1
|
Hirata Y, Toyono T, Kokabu S, Obikane Y, Kataoka S, Nakatomi M, Masaki C, Hosokawa R, Seta Y. Krüppel-like factor 5 (Klf5) regulates expression of mouse T1R1 amino acid receptor gene (Tas1r1) in C2C12 myoblast cells. Biomed Res 2019; 40:67-78. [PMID: 30982802 DOI: 10.2220/biomedres.40.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
T1R1 and T1R3 are receptors expressed in taste buds that detect L-amino acids. These receptors are also expressed throughout diverse organ systems, such as the digestive system and muscle tissue, and are thought to function as amino acid sensors. The mechanism of transcriptional regulation of the mouse T1R1 gene (Tas1r1) has not been determined; therefore, in this study, we examined the function of Tas1r1 promoter in the mouse myoblast cell line, C2C12. Luciferase reporter assays showed that a 148-bp region upstream of the ATG start codon of Tas1r1 had a promoter activity. The GT box in the Tas1r1 promoter was conserved in the dog, human, mouse, and pig. Site-directed mutagenesis of this GT box significantly reduced the promoter activation. The GT box in promoters is a recurring motif for Sp/KLF family members. RNAi-mediated depletion of Sp4 and Klf5 decreased Tas1r1 expression, while overexpression of Klf5, but not Sp4, significantly increased Tas1r1 expression. The ENCODE data of chromatin immunoprecipitation and sequencing (ChIP-seq) showed that Klf5 bound to the GT box during the myogenic differentiation. Furthermore, the Klf5 knockout cell lines led to a considerable decrease in the levels of Tas1r1 expression. Collectively, these results showed that Klf5 binds to the GT box in the Tas1r1 promoter and regulates Tas1r1 expression in C2C12 cells.
Collapse
Affiliation(s)
- Yuki Hirata
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University
| | - Yui Obikane
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Shinji Kataoka
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University
| | - Yuji Seta
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University
| |
Collapse
|
2
|
Abou-Kandil A, Eisa N, Jabareen A, Huleihel M. Differential effects of HTLV-1 Tax oncoprotein on the different estrogen-induced-ER α-mediated transcriptional activities. Cell Cycle 2016; 15:2626-2635. [PMID: 27420286 PMCID: PMC5053584 DOI: 10.1080/15384101.2016.1208871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
The activated estrogen (E2) receptor α (ERα) is a potent transcription factor that is involved in the activation of various genes by 2 different pathways; a classical and non-classical. In classical pathway, ERα binds directly to E2-responsive elements (EREs) located in the appropriate genes promoters and stimulates their transcription. However, in non-classical pathway, the ERα can indirectly bind with promoters and enhance their activity. For instance, ERα activates BRCA1 expression by interacting with jun/fos complex bound to the AP-1 site in BRCA1 promoter. Interference with the expression and/or functions of BRCA1, leads to high risk of breast or/and ovarian cancer. HTLV-1Tax was found to strongly inhibit BRCA1 expression by preventing the binding of E2-ERα complex to BRCA1 promoter. Here we examined Tax effect on ERα induced activation of genes by the classical pathway by testing its influence on E2-induced expression of ERE promoter-driven luciferase reporter (ERE-Luc). Our findings showed that E2 profoundly stimulated this reporter expression and that HTLV-1Tax significantly induced this stimulation. This result is highly interesting because in our previous study Tax was found to strongly block the E2-ERα-mediated activation of BRCA1 expression. ERα was found to produce a big complex by recruiting various cofactors in the nucleus before binding to the ERE region. We also found that only part of the reqruited cofactors are required for the transcriptional activity of ERα complex. Chip assay revealed that the binding of Tax to the ERα complex, did not interfere with its link to ERE region.
Collapse
Affiliation(s)
- Ammar Abou-Kandil
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Nora Eisa
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Azhar Jabareen
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Mahmoud Huleihel
- a Shraga Segal Department of Microbiology and Immunology , Faculty of Health Sciences, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
3
|
Polakowski N, Han H, Lemasson I. Direct inhibition of RNAse T2 expression by the HTLV-1 viral protein Tax. Viruses 2011; 3:1485-500. [PMID: 21994792 PMCID: PMC3185805 DOI: 10.3390/v3081485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is one of the primary diseases caused by Human T-cell Leukemia Virus type 1 (HTLV-1) infection. The virally-encoded Tax protein is believed to initiate early events in the development of this disease, as it is able to promote immortalization of T-cells and transformation of other cell types. These processes may be aided by the ability of the viral protein to directly deregulate expression of specific cellular genes through interactions with numerous transcriptional regulators. To identify gene promoters where Tax is localized, we isolated Tax-DNA complexes from an HTLV-1-infected T-cell line through a chromatin immunoprecipitation (ChIP) assay and used the DNA to probe a CpG island microarray. A site within the RNASET2 gene was found to be occupied by Tax. Real-time PCR analysis confirmed this result, and transient expression of Tax in uninfected cells led to the recruitment of the viral protein to the promoter. This event correlated with a decrease in the level of RNase T2 mRNA and protein, suggesting that Tax represses expression of this gene. Loss of RNase T2 expression occurs in certain hematological malignancies and other forms of cancer, and RNase T2 was recently reported to function as a tumor suppressor. Consequently, a reduction in the level of RNase T2 by Tax may play a role in ATL development.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| | | | - Isabelle Lemasson
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| |
Collapse
|
4
|
Matsuoka M, Jeang KT. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 2011; 30:1379-89. [PMID: 21119600 PMCID: PMC3413891 DOI: 10.1038/onc.2010.537] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 02/07/2023]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus discovered to be causative of a human cancer, adult T-cell leukemia. The transforming entity of HTLV-1 has been attributed to the virally-encoded oncoprotein, Tax. Unlike the v-onc proteins encoded by other oncogenic animal retroviruses that transform cells, Tax does not originate from a c-onc counterpart. In this article, we review progress in our understanding of HTLV-1 infectivity, cellular transformation, anti-sense transcription and therapy, 30 years after the original discovery of this virus.
Collapse
Affiliation(s)
- Masao Matsuoka
- Molecular Virology Section*, Laboratory of Molecular Microbiology, the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kuan-Teh Jeang
- Molecular Virology Section*, Laboratory of Molecular Microbiology, the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA; Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
6
|
|
7
|
Banerjee P, Sieburg M, Samuelson E, Feuer G. Human T-cell lymphotropic virus type 1 infection of CD34+ hematopoietic progenitor cells induces cell cycle arrest by modulation of p21(cip1/waf1) and survivin. Stem Cells 2008; 26:3047-58. [PMID: 18818438 DOI: 10.1634/stemcells.2008-0353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is an oncogenic retrovirus and the etiologic agent of adult T-cell leukemia (ATL), an aggressive CD4(+) malignancy. HTLV-2 is highly homologous to HTLV-1; however, infection with HTLV-2 has not been associated with lymphoproliferative diseases. Although HTLV-1 infection of CD4(+) lymphocytes induces cellular replication and transformation, infection of CD34(+) human hematopoietic progenitor cells (HPCs) strikingly results in G(0)/G(1) cell cycle arrest and suppression of in vitro clonogenic colony formation by induction of expression of the cdk inhibitor p21(cip1/waf1) (p21) and concurrent repression of survivin. Immature CD34(+)/CD38(-) hematopoietic stem cells (HSCs) were more susceptible to alterations of p21 and survivin expression as a result of HTLV-1 infection, in contrast to more mature CD34(+)/CD38(+) HPCs. Knockdown of p21 expression in HTLV-1-infected CD34(+) HPCs partially abrogated cell cycle arrest. Notably, HTLV-2, an HTLV strain that is not associated with leukemogenesis, does not significantly modulate p21 and survivin expression and does not suppress hematopoiesis from CD34(+) HPCs in vitro. We speculate that the remarkable differences in the activities displayed by CD34(+) HPCs following infection with HTLV-1 or HTLV-2 suggest that HTLV-1 uniquely exploits cell cycle arrest mechanisms to establish a latent infection in hematopoietic progenitor/hematopoietic stem cells and initiates preleukemic events in these cells, which eventually results in the manifestation of ATL.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
8
|
Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology 2008; 5:76. [PMID: 18702816 PMCID: PMC2533353 DOI: 10.1186/1742-4690-5-76] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 12/22/2022] Open
Abstract
The Tax1 oncoprotein encoded by Human T-lymphotropic virus type I is a major determinant of viral persistence and pathogenesis. Tax1 affects a wide variety of cellular signalling pathways leading to transcriptional activation, proliferation and ultimately transformation. To carry out these functions, Tax1 interacts with and modulates activity of a number of cellular proteins. In this review, we summarize the present knowledge of the Tax1 interactome and propose a rationale for the broad range of cellular proteins identified so far.
Collapse
Affiliation(s)
- Mathieu Boxus
- University Academia Wallonie-Europe, Molecular and Cellular Biology at FUSAGx, Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
9
|
Human T-cell leukemia virus type 1 Tax modulates interferon-alpha signal transduction through competitive usage of the coactivator CBP/p300. Virology 2008; 379:306-13. [PMID: 18678383 DOI: 10.1016/j.virol.2008.06.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/18/2008] [Accepted: 06/30/2008] [Indexed: 11/22/2022]
Abstract
We describe here Tax protein of human T-cell leukemia virus type 1 (HTLV-1) as an interferon (IFN)-alpha antagonist counteracting the transactivation function of IFN-stimulated gene factor 3 (ISGF3). Co-expression of Tax, but not the Tax mutant unable to bind to CBP, significantly inhibited the reporter gene expression directed by IFN-stimulated regulatory elements, despite that the formation of DNA-binding ISGF3 complex was unaffected. Gene activation induced by STAT2 transcription domain was also inhibited by expression of Tax. Furthermore, Tax-mediated transcriptional inhibition was reversed by overexpression of p300. These observations indicate that Tax interferes with IFN-alpha-induced JAK-STAT pathway by competition with STAT2 for CBP/p300 binding. Consistently, GST pull-down assay showed that Tax dose-dependently inhibited binding of STAT2 to p300. This study suggests that Tax may prevent IFN-alpha from exerting its antiviral, antiproliferative and proapoptotic effects, thereby contributing to persistent viral infection and HTLV-1-associated oncogenesis.
Collapse
|
10
|
Cross talk between expression of the human T-cell leukemia virus type 1 Tax transactivator and the oncogenic bHLH transcription factor TAL1. J Virol 2008; 82:7913-22. [PMID: 18495761 DOI: 10.1128/jvi.02414-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax transactivator is known to induce or repress various cellular genes, several of them encoding transcription factors. As Tax is known to deregulate various basic bHLH factors, we looked more specifically at its effect on TAL1 (T-cell acute lymphoblastic leukemia 1), also known as SCL (stem cell leukemia). Indeed, TAL1 is deregulated in a high percentage of T-cell acute lymphoblastic leukemia cells, and its oncogenic properties are well-established. Here we show that Tax induces transcription of this proto-oncogene by stimulating the activity of the TAL1 gene promoter 1b, through both the CREB and NF-kappaB pathways. It was also observed that TAL1 upregulates HTLV-1 promoter activity, in either the presence or the absence of Tax. The viral promoter is inhibited in trans by expression of the E2A protein E47, and TAL1 is able to abrogate this inhibition. These data show the existence of a positive feedback loop between Tax and TAL1 expression and support the notion that this proto-oncogene participates in generation of adult T-cell leukemia/lymphoma by increasing the amount of the Tax oncoprotein but also possibly by its own transforming activities.
Collapse
|
11
|
Barbeau B, Mesnard JM. Does the HBZ gene represent a new potential target for the treatment of adult T-cell leukemia? Int Rev Immunol 2008; 26:283-304. [PMID: 18027202 DOI: 10.1080/08830180701690843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Links between human T-cell leukemia virus type 1 and adult T-cell leukemia (ATL) were first suspected in 1980. Provirus integration has since been found in all ATL cells. Although the viral Tax protein is involved in the proliferation of the infected cells during the preleukemic stage, Tax expression is not systematically detected in primary leukemic cells. Recent studies found that the viral HBZ gene was always expressed in leukemic cells, suggesting its involvement in the progression of the infected cells toward malignancy. How could this new discovery be translated into possible new avenues for the prevention or treatment of ATL?
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | | |
Collapse
|
12
|
Kim YM, Ramírez JA, Mick JE, Giebler HA, Yan JP, Nyborg JK. Molecular characterization of the Tax-containing HTLV-1 enhancer complex reveals a prominent role for CREB phosphorylation in Tax transactivation. J Biol Chem 2007; 282:18750-7. [PMID: 17449469 DOI: 10.1074/jbc.m700391200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcriptional activation of human T-cell leukemia virus type 1 (HTLV-1) is mediated by the viral oncoprotein Tax, which utilizes cellular transcriptional machinery to perform this function. The viral promoter carries three cyclic AMP-response elements (CREs), which are recognized by the cellular transcription factor cAMP-response element-binding protein (CREB). Tax binds to GC-rich sequences that immediately flank the CREs. The coactivator CREB-binding protein (CBP)/p300 binds to this promoter-bound ternary complex, which promotes the initiation of HTLV-1 transcription. Protein kinase A phosphorylation of CREB at serine 133 facilitates transcription from cellular CREs by recruiting CBP/p300 via its KIX domain. However, it remains controversial whether CREB phosphorylation plays a role in Tax transactivation. In this study, we biochemically characterized the quaternary complex formed by Tax, CREB, KIX, and the viral CRE by examining the individual molecular interactions that contribute to Tax stabilization in the complex. Our data show KIX, Ser(133)-phosphorylated CREB, and vCRE DNA are all required for stable Tax incorporation into the complex in vitro. Consonant with a fundamental role for CREB phosphorylation in Tax recruitment to the complex, we found that CREB is highly phosphorylated in a panel of HTLV-1-infected human T-cell lines. Significantly, we show that Tax is directly responsible for promoting elevated levels of CREB phosphorylation. Together, these data support a model in which Tax promotes CREB phosphorylation in vivo to ensure availability for Tax transactivation. Because pCREB has been implicated in leukemogenesis, enhancement of CREB phosphorylation by the virus may play a role in the etiology of adult T-cell leukemia.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cheng J, Kydd AR, Nakase K, Noonan KM, Murakami A, Tao H, Dwyer M, Xu C, Zhu Q, Marasco WA. Negative regulation of the SH2-homology containing protein-tyrosine phosphatase-1 (SHP-1) P2 promoter by the HTLV-1 Tax oncoprotein. Blood 2007; 110:2110-20. [PMID: 17540846 PMCID: PMC1976352 DOI: 10.1182/blood-2006-11-058388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Expression of SH(2)-homology-containing protein-tyrosine phosphatase-1 (SHP-1), a candidate tumor suppressor, is repressed in human T-cell leukemia virus type-1 (HTLV-1)-transformed lymphocyte cell lines, adult T-cell leukemia (ATL) cells, and in other hematologic malignancies. However, the mechanisms underlying regulation and repression of SHP-1 remain unclear. Herein, we cloned the putative full-length, hematopoietic cell-specific SHP-1 P2 promoter and identified the "core" promoter regions. HTLV-1 Tax profoundly represses P2 promoter activity and histone deacetylase-1 (HDAC1) potentiates such inhibition. NF-kappaB was implicated as both a rate-limiting factor for basal P2 promoter activity and important for Tax-induced promoter silencing (TIPS). Chromatin immunoprecipitation studies demonstrated that NF-kappaB dissociates from the SHP-1 P2 promoter following the binding of Tax and HDAC1. This is in agreement with coimmunoprecipitation studies where NF-kappaB competed with HDAC1 for association with Tax protein. We propose that in TIPS, Tax recruits HDAC1 to the SHP-1 P2 promoter and forms an inhibitory complex that results in deacetylation and dissociation of NF-kappaB from the promoter and attenuation of SHP-1 expression. TIPS provides a possible first step toward HTLV-1 leukemogenesis through its down-modulation of this key immediate early negative regulator of IL-2 signaling.
Collapse
MESH Headings
- Acetylation
- Adult
- Blotting, Western
- Chromatin Immunoprecipitation
- Gene Expression Regulation, Leukemic
- Gene Expression Regulation, Viral
- Gene Products, tax/physiology
- Gene Silencing
- Histone Deacetylase 1
- Histone Deacetylases/metabolism
- Human T-lymphotropic virus 1/genetics
- Humans
- Immunoprecipitation
- Interleukin-2/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/virology
- Luciferases/metabolism
- Mutagenesis, Site-Directed
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jihua Cheng
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 2007; 7:270-80. [PMID: 17384582 DOI: 10.1038/nrc2111] [Citation(s) in RCA: 631] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been 30 years since a 'new' leukaemia termed adult T-cell leukaemia (ATL) was described in Japan, and more than 25 years since the isolation of the retrovirus, human T-cell leukaemia virus type 1 (HTLV-1), that causes this disease. We discuss HTLV-1 infectivity and how the HTLV-1 Tax oncoprotein initiates transformation by creating a cellular environment favouring aneuploidy and clastogenic DNA damage. We also explore the contribution of a newly discovered protein and RNA on the HTLV-1 minus strand, HTLV-1 basic leucine zipper factor (HBZ), to the maintenance of virus-induced leukaemia.
Collapse
Affiliation(s)
- Masao Matsuoka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Japan
| | | |
Collapse
|
15
|
Chin KT, Chun ACS, Ching YP, Jeang KT, Jin DY. Human T-cell leukemia virus oncoprotein tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res 2007; 67:1072-81. [PMID: 17283140 DOI: 10.1158/0008-5472.can-06-3053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human T-cell leukemia virus type 1 oncoprotein Tax is a transcriptional regulator that interacts with a large number of host cell factors. Here, we report the novel characterization of the interaction of Tax with a human cell protein named Tax1-binding protein 1 (TAX1BP1). We show that TAX1BP1 is a nuclear receptor coactivator that forms a complex with the glucocorticoid receptor. TAX1BP1 and Tax colocalize into intranuclear speckles that partially overlap with but are not identical to the PML oncogenic domains. Tax binds TAX1BP1 directly, induces the dissociation of TAX1BP1 from the glucocorticoid receptor-containing protein complex, and represses the coactivator function of TAX1BP1. Genetic knockout of Tax1bp1 in mice abrogates the influence of Tax on the activation of nuclear receptors. We propose that Tax-TAX1BP1 interaction mechanistically explains the previously reported repression of nuclear receptor activity by Tax.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
16
|
Wencker M, Sausse C, Derse D, Gazzolo L, Duc Dodon M. Human T-cell leukemia virus type 1 Tax protein down-regulates pre-T-cell receptor alpha gene transcription in human immature thymocytes. J Virol 2006; 81:301-8. [PMID: 17050604 PMCID: PMC1797236 DOI: 10.1128/jvi.00766-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pre-T-cell receptor alpha (TCRalpha; pTalpha) gene encodes a polypeptide which associates with the TCRbeta chain and CD3 molecules to form the pre-TCR complex. The surface expression of the pre-TCR is pTalpha dependent, and signaling through this complex triggers an early alphabeta T-cell developmental checkpoint inside the thymus, known as beta-selection. E2A transcription factors, which are involved at multiple stages of T-cell development, regulate the transcription of the pTalpha gene. Here we show that the regulatory protein Tax of the human T-cell leukemia virus type 1 (HTLV-1) efficiently suppresses the E47-mediated activation of the pTalpha promoter. Furthermore, we report that in Tax lentivirally transduced human MOLT-4 T cells, which constitutively express the pTalpha gene, the amount of pTalpha transcripts decreases. Such a decrease is not observed in MOLT-4 cells transduced by a vector encoding the Tax mutant K88A, which is unable to interact with p300. These data underline that Tax inhibits pTalpha transcription by recruiting this coactivator. Finally, we show that the expression of Tax in human immature thymocytes results in a decrease of pTalpha gene transcription but does not modify the level of E47 transcripts. These observations indicate that Tax, by silencing E proteins, down-regulates pTalpha gene transcription during early thymocyte development. They further provide evidence that Tax can interfere with an important checkpoint during T-cell differentiation in the thymus.
Collapse
Affiliation(s)
- Mélanie Wencker
- Virologie Humaine U758, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
17
|
Kamoi K, Yamamoto K, Misawa A, Miyake A, Ishida T, Tanaka Y, Mochizuki M, Watanabe T. SUV39H1 interacts with HTLV-1 Tax and abrogates Tax transactivation of HTLV-1 LTR. Retrovirology 2006; 3:5. [PMID: 16409643 PMCID: PMC1363732 DOI: 10.1186/1742-4690-3-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 01/13/2006] [Indexed: 11/17/2022] Open
Abstract
Background Tax is the oncoprotein of HTLV-1 which deregulates signal transduction pathways, transcription of genes and cell cycle regulation of host cells. Transacting function of Tax is mainly mediated by its protein-protein interactions with host cellular factors. As to Tax-mediated regulation of gene expression of HTLV-1 and cellular genes, Tax was shown to regulate histone acetylation through its physical interaction with histone acetylases and deacetylases. However, functional interaction of Tax with histone methyltransferases (HMTase) has not been studied. Here we examined the ability of Tax to interact with a histone methyltransferase SUV39H1 that methylates histone H3 lysine 9 (H3K9) and represses transcription of genes, and studied the functional effects of the interaction on HTLV-1 gene expression. Results Tax was shown to interact with SUV39H1 in vitro, and the interaction is largely dependent on the C-terminal half of SUV39H1 containing the SET domain. Tax does not affect the methyltransferase activity of SUV39H1 but tethers SUV39H1 to a Tax containing complex in the nuclei. In reporter gene assays, co-expression of SUV39H1 represses Tax transactivation of HTLV-1 LTR promoter activity, which was dependent on the methyltransferase activity of SUV39H1. Furthermore, SUV39H1 expression is induced along with Tax in JPX9 cells. Chromatin immunoprecipitation (ChIP) analysis shows localization of SUV39H1 on the LTR after Tax induction, but not in the absence of Tax induction, in JPX9 transformants retaining HTLV-1-Luc plasmid. Immunoblotting shows higher levels of SUV39H1 expression in HTLV-1 transformed and latently infected cell lines. Conclusion Our study revealed for the first time the interaction between Tax and SUV39H1 and apparent tethering of SUV39H1 by Tax to the HTLV-1 LTR. It is speculated that Tax-mediated tethering of SUV39H1 to the LTR and induction of the repressive histone modification on the chromatin through H3 K9 methylation may be the basis for the dose-dependent repression of Tax transactivation of LTR by SUV39H1. Tax-induced SUV39H1 expression, Tax-SUV39H1 interaction and tethering to the LTR may provide a support for an idea that the above sequence of events may form a negative feedback loop that self-limits HTLV-1 viral gene expression in infected cells.
Collapse
Affiliation(s)
- Koju Kamoi
- Laboratory of Tumor Cell biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Ophthalmology and Visual Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | - Aya Misawa
- Laboratory of Tumor Cell biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ariko Miyake
- Laboratory of Tumor Cell biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takaomi Ishida
- Laboratory of Tumor Cell biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Manabu Mochizuki
- Department of Ophthalmology and Visual Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Tabakin-Fix Y, Azran I, Schavinky-Khrapunsky Y, Levy O, Aboud M. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: mechanisms and clinical implications. Carcinogenesis 2005; 27:673-81. [PMID: 16308315 DOI: 10.1093/carcin/bgi274] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-I) has been implicated with the etiology of adult T-cell leukemia (ATL) and certain other clinical disorders. Although the leukemogenic mechanism of HTLV-1 is not fully understood yet, the viral Tax protein is widely regarded as a key factor in this mechanism. Tax can modulate the synthesis or function of many regulatory factors which control a wide range of normal and oncogenic cellular processes and therefore, it acts as a potent oncoprotein. In the last few years, special attention has been attracted to Tax interference with the transactivation function of p53, a tumor-suppressor protein that is involved in regulation of the cell-cycle and apoptosis and in maintaining the cellular genome integrity. p53 is mutated in approximately 60% of all human tumors. In contrast, mutant p53 is found in only small percentage of ATL patients. Nevertheless, p53 is inactive in the leukemic cells of most ATL patients and in most HTLV-1 transformed cells. By inactivating p53, Tax can immortalize the HTLV-1-infected cells and destabilize their genome. Consequently, such cells can progress toward the ultimate leukemic state by a stepwise accumulation of oncogenic mutations and other types of chromosomal aberrations. Furthermore, since p53 exists in most ATL patients in its wild-type form, its reactivation by therapeutic drugs might be an effective approach for ATL therapy. Several mechanisms have been proposed so far for Tax-induced p53 inactivation. Understanding the exact mechanism of this Tax effect is essential for designing effective means for this therapeutic approach. In this review article, we discuss the various mechanisms proposed for Tax interference with p53 functions and their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Yulia Tabakin-Fix
- Department of Microbiology and Immunology, Cancer Research Center, Faculty of Health Sciences and Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
19
|
Tripp A, Banerjee P, Sieburg M, Planelles V, Li F, Feuer G. Induction of cell cycle arrest by human T-cell lymphotropic virus type 1 Tax in hematopoietic progenitor (CD34+) cells: modulation of p21cip1/waf1 and p27kip1 expression. J Virol 2005; 79:14069-78. [PMID: 16254341 PMCID: PMC1280183 DOI: 10.1128/jvi.79.22.14069-14078.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/23/2005] [Indexed: 11/20/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, an aggressive CD4(+) malignancy. Although HTLV-2 is highly homologous to HTLV-1, infection with HTLV-2 has not been associated with lymphoproliferative disorders. Lentivirus-mediated transduction of CD34(+) cells with HTLV-1 Tax (Tax1) induced G(0)/G(1) cell cycle arrest and resulted in the concomitant suppression of multilineage hematopoiesis in vitro. Tax1 induced transcriptional upregulation of the cdk inhibitors p21(cip1/waf1) (p21) and p27(kip1) (p27), and marked suppression of hematopoiesis in immature (CD34(+)/CD38(-)) hematopoietic progenitor cells in comparison to CD34(+)/CD38(+) cells. HTLV-1 infection of CD34(+) cells also induced p21 and p27 expression. Tax1 also protected CD34(+) cells from serum withdrawal-mediated apoptosis. In contrast, HTLV-2 Tax (Tax2) did not detectably alter p21 or p27 gene expression, failed to induce cell cycle arrest, failed to suppress hematopoiesis in CD34(+) cells, and did not protect cells from programmed cell death. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of Tax1 fused to Tax2 (Tax(221)) displayed a phenotype in CD34(+) cells similar to that of Tax1, suggesting that unique domains encoded within the C terminus of Tax1 may account for the phenotypes displayed in human hematopoietic progenitor cells. These remarkable differences in the activities of Tax1 and Tax2 in CD34(+) hematopoietic progenitor cells may underlie the sharp differences observed in the pathogenesis resulting from infection with HTLV-1 and HTLV-2.
Collapse
Affiliation(s)
- Adam Tripp
- Department of Microbiology & Immunology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
HTLV-1 and HTLV-2 are highly related complex retroviruses that have been studied intensely for nearly three decades because of their association with neoplasia, neuropathology, and/or their capacity to transform primary human T lymphocytes. The study of HTLV also represents an attractive model that has allowed investigators to dissect the mechanism of various cellular processes, several of which may be critical steps in HTLV-mediated pathogenesis. Both HTLV-1 and HTLV-2 can efficiently immortalize and transform T lymphocytes in cell culture and persist in infected individuals or experimental animals. However, the clinical manifestations of these two viruses differ significantly. HTLV-1 is associated with adult T-cell leukemia (ATL) and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In contrast, HTLV-2 is much less pathogenic with reports of only a few cases of variant hairy cell leukemia and neurological disease associated with infection. The limited number of individuals shown to harbor HTLV-2 in association with specific diseases has, to date, precluded convincing epidemiological demonstration of a definitive etiologic role of HTLV-2 in human disease. Therefore, it has become clear that comparative studies designed to elucidate the mechanisms by which HTLV-1 and HTLV-2 determine distinct outcomes are likely to provide fundamental insights into the initiation of multistep leukemogenesis.
Collapse
Affiliation(s)
- Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
21
|
Bayly R, Chuen L, Currie RA, Hyndman BD, Casselman R, Blobel GA, LeBrun DP. E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J Biol Chem 2004; 279:55362-71. [PMID: 15507449 DOI: 10.1074/jbc.m408654200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2A gene encodes DNA-binding transcription factors, called E12 and E47, involved in cell specification and maturation. E2A is also involved in a chromosomal translocation that leads to the expression of an oncogenic transcription factor called E2A-PBX1 in cases of acute leukemia. In the work described here, we elucidate the interaction between E2A-PBX1 and transcriptional co-activators. We confirm that the E2A portion can interact with CBP and PCAF and map required elements on E2A and CBP. On CBP, the interaction involves the KIX domain, a well characterized domain that mediates interactions with several other oncogenic transcription factors. On E2A, the interaction with CBP requires conserved alpha-helical domains that reside within activation domains 1 and 2 (AD1 and AD2, respectively). Using purified, recombinant proteins, we show that the E2A-CBP interaction is direct. Notwithstanding the previously demonstrated ability of AD1 and AD2 to function independently, some of our findings suggest functional cooperativity between these two domains. Finally, we show that the CBP/p300-interactive helical domains of E2A are important in the induction of proliferation in cultured primary bone marrow cells retrovirally transduced with E2A-PBX1. Our findings suggest that some aspects of E2A-PBX1 oncogenesis involve a direct interaction with the KIX domain of CBP/p300.
Collapse
Affiliation(s)
- Richard Bayly
- Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Trevisan R, Daprai L, Acquasaliente L, Ciminale V, Chieco-Bianchi L, Saggioro D. Relevance of CREB phosphorylation in the anti-apoptotic function of human T-lymphotropic virus type 1 tax protein in serum-deprived murine fibroblasts. Exp Cell Res 2004; 299:57-67. [PMID: 15302573 DOI: 10.1016/j.yexcr.2004.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/31/2004] [Indexed: 01/16/2023]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax transactivator is thought to play a primary role in the development of HTLV-1-mediated diseases. Using a murine fibroblast model, we previously showed that Tax reduces apoptosis induced by serum starvation by preventing cytochrome c release from the mitochondria. As Tax can enhance the transcriptional activity of nuclear factor NF-kB and cAMP-responsive element binding protein/activating transcription factor-1 (CREB/ATF-1), we investigated the relevance of these routes in the anti-apoptotic effects of Tax. Results showed that a Tax mutant retaining CREB/ATF-1 transactivating activity protects murine fibroblasts from serum-depletion-induced apoptosis, while two CREB/ATF-1-defective mutants did not. Treatment with forskolin, an activator of CREB, significantly attenuated cytochrome c release and Bax translocation in response of serum deprivation. In analogy to forskolin treatment, Tax expression results in sustained phosphorylation of CREB at Ser(133) during serum starvation. Considered together, these results underscore a primary role of CREB transcriptional activation in preventing apoptosis triggered by growth factor withdrawal, and suggest that Tax might in part function by affecting the phosphorylation state of CREB.
Collapse
Affiliation(s)
- Roberta Trevisan
- Oncology Section, Department of Oncology and Surgical Sciences, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Hivin P, Gaudray G, Devaux C, Mesnard JM. Interaction between C/EBPbeta and Tax down-regulates human T-cell leukemia virus type I transcription. Virology 2004; 318:556-65. [PMID: 14972524 DOI: 10.1016/j.virol.2003.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/09/2003] [Accepted: 10/20/2003] [Indexed: 11/24/2022]
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.
Collapse
Affiliation(s)
- P Hivin
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34960 Montpellier, cedex 2, France
| | | | | | | |
Collapse
|
24
|
Vendel AC, McBryant SJ, Lumb KJ. KIX-Mediated Assembly of the CBP−CREB−HTLV-1 Tax Coactivator−Activator Complex†. Biochemistry 2003; 42:12481-7. [PMID: 14580193 DOI: 10.1021/bi0353023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The HTLV-1 transcriptional activator Tax is required for viral replication and pathogenesis. In concert with human CREB, Tax recruits the human transcriptional coactivator and histone acetyltransferase p300/CBP to the HTLV-1 promoter. Here we investigate the structural features of the interaction between Tax and the KIX domain of p300/CBP. Circular dichroism spectroscopy, nuclear magnetic resonance chemical shift perturbation mapping, and sedimentation equilibrium analysis show that KIX binds a Tax subdomain corresponding to residues 59-98 of Tax (called Tax(59-98)). Circular dichroism spectroscopy suggests that Tax(59-98) is intrinsically disordered (natively unfolded) in isolation and adopts an ordered conformation upon binding KIX. The interaction is disrupted by a single amino acid variation of Tax(59-98) in which leucine 68 is substituted with proline. Chemical shift perturbation mapping reveals that the Tax-binding surface of KIX is distinct from that utilized by CREB, and corresponds to the site of KIX that interacts with the human transcription factors c-Jun and mixed lineage leukemia protein (MLL). Sedimentation equilibrium analysis shows that Tax and the phosphorylated KID domain of CREB can simultaneously bind KIX to form a ternary 1:1:1 complex. The results provide a molecular description of the concerted recruitment of p300/CBP via the KIX domain by Tax and phosphorylated CREB during Tax-mediated gene expression.
Collapse
Affiliation(s)
- Andrew C Vendel
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
25
|
Wu K, Bottazzi ME, de la Fuente C, Deng L, Gitlin SD, Maddukuri A, Dadgar S, Li H, Vertes A, Pumfery A, Kashanchi F. Protein profile of tax-associated complexes. J Biol Chem 2003; 279:495-508. [PMID: 14530271 DOI: 10.1074/jbc.m310069200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) results in adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Tax, a 40-kDa protein, regulates viral and cellular transcription, host signal transduction, the cell cycle, and apoptosis. Tax has been shown to modulate cellular CREB and NFkappaB pathways; however, to date, its role in binding to various host cellular proteins involved in tumorigenesis has not been fully described. In this study, we describe the Tax-associated proteins and their functions in cells using several approaches. Tax eluted from a sizing column mostly at an apparent molecular mass of 1800 kDa. Following Tax immunoprecipitation, washes with high salt buffer, two-dimensional gel separation, and mass spectrometric analysis, a total of 32 proteins was identified. Many of these proteins belong to the signal transduction and cytoskeleton pathways and transcription/chromatin remodeling. A few of these proteins, including TXBP151, have been shown previously to bind to Tax. The interaction of Tax with small GTPase-cytoskeleton proteins, such as ras GAP1m, Rac1, Cdc42, RhoA, and gelsolin, indicates how Tax may regulate migration, invasion, and adhesion in T-cell cancers. Finally, the physical and functional association of Tax with the chromatin remodeling SWI/SNF complex was assessed using in vitro chromatin remodeling assays, chromatin remodeling factor BRG1 mutant cells, and RNA interference experiments. Collectively, Tax is able to bind and regulate many cellular proteins that regulate transcription and cytoskeletal related pathways, which might explain the pleiotropic effects of Tax leading to T-cell transformation and leukemia in HTLV-1-infected patients.
Collapse
Affiliation(s)
- Kaili Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gabet AS, Mortreux F, Charneau P, Riou P, Duc-Dodon M, Wu Y, Jeang KT, Wattel E. Inactivation of hTERT transcription by Tax. Oncogene 2003; 22:3734-41. [PMID: 12802280 DOI: 10.1038/sj.onc.1206468] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Telomerase expression is the hallmark of tumor cells in which this ribonucleoprotein complex preserves chromosome integrity by maintaining telomere length and thereby prevents cell death. However, recent data support a role of the combination of p53 and telomerase inactivation in initiating genetic instability that promotes malignant transformation. Through its pleiotropic effects on infected T-cell metabolism, the human T-cell leukemia virus type 1 (HTLV-1) oncoprotein Tax plays a central role in leukemogenesis. Here, we show that Tax inhibits human telomerase reverse transcriptase (hTERT) transcription, which is the rate-limiting factor of telomerase activity. This inhibitory effect, that occurs in competition with c-Myc through a canonical c-Myc binding site within the hTERT promoter, results in a decreased telomerase activity of Tax-expressing cells. This is the first demonstration of hTERT inhibition by an oncogene. Tax, which is only expressed in preleukemic cells, triggers infected T-cell cycle and keeps these cells cycling while inactivating p53. We propose that, in combination with these effects, hTERT repression by Tax at an early phase of carcinogenesis might contribute to the massive ploidy changes associated with the development of HTLV-1-associated malignancies.
Collapse
Affiliation(s)
- Anne-Sophie Gabet
- Unité d'Oncogenèse Virale-CNRS UMR 5537, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 2003; 86:41-65. [PMID: 12374280 DOI: 10.1016/s0065-230x(02)86002-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone acetylation and deacetylation are chromatin-modifying processes that have fundamental importance for transcriptional regulation. Transcriptionally active chromatin regions show a high degree of histone acetylation, whereas deacetylation events are generally linked to transcriptional silencing. Many of the acetylating and deacetylating enzymes were originally identified as transcriptional coactivators or repressors. Their histone-modifying enzymatic activity was discovered more recently, opening up a whole new area of research. Histone acetyltransferases such as CREB-binding protein (CBP) and PCAF are involved in processes as diverse as promoting cell cycle progression and regulating differentiation. A controlled balance between histone acetylation and deacetylation seems to be essential for normal cell growth. Both histone acetyltransferases and deacetylases are involved in the development of diseases, including neurodegenerative disorders and cancer. Treatments that target these enzymes are already under clinical investigation.
Collapse
|
28
|
Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M, Felsani A. MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Mol Cell Biol 2003; 23:2893-2906. [PMID: 12665587 PMCID: PMC152540 DOI: 10.1128/mcb.23.8.2893-2906.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 07/25/2002] [Accepted: 01/15/2003] [Indexed: 01/25/2023] Open
Abstract
The induction of RB gene transcription by MyoD is a key event in the process of skeletal muscle differentiation, because elevated levels of the retinoblastoma protein are essential for myoblast cell cycle arrest as well as for the terminal differentiation and survival of postmitotic myocytes. We previously showed that MyoD stimulates transcription from the RB promoter independently of direct binding to promoter sequences. Here we demonstrate that stimulation by MyoD requires a cyclic AMP-responsive element (CRE) in the RB promoter, bound by the transcription factor CREB in differentiating myoblasts. We also show that both the CREB protein level and the level of phosphorylation of the CREB protein at Ser-133 rapidly increase at the onset of muscle differentiation and that both remain high throughout the myogenic process. Biochemical and functional evidence indicates that in differentiating myoblasts, MyoD becomes associated with CREB and is targeted to the RB promoter CRE in a complex also containing the p300 transcriptional coactivator. The resulting multiprotein complex stimulates transcription from the RB promoter. These and other observations strongly suggest that MyoD functions by promoting the efficient recruitment of p300 by promoter-bound, phosphorylated CREB.
Collapse
|
29
|
Campbell KM, Lumb KJ. Structurally distinct modes of recognition of the KIX domain of CBP by Jun and CREB. Biochemistry 2002; 41:13956-64. [PMID: 12437352 DOI: 10.1021/bi026222m] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene expression is coordinated in part by interactions between transcriptional activators and other transcription factors such as coactivators. The KIX domain of the coactivator and histone acetyltransferase CREB binding protein (CBP) binds numerous mammalian and viral transcriptional activators such as BRCA1, CREB, c-Jun, c-Myb, p53, papillomavirus E2, and HTLV-1 Tax. Formation of the CREB-CBP complex depends on phosphorylation of the KID region of CREB and involves induced folding of KID upon binding a hydrophobic groove of the KIX domain of CBP. Here we investigate the formation of the complex formed by human KIX and the N-terminal activation domain of human c-Jun. The c-Jun activation domain and KID do not share significant sequence similarity. Circular dichroism spectroscopy shows that the Jun N-terminal activation domain is intrinsically disordered in isolation and that KIX binding is independent of Jun phosphorylation. In contrast to the mode of binding exhibited by CREB, NMR chemical shift mapping indicates that the c-Jun activation domain binds to a distinctly different surface of KIX than used by CREB. Moreover, NMR and sedimentation equilibrium studies show that the activation domains of c-Jun and CREB can simultaneously bind the KIX domain of CBP. The results illustrate a new mode of binding and combinatorial recruitment via the KIX domain of CBP by multiple transcriptional activators.
Collapse
Affiliation(s)
- Kathleen M Campbell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|
30
|
Calomme C, Nguyen TLA, de Launoit Y, Kiermer V, Droogmans L, Burny A, Van Lint C. Upstream stimulatory factors binding to an E box motif in the R region of the bovine leukemia virus long terminal repeat stimulates viral gene expression. J Biol Chem 2002; 277:8775-89. [PMID: 11741930 DOI: 10.1074/jbc.m107441200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bovine leukemia virus (BLV) promoter is located in its 5'-long terminal repeat and is composed of the U3, R, and U5 regions. BLV transcription is regulated by cis-acting elements located in the U3 region, including three 21-bp enhancers required for transactivation of the BLV promoter by the virus-encoded transactivator Tax(BLV). In addition to the U3 cis-acting elements, both the R and U5 regions contain stimulatory sequences. To date, no transcription factor-binding site has been identified in the R region. Here sequence analysis of this region revealed the presence of a potential E box motif (5'-CACGTG-3'). By competition and supershift gel shift assays, we demonstrated that the basic helix-loop-helix transcription factors USF1 and USF2 specifically interacted with this R region E box motif. Mutations abolishing upstream stimulatory factor (USF) binding caused a reproducible decrease in basal or Tax-activated BLV promoter-driven gene expression in transient transfection assays of B-lymphoid cell lines. Cotransfection experiments showed that the USF1 and USF2a transactivators were able to act through the BLV R region E box. Taken together, these results physically and functionally characterize a USF-binding site in the R region of BLV. This E box motif located downstream of the transcription start site constitutes a new positive regulatory element involved in the transcriptional activity of the BLV promoter and could play an important role in virus replication.
Collapse
Affiliation(s)
- Claire Calomme
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P, Vervisch A, Pritchard L, Cole P, Harel-Bellan A. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J 2001; 20:6816-25. [PMID: 11726517 PMCID: PMC125755 DOI: 10.1093/emboj/20.23.6816] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Terminal differentiation of muscle cells follows a precisely orchestrated program of transcriptional regulatory events at the promoters of both muscle-specific and ubiquitous genes. Two distinct families of transcriptional co-activators, GCN5/PCAF and CREB-binding protein (CBP)/p300, are crucial to this process. While both possess histone acetyl-transferase (HAT) activity, previous studies have failed to identify a requirement for CBP/p300 HAT function in myogenic differentiation. We have addressed this issue directly using a chemical inhibitor of CBP/p300 in addition to a negative transdominant mutant. Our results clearly demonstrate that CBP/p300 HAT activity is critical for myogenic terminal differentiation. Furthermore, this requirement is restricted to a subset of events in the differentiation program: cell fusion and specific gene expression. These data help to define the requirements for enzymatic function of distinct coactivators at different stages of the muscle cell differentiation program.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A. Vervisch
- CNRS UPR 9079 and
Service de Cytofluorométrie, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA Corresponding author e-mail:
| | | | - P. Cole
- CNRS UPR 9079 and
Service de Cytofluorométrie, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA Corresponding author e-mail:
| | - A. Harel-Bellan
- CNRS UPR 9079 and
Service de Cytofluorométrie, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA Corresponding author e-mail:
| |
Collapse
|
32
|
Polesskaya A, Harel-Bellan A. Acetylation of MyoD by p300 requires more than its histone acetyltransferase domain. J Biol Chem 2001; 276:44502-3. [PMID: 11577095 DOI: 10.1074/jbc.m106501200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MyoD, an essential transcription factor involved in muscle cell terminal differentiation, is regulated by acetylation, as are a number of other transcription factors, but the histone acetyltransferase enzyme responsible for this acetylation is a matter of controversy. In particular, contradictory findings have been reported concerning the ability of CBP/p300 to acetylate MyoD in vitro. Here we provide an explanation for this discrepancy: although full-length p300 does indeed acetylate MyoD, a fragment of p300 corresponding to its histone acetyltransferase domain does not. In addition to clearly demonstrating that p300 acetylates MyoD in vitro, these results underscore the necessity of using full-length histone acetyltransferase enzymes to draw valid conclusions from acetylation experiments.
Collapse
Affiliation(s)
- A Polesskaya
- CNRS UPR 9079, Institut André Lwoff, 7 Rue Guy Moquet, 94800 Villejuif, France
| | | |
Collapse
|
33
|
Thomson SR, Johnson SE. Isolation and characterization of chicken TaxREB107, a putative DNA binding protein abundantly expressed in muscle. Gene 2001; 278:81-8. [PMID: 11707324 DOI: 10.1016/s0378-1119(01)00732-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic regulatory factors (MRFs) are vital transcription factors that act at multiple points during development to establish the skeletal muscle phenotype. This class of muscle-restricted, basic helix-loop-helix (bHLH) proteins acts in concert with additional transcriptional modulators to precisely control muscle gene expression. We have isolated the chicken homologue of Tax responsive element binding protein 107 (TaxREB107). The cDNA is 83% homologous at the amino acid level to human and mouse TaxREB107 and contains a centrally located leucine zipper motif. Northern analysis demonstrated that the gene is expressed in multiple tissues including skeletal muscle. Immunofluorescent staining revealed that the cTaxREB107 protein is located in both the nuclear and cytoplasmic compartments. Distinct localization to the nucleoli supports the evidence that TaxREB107 is a ribosomal protein. Because TaxREB proteins also are implicated in transcriptional regulation, we overexpressed cTaxREB107 in embryonic myoblasts. cTaxREB107 increased troponin I reporter gene activity as well as MRF-directed transcription from a multimerized skeletal muscle E-box reporter gene (4Rtk-luc). However, cotransfection of expression plasmids coding for MyoD and cTaxREB107 did not produce an increase in 4Rtk-luc suggesting that cTaxREB107 enhances myogenic gene transcription through a means independent of a physical association with MyoD. In conclusion, our results define a role for cTaxREB107 during avian myogenesis as a positive modulator of skeletal muscle gene expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Nucleus/metabolism
- Chickens/genetics
- Cytoplasm/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Muscles/cytology
- Muscles/embryology
- Muscles/metabolism
- MyoD Protein/genetics
- MyoD Protein/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- S R Thomson
- Department of Poultry Science, The Pennsylvania State University, 206 Henning, University Park, PA 16802, USA
| | | |
Collapse
|
34
|
Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001; 21:2249-58. [PMID: 11259575 PMCID: PMC86859 DOI: 10.1128/mcb.21.7.2249-2258.2001] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fragment of the mixed-lineage leukemia (MLL) gene (Mll, HRX, ALL-1) was identified in a yeast genetic screen designed to isolate proteins that interact with the CREB-CREB-binding protein (CBP) complex. When tested for binding to CREB or CBP individually, this MLL fragment interacted directly with CBP, but not with CREB. In vitro binding experiments refined the minimal region of interaction to amino acids 2829 to 2883 of MLL, a potent transcriptional activation domain, and amino acids 581 to 687 of CBP (the CREB-binding or KIX domain). The transactivation activity of MLL was dependent on CBP, as either adenovirus E1A expression, which inhibits CBP activity, or alteration of MLL residues important for CBP interaction proved effective at inhibiting MLL-mediated transactivation. Single amino acid substitutions within the MLL activation domain revealed that five hydrophobic residues, potentially forming a hydrophobic face of an amphipathic helix, were critical for the interaction of MLL with CBP. Using purified components, we found that the MLL activation domain facilitated the binding of CBP to phosphorylated CREB. In contrast with paradigms in which factors compete for limiting quantities of CBP, these results reveal that two distinct transcription factor activation domains can cooperatively target the same motif on CBP.
Collapse
Affiliation(s)
- P Ernst
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Kibler KV, Jeang KT. CREB/ATF-dependent repression of cyclin a by human T-cell leukemia virus type 1 Tax protein. J Virol 2001; 75:2161-73. [PMID: 11160720 PMCID: PMC114800 DOI: 10.1128/jvi.75.5.2161-2173.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of the human T-cell leukemia virus type 1 (HTLV-1) oncoprotein Tax is correlated with cellular transformation contributing to the development of adult T-cell leukemia. Tax has been shown to modulate the activities of several cellular promoters. Existing evidence suggests that Tax need not directly bind to DNA to accomplish these effects but rather that it can act through binding to cellular factors, including members of the CREB/ATF family. Exact mechanisms of HTLV-1 transformation of cells have yet to be fully defined, but the process is likely to include both activation of cellular-growth-promoting factors and repression of cellular tumor-suppressing functions. While transcriptional activation has been well studied, transcriptional repression by Tax, reported recently from several studies, remains less well understood. Here, we show that Tax represses the TATA-less cyclin A promoter. Repression of the cyclin A promoter was seen in both ts13 adherent cells and Jurkat T lymphocytes. Two other TATA-less promoters, cyclin D3 and DNA polymerase alpha, were also found to be repressed by Tax. Interestingly, all three promoters share a common feature of at least one conserved upstream CREB/ATF binding site. In electrophoretic mobility shift assays, we observed that Tax altered the formation of a complex(es) at the cyclin A promoter-derived ATF site. Functionally, we correlated removal of the CREB/ATF site from the promoter with loss of repression by Tax. Furthermore, since a Tax mutant protein which binds CREB repressed the cyclin A promoter while another mutant protein which does not bind CREB did not, we propose that this Tax repression occurs through protein-protein contact with CREB/ATF.
Collapse
Affiliation(s)
- K V Kibler
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|