1
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GTK, Sivakumar A, Wang CC, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413443. [PMID: 40165020 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Paige Eversole
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Cheng-Chun Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Han Yu
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wenjie Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-1088, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
2
|
Zheng Y, Liu WH, Yang B, Milman Krentsis I. Primer on fibroblast growth factor 7 (FGF 7). Differentiation 2024; 139:100801. [PMID: 39048474 DOI: 10.1016/j.diff.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), is an important member of the FGF family that is mainly expressed by cells of mesenchymal origin while affecting specifically epithelial cells. Thus, FGF7 is widely expressed in diverse tissues, especially in urinary system, gastrointestinal tract (GI-tract), respiratory system, skin, and reproductive system. By interacting specifically with FGFR2-IIIb, FGF7 activates several downstream signal pathways, including Ras, PI3K-Akt, and PLCs. Previous studies of FGF7 mutants also have implicated its roles in various biological processes including development of essential organs and tissue homeostasis in adults. Moreover, more publications have reported that FGF7 and/or FGF7/FGFR2-IIIb-associated signaling pathway are involved in the progression of various heritable or acquired human diseases: heritable conditions like autosomal dominant polycystic kidney disease (ADPKD) and non-syndromic cleft lip and palate (NS CLP), where it promotes cyst formation and affects craniofacial development, respectively; acquired non-malignant diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), mucositis, osteoarticular disorders, and metabolic diseases, where it influences inflammation, repair, and metabolic control; and tumorigenesis and malignant diseases, including benign prostatic hyperplasia (BPH), prostate cancer, gastric cancer, and ovarian cancer, where it enhances cell proliferation, invasion, and chemotherapy resistance. Targeting FGF7 pathways holds therapeutic potential for managing these conditions, underscoring the need for further research to explore its clinical applications. Having more insights into the function and underlying molecular mechanisms of FGF7 is warranted to facilitate the development of effective treatments in the future. Here, we discuss FGF7 genomic structure, signal pathway, expression pattern during embryonic development and in adult organs and mutants along with phenotypes, as well as associated diseases.
Collapse
Affiliation(s)
- Yangxi Zheng
- UT Health Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Hsin Liu
- UT Health Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boxuan Yang
- UT Health Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irit Milman Krentsis
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
4
|
Barravecchia I, Lee JM, Manassa J, Magnuson B, Ferris SF, Cavanaugh S, Steele NG, Espinoza CE, Galban CJ, Ramnath N, Frankel TL, Pasca di Magliano M, Galban S. Modeling Molecular Pathogenesis of Idiopathic Pulmonary Fibrosis-Associated Lung Cancer in Mice. Mol Cancer Res 2024; 22:295-307. [PMID: 38015750 PMCID: PMC10906012 DOI: 10.1158/1541-7786.mcr-23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive, often fatal loss of lung function due to overactive collagen production and tissue scarring. Patients with IPF have a sevenfold-increased risk of developing lung cancer. The COVID-19 pandemic has increased the number of patients with lung diseases, and infection can worsen prognoses for those with chronic lung diseases and disease-associated cancer. Understanding the molecular pathogenesis of IPF-associated lung cancer is imperative for identifying diagnostic biomarkers and targeted therapies that will facilitate prevention of IPF and progression to lung cancer. To understand how IPF-associated fibroblast activation, matrix remodeling, epithelial-to-mesenchymal transition (EMT), and immune modulation influences lung cancer predisposition, we developed a mouse model to recapitulate the molecular pathogenesis of pulmonary fibrosis-associated lung cancer using the bleomycin and Lewis lung carcinoma models. We demonstrate that development of pulmonary fibrosis-associated lung cancer is likely linked to increased abundance of tumor-associated macrophages and a unique gene signature that supports an immune-suppressive microenvironment through secreted factors. Not surprisingly, preexisting fibrosis provides a pre-metastatic niche and results in augmented tumor growth, and tumors associated with bleomycin-induced fibrosis are characterized by a dramatic loss of cytokeratin expression, indicative of EMT. IMPLICATIONS This characterization of tumors associated with lung diseases provides new therapeutic targets that may aid in the development of treatment paradigms for lung cancer patients with preexisting pulmonary diseases.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jennifer M. Lee
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason Manassa
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian Magnuson
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, Michigan
| | - Sarah F. Ferris
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Sophia Cavanaugh
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Carlos E. Espinoza
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig J. Galban
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biomedical Engineering, The University of Michigan Medical School and College of Engineering, Ann Arbor, Michigan
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Timothy L. Frankel
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
5
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, Bailey C, Boumelha J, Kerr DL, Blakely CM, Manabe T, Martinez-Ruiz C, Bakker B, De Dios Palomino Villcas J, I Vokes N, Dietzen M, Angelova M, Gini B, Tamaki W, Allegakoen P, Wu W, Humpton TJ, Hill W, Tomaschko M, Lu WT, Haderk F, Al Bakir M, Nagano A, Gimeno-Valiente F, de Carné Trécesson S, Vendramin R, Barbè V, Mugabo M, Weeden CE, Rowan A, McCoach CE, Almeida B, Green M, Gomez C, Nanjo S, Barbosa D, Moore C, Przewrocka J, Black JRM, Grönroos E, Suarez-Bonnet A, Priestnall SL, Zverev C, Lighterness S, Cormack J, Olivas V, Cech L, Andrews T, Rule B, Jiao Y, Zhang X, Ashford P, Durfee C, Venkatesan S, Temiz NA, Tan L, Larson LK, Argyris PP, Brown WL, Yu EA, Rotow JK, Guha U, Roper N, Yu J, Vogel RI, Thomas NJ, Marra A, Selenica P, Yu H, Bakhoum SF, Chew SK, Reis-Filho JS, Jamal-Hanjani M, Vousden KH, McGranahan N, Van Allen EM, Kanu N, Harris RS, Downward J, Bivona TG, Swanton C. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat Genet 2024; 56:60-73. [PMID: 38049664 PMCID: PMC10786726 DOI: 10.1038/s41588-023-01592-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.
Collapse
Affiliation(s)
- Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tadashi Manabe
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Martinez-Ruiz
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Natalie I Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Dietzen
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Beatrice Gini
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy J Humpton
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
- CRUK Beatson Institute, Glasgow, UK
- Glasgow Caledonian University, Glasgow, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Roberto Vendramin
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Vittorio Barbè
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Miriam Mugabo
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Carlos Gomez
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dora Barbosa
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chris Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Joanna Przewrocka
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - James R M Black
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Simon L Priestnall
- Experimental Histopathology, The Francis Crick Institute, London, UK
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, London, UK
| | - Caroline Zverev
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Scott Lighterness
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - James Cormack
- Biological Research Facility, The Francis Crick Institute, London, UK
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Cech
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Trisha Andrews
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Paul Ashford
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsay K Larson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- School of Dentistry, University of Minnesota, Minneapolis, MN, USA
- College of Dentistry, Ohio State University, Columbus, OH, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth A Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health Palo Alto Medical Foundation, Department of Pulmonary and Critical Care, Mountain View, CA, USA
| | - Julia K Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, NCI, NIH, Bethesda, MD, USA
- NextCure Inc., Beltsville, MD, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Johnny Yu
- Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Thomas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Helena Yu
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell College of Medicine, New York City, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London, Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Trever G Bivona
- Departments of Medicine and Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
7
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
8
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
9
|
Hiller BE, Yin Y, Perng YC, de Araujo Castro Í, Fox LE, Locke MC, Monte KJ, López CB, Ornitz DM, Lenschow DJ. Fibroblast growth factor-9 expression in airway epithelial cells amplifies the type I interferon response and alters influenza A virus pathogenesis. PLoS Pathog 2022; 18:e1010228. [PMID: 35675358 PMCID: PMC9212157 DOI: 10.1371/journal.ppat.1010228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/21/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) preferentially infects conducting airway and alveolar epithelial cells in the lung. The outcome of these infections is impacted by the host response, including the production of various cytokines, chemokines, and growth factors. Fibroblast growth factor-9 (FGF9) is required for lung development, can display antiviral activity in vitro, and is upregulated in asymptomatic patients during early IAV infection. We therefore hypothesized that FGF9 would protect the lungs from respiratory virus infection and evaluated IAV pathogenesis in mice that overexpress FGF9 in club cells in the conducting airway epithelium (FGF9-OE mice). However, we found that FGF9-OE mice were highly susceptible to IAV and Sendai virus infection compared to control mice. FGF9-OE mice displayed elevated and persistent viral loads, increased expression of cytokines and chemokines, and increased numbers of infiltrating immune cells as early as 1 day post-infection (dpi). Gene expression analysis showed an elevated type I interferon (IFN) signature in the conducting airway epithelium and analysis of IAV tropism uncovered a dramatic shift in infection from the conducting airway epithelium to the alveolar epithelium in FGF9-OE lungs. These results demonstrate that FGF9 signaling primes the conducting airway epithelium to rapidly induce a localized IFN and proinflammatory cytokine response during viral infection. Although this response protects the airway epithelial cells from IAV infection, it allows for early and enhanced infection of the alveolar epithelium, ultimately leading to increased morbidity and mortality. Our study illuminates a novel role for FGF9 in regulating respiratory virus infection and pathogenesis. Influenza viruses are respiratory viruses that cause significant morbidity and mortality worldwide. In the lungs, influenza A virus primarily infects epithelial cells that line the conducting airways and alveoli. Fibroblast growth factor-9 (FGF9) is a growth factor that has been shown to have antiviral activity and is upregulated during early IAV infection in asymptomatic patients, leading us to hypothesize that FGF9 would protect the lung epithelium from IAV infection. However, mice that express and secrete FGF9 from club cells in the conducting airway had more severe respiratory virus infection and a hyperactive inflammatory immune response as early as 1 day post-infection. Analysis of the FGF9-expressing airway epithelial cells found an elevated antiviral and inflammatory interferon signature, which protected these cells from severe IAV infection. However, heightened infection of alveolar cells resulted in excessive inflammation in the alveoli, resulting in more severe disease and death. Our study identifies a novel antiviral and inflammatory role for FGFs in the lung airway epithelium and confirms that early and robust IAV infection of alveolar cells results in more severe disease.
Collapse
Affiliation(s)
- Bradley E Hiller
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - Yi-Chieh Perng
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ítalo de Araujo Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - Lindsey E Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marissa C Locke
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kristen J Monte
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, Unites States of America
| | - Deborah J Lenschow
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Liao CC, Chiu CJ, Yang YH, Chiang BL. Neonatal lung-derived SSEA-1 + cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 2022; 25:104262. [PMID: 35521516 PMCID: PMC9062680 DOI: 10.1016/j.isci.2022.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications. Pulmonary SSEA-1+ cells are abundant in neonatal and scarce in adult stages The stem/progenitor activity of pulmonary SSEA-1+ cells is enhanced in neonatal stage Neonatal pulmonary SSEA-1+ cells developed into airway- and alveolar-like organoids FGF7 regulates alveolar epithelium development of neonatal pulmonary SSEA-1+ cells
Collapse
Affiliation(s)
- Chien-Chia Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
11
|
Clowers MJ, Moghaddam SJ. Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071785. [PMID: 35406557 PMCID: PMC8997152 DOI: 10.3390/cancers14071785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lung adenocarcinomas with mutations in the K-ras gene are hard to target pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may be able to target STAT3. Abstract Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However, our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient. Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as a new target for personalized preventive and therapeutic intervention for this intractable form of lung cancer.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
12
|
He H, Chen J, Zhao J, Zhang P, Qiao Y, Wan H, Wang J, Mei M, Bao S, Li Q. PRMT7 targets of Foxm1 controls alveolar myofibroblast proliferation and differentiation during alveologenesis. Cell Death Dis 2021; 12:841. [PMID: 34497269 PMCID: PMC8426482 DOI: 10.1038/s41419-021-04129-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Although aberrant alveolar myofibroblasts (AMYFs) proliferation and differentiation are often associated with abnormal lung development and diseases, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF), epigenetic mechanisms regulating proliferation and differentiation of AMYFs remain poorly understood. Protein arginine methyltransferase 7 (PRMT7) is the only reported type III enzyme responsible for monomethylation of arginine residue on both histone and nonhistone substrates. Here we provide evidence for PRMT7's function in regulating AMYFs proliferation and differentiation during lung alveologenesis. In PRMT7-deficient mice, we found reduced AMYFs proliferation and differentiation, abnormal elastin deposition, and failure of alveolar septum formation. We further shown that oncogene forkhead box M1 (Foxm1) is a direct target of PRMT7 and that PRMT7-catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) directly associate with chromatin of Foxm1 to activate its transcription, and thereby regulate of cell cycle-related genes to inhibit AMYFs proliferation and differentiation. Overexpression of Foxm1 in isolated myofibroblasts (MYFs) significantly rescued PRMT7-deficiency-induced cell proliferation and differentiation defects. Thus, our results reveal a novel epigenetic mechanism through which PRMT7-mediated histone arginine monomethylation activates Foxm1 transcriptional expression to regulate AMYFs proliferation and differentiation during lung alveologenesis and may represent a potential target for intervention in pulmonary diseases.
Collapse
Affiliation(s)
- Huacheng He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jilin Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jian Zhao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Peizhun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Yulong Qiao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Huajing Wan
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| | - Qiuling Li
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China.
| |
Collapse
|
13
|
Pearson JD, Huang K, Pacal M, McCurdy SR, Lu S, Aubry A, Yu T, Wadosky KM, Zhang L, Wang T, Gregorieff A, Ahmad M, Dimaras H, Langille E, Cole SPC, Monnier PP, Lok BH, Tsao MS, Akeno N, Schramek D, Wikenheiser-Brokamp KA, Knudsen ES, Witkiewicz AK, Wrana JL, Goodrich DW, Bremner R. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 2021; 39:1115-1134.e12. [PMID: 34270926 PMCID: PMC8981970 DOI: 10.1016/j.ccell.2021.06.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity impacts therapeutic response, driving efforts to discover over-arching rules that supersede variability. Here, we define pan-cancer binary classes based on distinct expression of YAP and YAP-responsive adhesion regulators. Combining informatics with in vivo and in vitro gain- and loss-of-function studies across multiple murine and human tumor types, we show that opposite pro- or anti-cancer YAP activity functionally defines binary YAPon or YAPoff cancer classes that express or silence YAP, respectively. YAPoff solid cancers are neural/neuroendocrine and frequently RB1-/-, such as retinoblastoma, small cell lung cancer, and neuroendocrine prostate cancer. YAP silencing is intrinsic to the cell of origin, or acquired with lineage switching and drug resistance. The binary cancer groups exhibit distinct YAP-dependent adhesive behavior and pharmaceutical vulnerabilities, underscoring clinical relevance. Mechanistically, distinct YAP/TEAD enhancers in YAPoff or YAPon cancers deploy anti-cancer integrin or pro-cancer proliferative programs, respectively. YAP is thus pivotal across cancer, but in opposite ways, with therapeutic implications.
Collapse
Affiliation(s)
- Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Sean R McCurdy
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Suying Lu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kristine M Wadosky
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Letian Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, ON H4A 3J1, Canada
| | - Mohammad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Helen Dimaras
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; The Department of Ophthalmology & Vision Sciences, Child Health Evaluative Sciences Program, and Center for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Clinical Public Health, Dalla Lana School of Public Health, The University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Ellen Langille
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, ON M5T 2S8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin H Lok
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nagako Akeno
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Schramek
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jeffrey L Wrana
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
14
|
Eenjes E, Buscop-van Kempen M, Boerema-de Munck A, Edel GG, Benthem F, de Kreij-de Bruin L, Schnater M, Tibboel D, Collins J, Rottier RJ. SOX21 modulates SOX2-initiated differentiation of epithelial cells in the extrapulmonary airways. eLife 2021; 10:57325. [PMID: 34286693 PMCID: PMC8331192 DOI: 10.7554/elife.57325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
SOX2 expression levels are crucial for the balance between maintenance and differentiation of airway progenitor cells during development and regeneration. Here, we describe patterning of the mouse proximal airway epithelium by SOX21, which coincides with high levels of SOX2 during development. Airway progenitor cells in this SOX2+/SOX21+ zone show differentiation to basal cells, specifying cells for the extrapulmonary airways. Loss of SOX21 showed an increased differentiation of SOX2+ progenitor cells to basal and ciliated cells during mouse lung development. We propose a mechanism where SOX21 inhibits differentiation of airway progenitors by antagonizing SOX2-induced expression of specific genes involved in airway differentiation. Additionally, in the adult tracheal epithelium, SOX21 inhibits basal to ciliated cell differentiation. This suppressing function of SOX21 on differentiation contrasts SOX2, which mainly drives differentiation of epithelial cells during development and regeneration after injury. Furthermore, using human fetal lung organoids and adult bronchial epithelial cells, we show that SOX2+/SOX21+ regionalization is conserved. Lastly, we show that the interplay between SOX2 and SOX21 is context and concentration dependent leading to regulation of differentiation of the airway epithelium.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriela G Edel
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Floor Benthem
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Lisette de Kreij-de Bruin
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marco Schnater
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Jennifer Collins
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell biology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Generation and Characterization of a New Preclinical Mouse Model of EGFR-Driven Lung Cancer with MET-Induced Osimertinib Resistance. Cancers (Basel) 2021; 13:cancers13143441. [PMID: 34298655 PMCID: PMC8307933 DOI: 10.3390/cancers13143441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The use of targeted therapy has changed the clinical management of lung cancer patients, increasing both their life quality and expectancy. Conversely, the appearance of resistance occurs in almost all patients receiving this therapy. In this regard, new strategies combining different therapies could delay or even eliminate the appearance of resistance. However, in order to develop new therapeutic treatments, we need preclinical mouse models that recapitulate human disease. In the present study, we developed a new state-of-the-art mouse model that summarizes all features occurring in EGFR-mutated patients that relapse after osimertinib after acquisition of MET amplification. Abstract Despite the introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) to treat advanced lung cancer harboring EGFR-activating mutations, the prognosis remains unfavorable because of intrinsic and/or acquired resistance. We generated a new state-of-the-art mouse strain harboring the human EGFRT790M/L858R oncogene and MET overexpression (EGFR/MET strain) that mimics the MET amplification occurring in one out of five patients with EGFR-mutated lung cancer that relapsed after treatment with osimertinib, a third-generation anti-EGFR TKI. We found that survival was reduced in EGFR/MET mice compared with mice harboring only EGFRT790M/L858R (EGFR strain). Moreover, EGFR/MET-driven lung tumors were resistant to osimertinib, recapitulating the phenotype observed in patients. Conversely, as also observed in patients, the crizotinib (anti-MET TKI) and osimertinib combination improved survival and reduced tumor burden in EGFR/MET mice, further validating the model’s value for preclinical studies. We also found that in EGFR/MET mice, MET overexpression negatively regulated EGFR activity through MIG6 induction, a compensatory mechanism that allows the coexistence of the two onco-genic events. Our data suggest that single EGFR or MET inhibition might not be a good therapeutic option for EGFR-mutated lung cancer with MET amplification, and that inhibition of both pathways should be the best clinical choice in these patients.
Collapse
|
16
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, Mukai Y, Imaida K, Matsuda Y. Relationship between Lung Carcinogenesis and Chronic Inflammation in Rodents. Cancers (Basel) 2021; 13:cancers13122910. [PMID: 34200786 PMCID: PMC8230400 DOI: 10.3390/cancers13122910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Lung cancer is the most common cause of cancer-related deaths worldwide. There are various risk factors for lung cancer, including tobacco smoking, inhalation of dust particles, chronic inflammation, and genetic factors. Chronic inflammation has been considered a key factor that promotes tumor progression via production of cytokines, chemokines, cytotoxic mediators, and reactive oxygen species by inflammatory cells. Here, we review rodent models of lung tumor induced by tobacco, tobacco-related products, and pro-inflammatory materials as well as genetic modifications, and discuss the relationship between chronic inflammation and lung tumor. Through this review, we hope to clarify the effects of chronic inflammation on lung carcinogenesis and help develop new treatments for lung cancer. Abstract Lung cancer remains the leading cause of cancer-related deaths, with an estimated 1.76 million deaths reported in 2018. Numerous studies have focused on the prevention and treatment of lung cancer using rodent models. Various chemicals, including tobacco-derived agents induce lung cancer and pre-cancerous lesions in rodents. In recent years, transgenic engineered rodents, in particular, those generated with a focus on the well-known gene mutations in human lung cancer (KRAS, EGFR, and p53 mutations) have been widely studied. Animal studies have revealed that chronic inflammation significantly enhances lung carcinogenesis, and inhibition of inflammation suppresses cancer progression. Moreover, the reduction in tumor size by suppression of inflammation in animal experiments suggests that chronic inflammation influences the promotion of tumorigenesis. Here, we review rodent lung tumor models induced by various chemical carcinogens, including tobacco-related carcinogens, and transgenics, and discuss the roles of chronic inflammation in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoko Matsuda
- Correspondence: ; Tel.: +81-87-891-2109; Fax: +81-87-891-2112
| |
Collapse
|
17
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
18
|
GM130 regulates pulmonary surfactant protein secretion in alveolar type II cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:193-205. [PMID: 33740186 DOI: 10.1007/s11427-020-1875-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex secreted by alveolar type II epithelial cells and is essential for the maintenance of the delicate structure of mammalian alveoli to promote efficient gas exchange across the air-liquid barrier. The Golgi apparatus plays an important role in pulmonary surfactant modification and secretory trafficking. However, the physiological function of the Golgi apparatus in the transport of pulmonary surfactants is unclear. In the present study, deletion of GM130, which encodes for a matrix protein of the cis-Golgi cisternae, was shown to induce the disruption of the Golgi structure leading to impaired secretion of lung surfactant proteins and lipids. Specifically, the results of in vitro and in vivo analysis indicated that the loss of GM130 resulted in trapping of Sftpa in the endoplasmic reticulum, Sftpb and Sftpc accumulation in the Golgi apparatus, and an increase in the compensatory secretion of Sftpd. Moreover, global and epithelial-specific GM130 knockout in mice resulted in an enlargement of alveolar airspace and an increase in alveolar epithelial autophagy; however, surfactant repletion partially rescued the enlarged airspace defects in GM130-deficient mice. Therefore, our results demonstrate that GM130 and the mammalian Golgi apparatus play a critical role in the control of surfactant protein secretion in pulmonary epithelial cells.
Collapse
|
19
|
Cheah FC, Presicce P, Tan TL, Carey BC, Kallapur SG. Studying the Effects of Granulocyte-Macrophage Colony-Stimulating Factor on Fetal Lung Macrophages During the Perinatal Period Using the Mouse Model. Front Pediatr 2021; 9:614209. [PMID: 33777863 PMCID: PMC7991795 DOI: 10.3389/fped.2021.614209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pro-inflammatory cytokine that is increased in the amniotic fluid in chorioamnionitis and elevated in the fetal lung with endotoxin exposure. Although GM-CSF has a pivotal role in fetal lung development, it stimulates pulmonary macrophages and is associated with the development of bronchopulmonary dysplasia (BPD). How antenatal GM-CSF results in recruitment of lung macrophage leading to BPD needs further elucidation. Hence, we used a transgenic and knock-out mouse model to study the effects of GM-CSF focusing on the fetal lung macrophage. Methods: Using bitransgenic (BTg) mice that conditionally over-expressed pulmonary GM-CSF after doxycycline treatment, and GM-CSF knock-out (KO) mice with no GM-CSF expression, we compared the ontogeny and immunophenotype of lung macrophages in BTg, KO and control mice at various prenatal and postnatal time points using flow cytometry and immunohistology. Results: During fetal life, compared to controls, BTg mice over-expressing pulmonary GM-CSF had increased numbers of lung macrophages that were CD68+ and these were primarily located in the interstitium rather than alveolar spaces. The lung macrophages that accumulated were predominantly CD11b+F4/80+ indicating immature macrophages. Conversely, lung macrophages although markedly reduced, were still present in GM-CSF KO mice. Conclusion: Increased exposure to GM-CSF antenatally, resulted in accumulation of immature macrophages in the fetal lung interstitium. Absence of GM-CSF did not abrogate but delayed the transitioning of interstitial macrophages. Together, these results suggest that other perinatal factors may be involved in modulating the maturation of alveolar macrophages in the developing fetal lung.
Collapse
Affiliation(s)
- Fook-Choe Cheah
- Neonatal Intensive Care Unit, Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia
| | - Pietro Presicce
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tian-Lee Tan
- Neonatal Intensive Care Unit, Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Hospital Canselor Tuanku Muhriz, Kuala Lumpur, Malaysia
| | - Brenna C. Carey
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Suhas G. Kallapur
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Bousquet Mur E, Bernardo S, Papon L, Mancini M, Fabbrizio E, Goussard M, Ferrer I, Giry A, Quantin X, Pujol JL, Calvayrac O, Moll HP, Glasson Y, Pirot N, Turtoi A, Cañamero M, Wong KK, Yarden Y, Casanova E, Soria JC, Colinge J, Siebel CW, Mazieres J, Favre G, Paz-Ares L, Maraver A. Notch inhibition overcomes resistance to tyrosine kinase inhibitors in EGFR-driven lung adenocarcinoma. J Clin Invest 2020; 130:612-624. [PMID: 31671073 DOI: 10.1172/jci126896] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/15/2019] [Indexed: 12/29/2022] Open
Abstract
EGFR-mutated lung adenocarcinoma patients treated with gefitinib and osimertinib show a therapeutic benefit limited by the appearance of secondary mutations, such as EGFRT790M and EGFRC797S. It is generally assumed that these secondary mutations render EGFR completely unresponsive to the inhibitors, but contrary to this, we uncovered here that gefitinib and osimertinib increased STAT3 phosphorylation (p-STAT3) in EGFRT790M and EGFRC797S tumoral cells. Interestingly, we also found that concomitant Notch inhibition with gefitinib or osimertinib treatment induced a p-STAT3-dependent strong reduction in the levels of the transcriptional repressor HES1. Importantly, we showed that tyrosine kinase inhibitor-resistant tumors, with EGFRT790M and EGFRC797S mutations, were highly responsive to the combined treatment of Notch inhibitors with gefitinib or osimertinib, respectively. Finally, in patients with EGFR mutations treated with tyrosine kinase inhibitors, HES1 protein levels increased during relapse and correlated with shorter progression-free survival. Therefore, our results offer a proof of concept for an alternative treatment to chemotherapy in lung adenocarcinoma osimertinib-treated patients after disease progression.
Collapse
Affiliation(s)
- Emilie Bousquet Mur
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sara Bernardo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Laura Papon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Maicol Mancini
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Eric Fabbrizio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Marion Goussard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Irene Ferrer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.,Unidad de Investigación Clínica de Cáncer de Pulmón, Instituto de Investigación Hospital 12 de Octubre-CNIO, Madrid, Spain.,CIBERONC, Madrid, Spain
| | - Anais Giry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Xavier Quantin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Jean-Louis Pujol
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.,Montpellier Academic Hospital, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Olivier Calvayrac
- INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Herwig P Moll
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Yaël Glasson
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Nelly Pirot
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Andrei Turtoi
- IRCM, Université de Montpellier, ICM, Montpellier, France
| | - Marta Cañamero
- Roche Pharmaceutical Research and Early Development, Translational Medicine, Roche Innovation Center, Munich, Germany
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Emilio Casanova
- Department of Physiology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Jean-Charles Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Sud University, Villejuif, France
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Julien Mazieres
- INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France.,Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, France; INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Gilles Favre
- INSERM, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France; Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France; University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Luis Paz-Ares
- Unidad de Investigación Clínica de Cáncer de Pulmón, Instituto de Investigación Hospital 12 de Octubre-CNIO, Madrid, Spain.,Montpellier Academic Hospital, Hôpital Arnaud de Villeneuve, Montpellier, France.,Medical School, Universidad Complutense, Madrid, Spain
| | - Antonio Maraver
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
21
|
Abstract
Lung cancer causes more deaths annually than any other malignancy. A subset of non-small cell lung cancer (NSCLC) is driven by amplification and overexpression or activating mutation of the receptor tyrosine kinase (RTK) ERBB2 In some contexts, notably breast cancer, alternative splicing of ERBB2 causes skipping of exon 16, leading to the expression of an oncogenic ERBB2 isoform (ERBB2ΔEx16) that forms constitutively active homodimers. However, the broader implications of ERBB2 alternative splicing in human cancers have not been explored. Here, we have used genomic and transcriptomic analysis to identify elevated ERBB2ΔEx16 expression in a subset of NSCLC cases, as well as splicing site mutations facilitating exon 16 skipping and deletions of exon 16 in a subset of these lung tumors and in a number of other carcinomas. Supporting the potential of ERBB2ΔEx16 as a lung cancer driver, its expression transformed immortalized lung epithelial cells while a transgenic model featuring inducible ERBB2ΔEx16 specifically in the lung epithelium rapidly developed lung adenocarcinomas following transgene induction. Collectively, these observations indicate that ERBB2ΔEx16 is a lung cancer oncogene with potential clinical importance for a proportion of patients.
Collapse
|
22
|
Rabata A, Fedr R, Soucek K, Hampl A, Koledova Z. 3D Cell Culture Models Demonstrate a Role for FGF and WNT Signaling in Regulation of Lung Epithelial Cell Fate and Morphogenesis. Front Cell Dev Biol 2020; 8:574. [PMID: 32850782 PMCID: PMC7396690 DOI: 10.3389/fcell.2020.00574] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
FGF signaling plays an essential role in lung development, homeostasis, and regeneration. We employed mouse 3D cell culture models and imaging to study ex vivo the role of FGF ligands and the interplay of FGF signaling with epithelial growth factor (EGF) and WNT signaling pathways in lung epithelial morphogenesis and differentiation. In non-adherent conditions, FGF signaling promoted formation of lungospheres from lung epithelial stem/progenitor cells (LSPCs). Ultrastructural and immunohistochemical analyses showed that LSPCs produced more differentiated lung cell progeny. In a 3D extracellular matrix, FGF2, FGF7, FGF9, and FGF10 promoted lung organoid formation. FGF9 showed reduced capacity to promote lung organoid formation, suggesting that FGF9 has a reduced ability to sustain LSPC survival and/or initial divisions. FGF7 and FGF10 produced bigger organoids and induced organoid branching with higher frequency than FGF2 or FGF9. Higher FGF concentration and/or the use of FGF2 with increased stability and affinity to FGF receptors both increased lung organoid and lungosphere formation efficiency, respectively, suggesting that the level of FGF signaling is a crucial driver of LSPC survival and differentiation, and also lung epithelial morphogenesis. EGF signaling played a supportive but non-essential role in FGF-induced lung organoid formation. Analysis of tissue architecture and cell type composition confirmed that the lung organoids contained alveolar-like regions with cells expressing alveolar type I and type II cell markers, as well as airway-like structures with club cells and ciliated cells. FGF ligands showed differences in promoting distinct lung epithelial cell types. FGF9 was a potent inducer of more proximal cell types, including ciliated and basal cells. FGF7 and FGF10 directed the differentiation toward distal lung lineages. WNT signaling enhanced the efficiency of lung organoid formation, but in the absence of FGF10 signaling, the organoids displayed limited branching and less differentiated phenotype. In summary, we present lung 3D cell culture models as useful tools to study the role and interplay of signaling pathways in postnatal lung development and homeostasis, and we reveal distinct roles for FGF ligands in regulation of mouse lung morphogenesis and differentiation ex vivo.
Collapse
Affiliation(s)
- Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
23
|
Yurugi H, Zhuang Y, Siddiqui FA, Liang H, Rosigkeit S, Zeng Y, Abou-Hamdan H, Bockamp E, Zhou Y, Abankwa D, Zhao W, Désaubry L, Rajalingam K. A subset of flavaglines inhibits KRAS nanoclustering and activation. J Cell Sci 2020; 133:jcs244111. [PMID: 32501281 DOI: 10.1242/jcs.244111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/30/2020] [Indexed: 08/31/2023] Open
Abstract
The RAS oncogenes are frequently mutated in human cancers and among the three isoforms (KRAS, HRAS and NRAS), KRAS is the most frequently mutated oncogene. Here, we demonstrate that a subset of flavaglines, a class of natural anti-tumour drugs and chemical ligands of prohibitins, inhibit RAS GTP loading and oncogene activation in cells at nanomolar concentrations. Treatment with rocaglamide, the first discovered flavagline, inhibited the nanoclustering of KRAS, but not HRAS and NRAS, at specific phospholipid-enriched plasma membrane domains. We further demonstrate that plasma membrane-associated prohibitins directly interact with KRAS, phosphatidylserine and phosphatidic acid, and these interactions are disrupted by rocaglamide but not by the structurally related flavagline FL1. Depletion of prohibitin-1 phenocopied the rocaglamide-mediated effects on KRAS activation and stability. We also demonstrate that flavaglines inhibit the oncogenic growth of KRAS-mutated cells and that treatment with rocaglamide reduces non-small-cell lung carcinoma (NSCLC) tumour nodules in autochthonous KRAS-driven mouse models without severe side effects. Our data suggest that it will be promising to further develop flavagline derivatives as specific KRAS inhibitors for clinical applications.
Collapse
Affiliation(s)
- Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Farid A Siddiqui
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, Mcgovern Medical School, UT Health, 6431 Fannin St. MSE R382, Houston, TX 77030, USA
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Hussein Abou-Hamdan
- Therapeutic Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, Mcgovern Medical School, UT Health, 6431 Fannin St. MSE R382, Houston, TX 77030, USA
| | - Daniel Abankwa
- Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
- Cancer Cell Biology and Drug Discovery Group, Life Sciences Research Unit University of Luxembourg, L 4362 Esch-sur-Alzette, Luxembourg
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 Singapore
| | - Laurent Désaubry
- Therapeutic Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, D 55131 Mainz, Germany
| |
Collapse
|
24
|
Zhong Y, Bry K, Roberts JD. IL-1β dysregulates cGMP signaling in the newborn lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L21-L34. [PMID: 32374672 DOI: 10.1152/ajplung.00382.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP) signaling is an important regulator of newborn lung function and development. Although cGMP signaling is decreased in many models of newborn lung injury, the mechanisms are poorly understood. We determined how IL-1β regulates the expression of the α1-subunit of soluble guanylate cyclase (sGCα1), a prime effector of pulmonary cGMP signaling. Physiologic levels of IL-1β were discovered to rapidly decrease sGCα1 mRNA expression in a human fetal lung fibroblast cell line (IMR-90 cells) and protein levels in primary mouse pup lung fibroblasts. This sGCα1 expression inhibition appeared to be at a transcriptional level; IL-1β treatment did not alter sGCα1 mRNA stability although it reduced sGCα1 promoter activity. TGFβ-activated kinase 1 (TAK1) was determined to be required for IL-1β's regulation of sGCα1 expression; TAK1 knockdown protected sGCα1 mRNA expression in IL-1β-treated IMR-90 cells. Moreover, heterologously expressed TAK1 was sufficient to decrease sGCα1 mRNA levels in those cells. Nuclear factor-kappaB (NF-κB) signaling played a critical role in the IL-1β-TAK1-sGCα1 regulatory pathway; chromatin immunoprecipitation studies demonstrated enhanced activated NF-kB subunit (RelA) binding to the sGCα1 promoter after IL-1β treatment unless were treated with an IκB kinase2 inhibitor. Also, this NF-kB signaling inhibition protected sGCα1 expression in IL-1β-treated fibroblasts. Lastly, using transgenic mice in which active IL-1β was conditionally expressed in lung epithelial cells, we established that IL-1β expression is sufficient to stimulate TAK1 and decrease sGCα1 protein expression in the newborn lung. Together these results detail the role and mechanisms by which IL-1β inhibits cGMP signaling in the newborn lung.
Collapse
Affiliation(s)
- Ying Zhong
- Cardiovascular Research Center, Massachusetts General Hospital
| | - Kristina Bry
- Department of Pediatrics, University of Gothenburg and Divison of Neonatology, Sahlgrenska University Hospital, Sweden
| | - Jesse D Roberts
- CVRC - MGH East, Massachusetts General Hospital, United States
| |
Collapse
|
25
|
Yu JJ, Zhou DD, Cui B, Zhang C, Tan FW, Chang S, Li K, Lv XX, Zhang XW, Shang S, Xiang YJ, Chen F, Yu JM, Liu SS, Wang F, Hu ZW, Hua F. Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett 2020; 474:23-35. [PMID: 31931029 DOI: 10.1016/j.canlet.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Autophagy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutation
- Peptide Fragments/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Multimerization
- Sequestosome-1 Protein/antagonists & inhibitors
- Sequestosome-1 Protein/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Dan-Dan Zhou
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Cheng Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Feng-Wei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213000, PR China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Yu-Jin Xiang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Fei Chen
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Jin-Mei Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Feng Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
26
|
Starrett JH, Guernet AA, Cuomo ME, Poels KE, van Alderwerelt van Rosenburgh IK, Nagelberg A, Farnsworth D, Price KS, Khan H, Ashtekar KD, Gaefele M, Ayeni D, Stewart TF, Kuhlmann A, Kaech SM, Unni AM, Homer R, Lockwood WW, Michor F, Goldberg SB, Lemmon MA, Smith PD, Cross DAE, Politi K. Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance EGFR Mutations. Cancer Res 2020; 80:2017-2030. [PMID: 32193290 DOI: 10.1158/0008-5472.can-19-3819] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Osimertinib, a mutant-specific third-generation EGFR tyrosine kinase inhibitor, is emerging as the preferred first-line therapy for EGFR-mutant lung cancer, yet resistance inevitably develops in patients. We modeled acquired resistance to osimertinib in transgenic mouse models of EGFRL858R -induced lung adenocarcinoma and found that it is mediated largely through secondary mutations in EGFR-either C797S or L718V/Q. Analysis of circulating free DNA data from patients revealed that L718Q/V mutations almost always occur in the context of an L858R driver mutation. Therapeutic testing in mice revealed that both erlotinib and afatinib caused regression of osimertinib-resistant C797S-containing tumors, whereas only afatinib was effective on L718Q mutant tumors. Combination first-line osimertinib plus erlotinib treatment prevented the emergence of secondary mutations in EGFR. These findings highlight how knowledge of the specific characteristics of resistance mutations is important for determining potential subsequent treatment approaches and suggest strategies to overcome or prevent osimertinib resistance in vivo. SIGNIFICANCE: This study provides insight into the biological and molecular properties of osimertinib resistance EGFR mutations and evaluates therapeutic strategies to overcome resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/2017/F1.large.jpg.
Collapse
Affiliation(s)
| | - Alexis A Guernet
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Maria Emanuela Cuomo
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Kamrine E Poels
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Iris K van Alderwerelt van Rosenburgh
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - Amy Nagelberg
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hina Khan
- Warren Alpert Medical School, Brown University, Providence, Rhode Island; and Lifespan Cancer Institute, Providence, Rhode Island
| | - Kumar Dilip Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | | | - Deborah Ayeni
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Tyler F Stewart
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute, La Jolla, California
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Pathology and Laboratory Medicine Service, VA CT HealthCare System, West Haven, Connecticut
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Franziska Michor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts; and The Ludwig Center at Harvard, Boston, Massachusetts
| | - Sarah B Goldberg
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Mark A Lemmon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Paul D Smith
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Yin Y, Ornitz DM. FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Sci Signal 2020; 13:eaay4353. [PMID: 32127497 PMCID: PMC7271816 DOI: 10.1126/scisignal.aay4353] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors (FGFs) 9 and 10 are essential during the pseudoglandular stage of lung development. Mesothelium-produced FGF9 is principally responsible for mesenchymal growth, whereas epithelium-produced FGF9 and mesenchyme-produced FGF10 guide lung epithelial development, and loss of either of these ligands affects epithelial branching. Because FGF9 and FGF10 activate distinct FGF receptors (FGFRs), we hypothesized that they would control distinct developmental processes. Here, we found that FGF9 signaled through epithelial FGFR3 to directly promote distal epithelial fate specification and inhibit epithelial differentiation. By contrast, FGF10 signaled through epithelial FGFR2b to promote epithelial proliferation and differentiation. Furthermore, FGF9-FGFR3 signaling functionally opposed FGF10-FGFR2b signaling, and FGFR3 preferentially used downstream phosphoinositide 3-kinase (PI3K) pathways, whereas FGFR2b relied on downstream mitogen-activated protein kinase (MAPK) pathways. These data demonstrate that, within lung epithelial cells, different FGFRs function independently; they bind receptor-specific ligands and direct distinct developmental functions through the activation of distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
28
|
Hagan AS, Zhang B, Ornitz DM. Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development 2020; 147:dev.181032. [PMID: 31862844 DOI: 10.1242/dev.181032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Alveologenesis is an essential developmental process that increases the surface area of the lung through the formation of septal ridges. In the mouse, septation occurs postnatally and is thought to require the alveolar myofibroblast (AMF). Though abundant during alveologenesis, markers for AMFs are minimally detected in the adult. After septation, the alveolar walls thin to allow efficient gas exchange. Both loss of AMFs or retention and differentiation into another cell type during septal thinning have been proposed. Using a novel Fgf18:CreERT2 allele to lineage trace AMFs, we demonstrate that most AMFs are developmentally cleared during alveologenesis. Lung mesenchyme also contains other poorly described cell types, including alveolar lipofibroblasts (ALF). We show that Gli1:CreERT2 marks both AMFs as well as ALFs, and lineage tracing shows that ALFs are retained in adult alveoli while AMFs are lost. We further show that multiple immune cell populations contain lineage-labeled particles, suggesting a phagocytic role in the clearance of AMFs. The demonstration that the AMF lineage is depleted during septal thinning through a phagocytic process provides a mechanism for the clearance of a transient developmental cell population.
Collapse
Affiliation(s)
- Andrew S Hagan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
29
|
Singh S, Vaughan CA, Rabender C, Mikkelsen R, Deb S, Palit Deb S. DNA replication in progenitor cells and epithelial regeneration after lung injury requires the oncoprotein MDM2. JCI Insight 2019; 4:128194. [PMID: 31527309 PMCID: PMC6824310 DOI: 10.1172/jci.insight.128194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Depletion of epithelial cells after lung injury prompts proliferation and epithelial mesenchymal transition (EMT) of progenitor cells, and this repopulates the lost epithelial layer. To investigate the cell proliferative function of human oncoprotein MDM2, we generated mouse models targeting human MDM2 expression in either lung Club or alveolar cells after doxycycline treatment. We report that MDM2 expression in lung Club or alveolar cells activates DNA replication specifically in lung progenitor cells only after chemical- or radiation-induced lung injury, irrespective of their p53 status. Activation of DNA replication by MDM2 triggered by injury leads to proliferation of lung progenitor cells and restoration of the lost epithelial layers. Mouse lung with no Mdm2 allele loses its ability to replicate DNA, whereas loss of 1 Mdm2 allele compromises this function, demonstrating the requirement of endogenous MDM2. We show that the p53-independent ability of MDM2 to activate Akt signaling is essential for initiating DNA replication in lung progenitor cells. Furthermore, MDM2 activates the Notch signaling pathway and expression of EMT markers, indicative of epithelial regeneration. This is the first report to our knowledge demonstrating a direct p53-independent participation of MDM2 in progenitor cell proliferation and epithelial repair after lung injury, distinct from a p53-degrading antiapoptotic effect preventing injury.
Collapse
Affiliation(s)
- Shilpa Singh
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| | | | - Christopher Rabender
- VCU Massey Cancer Center, and
- Department of Radiation Oncology, Virginia Commonwealth, University, Richmond, Virginia, USA
| | - Ross Mikkelsen
- VCU Massey Cancer Center, and
- Department of Radiation Oncology, Virginia Commonwealth, University, Richmond, Virginia, USA
| | - Sumitra Deb
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| | - Swati Palit Deb
- Department of Biochemistry and Molecular Biology
- VCU Massey Cancer Center, and
| |
Collapse
|
30
|
Drake LY, Squillace D, Iijima K, Kobayashi T, Uchida M, Kephart GM, Britt R, O'Brien DR, Kita H. Early Life Represents a Vulnerable Time Window for IL-33-Induced Peripheral Lung Pathology. THE JOURNAL OF IMMUNOLOGY 2019; 203:1952-1960. [PMID: 31471525 DOI: 10.4049/jimmunol.1900454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
IL-33, an IL-1 family cytokine, is constitutively expressed in mucosal tissues and other organs in healthy humans and animals, and expression levels increase in inflammatory conditions. Although IL-33-mediated promotion of type 2 immune responses has been well established, a gap in our knowledge regarding the functional diversity of this pleiotropic cytokine remains. To address this gap, we developed a new IL-33 transgenic mouse model in which overexpression of full-length IL-33 is induced in lung epithelial cells under conditional control. In adult mice, an ∼3-fold increase in the steady-state IL-33 levels produced no pathologic effects in the lungs. When exposed to airborne allergens, adult transgenic mice released more IL-33 extracellularly and exhibited robust type 2 immune responses. In neonatal transgenic mice, up to postnatal day 14, a similar increase in steady-state IL-33 levels resulted in increased mortality, enlarged alveolar spaces resembling bronchopulmonary dysplasia, and altered expression of genes associated with tissue morphogenesis. Processed 25-kDa IL-33 protein was detected in bronchoalveolar lavage fluids without any exogenous stimuli, and pathologic changes were abolished in mice deficient in the IL-33 receptor ST2. These findings suggest that adult lungs are relatively resistant to IL-33 overexpression unless they encounter environmental insults, whereas developing lungs are highly susceptible, with IL-33 overexpression resulting in detrimental and pathologic outcomes.
Collapse
Affiliation(s)
- Li Y Drake
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Diane Squillace
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Koji Iijima
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Takao Kobayashi
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Masaru Uchida
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Gail M Kephart
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Rodney Britt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
31
|
Liu T, Gonzalez De Los Santos F, Zhao Y, Wu Z, Rinke AE, Kim KK, Phan SH. Telomerase reverse transcriptase ameliorates lung fibrosis by protecting alveolar epithelial cells against senescence. J Biol Chem 2019; 294:8861-8871. [PMID: 31000627 DOI: 10.1074/jbc.ra118.006615] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC-Tert cKO) mice by crossing floxed Tert mice with inducible SPC-driven Cre mice. SPC-Tert cKO mice did not develop pulmonary fibrosis spontaneously up to 9 months of TERT deficiency. However, upon bleomycin treatment, they exhibited enhanced lung injury, inflammation, and fibrosis compared with control mice, accompanied by increased pro-fibrogenic cytokine expression but without a significant effect on AECII telomere length. Moreover, selective TERT deficiency in AECII diminished their proliferation and induced cellular senescence. These findings suggest that AECII-specific TERT deficiency enhances pulmonary fibrosis by heightening susceptibility to bleomycin-induced epithelial injury and diminishing epithelial regenerative capacity because of increased cellular senescence. We confirmed evidence for increased AECII senescence in idiopathic pulmonary fibrosis lungs, suggesting potential clinical relevance of the findings from our animal model. Our results suggest that TERT has a protective role in AECII, unlike its pro-fibrotic activity, observed previously in fibroblasts, indicating that TERT's role in pulmonary fibrosis is cell type-specific.
Collapse
Affiliation(s)
| | | | | | - Zhe Wu
- From the Departments of Pathology and
| | | | - Kevin K Kim
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | |
Collapse
|
32
|
Guo J, Hardie WD, Cleveland ZI, Davidson C, Xu X, Madala SK, Woods JC. Longitudinal free-breathing MRI measurement of murine lung physiology in a progressive model of lung fibrosis. J Appl Physiol (1985) 2019; 126:1138-1149. [PMID: 30730810 DOI: 10.1152/japplphysiol.00993.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To longitudinally monitor progressive fibrosis in the transforming growth factor-α (TGF-α) transgenic mouse model of lung fibrosis, we used retrospective self-gating ultrashort echo time (UTE) magnetic resonance imaging (MRI) to image mouse lung at baseline and after 4 and 8 wk of fibrosis initiation via doxycycline administration. Only bitransgenic mice were used in this study and divided into two cohorts: six mice were fed doxycycline food to induce lung fibrosis (referred to as Dox cohort), and five other mice were fed normal food (referred to as control cohort). Lung mechanics, histology, and hydroxyproline were assessed after the final MRI. A linear mixed-effects model was used to analyze MRI-derived longitudinal lung-function parameters. Tidal volume decreased at a rate of -0.016 ± 0.002 ml/week [χ2(1) = 16.48, P < 0.001] for Dox cohort and increased at a rate of 0.010 ± 0.003 ml/week [χ2(1) = 6.37, P = 0.01] for control cohort. Minute ventilation decreased at a rate of -1.71 ± 0.26 ml·min-1·wk-1 [χ2(1) = 14.04, P < 0.001] for Dox cohort but did not change significantly over time for control cohort. High-density lung volume percentage increased at a rate of 3.9 ± 0.7%/wk for Dox cohort [χ2(1) = 11.47, P < 0.001] but did not change significantly over time for control cohort. MRI-derived lung structure and function parameters were strongly correlated with pleural thickness, hydroxyproline content, lung compliance, airway resistance, and airway elastance. We conclude that self-gating UTE MRI could be used to longitudinally monitor lung fibrosis in the TGF-α transgenic mouse model. NEW & NOTEWORTHY Self-gating UTE MRI was used to monitor morphology and physiology in lung fibrosis in a transforming growth factor-α transgenic mouse model. Tidal volume was shown for the first time to correlate strongly with conventional metrics of fibrosis such as hydroxyproline and pleural thickness.
Collapse
Affiliation(s)
- Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Xuefeng Xu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri.,Department of Physics, University of Cincinnati , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
33
|
Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, Zhang J, Soo RA, Bhakoo K, Chin TM, Tenen DG. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med 2019; 10:emmm.201708313. [PMID: 29449326 PMCID: PMC5840543 DOI: 10.15252/emmm.201708313] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI-resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA-approved anti-obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI-resistant EGFR mutant NSCLC patients.
Collapse
Affiliation(s)
- Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Elena Levantini
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, USA.,Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Jun Ting Teo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Julian Goggi
- Singapore Bioimaging Consortium (A*STAR), Singapore City, Singapore
| | | | - Chan Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | | | | | - Junyan Zhang
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ross A Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore City, Singapore
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium (A*STAR), Singapore City, Singapore
| | - Tan Min Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore .,Raffles Cancer Centre, Raffles Hospital, Singapore City, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore .,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Macheleidt IF, Dalvi PS, Lim SY, Meemboor S, Meder L, Käsgen O, Müller M, Kleemann K, Wang L, Nürnberg P, Rüsseler V, Schäfer SC, Mahabir E, Büttner R, Odenthal M. Preclinical studies reveal that LSD1 inhibition results in tumor growth arrest in lung adenocarcinoma independently of driver mutations. Mol Oncol 2018; 12:1965-1979. [PMID: 30220105 PMCID: PMC6210049 DOI: 10.1002/1878-0261.12382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer. Despite the development of novel targeted and immune therapies, the 5-year survival rate is still only 21%, indicating the need for more efficient treatment regimens. Lysine-specific demethylase 1 (LSD1) is an epigenetic eraser that modifies histone 3 methylation status, and is highly overexpressed in LUAD. Using representative human cell culture systems and two autochthonous transgenic mouse models, we investigated inhibition of LSD1 as a novel therapeutic option for treating LUAD. The reversible LSD1 inhibitor HCI-2509 significantly reduced cell growth with an IC50 of 0.3-5 μmin vitro, which was linked to an enhancement of histone 3 lysine methylation. Most importantly, growth arrest, as well as inhibition of the invasion capacities, was independent of the underlying driver mutations. Subsequent expression profiling revealed that the cell cycle and replication machinery were prominently affected after LSD1 inhibition. In addition, our data provide evidence that LSD1 blockade significantly interferes with EGFR downstream signaling. Finally, our in vitro results were confirmed by preclinical therapeutic approaches, including the use of two autochthonous transgenic LUAD mouse models driven by either EGFR or KRAS mutations. Importantly, LSD1 inhibition resulted in significantly lower tumor formation and a strong reduction in tumor progression, which were independent of the underlying mutational background of the mouse models. Hence, our findings provide substantial evidence indicating that tumor growth of LUAD can be markedly decreased by HCI-2509 treatment, suggesting its use as a single agent maintenance therapy or combined therapeutical application in novel concerted drug approaches.
Collapse
Affiliation(s)
- Iris F Macheleidt
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Priya S Dalvi
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - So-Young Lim
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Sonja Meemboor
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Lydia Meder
- Center for Molecular Medicine, University of Cologne, Germany.,Department I of Internal Medicine, University Hospital of Cologne, Germany
| | - Olivia Käsgen
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Marion Müller
- Institute for Pathology, University Hospital of Cologne, Germany
| | - Karolin Kleemann
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Lingyu Wang
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Germany
| | - Vanessa Rüsseler
- Institute for Pathology, University Hospital of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany
| | - Stephan C Schäfer
- Institute for Pathology, University Hospital of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany.,Center for Integrative Oncology, University Clinic of Cologne and Bonn, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, University of Cologne, Germany
| | - Reinhard Büttner
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany.,Center for Integrative Oncology, University Clinic of Cologne and Bonn, Germany
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany
| |
Collapse
|
35
|
Csányi A, Hajagos-Tóth J, Kothencz A, Gaspar R, Ducza E. Effects of different antibiotics on the uterine contraction and the expression of aquaporin 5 in term pregnant rat. Reprod Toxicol 2018; 81:64-70. [DOI: 10.1016/j.reprotox.2018.07.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
|
36
|
Akbay EA, Kim J. Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl Lung Cancer Res 2018; 7:464-486. [PMID: 30225211 DOI: 10.21037/tlcr.2018.06.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer accounts for the greatest number of cancer deaths in the world. Tobacco smoke-associated cancers constitute the majority of lung cancer cases but never-smoker cancers comprise a significant and increasing fraction of cases. Recent genomic and transcriptomic sequencing efforts of lung cancers have revealed distinct sets of genetic aberrations of smoker and never-smoker lung cancers that implicate disparate biology and therapeutic strategies. Autochthonous mouse models have contributed greatly to our understanding of lung cancer biology and identified novel therapeutic targets and strategies in the era of targeted therapy. With the emergence of immuno-oncology, mouse models may continue to serve as valuable platforms for novel biological insights and therapeutic strategies. Here, we will review the variety of available autochthonous mouse models of lung cancer, their relation to human smoker and never-smoker lung cancers, and their application to immuno-oncology and immune checkpoint blockade that is revolutionizing lung cancer therapy.
Collapse
Affiliation(s)
- Esra A Akbay
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75208, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA
| | - James Kim
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA.,Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX 75208, USA
| |
Collapse
|
37
|
Li Q, Jiao J, Li H, Wan H, Zheng C, Cai J, Bao S. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. J Cell Sci 2018; 131:jcs.217406. [PMID: 29950483 DOI: 10.1242/jcs.217406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
Branching morphogenesis is essential for the successful development of a functional lung to accomplish its gas exchange function. Although many studies have highlighted requirements for the bone morphogenetic protein (BMP) signaling pathway during branching morphogenesis, little is known about how BMP signaling is regulated. Here, we report that the protein arginine methyltransferase 5 (Prmt5) and symmetric dimethylation at histone H4 arginine 3 (H4R3sme2) directly associate with chromatin of Bmp4 to suppress its transcription. Inactivation of Prmt5 in the lung epithelium results in halted branching morphogenesis, altered epithelial cell differentiation and neonatal lethality. These defects are accompanied by increased apoptosis and reduced proliferation of lung epithelium, as a consequence of elevated canonical BMP-Smad1/5/9 signaling. Inhibition of BMP signaling by Noggin rescues the lung branching defects of Prmt5 mutant in vitro Taken together, our results identify a novel mechanism through which Prmt5-mediated histone arginine methylation represses canonical BMP signaling to regulate lung branching morphogenesis.
Collapse
Affiliation(s)
- Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Institute of Women and Children's Health, and Department of Pediatrics, Huaxi Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China .,School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
38
|
Chen M, Zhou H, Xu Y, Qiu L, Hu Z, Qin X, Chen S, Zhang Y, Cao Q, Abu-Amer Y, Ying Z. From the Cover: Lung-Specific Overexpression of Constitutively Active IKK2 Induces Pulmonary and Systemic Inflammations but Not Hypothalamic Inflammation and Glucose Intolerance. Toxicol Sci 2018; 160:4-14. [PMID: 29036520 DOI: 10.1093/toxsci/kfx154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lung is constantly exposed to ambient pollutants such as ambient fine particulate matter (PM2.5), making it one of the most frequent locations of inflammation in the body. Given the establishment of crucial role of inflammation in the pathogenesis of cardiometabolic diseases, pulmonary inflammation is thus widely believed to be an important risk factor for cardiometabolic diseases. However, the causality between them has not yet been well established. To determine if pulmonary inflammation is sufficient to cause adverse cardiometabolic effects, SFTPC-rtTA+/-tetO-cre+/-pROSA-inhibitor κB kinase 2(IKK2)ca+/- (LungIKK2ca) and littermate SFTPC-rtTA+/-tetO-cre-/-pROSA-IKK2ca+/- wildtype (WT) mice were fed with doxycycline diet to induce constitutively active Ikk2 (Ikk2ca) overexpression in the lung and their pulmonary, systemic, adipose, and hypothalamic inflammations, vascular function, and glucose homeostasis were assessed. Feeding with doxycycline diet resulted in IKK2ca overexpression in the lungs of LungIKK2ca but not WT mice. This induction of IKK2ca was accompanied by marked pulmonary inflammation as evidenced by significant increases in bronchoalveolar lavage fluid leukocytes, pulmonary macrophage infiltration, and pulmonary mRNA expression of tumor necrosis factor α (Tnfα) and interleukin-6 (Il-6). This pulmonary inflammation due to lung-specific overexpression of IKK2ca was sufficient to increase circulating TNFα and IL-6 levels, adipose expression of Tnfα and Il-6 mRNA, aortic endothelial dysfunction, and systemic insulin resistance. Unexpectedly, no significant alteration in hypothalamic expression of Tnfα and Il-6 mRNA and glucose intolerance were observed in these mice. Pulmonary inflammation is sufficient to induce systemic inflammation, endothelial dysfunction, and insulin resistance, but not hypothalamic inflammation and glucose intolerance.
Collapse
Affiliation(s)
- Minjie Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huifen Zhou
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Pathology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lianglin Qiu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziying Hu
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Xiaobo Qin
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sufang Chen
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yousef Abu-Amer
- Orthopedics and Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri63110
| | - Zhekang Ying
- Cardiology Division, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201.,Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
39
|
Wang X, Wan H, Yang S, Zhou R, Liao Y, Wang F, Chen X, Wu Z. Elevated Krüppel-like factor 5 expression in spatiotemporal mouse lungs is similar to human congenital cystic adenomatoid malformation of the lungs. J Int Med Res 2018; 46:2856-2865. [PMID: 29896983 PMCID: PMC6124288 DOI: 10.1177/0300060518774998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective The study aimed to investigate the role of high Krüppel-like factor 5 (KLF5) expression on the pathogenesis of congenital cystic adenomatoid malformation of the lungs (CCAML) in mice. Methods A mouse model of high KLF5 expression in the lungs was established. KLF5 expression and the pulmonary lumen diameter were examined by immunohistochemistry to determine a successful model. Basement membrane damage and activity of matrix metalloproteinase-9 (MMP-9) were examined. After an adenovirus carrying KLF5 gene transfection in lung adenocarcinoma (H441) was created, changes in expression and activity of MMP-9 were determined. Results In a mouse model with high KLF5 expression, the pulmonary lumen was markedly enlarged, indicating establishment of CCAML. The basement membrane was degraded, and MMP-9 activity was significantly higher in the model group compared with the control group. Moreover, mice in a cellular model after transfection also showed higher MMP-9 activity than did controls. Conclusion High KLF5 expression may play a pivotal role in the pathogenesis of CCAML, partly through regulating the activity of MMP-9.
Collapse
Affiliation(s)
- Xueyan Wang
- 1 Department of Prenatal Diagnosis, Women and Children's Hospital of Sichuan Province, Chengdu, China
| | - Huajing Wan
- 2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuo Yang
- 2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- 3 Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Liao
- 2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Wang
- 2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ximin Chen
- 1 Department of Prenatal Diagnosis, Women and Children's Hospital of Sichuan Province, Chengdu, China
| | - Zhiling Wu
- 1 Department of Prenatal Diagnosis, Women and Children's Hospital of Sichuan Province, Chengdu, China
| |
Collapse
|
40
|
Peng D, Si D, Zhang R, Liu J, Gou H, Xia Y, Tian D, Dai J, Yang K, Liu E, Shi Y, Lu QR, Zou L, Fu Z. Deletion of SMARCA4 impairs alveolar epithelial type II cells proliferation and aggravates pulmonary fibrosis in mice. Genes Dis 2017; 4:204-214. [PMID: 30258924 PMCID: PMC6147121 DOI: 10.1016/j.gendis.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
Alveolar epithelial cells (AECs) injury and failed reconstitution of the AECs barrier are both integral to alveolar flooding and subsequent pulmonary fibrosis (PF). Nevertheless, the exact mechanisms regulating the regeneration of AECs post-injury still remain unclear. SMARCA4 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF, which is essential for kidney and heart fibrosis. We investigates SMARCA4 function in lung fibrosis by establishing PF mice model with bleomycin firstly and found that the expression of SMARCA4 was mainly enhanced in alveolar type II (ATII) cells. Moreover, we established an alveolar epithelium-specific SMARCA4-deleted SP-C-rtTA/(tetO) 7 -Cre/SMARCA4 f/f mice (SOSM4 Δ/Δ ) model, as well as a new SMARCA4-deleted alveolar type II (ATII)-like mle-12 cell line. We found that the bleomycin-induced PF was more aggressive in SOSM4 Δ/Δ mice. Also, the proliferation of ATII cells was decreased with the loss of SMARCA4 in vivo and in vitro. In addition, we observed increased proliferation of ATII cells accompanied by abnormally high expression of SMARCA4 in human PF lung sections. These data uncovered the indispensable role of SMARCA4 in the proliferation of ATII cells, which might affect the progression of PF.
Collapse
Affiliation(s)
- Danyi Peng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Daozhu Si
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Rong Zhang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Jiang Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Hao Gou
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Yunqiu Xia
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Daiyin Tian
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jihong Dai
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Engineering Research Centre of Stem Cell Therapy, Chongqing 400014, China
| | - Enmei Liu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Q. Richard Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Zou
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Centre for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Engineering Research Centre of Stem Cell Therapy, Chongqing 400014, China
| | - Zhou Fu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Engineering Research Centre of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
41
|
Sinha M, Lowell CA. Efficiency and Specificity of Gene Deletion in Lung Epithelial Doxycycline-Inducible Cre Mice. Am J Respir Cell Mol Biol 2017; 57:248-257. [PMID: 28287822 DOI: 10.1165/rcmb.2016-0208oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transgenic mouse strains surfactant protein C-reverse tetracycline transactivator (SP-C-rtTA), club cell secretory protein (CCSP)-rtTA, and tetracycline operator (TetO)-Cre have been invaluable for spatiotemporally regulating gene deletion in the pulmonary epithelium. In this study, we measured the efficiency and specificity of gene deletion that can be achieved in these mice using the Rosa26-eYFP reporter. Triple-transgenic mice (tTg or rtTA/TetO-Cre/Rosa-eYFP) were bred and treated with various doxycycline (dox) regimens to induce gene deletion, which was then quantified in various cell populations by flow cytometry. In these crosses, we found that the TetO-Cre transgene must be transmitted through the female parent to avoid germline gene deletion. With dox exposure during lung development, SP-C-tTg mice deleted in ∼65-75% of alveolar epithelial type II (ATII) cells, but in only ∼45-50% of the integrin β4+ population, which consisted of club cells and distal lung progenitor cells. In contrast, CCSP-tTg mice deleted in ∼50% of ATII cells and ∼80% of integrin β4+ cells. Upon dox treatment of adults, deletion in ATII cells and integrin β4+ cells in SP-C-tTg mice dropped significantly to ∼20% and ∼6%, respectively, whereas CCSP-tTg mice deleted in ∼57% of ATII and ∼40% of integrin β4+ cells. Interestingly, untreated CCSP-tTg mice also deleted in ∼40% of integrin β4+ cells, indicating significant leakiness of CCSP-tTg in β4+ cells. In all mouse groups, minimal deletion occurred in mouse tracheal epithelial cells or in mesenchymal or hematopoietic cells. These data provide the first quantitative, side-by-side comparison of the deletion efficiency for these widely used transgenic mouse strains.
Collapse
Affiliation(s)
- Meenal Sinha
- Department of Laboratory Medicine and Program in Immunology, University of California, San Francisco, California
| | - Clifford A Lowell
- Department of Laboratory Medicine and Program in Immunology, University of California, San Francisco, California
| |
Collapse
|
42
|
Cleveland ZI, Zhou YM, Akinyi TG, Dunn RS, Davidson CR, Guo J, Woods JC, Hardie WD. Magnetic resonance imaging of disease progression and resolution in a transgenic mouse model of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2017; 312:L488-L499. [PMID: 28130263 PMCID: PMC5407091 DOI: 10.1152/ajplung.00458.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 01/17/2023] Open
Abstract
Pulmonary fibrosis contributes to morbidity and mortality in a range of diseases, and there are no approved therapies for reversing its progression. To understand the mechanisms underlying pulmonary fibrosis and assess potential therapies, mouse models are central to basic and translational research. Unfortunately, metrics commonly used to assess murine pulmonary fibrosis require animals to be grouped and euthanized, increasing experimental difficulty and cost. We examined the ability of magnetic resonance imaging (MRI) to noninvasively assess lung fibrosis progression and resolution in a doxycycline (Dox) regulatable, transgenic mouse model that overexpresses transforming growth factor-α (TGF-α) under control of a lung-epithelial-specific promoter. During 7 wk of Dox treatment, fibrotic lesions were readily observed as high-signal tissue. Mean weighted signal and percent signal volume were found to be the most robust MRI-derived measures of fibrosis, and these metrics correlated significantly with pleural thickness, histology scores, and hydroxyproline content (R = 0.75-0.89). When applied longitudinally, percent high signal volume increased by 1.5% wk-1 (P < 0.001) and mean weighted signal increased at a rate of 0.0065 wk-1 (P = 0.0062). Following Dox treatment, lesions partially resolved, with percent high signal volume decreasing by -3.2% wk-1 (P = 0.0034) and weighted mean signal decreasing at -0.015 wk-1 (P = 0.0028). Additionally, longitudinal MRI revealed dynamic remodeling in a subset of lesions, a previously unobserved behavior in this model. These results demonstrate MRI can noninvasively assess experimental lung fibrosis progression and resolution and provide unique insights into its pathobiology.
Collapse
Affiliation(s)
- Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yu M Zhou
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Teckla G Akinyi
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - R Scott Dunn
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cynthia R Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Physics, Washington University, St. Louis, Missouri
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Physics, Washington University, St. Louis, Missouri
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
43
|
Kotnala S, Baghel S, Verma D, Tyagi A, Muyal JP. Recombinant human keratinocyte growth factor attenuates apoptosis in elastase induced emphysematous mice lungs. Inhal Toxicol 2017; 29:23-31. [DOI: 10.1080/08958378.2016.1272653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sudhir Kotnala
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sumit Baghel
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Deepali Verma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Amit Tyagi
- Nuclear Medicine Department, Institute of Nuclear Medicine & Allied sciences, Defence Research Development Organization, New Delhi, India
| | - Jai Prakash Muyal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
44
|
Nakamura Y, Ohler ZW, Householder D, Nagaya T, Sato K, Okuyama S, Ogata F, Daar D, Hoa T, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung Cancer. Mol Cancer Ther 2016; 16:408-414. [PMID: 28151706 DOI: 10.1158/1535-7163.mct-16-0663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/20/2023]
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by a sensitive photoabsorber following exposure to NIR light. Most studies of NIR-PIT have been performed in xenograft models of cancer. The purpose of this study was to evaluate the therapeutic effects of NIR-PIT in a transgenic model of spontaneous lung cancer expressing human EGFR (hEGFR-TL). Mice were separated into 3 groups for the following treatments: (1) no treatment (control); (2) 150 μg of photoabsorber, IR700, conjugated to panitumumab, an antibody targeting EGFR [antibody-photoabsorber conjugate (APC)] intravenously (i.v.) only; (3) 150 μg of APC i.v. with NIR light administration. Each treatment was performed every week up to three weeks. MRI was performed 1 day before and 3, 6, 13, 20, 27, and 34 days after first NIR-PIT. The relative volume of lung tumors was calculated from the tumor volume at each MRI time point divided by the initial volume. Steel test for multiple comparisons was used to compare the tumor volume ratio with that of control. Tumor volume ratio was inhibited significantly in the NIR-PIT group compared with control group (P < 0.01 at all time points). In conclusion, NIR-PIT effectively treated a spontaneous lung cancer in a hEGFR-TL transgenic mouse model. MRI successfully monitored the therapeutic effects of NIR-PIT. Mol Cancer Ther; 16(2); 408-14. ©2016 AACR.
Collapse
Affiliation(s)
- Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Deborah Householder
- Center for Advanced Preclinical Research, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Dagane Daar
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tieu Hoa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
45
|
Busch SE, Hanke ML, Kargl J, Metz HE, MacPherson D, Houghton AM. Lung Cancer Subtypes Generate Unique Immune Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:4493-4503. [PMID: 27799309 DOI: 10.4049/jimmunol.1600576] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/03/2016] [Indexed: 12/30/2022]
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is a heterogeneous disease comprising multiple histologic subtypes that harbor disparate mutational profiles. Immune-based therapies have shown initial promise in the treatment of lung cancer patients but are limited by low overall response rates. We sought to determine whether the host immune response to lung cancer is dictated, at least in part, by histologic and genetic differences, because such correlations would have important clinical ramifications. Using mouse models of lung cancer, we show that small cell lung cancer (SCLC) and lung adenocarcinoma (ADCA) exhibit unique immune cell composition of the tumor microenvironment. The total leukocyte content was markedly reduced in SCLC compared with lung ADCA, which was validated in human lung cancer specimens. We further identified key differences in immune cell content using three models of lung ADCA driven by mutations in Kras, p53, and Egfr Although Egfr-mutant cancers displayed robust myeloid cell recruitment, they failed to mount a CD8+ immune response. In contrast, Kras-mutant tumors displayed significant expansion of multiple immune cell types, including CD8+ cells, regulatory T cells, IL-17A-producing lymphocytes, and myeloid cells. A human tissue microarray annotated for KRAS and EGFR mutations validated the finding of reduced CD8+ content in human lung ADCA. Taken together, these findings establish a strong foundational knowledge of the immune cell contexture of lung ADCA and SCLC and suggest that molecular and histological traits shape the host immune response to cancer.
Collapse
Affiliation(s)
- Stephanie E Busch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Mark L Hanke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Julia Kargl
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Institute of Experimental and Clinical Pharmacology, Medical University of Graz, A-8010 Graz, Austria
| | - Heather E Metz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - David MacPherson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - A McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and.,Division of Pulmonary and Critical Care, University of Washington, Seattle, WA 98109
| |
Collapse
|
46
|
Huang Q, Schneeberger VE, Luetteke N, Jin C, Afzal R, Budzevich MM, Makanji RJ, Martinez GV, Shen T, Zhao L, Fung KM, Haura EB, Coppola D, Wu J. Preclinical Modeling of KIF5B-RET Fusion Lung Adenocarcinoma. Mol Cancer Ther 2016; 15:2521-2529. [PMID: 27496134 DOI: 10.1158/1535-7163.mct-16-0258] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
RET fusions have been found in lung adenocarcinoma, of which KIF5B-RET is the most prevalent. We established inducible KIF5B-RET transgenic mice and KIF5B-RET-dependent cell lines for preclinical modeling of KIF5B-RET-associated lung adenocarcinoma. Doxycycline-induced CCSP-rtTA/tetO-KIF5B-RET transgenic mice developed invasive lung adenocarcinoma with desmoplastic reaction. Tumors regressed upon suppression of KIF5B-RET expression. By culturing KIF5B-RET-dependent BaF3 (B/KR) cells with increasing concentrations of cabozantinib or vandetanib, we identified cabozantinib-resistant RETV804L mutation and vandetanib-resistant-RETG810A mutation. Among cabozantinib, lenvatinib, ponatinib, and vandetanib, ponatinib was identified as the most potent inhibitor against KIF5B-RET and its drug-resistant mutants. Interestingly, the vandetanib-resistant KIF5B-RETG810A mutant displayed gain-of-sensitivity (GOS) to ponatinib and lenvatinib. Treatment of doxycycline-induced CCSP-rtTA/tetO-KIF5B-RET bitransgenic mice with ponatinib effectively induced tumor regression. These results indicate that KIF5B-RET-associated lung tumors are addicted to the fusion oncogene and ponatinib is the most effective inhibitor for targeting KIF5B-RET in lung adenocarcinoma. Moreover, this study finds a novel vandetanib-resistant RETG810A mutation and identifies lenvatinib and ponatinib as the secondary drugs to overcome this vandetanib resistance mechanism. Mol Cancer Ther; 15(10); 2521-9. ©2016 AACR.
Collapse
Affiliation(s)
- Qingling Huang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Valentina E Schneeberger
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Noreen Luetteke
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, Georgia
| | - Roha Afzal
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mikalai M Budzevich
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rikesh J Makanji
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gary V Martinez
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lichao Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Oncology Sciences, University of South Florida College of Medicine, Tampa, Florida
| | - Domenico Coppola
- Department of Oncology Sciences, University of South Florida College of Medicine, Tampa, Florida. Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Oncology Sciences, University of South Florida College of Medicine, Tampa, Florida.
| |
Collapse
|
47
|
Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas. Sci Rep 2016; 6:29963. [PMID: 27444145 PMCID: PMC4995607 DOI: 10.1038/srep29963] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/28/2016] [Indexed: 12/27/2022] Open
Abstract
Sheep has successfully adapted to the extreme high-altitude Himalayan region. To identify genes underlying such adaptation, we genotyped genome-wide single nucleotide polymorphisms (SNPs) of four major sheep breeds living at different altitudes in Nepal and downloaded SNP array data from additional Asian and Middle East breeds. Using a di value-based genomic comparison between four high-altitude and eight lowland Asian breeds, we discovered the most differentiated variants at the locus of FGF-7 (Keratinocyte growth factor-7), which was previously reported as a good protective candidate for pulmonary injuries. We further found a SNP upstream of FGF-7 that appears to contribute to the divergence signature. First, the SNP occurred at an extremely conserved site. Second, the SNP showed an increasing allele frequency with the elevated altitude in Nepalese sheep. Third, the electrophoretic mobility shift assays (EMSA) analysis using human lung cancer cells revealed the allele-specific DNA-protein interactions. We thus hypothesized that FGF-7 gene potentially enhances lung function by regulating its expression level in high-altitude sheep through altering its binding of specific transcription factors. Especially, FGF-7 gene was not implicated in previous studies of other high-altitude species, suggesting a potential novel adaptive mechanism to high altitude in sheep at the Himalayas.
Collapse
|
48
|
Zhao T, Ding X, Du H, Yan C. Lung Epithelial Cell-Specific Expression of Human Lysosomal Acid Lipase Ameliorates Lung Inflammation and Tumor Metastasis in Lipa(-/-) Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2183-2192. [PMID: 27461363 DOI: 10.1016/j.ajpath.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/13/2016] [Indexed: 02/04/2023]
Abstract
Lysosomal acid lipase (LAL), a key enzyme in the metabolic pathway of neutral lipids, has a close connection with inflammation and tumor progression. One major manifestation in LAL-deficient (Lipa(-/-)) mice is an increase of tumor growth and metastasis associated with expansion of myeloid-derived suppressor cells. In the lung, LAL is highly expressed in alveolar type II epithelial cells. To assess how LAL in lung epithelial cells plays a role in this inflammation-related pathogenic process, lung alveolar type II epithelial cell-specific expression of human LAL (hLAL) in Lipa(-/-) mice was established by crossbreeding of CCSP-driven rtTA transgene and (TetO)7-CMV-hLAL transgene into Lipa(-/-) mice (CCSP-Tg/KO). hLAL expression in lung epithelial cells not only reduced tumor-promoting myeloid-derived suppressor cells in the lung, but also down-regulated the synthesis and secretion of tumor-promoting cytokines and chemokines into the bronchoalveolar lavage fluid of Lipa(-/-) mice. hLAL expression reduced the immunosuppressive functions of bronchoalveolar lavage fluid cells, inhibited bone marrow cell transendothelial migration, and inhibited endothelial cell proliferation and migration in Lipa(-/-) mice. As a result, hLAL expression in CCSP-Tg/KO mice corrected pulmonary damage, and inhibited tumor cell proliferation and migration in vitro, and tumor metastasis to the lung in vivo. These results support a concept that LAL is a critical metabolic enzyme in lung epithelial cells that regulates lung homeostasis, immune response, and tumor metastasis.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xinchun Ding
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
49
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
50
|
Yin Y, Ren X, Smith C, Guo Q, Malabunga M, Guernah I, Zhang Y, Shen J, Sun H, Chehab N, Loizos N, Ludwig DL, Ornitz DM. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody. Dis Model Mech 2016; 9:563-71. [PMID: 27056048 PMCID: PMC4892666 DOI: 10.1242/dmm.024760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022] Open
Abstract
Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. Summary: This study validates the FGF9 lung adenocarcinoma mouse model as a tool to screen and evaluate potential therapeutics that are designed to inhibit FGF9 or its target receptor, FGFR3.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Xiaodi Ren
- Department of Quantitative Biology, Eli Lilly and Company, New York, NY 10016, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qianxu Guo
- Department of Cancer Angiogenesis, Eli Lilly and Company, New York, NY 10016, USA
| | - Maria Malabunga
- Department of Immunology, Eli Lilly and Company, New York, NY 10016, USA
| | - Ilhem Guernah
- Department of Immunology, Eli Lilly and Company, New York, NY 10016, USA
| | - Yiwei Zhang
- Department of Antibody Technology, Eli Lilly and Company, New York, NY 10016, USA
| | - Juqun Shen
- Department of Antibody Technology, Eli Lilly and Company, New York, NY 10016, USA
| | - Haijun Sun
- Department of Bioprocess Sciences, Eli Lilly and Company, New York, NY 10016, USA
| | - Nabil Chehab
- Department of Immunology, Eli Lilly and Company, New York, NY 10016, USA
| | - Nick Loizos
- Department of Immunology, Eli Lilly and Company, New York, NY 10016, USA
| | - Dale L Ludwig
- Department of Bioprocess Sciences, Eli Lilly and Company, New York, NY 10016, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|