richard Lewar Centre of Excellence, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Gerard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 CNRS and Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, 06560 Valbonne, France
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington, USA
| | - David J Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Universita׳ degli Studi di Sassari, Sassari, Italy.
| | - Barry B Rubin
- Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Synthesis and Characterization of Novel Unnatural di(8-Daidzeinyl)Methane. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-0870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ilic D, Bollinger JM, Gelb M, Mauro TM. sPLA2 and the epidermal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:416-21. [PMID: 24269828 DOI: 10.1016/j.bbalip.2013.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022]
Abstract
The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F(-/-) mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Dusko Ilic
- Human Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College London School of Medicine, London, UK.
| | - James M Bollinger
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA.
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco Veterans Medical Center, San Francisco, CA, USA.
| |
Collapse
|
17
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
18
|
Gibbons E, Nelson J, Anderson L, Brewer K, Melchor S, Judd AM, Bell JD. Role of membrane oxidation in controlling the activity of human group IIa secretory phospholipase A2 toward apoptotic lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:670-6. [DOI: 10.1016/j.bbamem.2012.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 01/05/2023]
|
19
|
Gibbons E, Pickett KR, Streeter MC, Warcup AO, Nelson J, Judd AM, Bell JD. Molecular details of membrane fluidity changes during apoptosis and relationship to phospholipase A(2) activity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:887-95. [PMID: 22967861 PMCID: PMC3529823 DOI: 10.1016/j.bbamem.2012.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/27/2022]
Abstract
Secretory phospholipase A(2) exhibits much greater activity toward apoptotic versus healthy cells. Various plasma membrane changes responsible for this phenomenon have been proposed, including biophysical alterations described as "membrane fluidity" and "order." Understanding of these membrane perturbations was refined by applying studies with model membranes to fluorescence measurements during thapsigargin-induced apoptosis of S49 cells using probes specific for the plasma membrane: Patman and trimethylammonium-diphenylhexatriene. Alterations in emission properties of these probes corresponded with enhanced susceptibility of the cells to hydrolysis by secretory phospholipase A(2). By applying a quantitative model, additional information was extracted from the kinetics of Patman equilibration with the membrane. Taken together, these data suggested that the phospholipids of apoptotic membranes display greater spacing between adjacent headgroups, reduced interactions between neighboring lipid tails, and increased penetration of water among the heads. The phase transition of artificial bilayers was used to calibrate quantitatively the relationship between probe fluorescence and the energy of interlipid interactions. This analysis was applied to results from apoptotic cells to estimate the frequency with which phospholipids protrude sufficiently at the membrane surface to enter the enzyme's active site. The data suggested that this frequency increases 50-100-fold as membranes become susceptible to hydrolysis during apoptosis.
Collapse
Affiliation(s)
- Elizabeth Gibbons
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hiyoshi M, Kitayama J, Kazama S, Taketomi Y, Murakami M, Tsuno NH, Hongo K, Kaneko M, Sunami E, Watanabe T. The expression of phospholipase A2 group X is inversely associated with metastasis in colorectal cancer. Oncol Lett 2012; 5:533-538. [PMID: 23420493 PMCID: PMC3572978 DOI: 10.3892/ol.2012.1067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/29/2012] [Indexed: 11/06/2022] Open
Abstract
Among the secretory phospholipase A2s (sPLA2), sPLA2 group X (PLA2GX) has the most potent hydrolyzing activity toward phosphatidylcholine, and has recently been shown to be implicated in chronic inflammatory diseases. The aim of the present study was to investigate PLA2GX expression in colorectal cancer (CRC) and its correlation with patient clinicopathological features. The present study comprises a series of 158 patients who underwent surgical resection for primary CRC. PLA2GX expression in CRC tissues was examined by immunohistochemistry and compared with patient clinicopathological findings and survival. A total of 64% of the tumors expressed PLA2GX at high levels. Statistical analysis revealed that PLA2GX expression was inversely correlated with hematogenous metastasis (P=0.005). In the subgroup analysis, left-sided tumors with high PLA2GX expression showed an inverse correlation with lymph node metastasis (P=0.018) and hematogenous metastasis (P=0.017). Patients with high PLA2GX expression tended to have a longer disease-specific survival compared with those with low PLA2GX expression in left-sided, but not right-sided, CRC (P=0.08). In light of the present results, we suggest that PLA2GX has an inhibitory effect on the progression of CRC.
Collapse
Affiliation(s)
- Masaya Hiyoshi
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nelson J, Francom LL, Anderson L, Damm K, Baker R, Chen J, Franklin S, Hamaker A, Izidoro I, Moss E, Orton M, Stevens E, Yeung C, Judd AM, Bell JD. Investigation into the role of phosphatidylserine in modifying the susceptibility of human lymphocytes to secretory phospholipase A(2) using cells deficient in the expression of scramblase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1196-204. [PMID: 22266334 DOI: 10.1016/j.bbamem.2012.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/22/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022]
Abstract
Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A(2) but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt's lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A(2). Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A(2). These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A(2), it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine.
Collapse
Affiliation(s)
- Jennifer Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tanabe Y, Saito-Tanji M, Morikawa Y, Kamataki A, Sawai T, Nakayama K. Role of Secretory Phospholipase A2 in Rhythmic Contraction of Pulmonary Arteries of Rats With Monocrotaline-Induced Pulmonary Arterial Hypertension. J Pharmacol Sci 2012; 119:271-81. [DOI: 10.1254/jphs.12024fp] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
23
|
Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:249-56. [PMID: 22155285 DOI: 10.1016/j.bbalip.2011.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 01/06/2023]
Abstract
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.
Collapse
|
24
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
25
|
Chan A, Mauro T. Acidification in the epidermis and the role of secretory phospholipases. DERMATO-ENDOCRINOLOGY 2011; 3:84-90. [PMID: 21695017 PMCID: PMC3117007 DOI: 10.4161/derm.3.2.15140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 12/19/2022]
Abstract
The function of the epidermis is to form an effective barrier between the dry, external environment and the interior of the body. The barrier specifically resides in the extracellular lipid membranes of the stratum corneum (SC) and an acidic pH is necessary to maintain its competency against various insults. The purpose of this review is to explore the mechanisms which are postulated to contribute to the acidification of the stratum corneum, including both exogenous and endogenous sources. However, recent research as pointed to several endogenous mechanisms as the major source of acidification, including a sodium/proton pump (NHE1) and free fatty acid conversion from phospholipids by secretory phospholipase A2 (sPLA2). sPLA2 has been shown to play a central role in the formation of the SC “acid mantle” in the early maturation of the epidermis postnatally. Many aspects of this enzyme family are complex and still being elucidated in research and the most recent findings on the localization and functions of sPL A2-IB, -IIA, -IIC, -IID, -IIE, -IIF, -III, -V, -X and -XII in the epidermis are presented here. Given their role in inflammatory dermatoses, such as psoriasis and atopic dermatitis, understanding this complex enzyme family can lead to novel, life-changing therapies.
Collapse
Affiliation(s)
- Aegean Chan
- Dermatology Department; University of California, San Francisco; and San Francisco Veterans Affairs Medical Center; San Francisco, CA USA
| | | |
Collapse
|
26
|
Yamamoto K, Taketomi Y, Isogai Y, Miki Y, Sato H, Masuda S, Nishito Y, Morioka K, Ishimoto Y, Suzuki N, Yokota Y, Hanasaki K, Ishikawa Y, Ishii T, Kobayashi T, Fukami K, Ikeda K, Nakanishi H, Taguchi R, Murakami M. Hair follicular expression and function of group X secreted phospholipase A2 in mouse skin. J Biol Chem 2011; 286:11616-31. [PMID: 21266583 DOI: 10.1074/jbc.m110.206714] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A(2) (PLA(2)) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA(2) (sPLA(2)-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA(2)-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA(2)-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA(2)-X in hair follicles, the presence of skin-specific machinery leading to sPLA(2)-X activation, a functional link of sPLA(2)-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Synthesis and characterization of novel unnatural bichalcones. Arch Pharm Res 2010; 33:1919-26. [PMID: 21191755 DOI: 10.1007/s12272-010-1205-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/02/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
Five bichalcones (5-1 ~ 5-4, 9) were prepared by the reaction of biphenyl-4,4'-dicarbaldehyde (4) and 4,4'-dioxybenzaldehyde (8) with the respective acetophenone analogs via Claisen-Schmidt condensation and were then fully identified by 1H-NMR, (13)C-NMR and mass analyses.
Collapse
|
28
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010; 92:561-82. [PMID: 20347923 DOI: 10.1016/j.biochi.2010.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Among the emerging phospholipase A(2) (PLA(2)) superfamily, the secreted PLA(2) (sPLA(2)) family consists of low-molecular-mass, Ca(2+)-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA(2) enzymes have been identified in mammals. Individual sPLA(2)s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA(2) enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA(2) isoforms fueled by studies employing transgenic and knockout mice for several sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
30
|
Olson ED, Nelson J, Griffith K, Nguyen T, Streeter M, Wilson-Ashworth HA, Gelb MH, Judd AM, Bell JD. Kinetic evaluation of cell membrane hydrolysis during apoptosis by human isoforms of secretory phospholipase A2. J Biol Chem 2010; 285:10993-1002. [PMID: 20139082 DOI: 10.1074/jbc.m109.070797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some isoforms of secretory phospholipase A(2) (sPLA(2)) distinguish between healthy and damaged or apoptotic cells. This distinction reflects differences in membrane physical properties. Because various sPLA(2) isoforms respond differently to properties of artificial membranes such as surface charge, they should also behave differently as these properties evolve during a dynamic physiological process such as apoptosis. To test this idea, S49 lymphoma cell death was induced by glucocorticoid (6-48 h) or calcium ionophore. Rates of membrane hydrolysis catalyzed by various concentrations of snake venom and human groups IIa, V, and X sPLA(2) were compared after each treatment condition. The data were analyzed using a model that evaluates the adsorption of enzyme to the membrane surface and subsequent binding of substrate to the active site. Results were compared temporally to changes in membrane biophysics and composition. Under control conditions, membrane hydrolysis was confined to the few unhealthy cells present in each sample. Increased hydrolysis during apoptosis and necrosis appeared to reflect substrate access to adsorbed enzyme for the snake venom and group X isoforms corresponding to weakened lipid-lipid interactions in the membrane. In contrast, apoptosis promoted initial adsorption of human groups V and IIa concurrent with phosphatidylserine exposure on the membrane surface. However, this observation was inadequate to explain the behavior of the groups V and IIa enzymes toward necrotic cells where hydrolysis was reduced or absent. Thus, a combination of changes in cell membrane properties during apoptosis and necrosis capacitates the cell for hydrolysis differently by each isoform.
Collapse
Affiliation(s)
- Erin D Olson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pérez-Chacón G, Astudillo AM, Balgoma D, Balboa MA, Balsinde J. Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1103-13. [DOI: 10.1016/j.bbalip.2009.08.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/11/2022]
|
32
|
Bailey RW, Nguyen T, Robertson L, Gibbons E, Nelson J, Christensen RE, Bell JP, Judd AM, Bell JD. Sequence of physical changes to the cell membrane during glucocorticoid-induced apoptosis in S49 lymphoma cells. Biophys J 2009; 96:2709-18. [PMID: 19348753 DOI: 10.1016/j.bpj.2008.12.3925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/15/2008] [Accepted: 12/18/2008] [Indexed: 01/03/2023] Open
Abstract
During apoptosis, physical changes in the plasma membrane prepare the cell for clearance by phagocytes and hydrolysis by secretory phospholipase A(2) (sPLA(2)). The relationships among these changes have not been adequately established, especially for hormone-stimulated apoptosis. This study addresses these issues for glucocorticoid-induced apoptosis in S49 lymphoma cells. Flow cytometry, microscopy, and fluorescence spectroscopy were used to assess merocyanine 540 emission, laurdan generalized polarization, phosphatidylserine exposure, caspase activation, and membrane permeability to propidium iodide in the absence and presence of sPLA(2). The earliest event observed was activation of cellular caspases. Results with membrane probes suggest that interlipid spacing also increases early during apoptosis and precedes transbilayer migration of phosphatidylserine, DNA fragmentation, and a general increase in lipid order associated with blebbing and dissolution of the cells. The activity of sPLA(2) appeared to be linked more to lipid spacing than to loss of membrane asymmetry. The early nature of some of these events and their ability to promote activity of a proinflammatory enzyme suggests the possibility of an inflammatory response during T-lymphocyte apoptosis.
Collapse
Affiliation(s)
- Rachel W Bailey
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PLA2 (phospholipase A2) group III is an atypical sPLA2 (secretory PLA2) that is homologous with bee venom PLA2 rather than with other mammalian sPLA2s. In the present paper, we show that endogenous group III sPLA2 (PLA2G3) is expressed in mouse skin and that Tg (transgenic) mice overexpressing human PLA2G3 spontaneously develop skin inflammation. Pla2g3-Tg mice over 9 months of age frequently developed dermatitis with hyperkeratosis, acanthosis, parakeratosis, erosion, ulcer and sebaceous gland hyperplasia. The dermatitis was accompanied by infiltration of neutrophils and macrophages and by elevated levels of pro-inflammatory cytokines, chemokines and prostaglandin E2. In addition, Pla2g3-Tg mice had increased lymph aggregates and mucus in the airway, lymphocytic sialadenitis, hepatic extramedullary haemopoiesis, splenomegaly with increased populations of granulocytes and monocytes/macrophages, and increased serum IgG1. Collectively, these observations provide the first demonstration of spontaneous development of inflammation in mice with Tg overexpression of mammalian sPLA2.
Collapse
|
34
|
Hyde CAC, Missailidis S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol 2009; 9:701-15. [PMID: 19239926 DOI: 10.1016/j.intimp.2009.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 12/17/2022]
Abstract
Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention.
Collapse
Affiliation(s)
- C A C Hyde
- Department of Chemistry and Analytical Sciences, The Open University, Walton Hall, Milton Keynes, MK5 7AS, UK
| | | |
Collapse
|
35
|
Moreira V, Gutiérrez JM, Amaral RB, Zamunér SR, Teixeira CDFP. Effects of Bothrops asper snake venom on the expression of cyclooxygenases and production of prostaglandins by peritoneal leukocytes in vivo, and by isolated neutrophils and macrophages in vitro. Prostaglandins Leukot Essent Fatty Acids 2009; 80:107-14. [PMID: 19155166 DOI: 10.1016/j.plefa.2008.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/07/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
In this study, the ability of Bothrops asper snake venom (BaV) to increase the production of prostaglandins PGE(2) and PGD(2) was assessed in a mouse model in vivo and in inflammatory cells in vitro. In addition, the expressions of COX-1 and COX-2 were assessed. BaV induced an increment in the in vivo synthesis of PGE(2) and PGD(2), together with an enhanced expression of COX-2, but not of COX-1. However, enzymatic activities of COX-1 and COX-2 were increased. Incubation of isolated macrophages and neutrophils with a sub-cytotoxic concentration of BaV in vitro resulted in increased release of PGE(2) and PGD(2) by macrophages and PGE(2) by neutrophils, concomitantly with an increment in the expression of COX-2, but not of COX-1 by both cell types. Our results demonstrate the ability of BaV to promote the expression of COX-2 and to induce the synthesis of proinflammatory prostaglandins. Macrophages and neutrophils may be important targets for this venom under in vivo situation.
Collapse
Affiliation(s)
- Vanessa Moreira
- Laboratorio de Farmacologia, Instituto Butantan, Av. Vital Brasil, 1500, CEP 05503-900, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Kuksis A, Pruzanski W. Phase composition of lipoprotein SM/cholesterol/PtdCho affects FA specificity of sPLA2s. J Lipid Res 2008; 49:2161-8. [DOI: 10.1194/jlr.m800167-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Jönsson-Rylander AC, Lundin S, Rosengren B, Pettersson C, Hurt-Camejo E. Role of secretory phospholipases in atherogenesis. Curr Atheroscler Rep 2008; 10:252-9. [PMID: 18489854 DOI: 10.1007/s11883-008-0039-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevated circulating levels of secretory phospholipase A(2) (sPLA(2)) are associated with atherosclerotic cardiovascular disease. sPLA(2) can contribute to atherogenesis by hydrolyzing phospholipids of circulating lipoproteins and lipoproteins entrapped in the arterial wall and/or in cells that reside in the intima and that participate in the inflammatory response to lipoprotein deposition. This article reviews differences and similarities between sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X, all of which are members of this family of enzymes with reported potential proatherogenic features. Published data suggest that each of the enzymes has a distinct profile characterized by differences in tissue expression and localization, capacity to act on phospholipids of cell membranes and lipoproteins, and their interaction with arterial proteoglycans. In addition, the article discusses results from the authors' laboratory showing that diet-induced or gene-induced hyperlipidemia in mice enhances the expression of sPLA(2)-V in different tissues, but not sPLA(2)-IIA. Such differences indicate that these enzymes may have different roles in atherosclerotic cardiovascular disease through their distinct profiles.
Collapse
Affiliation(s)
- Ann-Cathrine Jönsson-Rylander
- AstraZeneca, R&D, Bioscience, Mölndal S-431 83, Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska University Hospital, Gotheburg, Sweden
| | | | | | | | | |
Collapse
|
38
|
Titsworth WL, Liu NK, Xu XM. Role of secretory phospholipase a(2) in CNS inflammation: implications in traumatic spinal cord injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:254-69. [PMID: 18673210 PMCID: PMC2800081 DOI: 10.2174/187152708784936671] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA(2) is a rate-limiting step for generation of eicosanoids and PAF. To date, more than 10 isozymes of sPLA(2) have been found in the mammalian central nervous system (CNS). Under physiological conditions, sPLA(2)s are involved in diverse cellular responses, including host defense, phospholipid digestion and metabolism. However, under pathological situations, increased sPLA(2) activity and excessive production of free fatty acids and their metabolites may lead to inflammation, loss of membrane integrity, oxidative stress, and subsequent tissue injury. Emerging evidence suggests that sPLA(2) plays a role in the secondary injury process after traumatic or ischemic injuries in the brain and spinal cord. Importantly, sPLA(2) may act as a convergence molecule that mediates multiple key mechanisms involved in the secondary injury since it can be induced by multiple toxic factors such as inflammatory cytokines, free radicals, and excitatory amino acids, and its activation and metabolites can exacerbate the secondary injury. Blocking sPLA(2) action may represent a novel and efficient strategy to block multiple injury pathways associated with the CNS secondary injury. This review outlines the current knowledge of sPLA(2) in the CNS with emphasis placed on the possible roles of sPLA(2) in mediating CNS injuries, particularly the traumatic and ischemic injuries in the brain and spinal cord.
Collapse
Affiliation(s)
- W. Lee Titsworth
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery, and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nai-Kui Liu
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery, and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Kentucky Spinal Cord Injury Research Center, Departments of Neurological Surgery, and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
39
|
Masuda S, Yamamoto K, Hirabayashi T, Ishikawa Y, Ishii T, Kudo I, Murakami M. Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival. Biochem J 2008; 409:429-38. [PMID: 17868035 DOI: 10.1042/bj20070844] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human sPLA2-III [group III secreted PLA2 (phospholipase A2)] is an atypical sPLA2 isoenzyme that consists of a central group III sPLA2 domain flanked by unique N- and C-terminal domains. In the present study, we found that sPLA2-III is expressed in neuronal cells, such as peripheral neuronal fibres, spinal DRG (dorsal root ganglia) neurons and cerebellar Purkinje cells. Adenoviral expression of sPLA2-III in PC12 cells (pheochromocytoma cells) or DRG explants facilitated neurite outgrowth, whereas expression of a catalytically inactive sPLA2-III mutant or use of sPLA2-III-directed siRNA (small interfering RNA) reduced NGF (nerve growth factor)-induced neuritogenesis. sPLA2-III also suppressed neuronal death induced by NGF deprivation. Lipid MS revealed that sPLA2-III overexpression increased the cellular level of lysophosphatidylcholine, a PLA2 reaction product with neuritogenic and neurotropic activities, whereas siRNA knockdown reduced the level of lysophosphatidylcholine. These observations suggest the potential contribution of sPLA2-III to neuronal differentiation and its function under certain conditions.
Collapse
Affiliation(s)
- Seiko Masuda
- Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Passero LFD, Laurenti MD, Tomokane TY, Corbett CEP, Toyama MH. The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection. Parasitol Res 2008; 102:1025-33. [PMID: 18180953 DOI: 10.1007/s00436-007-0871-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 12/21/2007] [Indexed: 01/06/2023]
Abstract
In this study, the effect of phospholipase A2 (PLA2) derived from Crotalus durissus collilineatus was evaluated in vitro and in vivo on experimental cutaneous leishmaniasis. The promastigote and amastigote forms treated with PLA2 presented increased growth rate. In vivo studies showed that PLA2-treated Leishmania (Leishmania) amazonensis promastigotes increased the size of lesions in BALB/c mice, and histopathological analysis showed numerous necrotic regions presenting a higher density of polymorphonuclear, mononuclear, and amastigote cells. Additionally, infected macrophages treated with PLA2 were able to generate prostaglandin E2 (PGE2). Cytokine quantification showed that the supernatant from infected macrophages presented moderate and high amounts of IL-2 and IL-10, respectively. However, in PLA2-treated infected macrophages, suppression of IL-2 levels occurred, but not of IL-10 levels. Observation also revealed that both the supernatant and lysate of L. (L.) amazonensis promastigotes exhibited PLA2 activity, which, in the presence of dexamethasone, showed no reduction in their activities; while glucocorticoid maintained the ability of promastigote forms to infect macrophages, which presented values similar to controls. In conclusion, the results indicate that PLA2 may be a progression factor for cutaneous leishmaniasis, since the PLA2 effect suppressed IL-2 levels and generated PGE2, an inflammatory lipid mediator.
Collapse
|
41
|
Human group III phospholipase A2 suppresses adenovirus infection into host cells. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1389-96. [DOI: 10.1016/j.bbalip.2007.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/22/2022]
|
42
|
Moon TC, Quan Z, Kim J, Kim HP, Kudo I, Murakami M, Park H, Chang HW. Inhibitory effect of synthetic C-C biflavones on various phospholipase A(2)s activity. Bioorg Med Chem 2007; 15:7138-43. [PMID: 17826099 DOI: 10.1016/j.bmc.2007.07.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/02/2007] [Accepted: 07/06/2007] [Indexed: 01/25/2023]
Abstract
Several prototypes of C-C biflavones (a-f) were synthesized and evaluated their inhibitory activity against phospholipase A(2)s (PLA(2)s) activity. The synthetic C-C biflavones (a-f) showed rather different inhibitory activity against various PLA(2)s. Most synthetic C-C biflavonoids exhibited potent and broad inhibitory activity against various sPLA(2)s and cPLA(2) tested regardless of their structural array. In particular, of natural and synthetic biflavonoids tested, the synthetic C-C biflavonoid (d) only showed inhibitory activity against sPLA(2) X. None of the natural and synthetic biflavonoids tested showed inhibitory activity against sPLA(2) IB. Further chemical modification of these basic structures will be carried out in order to investigate the synthetic C-C biflavones which possess more selective inhibitory activity against isozymes of PLA(2).
Collapse
Affiliation(s)
- Tae Chul Moon
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ruipérez V, Casas J, Balboa MA, Balsinde J. Group V phospholipase A2-derived lysophosphatidylcholine mediates cyclooxygenase-2 induction in lipopolysaccharide-stimulated macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:631-8. [PMID: 17579085 DOI: 10.4049/jimmunol.179.1.631] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of macrophages and macrophage cell lines by bacterial LPS elicits a delayed phase of PG biosynthesis that appears to be entirely mediated by cyclooxygenase-2 (COX-2). In previous work, we found that a catalytically active group V secreted phospholipase A(2) (sPLA(2)-V) was required for COX-2 induction, but the nature of the sPLA(2)-V metabolite involved was not defined. In this study, we identify lysophosphatidylcholine (lysoPC) as the sPLA(2)-V downstream mediator involved in COX-2 induction by LPS-stimulated macrophages. Inhibition of sPLA(2)-V by RNA interference or by the cell-permeable compound scalaradial blocked LPS-induced COX-2 expression, and this inhibition was overcome by incubating the cells with a nonhydrolyzable lysoPC analog, but not by arachidonic acid or oleic acid. Moreover, inhibition of sPLA(2)-V by scalaradial also prevented the activation of the transcription factor c-Rel, and such an inhibition was also selectively overcome by the lysoPC analog. Collectively, these results support a model whereby sPLA(2)-V hydrolysis of phospholipids upon LPS stimulation results in lysoPC generation, which in turn regulates COX-2 expression by a mechanism involving the transcriptional activity of c-Rel.
Collapse
Affiliation(s)
- Violeta Ruipérez
- Institute of Molecular Biology and Genetics, Spanish National Research Council and University of Valladolid School of Medicine, Valladolid, Spain
| | | | | | | |
Collapse
|
44
|
Bailey RW, Olson ED, Vu MP, Brueseke TJ, Robertson L, Christensen RE, Parker KH, Judd AM, Bell JD. Relationship between membrane physical properties and secretory phospholipase A2 hydrolysis kinetics in S49 cells during ionophore-induced apoptosis. Biophys J 2007; 93:2350-62. [PMID: 17545239 PMCID: PMC1965435 DOI: 10.1529/biophysj.107.104679] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During apoptosis, changes occur in lymphocyte membranes that render them susceptible to hydrolysis by secretory phospholipase A(2) (sPLA(2)). To study the relevant mechanisms, a simplified model of apoptosis using a calcium ionophore was applied. Kinetic and flow cytometry experiments provided key observations regarding ionophore treatment: the initial rate of hydrolysis was elevated at all enzyme concentrations, the total amount of reaction product was increased fourfold, and adsorption of the enzyme to the membrane surface was unaltered. Analysis of these results suggested that susceptibility during calcium-induced apoptosis is limited by availability of substrate rather than adsorption of enzyme. Fluorescence experiments identified three membrane alterations during apoptosis that might affect substrate access to the sPLA(2) active site. First, intercalation of merocyanine 540 into the membrane was improved, suggesting an increase in lipid spacing. Second, laurdan detected increased solvation of the lower headgroup region of the membrane. Third, the rate at which fluorescent lipids could be removed from the membrane by albumin was enhanced, implying greater vertical mobility of phospholipids. Thus, it is proposed that the membranes of apoptotic cells become susceptible to sPLA(2) through a reduction in lipid-neighbor interactions that facilitates migration of phospholipids into the enzyme active site.
Collapse
Affiliation(s)
- Rachel W Bailey
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bostrom MA, Boyanovsky BB, Jordan CT, Wadsworth MP, Taatjes DJ, de Beer FC, Webb NR. Group V Secretory Phospholipase A2Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27:600-6. [PMID: 17204667 DOI: 10.1161/01.atv.0000257133.60884.44] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Group V secretory phospholipase A2 (GV sPLA2) has been detected in both human and mouse atherosclerotic lesions. This enzyme has potent hydrolytic activity towards phosphatidylcholine-containing substrates, including lipoprotein particles. Numerous studies in vitro indicate that hydrolysis of high density lipoproteins (HDL) and low density lipoproteins (LDL) by GV sPLA2 leads to the formation of atherogenic particles and potentially proinflammatory lipid mediators. However, there is no direct evidence that this enzyme promotes atherogenic processes in vivo. METHODS AND RESULTS We performed gain-of-function and loss-of-function studies to investigate the role of GV sPLA2 in atherogenesis in LDL receptor-deficient mice. Compared with control mice, animals overexpressing GV sPLA2 by retrovirus-mediated gene transfer had a 2.7 fold increase in lesion area in the ascending region of the aortic root. Increased atherosclerosis was associated with an increase in lesional collagen deposition in the same region. Mice deficient in bone marrow-derived GV sPLA2 had a 36% reduction in atherosclerosis in the aortic arch/thoracic aorta. CONCLUSIONS Our data in mouse models provide the first in vivo evidence that GV sPLA2 contributes to atherosclerotic processes, and draw attention to this enzyme as an attractive target for the treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Meredith A Bostrom
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim JO, Chakrabarti BK, Guha-Niyogi A, Louder MK, Mascola JR, Ganesh L, Nabel GJ. Lysis of human immunodeficiency virus type 1 by a specific secreted human phospholipase A2. J Virol 2006; 81:1444-50. [PMID: 17093191 PMCID: PMC1797512 DOI: 10.1128/jvi.01790-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase A2 (PLA2) proteins affect cellular activation, signal transduction, and possibly innate immunity. A specific secretory PLA2, sPLA2-X, is shown here to neutralize human immunodeficiency virus type 1 (HIV-1) through degradation of the viral membrane. Catalytic function was required for antiviral activity, and the target cells of infection were unaffected. sPLA2-X potently reduced gene transfer of HIV-1 Env-pseudotyped lentivirus vectors and inhibited the replication of both CCR5- and CXCR4-tropic HIV-1 in human CD4+ T cells. Virions resistant to damage by antibody and complement were sensitive to lysis by sPLA2-X, suggesting a novel mechanism of antiviral surveillance independent of the acquired immune system.
Collapse
Affiliation(s)
- Jae-Ouk Kim
- Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Bldg. 40, MSC-3005, 40 Convent Dr., Bethesda, MD 20892-3005, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Rosengren B, Jönsson-Rylander AC, Peilot H, Camejo G, Hurt-Camejo E. Distinctiveness of secretory phospholipase A2 group IIA and V suggesting unique roles in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1301-8. [PMID: 17070102 DOI: 10.1016/j.bbalip.2006.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 01/26/2023]
Abstract
Clinical observations strongly support an association of circulating levels of secretory phospholipases A(2) (sPLA(2)) in atherosclerotic cardiovascular disease (ACVD). Two modes of action can provide causal support for these statistical correlations. One is the action of the enzymes on circulating lipoproteins and the other is direct action on the lipoproteins once in the arterial extracellular intima. In this review we discuss results suggesting a distinct profile of characteristics related to localization, action on plasma lipoproteins and interaction with arterial proteoglycans for sPLA(2)-IIA and sPLA(2)-V. The differences observed indicate that these enzymes may contribute to atherosclerosis through dissimilar pathways. Furthermore, we comment on recent animal studies from our laboratory indicating that the expression of type V enzyme is up-regulated by genetically and nutritionally-induced dyslipidemias but not the group type IIA enzyme, which is well known to be up-regulated by acute inflammation. The results suggest that if similar up-regulation occurs in humans in response to hyperlipidemia, it may create a distinctive link between the group V enzyme and the disease.
Collapse
|
48
|
Diaz BL, Satake Y, Kikawada E, Balestrieri B, Arm JP. Group V secretory phospholipase A2 amplifies the induction of cyclooxygenase 2 and delayed prostaglandin D2 generation in mouse bone marrow culture-derived mast cells in a strain-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1489-97. [PMID: 17064958 PMCID: PMC1764612 DOI: 10.1016/j.bbalip.2006.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/15/2006] [Accepted: 09/06/2006] [Indexed: 11/30/2022]
Abstract
Activation of mouse bone marrow-derived mast cells (BMMC) with stem cell factor (SCF) or IgE and antigen elicits exocytosis and an immediate phase of prostaglandin (PG) D(2) and leukotriene (LT) C(4) generation. Activation of BMMC by SCF, IL-1beta and IL-10 elicits a delayed phase of PGD(2) generation dependent on cyclooxygenase (COX) 2 induction. Cytosolic phospholipase A(2) alpha provides arachidonic acid in both phases and amplifies COX-2 induction. Pharmacological experiments implicate an amplifying role for secretory (s) PLA(2). We used mice lacking the gene encoding group V sPLA(2) (Pla2g5-/-) to definitively test its role in eicosanoid generation by BMMC. Pla2g5-/- BMMC on a C57BL/6 genetic background showed a modest reduction in exocytosis and immediate PGD(2) generation after activation with SCF or with IgE and antigen, while LTC(4) generation was not modified. Delayed-phase PGD(2) generation and COX-2 induction were reduced approximately 35% in C57BL/6 Pla2g5-/- BMMC and were restored by exogenous PGE(2). There was no deficit in either phase of eicosanoid generation by Pla2g5-/- BMMC on a BALB/c background. Thus, group V sPLA(2) amplifies COX-2 expression and delayed phase PGD(2) generation in a strain-dependent manner; it has at best a limited role in immediate eicosanoid generation by BMMC.
Collapse
Affiliation(s)
- Bruno L. Diaz
- Department of Medicine Harvard Medical School and the Division of Rheumatology Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil 20231-050
| | - Yoshiyuki Satake
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil 20231-050
| | - Eriya Kikawada
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil 20231-050
| | - Barbara Balestrieri
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil 20231-050
| | - Jonathan P. Arm
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil 20231-050
- Partners Asthma Center, Brigham and Women’s Hospital, Boston, MA
- *Corresponding Author. Smith Research Building, Room 638B 1, Jimmy Fund Way Boston, MA 02115 Tel (617) 525-1305; Fax (617 525-1310 E-Mail:
| |
Collapse
|
49
|
Yang G, Chen L, Zhang Y, Zhang X, Wu J, Li S, Wei M, Zhang Z, Breyer MD, Guan Y. Expression of mouse membrane-associated prostaglandin E2 synthase-2 (mPGES-2) along the urogenital tract. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1459-68. [PMID: 17064959 DOI: 10.1016/j.bbalip.2006.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/19/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is the most common prostanoid and has a variety of bioactivities including a crucial role in urogenital function. Multiple enzymes are involved in its biosynthesis. Among 3 PGE(2) terminal synthetic enzymes, membrane-associated PGE(2) synthase-2 (mPGES-2) is the most recently identified, and its role remains uncharacterized. In previous studies, membrane-associated PGE(2) synthase-1 (mPGES-1) and cytosolic PGE(2) synthase (cPGES) were reported to be expressed along the urogenital tracts. Here we report the genomic structure and tissue distribution of mPGES-2 in the urogenital system. Analysis of several bioinformatic databases demonstrated that mouse mPGES-2 spans 7 kb and consists of 7 exons. The mPGES-2 promoter contains multiple Sp1 sites and a GC box without a TATA box motif. Real-time quantitative PCR revealed that constitutive mPGES-2 mRNA was most abundant in the heart, brain, kidney and small intestine. In the urogenital system, mPGES-2 was highly expressed in the renal cortex, followed by the renal medulla and ovary, with lower levels in the ureter, bladder and uterus. Immunohistochemistry studies indicated that mPGES-2 was ubiquitously expressed along the nephron, with much lower levels in the glomeruli. In the ureter and bladder, mPGES-2 was mainly localized to the urothelium. In the reproductive system, mPGES-2 was restricted to the epithelial cells of the testis, epididymis, vas deferens and seminal vesicle in males, and oocytes, stroma cells and corpus luteum of the ovary and epithelial cells of the oviduct and uterus in females. This expression pattern is consistent with an important role for mPGES-2-mediated PGE(2) in urogenital function.
Collapse
Affiliation(s)
- Guangrui Yang
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Scott GA, Jacobs SE, Pentland AP. sPLA2-X stimulates cutaneous melanocyte dendricity and pigmentation through a lysophosphatidylcholine-dependent mechanism. J Invest Dermatol 2006; 126:855-61. [PMID: 16456529 DOI: 10.1038/sj.jid.5700180] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoprotection of the skin is provided by melanocytes, neural crest derived cells that synthesize melanin in specialized organelles that are transferred to keratinocytes. Secretory phospholipases comprise a large family of Ca2+-dependent enzymes that liberate arachidonic acid (AA), a precursor of prostaglandins, as well as lysophospholipids. The predominant secretory phospholipase expressed by keratinocytes is group X secretory phospholipase A2 (sPLA2), which liberates large amounts of AA and the lysophospholipid lysophosphatidylcholine (LPC), from membrane preparations. Recent work by our laboratory has shown that melanocytes express receptors for prostaglandins that upon activation stimulate melanocyte dendricity and activity of tyrosinase, a key enzyme in melanin biosynthesis. In the present study, we have treated human melanocytes with recombinant sPLA2-X and show that low levels of sPLA2-X stimulate both tyrosinase activity and melanocyte dendricity. We found that the effects of sPLA2-X are mediated predominantly by LPC, not AA, and we have demonstrated expression of the phospholipase A2 receptor and two G-protein-coupled receptors for LPC (G2A and GPR119) in human melanocytes. Because secretory phospholipases are released during inflammation and are regulated by UV irradiation, our data suggest an important role for sPLA2-X in cutaneous pigmentation through the release of LPC.
Collapse
Affiliation(s)
- Glynis A Scott
- Department of Dermatology, University or Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | |
Collapse
|