1
|
Dwyer MB, Luo J, Todd TD, Blumer KJ, Tall GG, Wedegaertner PB. The guanine nucleotide exchange factor Ric-8A regulates the sensitivity of constitutively active Gαq to the inhibitor YM-254890. J Biol Chem 2025; 301:108426. [PMID: 40118458 PMCID: PMC12033907 DOI: 10.1016/j.jbc.2025.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025] Open
Abstract
Heterotrimeric G proteins are stimulated under normal circumstances by G protein-coupled receptors to promote downstream intracellular signaling. Mutations can occur in αq at glutamine 209 (Q209) that cause constitutive, G protein-coupled receptor independent signaling due to disruption of GTPase activity. Specifically, Q209L/P mutations are oncogenic drivers of uveal melanoma. YM-254890 (YM) has been shown to selectively inhibit both WT and constitutively active (CA) αqQ209L/P by preventing the release of GDP and exchange for GTP, thereby halting downstream signaling. Because αqQL/P are thought to be primarily GTP-bound and GTPase deficient, the current mechanistic understanding of YM inhibition needs further investigation to clarify how a GDP-dissociation inhibitor could potently inhibit these oncogenic mutants. Here, we expand on the current knowledge of CA αq cellular regulation by demonstrating a direct role for the αq chaperone and guanine nucleotide exchange factor Ric-8A in YM sensitivity. Through signaling assays in RIC-8A KO cells, we found that myristoylated αqQL/P mutants (αqAG-QL/P), previously demonstrated to be YM-resistant, became YM-sensitive, and this was reversed by reintroduction of Ric-8A. Additionally, αqQL demonstrated increased YM sensitivity in the absence of Ric-8A, which was directly altered by the reintroduction of Ric-8A. Pull-down and BRET assays with the RGS-homology domain of GRK2, which can only bind activated αq, further demonstrated that Ric-8A expression enhances activation of αq, its ability to bind effectors, and therefore its ability to signal. With the understanding of YM acting as a GDP-dissociation inhibitor, we propose that Ric-8A hinders YM inhibitory effects by promoting GTP-bound, activated αqQL/P.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jiansong Luo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tyson D Todd
- Department of Cell Biology and Physiology, Washington University, Saint Louis, Missouri, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University, Saint Louis, Missouri, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Jang W, Senarath K, Feinberg G, Lu S, Lambert NA. Visualization of endogenous G proteins on endosomes and other organelles. eLife 2024; 13:RP97033. [PMID: 39514269 PMCID: PMC11548881 DOI: 10.7554/elife.97033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Classical G-protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap, we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20-30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial-trans Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.
Collapse
Affiliation(s)
- Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Kanishka Senarath
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Gavin Feinberg
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Sumin Lu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| |
Collapse
|
3
|
Jang W, Senarath K, Feinberg G, Lu S, Lambert NA. Visualization of endogenous G proteins on endosomes and other organelles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583500. [PMID: 38496652 PMCID: PMC10942389 DOI: 10.1101/2024.03.05.583500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Classical G protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20-30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.
Collapse
|
4
|
Papasergi-Scott MM, Kwarcinski FE, Yu M, Panova O, Ovrutsky AM, Skiniotis G, Tall GG. Structures of Ric-8B in complex with Gα protein folding clients reveal isoform specificity mechanisms. Structure 2023; 31:553-564.e7. [PMID: 36931277 PMCID: PMC10164081 DOI: 10.1016/j.str.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank E Kwarcinski
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann M Ovrutsky
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Aumiller JL, Wedegaertner PB. Disruption of the interaction between mutationally activated Gα q and Gβγ attenuates aberrant signaling. J Biol Chem 2023; 299:102880. [PMID: 36626984 PMCID: PMC9926304 DOI: 10.1016/j.jbc.2023.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Heterotrimeric G protein stimulation via G protein-coupled receptors promotes downstream proliferative signaling. Mutations can occur in Gα proteins which prevent GTP hydrolysis; this allows the G proteins to signal independently of G protein-coupled receptors and can result in various cancers, such as uveal melanoma (UM). Most UM cases harbor Q209L, Q209P, or R183C mutations in Gαq/11 proteins, rendering the proteins constitutively active (CA). Although it is generally thought that active, GTP-bound Gα subunits are dissociated from and signal independently of Gβγ, accumulating evidence indicates that some CA Gα mutants, such as Gαq/11, retain binding to Gβγ, and this interaction is necessary for signaling. Here, we demonstrate that disrupting the interaction between Gβγ and Gαq is sufficient to inhibit aberrant signaling driven by CA Gαq. Introduction of the I25A point mutation in the N-terminal α helical domain of CA Gαq to inhibit Gβγ binding, overexpression of the G protein Gαo to sequester Gβγ, and siRNA depletion of Gβ subunits inhibited or abolished CA Gαq signaling to the MAPK and YAP pathways. Moreover, in HEK 293 cells and in UM cell lines, we show that Gαq-Q209P and Gαq-R183C are more sensitive to the loss of Gβγ interaction than Gαq-Q209L. Our study challenges the idea that CA Gαq/11 signals independently of Gβγ and demonstrates differential sensitivity between the Gαq-Q209L, Gαq-Q209P, and Gαq-R183C mutants.
Collapse
|
6
|
Randolph CE, Dwyer MB, Aumiller JL, Dixon AJ, Inoue A, Osei-Owusu P, Wedegaertner PB. Enhanced membrane binding of oncogenic G protein αqQ209L confers resistance to inhibitor YM-254890. J Biol Chem 2022; 298:102538. [PMID: 36174676 PMCID: PMC9626947 DOI: 10.1016/j.jbc.2022.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022] Open
Abstract
Heterotrimeric G proteins couple activated G protein-coupled receptors (GPCRs) to intracellular signaling pathways. They can also function independently of GPCR activation upon acquiring mutations that prevent GTPase activity and result in constitutive signaling, as occurs with the αqQ209L mutation in uveal melanoma. YM-254890 (YM) can inhibit signaling by both GPCR-activated WT αq and GPCR-independent αqQ209L. Although YM inhibits WT αq by binding to αq-GDP and preventing GDP/GTP exchange, the mechanism of YM inhibition of cellular αqQ209L remains to be fully understood. Here, we show that YM promotes a subcellular redistribution of αqQ209L from the plasma membrane (PM) to the cytoplasm. To test if this loss of PM localization could contribute to the mechanism of inhibition of αqQ209L by YM, we developed and examined N-terminal mutants of αqQ209L, termed PM-restricted αqQ209L, in which the addition of membrane-binding motifs enhanced PM localization and prevented YM-promoted redistribution. Treatment of cells with YM failed to inhibit signaling by these PM-restricted αqQ209L. Additionally, pull-down experiments demonstrated that YM promotes similar conformational changes in both αqQ209L and PM-restricted αqQ209L, resulting in increased binding to βγ and decreased binding to regulator RGS2, and effectors p63RhoGEF-DH/PH and phospholipase C-β. GPCR-dependent signaling by PM-restricted WT αq is strongly inhibited by YM, demonstrating that resistance to YM inhibition by membrane-binding mutants is specific to constitutively active αqQ209L. Together, these results indicate that changes in membrane binding impact the ability of YM to inhibit αqQ209L and suggest that YM contributes to inhibition of αqQ209L by promoting its relocalization.
Collapse
Affiliation(s)
- Clinita E Randolph
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alethia J Dixon
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Sasai M, Ma JS, Okamoto M, Nishino K, Nagaoka H, Takashima E, Pradipta A, Lee Y, Kosako H, Suh PG, Yamamoto M. Uncovering a novel role of PLCβ4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. J Exp Med 2021; 218:212085. [PMID: 33970189 PMCID: PMC8111461 DOI: 10.1084/jem.20201763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Youngae Lee
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.,Korea Brain Research Institute, Daegu, South Korea
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Characterization of glycerophosphodiesterase 4-interacting molecules Gαq/11 and Gβ, which mediate cellular lysophospholipase D activity. Biochem J 2020; 476:3721-3736. [PMID: 31794025 DOI: 10.1042/bcj20190666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/31/2023]
Abstract
We previously purified lysophospholipase D (lysoPLD), which hydrolyzes lysophosphatidylcholine (lysoPC) to lysophosphatidic acid (LPA), from rat brain and identified the heterotrimeric G protein subunits Gαq and Gβ1 in the lysoPLD active fractions. Tag-affinity purified Gαq exhibits lysoPLD activity but a mutant that affected cellular localization or interaction with the Gβ subunit reduced lysoPLD activity. Size exclusion chromatography revealed that active lysoPLD is a much higher molecular mass complex than is heterotrimeric G protein, suggesting the presence of other components. Liquid chromatography-tandem mass spectrometry of lysoPLD purified from rat brain identified glycerophosphodiesterase 4 (GDE4), recently reported as lysoPLD, in the same fraction as G proteins. The overexpressed and tag-purified Gαq fractions, which exhibit lysoPLD activity, contained GDE4. Exogenously expressed GDE4 was co-immunoprecipitated with endogenous Gαq and Gβ and exhibited high lysoPLD activity. The results of confocal microscopy and cell fractionation experiments indicated that exogenously expressed GDE4 in cells mainly localized at the endoplasmic reticulum and partially co-localized with Gαq protein at the plasma membrane. Proteinase K protection assay results suggested that the catalytic domain of GDE4 faces the lumen/extracellular space. Mutations at the conserved amino acids in the C-terminus cytoplasmic regions amongst GDE1, 4 and 7, dramatically suppressed GDE4 enzyme activities. When both the Gαq and Gα11 genes in Neuro2A cells were disrupted using the CRISPR-Cas9 system, endogenous lysoPLD activity was partially reduced but rescued by overexpression of Gαq. These results suggest that GDE4 is a new effector of G protein signaling that produces bioactive phospholipid LPA and/or modulates membrane homeostasis.
Collapse
|
9
|
Ma S, Shen Q, Zhao LH, Mao C, Zhou XE, Shen DD, de Waal PW, Bi P, Li C, Jiang Y, Wang MW, Sexton PM, Wootten D, Melcher K, Zhang Y, Xu HE. Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Mol Cell 2020; 77:669-680.e4. [PMID: 32004470 DOI: 10.1016/j.molcel.2020.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/07/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023]
Abstract
Corticotropin-releasing factor (CRF) and the three related peptides urocortins 1-3 (UCN1-UCN3) are endocrine hormones that control the stress responses by activating CRF1R and CRF2R, two members of class B G-protein-coupled receptors (GPCRs). Here, we present two cryoelectron microscopy (cryo-EM) structures of UCN1-bound CRF1R and CRF2R with the stimulatory G protein. In both structures, UCN1 adopts a single straight helix with its N terminus dipped into the receptor transmembrane bundle. Although the peptide-binding residues in CRF1R and CRF2R are different from other members of class B GPCRs, the residues involved in receptor activation and G protein coupling are conserved. In addition, both structures reveal bound cholesterol molecules to the receptor transmembrane helices. Our structures define the basis of ligand-binding specificity in the CRF receptor-hormone system, establish a common mechanism of class B GPCR activation and G protein coupling, and provide a paradigm for studying membrane protein-lipid interactions for class B GPCRs.
Collapse
Affiliation(s)
- Shanshan Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingya Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li-Hua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Parker W de Waal
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peng Bi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chuntao Li
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052 VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052 VIC, Australia
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Mystek P, Rysiewicz B, Gregrowicz J, Dziedzicka-Wasylewska M, Polit A. Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting. Cells 2019; 8:E1246. [PMID: 31614907 PMCID: PMC6829862 DOI: 10.3390/cells8101246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Heterotrimeric G-proteins along with G-protein-coupled receptors (GPCRs) regulate many biochemical functions by relaying the information from the plasma membrane to the inside of the cell. The lipid modifications of Gα and Gγ subunits, together with the charged regions on the membrane interaction surface, provide a peculiar pattern for various heterotrimeric complexes. In a previous study, we found that Gαs and Gαi3 prefer different types of membrane-anchor and subclass-specific lipid domains. In the present report, we examine the role of distinct Gγ subunits in the membrane localization and spatiotemporal dynamics of Gαs and Gαi3 heterotrimers. We characterized lateral diffusion and G-protein subunit interactions in living cells using fluorescence recovery after photobleaching (FRAP) microscopy and fluorescence resonance energy transfer (FRET) detected by fluorescence lifetime imaging microscopy (FLIM), respectively. The interaction of Gγ subunits with specific lipids was confirmed, and thus the modulation of heterotrimeric G-protein localization. However, the Gα subunit also modulates trimer localization, and so the membrane distribution of heterotrimeric G-proteins is not dependent on Gγ only.
Collapse
Affiliation(s)
- Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jan Gregrowicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
11
|
Garcia De Las Bayonas A, Philippe JM, Lellouch AC, Lecuit T. Distinct RhoGEFs Activate Apical and Junctional Contractility under Control of G Proteins during Epithelial Morphogenesis. Curr Biol 2019; 29:3370-3385.e7. [PMID: 31522942 PMCID: PMC6839405 DOI: 10.1016/j.cub.2019.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023]
Abstract
Small RhoGTPases direct cell shape changes and movements during tissue morphogenesis. Their activities are tightly regulated in space and time to specify the desired pattern of actomyosin contractility that supports tissue morphogenesis. This is expected to stem from polarized surface stimuli and from polarized signaling processing inside cells. We examined this general problem in the context of cell intercalation that drives extension of the Drosophila ectoderm. In the ectoderm, G protein-coupled receptors (GPCRs) and their downstream heterotrimeric G proteins (Gα and Gβγ) activate Rho1 both medial-apically, where it exhibits pulsed dynamics, and at junctions, where its activity is planar polarized. However, the mechanisms responsible for polarizing Rho1 activity are unclear. We report that distinct guanine exchange factors (GEFs) activate Rho1 in these two cellular compartments. RhoGEF2 acts uniquely to activate medial-apical Rho1 but is recruited both medial-apically and at junctions by Gα12/13-GTP, also called Concertina (Cta) in Drosophila. On the other hand, Dp114RhoGEF (Dp114), a newly characterized RhoGEF, is required for cell intercalation in the extending ectoderm, where it activates Rho1 specifically at junctions. Its localization is restricted to adherens junctions and is under Gβ13F/Gγ1 control. Furthermore, Gβ13F/Gγ1 activates junctional Rho1 and exerts quantitative control over planar polarization of Rho1. Finally, we found that Dp114RhoGEF is absent in the mesoderm, arguing for a tissue-specific control over junctional Rho1 activity. These results clarify the mechanisms of polarization of Rho1 activity in different cellular compartments and reveal that distinct GEFs are sensitive tuning parameters of cell contractility in remodeling epithelia. Dp114RhoGEF activates junctional Rho1 and is involved in cell intercalation Gα/Cta and Gβγ subunits tune, respectively, RhoGEF2 and Dp114RhoGEF membrane levels Gβγ subunits control planar polarity of junctional Rho1 signaling via Dp114RhoGEF Tissue-specific RhoGEFs could diversify morphogenesis in different tissues
Collapse
Affiliation(s)
| | - Jean-Marc Philippe
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France
| | - Annemarie C Lellouch
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
12
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
13
|
Papasergi-Scott MM, Stoveken HM, MacConnachie L, Chan PY, Gabay M, Wong D, Freeman RS, Beg AA, Tall GG. Dual phosphorylation of Ric-8A enhances its ability to mediate G protein α subunit folding and to stimulate guanine nucleotide exchange. Sci Signal 2018; 11:11/532/eaap8113. [PMID: 29844055 DOI: 10.1126/scisignal.aap8113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resistance to inhibitors of cholinesterase-8A (Ric-8A) and Ric-8B are essential biosynthetic chaperones for heterotrimeric G protein α subunits. We provide evidence for the direct regulation of Ric-8A cellular activity by dual phosphorylation. Using proteomics, Western blotting, and mutational analyses, we determined that Ric-8A was constitutively phosphorylated at five serines and threonines by the protein kinase CK2. Phosphorylation of Ser435 and Thr440 in rat Ric-8A (corresponding to Ser436 and Thr441 in human Ric-8A) was required for high-affinity binding to Gα subunits, efficient stimulation of Gα subunit guanine nucleotide exchange, and mediation of Gα subunit folding. The CK2 consensus sites that contain Ser435 and Thr440 are conserved in Ric-8 homologs from worms to mammals. We found that the homologous residues in mouse Ric-8B, Ser468 and Ser473, were also phosphorylated. Mutation of the genomic copy of ric-8 in Caenorhabditis elegans to encode alanine in the homologous sites resulted in characteristic ric-8 reduction-of-function phenotypes that are associated with defective Gq and Gs signaling, including reduced locomotion and defective egg laying. The C. elegans ric-8 phosphorylation site mutant phenotypes were partially rescued by chemical stimulation of Gq signaling. These results indicate that dual phosphorylation represents a critical form of conserved Ric-8 regulation and demonstrate that Ric-8 proteins are needed for effective Gα signaling. The position of the CK2-phosphorylated sites within a structural model of Ric-8A reveals that these sites contribute to a key acidic and negatively charged surface that may be important for its interactions with Gα subunits.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lauren MacConnachie
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pui-Yee Chan
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Meital Gabay
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dorothy Wong
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert S Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Noguera-Salvà MA, Guardiola-Serrano F, Martin ML, Marcilla-Etxenike A, Bergo MO, Busquets X, Escribá PV. Role of the C-terminal basic amino acids and the lipid anchor of the Gγ 2 protein in membrane interactions and cell localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1536-1547. [PMID: 28235469 DOI: 10.1016/j.bbamem.2017.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/25/2022]
Abstract
Heterotrimeric G proteins are peripheral membrane proteins that frequently localize to the plasma membrane where their presence in molar excess over G protein coupled receptors permits signal amplification. Their distribution is regulated by protein-lipid interactions, which has a clear influence on their activity. Gβγ dimer drives the interaction between G protein heterotrimers with cell membranes. We focused our study on the role of the C-terminal region of the Gγ2 protein in G protein interactions with cell membranes. The Gγ2 subunit is modified at cysteine (Cys) 68 by the addition of an isoprenyl lipid, which is followed by the proteolytic removal of the last three residues that leaves an isoprenylated and carboxyl methylated Cys-68 as the terminal amino acid. The role of Cys isoprenylation of the CAAX box has been defined for other proteins, yet the importance of proteolysis and carboxyl methylation of isoprenylated proteins is less clear. Here, we showed that not only geranylgeranylation but also proteolysis and carboxyl methylation are essential for the correct localization of Gγ2 in the plasma membrane. Moreover, we showed the importance of electrostatic interactions between the inner leaflet of the plasma membrane and the positively charged C-terminal domain of the Gγ2 subunit (amino acids Arg-62, Lys-64 and Lys-65) as a second signal to reach the plasma membrane. Indeed, single or multiple point mutations at Gγ2 C-terminal amino acids have a significant effect on Gγ2 protein-plasma membrane interactions and its localization to charged Ld (liquid disordered) membrane microdomains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Maria A Noguera-Salvà
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Francisca Guardiola-Serrano
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - M Laura Martin
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Amaia Marcilla-Etxenike
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Martin O Bergo
- Sahlgrenska Cancer Center, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain.
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| |
Collapse
|
15
|
Chen M, Liu S, Li W, Zhang Z, Zhang X, Zhang XE, Cui Z. Three-Fragment Fluorescence Complementation Coupled with Photoactivated Localization Microscopy for Nanoscale Imaging of Ternary Complexes. ACS NANO 2016; 10:8482-8490. [PMID: 27584616 DOI: 10.1021/acsnano.6b03543] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many cellular processes are governed by molecular machineries that involve multiple protein interactions. However, visualizing and identifying multiprotein complexes such as ternary complexes inside cells is always challenging, particularly in the subdiffraction cellular space. Here, we developed a three-fragment fluorescence complementation system (TFFC) based on the splitting of a photoactivatable fluorescent protein, mIrisFP, for the imaging of ternary complexes inside living cells. Using a combination of TFFC and photoactivated localization microscopy (PALM), namely, the TFFC-PALM technique, we are able to identify the multi-interaction of a ternary complex with nanometer-level spatial resolution and single-molecule sensitivity. The TFFC-PALM system has been further applied to the analysis of the Gs ternary complex, which is composed of αs, β1, and γ2 subunits, providing further insights into the subcellular localization and function of G protein subunits at the single-molecule level. The TFFC-PALM represents a valuable method for the visualization and identification of ternary complexes inside cells at the nanometer scale.
Collapse
Affiliation(s)
- Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Sanying Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| |
Collapse
|
16
|
Martin BR, Lambert NA. Activated G Protein Gαs Samples Multiple Endomembrane Compartments. J Biol Chem 2016; 291:20295-20302. [PMID: 27528603 DOI: 10.1074/jbc.m116.729731] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins are localized to the plasma membrane where they transduce extracellular signals to intracellular effectors. G proteins also act at intracellular locations, and can translocate between cellular compartments. For example, Gαs can leave the plasma membrane and move to the cell interior after activation. However, the mechanism of Gαs translocation and its intracellular destination are not known. Here we use bioluminescence resonance energy transfer (BRET) to show that after activation, Gαs rapidly associates with the endoplasmic reticulum, mitochondria, and endosomes, consistent with indiscriminate sampling of intracellular membranes from the cytosol rather than transport via a specific vesicular pathway. The primary source of Gαs for endosomal compartments is constitutive endocytosis rather than activity-dependent internalization. Recycling of Gαs to the plasma membrane is complete 25 min after stimulation is discontinued. We also show that an acylation-deacylation cycle is important for the steady-state localization of Gαs at the plasma membrane, but our results do not support a role for deacylation in activity-dependent Gαs internalization.
Collapse
Affiliation(s)
- Brent R Martin
- From the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
17
|
Page KM, Rothwell SW, Dolphin AC. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination. J Biol Chem 2016; 291:20402-16. [PMID: 27489103 PMCID: PMC5034038 DOI: 10.1074/jbc.m116.737270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit.
Collapse
Affiliation(s)
- Karen M Page
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Simon W Rothwell
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Annette C Dolphin
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Kamato D, Thach L, Bernard R, Chan V, Zheng W, Kaur H, Brimble M, Osman N, Little PJ. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front Cardiovasc Med 2015; 2:14. [PMID: 26664886 PMCID: PMC4671355 DOI: 10.3389/fcvm.2015.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
G protein coupled receptors (GPCRs) are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of three subunits termed alpha, beta, and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13, and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via guanosine triphosphate (GTP), Gαq activates phospholipase Cβ, hydrolyzing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic reticulum. Although G proteins, in particular, the Gαq/11 are central elements in GPCR signaling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic, and thrombolytic effects. YM-254890 inhibits Gαq signaling pathways by preventing the exchange of guanosine diphosphate for GTP. UBO-QIC is a structurally similar compound to YM-254890, which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signaling downstream of Gαq/11. The role of G proteins could potentially represent a novel therapeutic target. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signaling.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Lyna Thach
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Rebekah Bernard
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Vincent Chan
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre , Guangzhou , China ; Faculty of Health Sciences, University of Macau , Macau , China
| | - Harveen Kaur
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Margaret Brimble
- Department of Chemistry, University of Auckland , Auckland , New Zealand
| | - Narin Osman
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| | - Peter J Little
- Discipline of Pharmacy, Diabetes Complications Group, School of Medical Sciences, Health Innovations Research Institute, RMIT University , Bundoora, VIC , Australia
| |
Collapse
|
19
|
A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics. Cell Signal 2014; 26:1135-46. [PMID: 24444709 DOI: 10.1016/j.cellsig.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves as a physiological function: stabilizing elongated mitochondria and regulating energy production in Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.
Collapse
|
20
|
Schappi JM, Krbanjevic A, Rasenick MM. Tubulin, actin and heterotrimeric G proteins: coordination of signaling and structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:674-81. [PMID: 24071592 DOI: 10.1016/j.bbamem.2013.08.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 01/17/2023]
Abstract
G proteins mediate signals from membrane G protein coupled receptors to the cell interior, evoking significant regulation of cell physiology. The cytoskeleton contributes to cell morphology, motility, division, and transport functions. This review will discuss the interplay between heterotrimeric G protein signaling and elements of the cytoskeleton. Also described and discussed will be the interplay between tubulin and G proteins that results in atypical modulation of signaling pathways and cytoskeletal dynamics. This will be extended to describe how tubulin and G proteins act in concert to influence various aspects of cellular behavior. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters.This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Jeffrey M Schappi
- Department of Physiology and Biophysics, University Of Illinois, Chicago, IL 60612, USA
| | - Aleksandar Krbanjevic
- Department of Physiology and Biophysics, University Of Illinois, Chicago, IL 60612, USA; Jesse Brown VAMC, Chicago, IL 60612, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University Of Illinois, Chicago, IL 60612, USA; Department of Psychiatry, University Of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Abstract
AbstractRas genes are pre-eminent genes that are frequently linked with cancer biology. The functional loss of ras protein caused by various point mutations within the gene, is established as a prognostic factor for the genesis of a constitutively active Ras-MAPK pathway leading to cancer. Ras signaling circuit follows a complex pathway, which connects many signaling molecules and cells. Several strategies have come up for targeting mutant ras proteins for cancer therapy, however, the clinical benefits remain insignificant. Targeting the Ras-MAPK pathway is extremely complicated due its intricate networks involving several upstream and downstream regulators. Blocking oncogenic Ras is still in latent stage and requires alternative approaches to screen the genes involved in Ras transformation. Understanding the mechanism of Ras induced tumorigenesis in diverse cancers and signaling networks will open a path for drug development and other therapeutic approaches.
Collapse
|
22
|
Labrecque P, Roy SJ, Fréchette L, Iorio-Morin C, Gallant MA, Parent JL. Inverse agonist and pharmacochaperone properties of MK-0524 on the prostanoid DP1 receptor. PLoS One 2013; 8:e65767. [PMID: 23762421 PMCID: PMC3677937 DOI: 10.1371/journal.pone.0065767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 05/01/2013] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin D₂ (PGD₂) acts through two G protein-coupled receptors (GPCRs), the prostanoid DP receptor and CRTH2 also known as DP1 and DP2, respectively. Several previously characterized GPCR antagonists are now classified as inverse agonists and a number of GPCR ligands are known to display pharmacochaperone activity towards a given receptor. Here, we demonstrate that a DP1 specific antagonist, MK-0524 (also known as laropiprant), decreased basal levels of intracellular cAMP produced by DP1, a Gα(s)-coupled receptor, in HEK293 cells. This reduction in cAMP levels was not altered by pertussis toxin treatment, indicating that MK-0524 did not induce coupling of DP1 to Gα(i/o) proteins and that this ligand is a DP1 inverse agonist. Basal ERK1/2 activation by DP1 was not modulated by MK-0524. Interestingly, treatment of HEK293 cells expressing Flag-tagged DP1 with MK-0524 promoted DP1 cell surface expression time-dependently to reach a maximum increase of 50% compared to control after 24 h. In contrast, PGD₂ induced the internalization of 75% of cell surface DP1 after the same time of stimulation. The increase in DP1 cell surface targeting by MK-0524 was inhibited by Brefeldin A, an inhibitor of transport from the endoplasmic reticulum-Golgi to the plasma membrane. Confocal microscopy confirmed that a large population of DP1 remained trapped intracellularly and co-localized with calnexin, an endoplasmic reticulum marker. Redistribution of DP1 from intracellular compartments to the plasma membrane was observed following treatment with MK-0524 for 24 h. Furthermore, MK-0524 promoted the interaction between DP1 and the ANKRD13C protein, which we showed previously to display chaperone-like effects towards the receptor. We thus report that MK-0524 is an inverse agonist and a pharmacochaperone of DP1. Our findings may have important implications during therapeutic treatments with MK-0524 and for the development of new molecules targeting DP1.
Collapse
Affiliation(s)
- Pascale Labrecque
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien J. Roy
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Fréchette
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maxime A. Gallant
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
23
|
Abstract
Mammalian cones respond to light by closing a cGMP-gated channel via a cascade that includes a heterotrimeric G-protein, cone transducin, comprising Gαt2, Gβ3 and Gγt2 subunits. The function of Gβγ in this cascade has not been examined. Here, we investigate the role of Gβ3 by assessing cone structure and function in Gβ3-null mouse (Gnb3(-/-)). We found that Gβ3 is required for the normal expression of its partners, because in the Gnb3(-/-) cone outer segments, the levels of Gαt2 and Gγt2 are reduced by fourfold to sixfold, whereas other components of the cascade remain unaltered. Surprisingly, Gnb3(-/-) cones produce stable responses with normal kinetics and saturating response amplitudes similar to that of the wild-type, suggesting that cone phototransduction can function efficiently without a Gβ subunit. However, light sensitivity was reduced by approximately fourfold in the knock-out cones. Because the reduction in sensitivity was similar in magnitude to the reduction in Gαt2 level in the cone outer segment, we conclude that activation of Gαt2 in Gnb3(-/-) cones proceeds at a rate approximately proportional to its outer segment concentration, and that activation of phosphodiesterase and downstream cascade components is normal. These results suggest that the main role of Gβ3 in cones is to establish optimal levels of transducin heteromer in the outer segment, thereby indirectly contributing to robust response properties.
Collapse
|
24
|
Competition for Gβγ dimers mediates a specific cross-talk between stimulatory and inhibitory G protein α subunits of the adenylyl cyclase in cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:459-69. [PMID: 23615874 DOI: 10.1007/s00210-013-0876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/17/2013] [Indexed: 12/20/2022]
Abstract
Heterotrimeric G proteins are key regulators of signaling pathways in mammalian cells. Beyond G protein-coupled receptors, the amount and mutual ratio of specific G protein α, β, and γ subunits determine the G protein signaling. However, little is known about mechanisms that regulate the concentration and composition of G protein subunits at the plasma membrane. Here, we show a novel cross-talk between stimulatory and inhibitory G protein α subunits (Gα) that is mediated by G protein βγ dimers and controls the abundance of specific Gα subunits at the plasma membrane. Firstly, we observed in heart tissue from constitutively Gαi2- and Gαi3-deficient mice that the loss of Gαi2 and Gαi3 was accompanied by a slight increase in the protein content of the nontargeted Gαi isoform. Therefore, we analyzed whether overexpression of selected Gα subunits conversely impairs endogenous G protein α and β subunit levels in cardiomyocytes. Integration of overexpressed Gαi2 subunits into heterotrimeric G proteins was verified by co-immunoprecipitation. Adenoviral expression of increasing amounts of Gαi2 led to a reduction of Gαi3 (up to 90 %) and Gαs (up to 75 %) protein levels. Likewise, increasing amounts of adenovirally expressed Gαs resulted in a linear 75 % decrease in both Gαi2 and Gαi3 protein levels. In contrast, overexpression of either Gαi or Gαs isoform did not influence the amount of Gαo and Gαq, both of which are not involved in the regulation of adenylyl cyclase activity. The mRNA expression of the disappearing endogenous Gα subunits was not affected, indicating a posttranslational mechanism. Interestingly, the amount of endogenous G protein βγ dimers was not altered by any Gα overexpression. However, the increase of Gβγ level by adenoviral expression prevented the loss of endogenous Gαs and Gαi3 in Gαi2 overexpressing cardiomyocytes. Thus, our results provide evidence for a novel mechanism cross-regulating adenylyl cyclase-modulating Gαi isoforms and Gαs proteins. The Gα subunits apparently compete for a limited amount of Gβγ dimers, which are required for G protein heterotrimer formation at the plasma membrane.
Collapse
|
25
|
Modification of heterotrimeric G-proteins in Swiss 3T3 cells stimulated with Pasteurella multocida toxin. PLoS One 2012; 7:e47188. [PMID: 23144805 PMCID: PMC3489841 DOI: 10.1371/journal.pone.0047188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022] Open
Abstract
Many bacterial toxins covalently modify components of eukaryotic signalling pathways in a highly specific manner, and can be used as powerful tools to decipher the function of their molecular target(s). The Pasteurella multocida toxin (PMT) mediates its cellular effects through the activation of members of three of the four heterotrimeric G-protein families, G(q), G(12) and G(i). PMT has been shown by others to lead to the deamidation of recombinant Gα(i) at Gln-205 to inhibit its intrinsic GTPase activity. We have investigated modification of native Gα subunits mediated by PMT in Swiss 3T3 cells using 2-D gel electrophoresis and antibody detection. An acidic change in the isoelectric point was observed for the Gα subunit of the G(q) and G(i) families following PMT treatment of Swiss 3T3 cells, which is consistent with the deamidation of these Gα subunits. Surprisingly, PMT also induced a similar modification of Gα(11), a member of the G(q) family of G-proteins that is not activated by PMT. Furthermore, an alkaline change in the isoelectric point of Gα(13) was observed following PMT treatment of cells, suggesting differential modification of this Gα subunit by PMT. G(s) was not affected by PMT treatment. Prolonged treatment with PMT led to a reduction in membrane-associated Gα(i), but not Gα(q). We also show that PMT inhibits the GTPase activity of G(q).
Collapse
|
26
|
Dopamine D(2) Receptor-Mediated Heterologous Sensitization of AC5 Requires Signalosome Assembly. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:210324. [PMID: 22523680 PMCID: PMC3317181 DOI: 10.1155/2012/210324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/28/2011] [Indexed: 12/23/2022]
Abstract
Chronic dopamine receptor activation is implicated in several central nervous system disorders. Although acute activation of Gαi-coupled D2 dopamine receptors inhibits adenylyl cyclase, persistent activation enhances adenylyl cyclase activity, a phenomenon called heterologous sensitization. Previous work revealed a requirement for Gαs in D2-induced heterologous sensitization of AC5. To elucidate the mechanism of Gαs dependency, we expressed Gαs mutants in Gαs-deficient GnasE2−/E2−
cells. Neither Gαs-palmitoylation nor Gαs-Gβγ interactions were required for sensitization of AC5. Moreover, we found that coexpressing βARKct-CD8 or Sar1(H79G) blocked heterologous sensitization. These studies are consistent with a role for Gαs-AC5 interactions in sensitization however, Gβγ appears to have an indirect role in heterologous sensitization of AC5, possibly by promoting proper signalosome assembly.
Collapse
|
27
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
28
|
Abstract
Assembly of the G-αβγ heterotrimer is required for receptor signaling. Although much has been learned about the assembly process itself, the identities of the G-αβγ combinations that actually exist in physiological setting are largely unknown. Moreover, there is uncertainty regarding whether the individual subunits associate by a random process, or combine by a regulated process to form quasi-stable G-αβγ complexes. In this chapter, we will focus on emerging genetic -evidence that supports the latter model. Specifically, we will discuss how use of gene targeted mice has revealed preferential assembly of the striatal-specific Gα(olf)β(2)γ(7) complex occurs by a sequential process that is directed by the γ(7) subunit. The existence of specific G-αβγ complexes responsible for transducing the signals from different receptors may have profound implications by providing a possible explanation for biased agonism.
Collapse
Affiliation(s)
- Janet D Robishaw
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, USA,
| |
Collapse
|
29
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
30
|
DeMars G, Fanelli F, Puett D. The extreme C-terminal region of Gαs differentially couples to the luteinizing hormone and beta2-adrenergic receptors. Mol Endocrinol 2011; 25:1416-30. [PMID: 21622536 DOI: 10.1210/me.2011-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of G protein coupling to G protein-coupled receptors (GPCR) share general characteristics but may exhibit specific interactions unique for each GPCR/G protein partnership. The extreme C terminus (CT) of G protein α-subunits has been shown to be important for association with GPCR. Hypothesizing that the extreme CT of Gα(s) is an essential component of the molecular landscape of the GPCR, human LH receptor (LHR), and β(2)-adrenergic receptor (β(2)-AR), a model cell system was created for the expression and manipulation of Gα(s) subunits in LHR(+) s49 ck cells that lack endogenous Gα(s). On the basis of studies involving truncations, mutations, and chain extensions of Gα(s), the CT was found to be necessary for LHR and β(2)-AR signaling. Some general similarities were found for the responses of the two receptors, but significant differences were also noted. Computational modeling was performed with a combination of comparative modeling, molecular dynamics simulations, and rigid body docking. The resulting models, focused on the Gα(s) CT, are supported by the experimental observations and are characterized by the interaction of the four extreme CT amino acid residues of Gα(s) with residues in LHR and β(2)-AR helix 3, (including R of the DRY motif), helix 6, and intracellular loop 2. This portion of Gα(s) recognizes the same regions of the two GPCR, although with differences in the details of selected interactions. The predicted longer cytosolic extensions of helices 5 and 6 of β(2)-AR are expected to contribute significantly to differences in Gα(s) recognition by the two receptors.
Collapse
Affiliation(s)
- Geneva DeMars
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | |
Collapse
|
31
|
Crouthamel M, Abankwa D, Zhang L, DiLizio C, Manning DR, Hancock JF, Wedegaertner PB. An N-terminal polybasic motif of Gαq is required for signaling and influences membrane nanodomain distribution. Mol Pharmacol 2010; 78:767-77. [PMID: 20664004 PMCID: PMC2981394 DOI: 10.1124/mol.110.066340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/21/2010] [Indexed: 11/22/2022] Open
Abstract
Regions of basic amino acids in proteins can promote membrane localization through electrostatic interactions with negatively charged membrane lipid head groups. Previous work showed that the heterotrimeric G protein subunit α(q) contains a polybasic region in its N terminus that contributes to plasma membrane localization. Here, the role of the N-terminal polybasic region of α(q) in signaling was addressed. For α(q) mutants, loss of plasma membrane localization correlated with loss of signaling function, as measured by the ability to couple activated G protein-coupled receptors (GPCRs) to stimulation of inositol phosphate production. However, recovery of plasma membrane localization of α(q) polybasic mutants by introduction of a site for myristoylation or by coexpression of βγ failed to recover signaling, suggesting a role for N-terminal basic amino acids of α(q) beyond simple plasma membrane localization. It is noteworthy that an α(q)4Q mutant, containing glutamine substitutions at arginines 27, 30, 31, and 34, was identified that failed to mediate signaling yet retained plasma membrane localization. Although α(q)4Q failed to couple activated receptors to inositol phosphate production, it was able to bind βγ, bind RGS4 in an activation-dependent manner, stimulate inositol phosphate production in a receptor-independent manner, and productively interact with a GPCR in isolated membranes. It is noteworthy that α(q)4Q showed a differing localization to plasma membrane nanodomains compared with wild-type α(q). Thus, basic amino acids in the N terminus of α(q) can affect its lateral segregation on plasma membranes, and changes in such lateral segregation may be responsible for the observed signaling defects of α(q)4Q.
Collapse
Affiliation(s)
- Marykate Crouthamel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th Street, 839 BLSB, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Aydin C, Aytan N, Mahon MJ, Tawfeek HAW, Kowall NW, Dedeoglu A, Bastepe M. Extralarge XL(alpha)s (XXL(alpha)s), a variant of stimulatory G protein alpha-subunit (Gs(alpha)), is a distinct, membrane-anchored GNAS product that can mimic Gs(alpha). Endocrinology 2009; 150:3567-75. [PMID: 19423757 PMCID: PMC2717877 DOI: 10.1210/en.2009-0318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GNAS gives rise to multiple imprinted gene products, including the alpha-subunit of the stimulatory G protein (Gs(alpha)) and its variant XL(alpha)s. Based on genomic sequence, the translation of XL(alpha)s begins from the middle of a long open reading frame, suggesting the existence of an N-terminally extended variant termed extralarge XLalphas (XXL(alpha)s). Although XXL(alpha), like Gs(alpha) and XL(alpha)s, would be affected by most disease-causing GNAS mutations, its authenticity and biological significance remained unknown. Here we identified a mouse cDNA clone that comprises the entire open reading frame encoding XXL(alpha)s. Whereas XXL(alpha)s mRNA was readily detected in mouse heart by RT-PCR, it appeared virtually absent in insulinoma-derived INS-1 cells. By Northern blots and RT-PCR, XXL(alpha)s mRNA was detected primarily in the mouse brain, cerebellum, and spleen. Immunohistochemistry using a specific anti-XXL(alpha)s antibody demonstrated XXL(alpha)s protein in multiple brain areas, including dorsal hippocampus and cortex. In transfected cells, full-length human XXL(alpha)s was localized to the plasma membrane and mediated isoproterenol- and cholera toxin-stimulated cAMP accumulation. XXL(alpha)s-R844H, which bears a mutation analogous to that in the constitutively active Gs(alpha) mutant Gs(alpha)-R201H (gsp oncogene), displayed elevated basal signaling. However, unlike Gs(alpha)-R201H, which mostly remains in the cytoplasm, both XXL(alpha)s-R844H and a constitutively active XL(alpha)s mutant localized to the plasma membrane. Hence, XXL(alpha)s is a distinct GNAS product and can mimic Gs(alpha), but the constitutively active XXL(alpha)s and Gs(alpha) mutants differ from each other regarding subcellular targeting. Our findings suggest that XXL(alpha)s deficiency or hyperactivity may contribute to the pathogenesis of diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Cumhur Aydin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Lu L, Khan A, Walker WA. ADP-ribosylation factors regulate the development of CT signaling in immature human enterocytes. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1221-9. [PMID: 19359423 PMCID: PMC2697949 DOI: 10.1152/ajpgi.90686.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diarrheal disease is a major cause of morbidity and mortality in infants and children worldwide. Evidence suggests that the interaction of immature human enterocytes with bacteria and their enterotoxins may account for the increased susceptibility of neonates to diarrheal diseases. However, the precise mechanisms that contribute to the excessive response to cholera toxin by the immature gut are largely unknown. Our aim was to characterize the cellular/molecular changes in Gs(alpha) during gut development. In this study, a colonic human epithelial cell line (T84) was used as representative of a mature enterocyte and a human fetal primary small intestinal cell line (H4) as representative of an immature enterocyte. Using our cell culture model of human intestinal development, we provide consistent evidence that cholera toxin (CT)-mediated Gs(alpha) activation in fetal enterocytes differs from that of mature enterocytes, and the difference may be related to ADP-ribosylation factor (ARF) interaction with the CT-signaling process. Here we demonstrated that ARF1 may play a critical role in clathrin-mediated CT trafficking through the endoplasmic reticulum and Golgi and that ARF6 may facilitate clathrin-mediated CT endocytosis that leads to enhanced Gs(alpha) activation by CT. Collectively, these findings support our hypothesis that there is a developmentally regulated intestinal cellular response to bacterial exotoxins involving complex cellular events that accounts for the increased incidence and severity of toxogenic diarrhea during infancy.
Collapse
Affiliation(s)
- Lei Lu
- Developmental Gastroenterology Lab., Massachusetts General Hospital for Children, Charlestown, MA 02129-4404, USA.
| | - Abdullah Khan
- Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston, Massachusetts; The Aga Khan University Hospital, Karachi, Pakistan
| | - W. Allan Walker
- Developmental Gastroenterology Laboratory, Massachusetts General Hospital for Children, Boston, Massachusetts; The Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
34
|
Rubinstein M, Peleg S, Berlin S, Brass D, Keren-Raifman T, Dessauer CW, Ivanina T, Dascal N. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. J Physiol 2009; 587:3473-91. [PMID: 19470775 DOI: 10.1113/jphysiol.2009.173229] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
G protein activated K+ channels (GIRK, Kir3) are switched on by direct binding of Gbetagamma following activation of Gi/o proteins via G protein-coupled receptors (GPCRs). Although Galphai subunits do not activate GIRKs, they interact with the channels and regulate the gating pattern of the neuronal heterotetrameric GIRK1/2 channel (composed of GIRK1 and GIRK2 subunits) expressed in Xenopus oocytes. Coexpressed Galphai3 decreases the basal activity (Ibasal) and increases the extent of activation by purified or coexpressed Gbegagamma. Here we show that this regulation is exerted by the 'inactive' GDP-bound Galphai3GDP and involves the formation of Galphai3betagamma heterotrimers, by a mechanism distinct from mere sequestration of Gbetagamma 'away' from the channel. The regulation of basal and Gbetagamma-evoked current was produced by the 'constitutively inactive' mutant of Galphai3, Galphai3G203A, which strongly binds Gbetagamma, but not by the 'constitutively active' mutant, Galphai3Q204L, or by Gbetagamma-scavenging proteins. Furthermore, regulation by Galphai3G203A was unique to the GIRK1 subunit; it was not observed in homomeric GIRK2 channels. In vitro protein interaction experiments showed that purified Gbetagamma enhanced the binding of Galphai3GDP to the cytosolic domain of GIRK1, but not GIRK2. Homomeric GIRK2 channels behaved as a 'classical' Gbetagamma effector, showing low Ibasal and strong Gbetagamma-dependent activation. Expression of Galphai3G203A did not affect either Ibasal or Gbetagamma-induced activation. In contrast, homomeric GIRK1* (a pore mutant able to form functional homomeric channels) exhibited large Ibasal and was poorly activated by Gbegagamma. Expression of Galphai3GDP reduced Ibasal and restored the ability of Gbetagamma to activate GIRK1*, like in GIRK1/2. Transferring the unique distal segment of the C terminus of GIRK1 to GIRK2 rendered the latter functionally similar to GIRK1*. These results demonstrate that GIRK1 containing channels are regulated by both Galphai3GDP and Gbetagamma, while GIRK2 is a Gbetagamma-effector insensitive to Galphai3GDP.
Collapse
Affiliation(s)
- Moran Rubinstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Preuß I, Kurig B, Nürnberg B, Orth JH, Aktories K. Pasteurella multocida toxin activates Gβγ dimers of heterotrimeric G proteins. Cell Signal 2009; 21:551-8. [DOI: 10.1016/j.cellsig.2008.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
|
36
|
Abstract
The heterotrimeric G protein alpha subunit (Galpha) is targeted to the cytoplasmic face of the plasma membrane through reversible lipid palmitoylation and relays signals from G-protein-coupled receptors (GPCRs) to its effectors. By screening 23 DHHC motif (Asp-His-His-Cys) palmitoyl acyl-transferases, we identified DHHC3 and DHHC7 as Galpha palmitoylating enzymes. DHHC3 and DHHC7 robustly palmitoylated Galpha(q), Galpha(s), and Galpha(i2) in HEK293T cells. Knockdown of DHHC3 and DHHC7 decreased Galpha(q/11) palmitoylation and relocalized it from the plasma membrane into the cytoplasm. Photoconversion analysis revealed that Galpha(q) rapidly shuttles between the plasma membrane and the Golgi apparatus, where DHHC3 specifically localizes. Fluorescence recovery after photobleaching studies showed that DHHC3 and DHHC7 are necessary for this continuous Galpha(q) shuttling. Furthermore, DHHC3 and DHHC7 knockdown blocked the alpha(1A)-adrenergic receptor/Galpha(q/11)-mediated signaling pathway. Together, our findings revealed that DHHC3 and DHHC7 regulate GPCR-mediated signal transduction by controlling Galpha localization to the plasma membrane.
Collapse
|
37
|
N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q). Cell Signal 2008; 20:1900-10. [PMID: 18647648 DOI: 10.1016/j.cellsig.2008.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/25/2008] [Accepted: 06/27/2008] [Indexed: 11/22/2022]
Abstract
Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits. Mutations of N-terminal basic residues in alpha(s) and alpha(q) caused defects in plasma membrane localization, as assessed through immunofluorescence microscopy and biochemical fractionations. In alpha(s), mutation of four basic residues to glutamine was sufficient to cause a defect, whereas in alpha(q) a defect in membrane localization was not observed unless nine basic residues were mutated to glutamine or if three basic residues were mutated to glutamic acid. betagamma co-expression only partially rescued the membrane localization defects; thus, the polybasic region is also important in the context of the heterotrimer. Introduction of a site for myristoylation into the polybasic mutants of alpha(s) and alpha(q) recovered strong plasma membrane localization, indicating that myristoylation and polybasic motifs may have complementary roles as membrane targeting signals. Loss of plasma membrane localization coincided with defects in palmitoylation. The polybasic mutants of alpha(s) and alpha(q) were still capable of assuming activated conformations and stimulating second messenger production, as demonstrated through GST-RGS4 interaction assays, cAMP assays, and inositol phosphate assays. Electrostatic interactions with membrane lipids have been found to be important in plasma membrane targeting of many proteins, and these results provide evidence that basic residues play a role in localization of G protein alpha subunits.
Collapse
|
38
|
Vögler O, Barceló JM, Ribas C, Escribá PV. Membrane interactions of G proteins and other related proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1640-52. [PMID: 18402765 DOI: 10.1016/j.bbamem.2008.03.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/01/2008] [Accepted: 03/12/2008] [Indexed: 01/25/2023]
Abstract
Guanine nucleotide-binding proteins, G proteins, propagate incoming messages from receptors to effector proteins. They switch from an inactive to active state by exchanging a GDP molecule for GTP, and they return to the inactive form by hydrolyzing GTP to GDP. Small monomeric G proteins, such as Ras, are involved in controlling cell proliferation, differentiation and apoptosis, and they interact with membranes through isoprenyl moieties, fatty acyl moieties, and electrostatic interactions. This protein-lipid binding facilitates productive encounters of Ras and Raf proteins in defined membrane regions, so that signals can subsequently proceed through MEK and ERK kinases, which constitute the canonical MAP kinase signaling cassette. On the other hand, heterotrimeric G proteins undergo co/post-translational modifications in the alpha (myristic and/or palmitic acid) and the gamma (farnesol or geranylgeraniol) subunits. These modifications not only assist the G protein to localize to the membrane but they also help distribute the heterotrimer (Galphabetagamma) and the subunits generated upon activation (Galpha and Gbetagamma) to appropriate membrane microdomains. These proteins transduce messages from ubiquitous serpentine receptors, which control important functions such as taste, vision, blood pressure, body weight, cell proliferation, mood, etc. Moreover, the exchange of GDP by GTP is triggered by nucleotide exchange factors. Membrane receptors that activate G proteins can be considered as such, but other cytosolic, membranal or amphitropic proteins can accelerate the rate of G protein exchange or even activate this process in the absence of receptor-mediated activation. These and other protein-protein interactions of G proteins with other signaling proteins are regulated by their lipid preferences. Thus, G protein-lipid interactions control the features of messages and cell physiology.
Collapse
Affiliation(s)
- Oliver Vögler
- Molecular Cell Biomedicine, Department of Biology-IUNICS, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
39
|
Abankwa D, Vogel H. A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J Cell Sci 2007; 120:2953-62. [PMID: 17690305 DOI: 10.1242/jcs.001404] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The standard model of heterotrimeric G protein signaling postulates a dissociation of Gα and Gβγ subunits after activation. We hypothesized that the different combination of lipid-modifications on Gα and Gαβγ subunits directs them into different microdomains. By characterizing rapidly and at high sensitivity 38 fluorescence resonance energy transfer (FRET) pairs of heterotrimeric-G-protein constructs, we defined their microdomains in relation to each other, free from the constraints of the raft/non-raft dualism. We estimated that in a cell ∼30% of these membrane-anchored proteins are mostly clustered in 3400-16,200 copies of 30-nm microdomains. We found that the membrane anchors of Gα and Gαβγ subunits of both the Gi/o and Gq family co-cluster differently with microdomain markers. Moreover, anchors of the Gαi/o and Gαq subunits co-clustered only weakly, whereas constructs that contained the anchors of the corresponding heterotrimers co-clustered considerably, suggesting the existence of at least three types of microdomain. Finally, FRET experiments with full-length heterotrimeric G proteins confirmed that the inactive, heterotrimerized Gα subunit is in microdomains shared by heterotrimers from different subclasses, from where it displaces upon activation into a membrane-anchor- and subclass-specific microdomain.
Collapse
Affiliation(s)
- Daniel Abankwa
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
40
|
Pedone KH, Hepler JR. The Importance of N-terminal Polycysteine and Polybasic Sequences for G14α and G16α Palmitoylation, Plasma Membrane Localization, and Signaling Function. J Biol Chem 2007; 282:25199-212. [PMID: 17620339 DOI: 10.1074/jbc.m610297200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.
Collapse
Affiliation(s)
- Katherine H Pedone
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
41
|
Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 2007; 46:7665-77. [PMID: 17559193 PMCID: PMC2527407 DOI: 10.1021/bi700338m] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To be activated by cell surface G protein-coupled receptors, heterotrimeric G proteins must localize at the cytoplasmic surface of plasma membranes. Moreover, some G protein subunits are able to traffic reversibly from the plasma membrane to intracellular locations upon activation. This current topic will highlight new insights into how nascent G protein subunits are assembled and how they arrive at plasma membranes. In addition, recent reports have increased our knowledge of activation-induced trafficking of G proteins. Understanding G protein assembly and trafficking will lead to a greater understanding of novel ways that cells regulate G protein signaling.
Collapse
Affiliation(s)
| | | | | | - Philip B. Wedegaertner
- *address correspondence to: Philip B. Wedegaertner, Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10 St., 839 BLSB, Philadelphia, PA 19107, Tel: 215-503-3137, Fax: 215-923-2117, e-mail:
| |
Collapse
|
42
|
Jiang X, Benovic JL, Wedegaertner PB. Plasma membrane and nuclear localization of G protein coupled receptor kinase 6A. Mol Biol Cell 2007; 18:2960-9. [PMID: 17538017 PMCID: PMC1949383 DOI: 10.1091/mbc.e07-01-0013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.
Collapse
Affiliation(s)
- Xiaoshan Jiang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
43
|
Escribá PV, Wedegaertner PB, Goñi FM, Vögler O. Lipid–protein interactions in GPCR-associated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:836-52. [PMID: 17067547 DOI: 10.1016/j.bbamem.2006.09.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitari d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
44
|
Dupré DJ, Baragli A, Rebois RV, Ethier N, Hébert TE. Signalling complexes associated with adenylyl cyclase II are assembled during their biosynthesis. Cell Signal 2007; 19:481-9. [PMID: 16979872 DOI: 10.1016/j.cellsig.2006.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 07/24/2006] [Accepted: 07/24/2006] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that adenylyl cyclase II (ACII) interacts with beta2-adrenergic receptors and heterotrimeric G proteins as part of a pre-assembled signalling complex. In this study, we further show that AC interacts with these proteins before it is targetted to the cell surface. Using a combination of approaches including bioluminescence resonance energy transfer (BRET) in concert with subcellular fractionation, we show that ACII and beta2AR initially interact in the ER. Further, dominant-negative Rab1 and Sar1 GTPases which block anterograde trafficking out of the ER have no effect on either ACII/receptor or ACII/Gbetagamma protein interactions. However, DN Rab1 and Sar1 constructs (but not DN Rabs 2, 6, 8 or 11) prevent the inclusion of Galpha subunits in ACII signalling complexes suggesting it assembles into the complex at a slightly later stage. Thus, like Kir3.1 inwardly rectifying potassium channels, signalosomes containing ACII are formed during their biosynthesis and not in response to agonist at the cell surface.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | | | | | | | | |
Collapse
|
45
|
Dupré DJ, Robitaille M, Ethier N, Villeneuve LR, Mamarbachi AM, Hébert TE. Seven Transmembrane Receptor Core Signaling Complexes Are Assembled Prior to Plasma Membrane Trafficking. J Biol Chem 2006; 281:34561-73. [PMID: 16959776 DOI: 10.1074/jbc.m605012200] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much is known about beta2-adrenergic receptor trafficking and internalization following prolonged agonist stimulation. However, less is known about outward trafficking of the beta2-adrenergic receptor to the plasma membrane or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Here, by using a combination of bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and confocal microscopy, we evaluated the steps in the formation of the core receptor-G protein heterotrimer complex. By using dominant negative Rab and Sar GTPase constructs, we demonstrate that receptor dimers and receptor-G betagamma complexes initially associate in the endoplasmic reticulum, whereas G alpha subunits are added to the complex during endoplasmic reticulum-Golgi transit. We also observed that G protein heterotrimers adopt different trafficking itineraries when expressed alone or with stoichiometric co-expression with receptor. Furthermore, deliberate mistargeting of specific components of these complexes leads to diversion of other members from their normal subcellular localization, confirming the role of these early interactions in targeting and formation of specific signaling complexes.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Dupré DJ, Hébert TE. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 2006; 18:1549-59. [PMID: 16677801 DOI: 10.1016/j.cellsig.2006.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/21/2006] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that 7-transmembrane receptors (7TM-Rs), their associated signalling molecules and scaffolding proteins are often constitutively associated under basal conditions. These studies highlight that receptor ontogeny and trafficking are likely to play key roles in the determination of both signalling specificity and efficacy. This review highlights information about how 7TM-Rs and their associated signalling molecules are trafficked to the cell surface as well as other intracellular destinations.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
47
|
Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H. Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol 2006; 363:918-30. [PMID: 16996083 DOI: 10.1016/j.jmb.2006.08.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Revised: 07/07/2006] [Accepted: 08/14/2006] [Indexed: 11/23/2022]
Abstract
Supported cell-membrane sheets are promising in vitro systems to investigate the properties of membranes with native protein/lipid composition, in particular their sub-compartmentalization and the differential localization of proteins associated to them. While such studies are usually performed using static microscopy techniques, we demonstrate here the potential offered by dynamic diffusion measurements. Whereas the overall fluidity of the lipid bilayer was preserved, the preparation of the membrane sheets led to the selective immobilization of extracellular and transmembrane (TM) glycosylated proteins and the anchored proteins/lipids associated with them. Taking advantage of this, we investigated the association of the G protein Gq with TM proteins, in particular G-protein coupled receptors (GPCRs), by monitoring the changes in diffusion occurring after preparation of the supported membranes. Two fluorescently tagged Galphaq proteins were constructed, which remained either mostly monomeric in the plasma membrane or associated with Gbetagamma in heterotrimers. While both constructs diffused similarly in living cells, the preparation of the supported membranes led to the selective immobilization of the heterotrimers with minimal changes of the diffusion of the monomeric Galphaq. The diverse mobility of monomeric and heterotrimeric Galphaq was a result of their different lipid anchors as demonstrated by monitoring the diffusion of the corresponding anchors alone. We propose that the immobilization of the heterotrimer was caused by its partitioning inside membrane microdomains surrounding GPCRs.
Collapse
Affiliation(s)
- Jean-Baptiste Perez
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Mervine SM, Yost EA, Sabo JL, Hynes TR, Berlot CH. Analysis of G protein betagamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits. Mol Pharmacol 2006; 70:194-205. [PMID: 16641313 DOI: 10.1124/mol.106.022616] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specificity of G protein betagamma signaling demonstrated by in vivo knockouts is greater than expected based on in vitro assays of betagamma function. In this study, we investigated the basis for this discrepancy by comparing the abilities of seven beta1gamma complexes containing gamma1, gamma2, gamma5, gamma7, gamma10, gamma11, or gamma12 to interact with alphas and of these gamma subunits to compete for interaction with beta1 in live human embryonic kidney (HEK) 293 cells. betagamma complexes were imaged using bimolecular fluorescence complementation, in which fluorescence is produced by two nonfluorescent fragments (N and C) of cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) when brought together by proteins fused to each fragment. Plasma membrane targeting of alphas-CFP varied inversely with its expression level, and the abilities of YFP-N-beta1YFP-C-gamma complexes to increase this targeting varied by 2-fold or less. However, there were larger differences in the abilities of the CFP-N-gamma subunits to compete for association with CFP-C-beta1. When the intensities of coexpressed CFP-C-beta1CFP-N-gamma (cyan) and CFP-C-beta1YFP-N-gamma2 (yellow) complexes were compared under conditions in which CFP-C-beta1 was limiting, the CFP-N-gamma subunits exhibited a 4.5-fold range in their abilities to compete with YFP-N-gamma2 for association with CFP-C-beta1. CFP-N-gamma12 and CFP-N-gamma1 were the strongest and weakest competitors, respectively. Taken together with previous demonstrations of a role for betagamma in the specificity of receptor signaling, these results suggest that differences in the association preferences of coexpressed beta and gamma subunits for each other can determine which complexes predominate and participate in signaling pathways in intact cells.
Collapse
Affiliation(s)
- Stacy M Mervine
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822-2623, USA
| | | | | | | | | |
Collapse
|
49
|
Pandey S, Chen JG, Jones AM, Assmann SM. G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. PLANT PHYSIOLOGY 2006; 141:243-56. [PMID: 16581874 PMCID: PMC1459317 DOI: 10.1104/pp.106.079038] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) plays regulatory roles in a host of physiological processes throughout plant growth and development. Seed germination, early seedling development, stomatal guard cell functions, and acclimation to adverse environmental conditions are key processes regulated by ABA. Recent evidence suggests that signaling processes in both seeds and guard cells involve heterotrimeric G proteins. To assess new roles for the Arabidopsis (Arabidopsis thaliana) Galpha subunit (GPA1), the Gbeta subunit (AGB1), and the candidate G-protein-coupled receptor (GCR1) in ABA signaling during germination and early seedling development, we utilized knockout mutants lacking one or more of these components. Our data show that GPA1, AGB1, and GCR1 each negatively regulates ABA signaling in seed germination and early seedling development. Plants lacking AGB1 have greater ABA hypersensitivity than plants lacking GPA1, suggesting that AGB1 is the predominant regulator of ABA signaling and that GPA1 affects the efficacy of AGB1 execution. GCR1 acts upstream of GPA1 and AGB1 for ABA signaling pathways during germination and early seedling development: gcr1 gpa1 double mutants exhibit a gpa1 phenotype and agb1 gcr1 and agb1 gcr1 gpa1 mutants exhibit an agb1 phenotype. Contrary to the scenario in guard cells, where GCR1 and GPA1 have opposite effects on ABA signaling during stomatal opening, GCR1 acts in concert with GPA1 and AGB1 in ABA signaling during germination and early seedling development. Thus, cell- and tissue-specific functional interaction in response to a given signal such as ABA may determine the distinct pathways regulated by the individual members of the G-protein complex.
Collapse
Affiliation(s)
- Sona Pandey
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA
| | | | | | | |
Collapse
|
50
|
Wright LP, Philips MR. Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 2006; 47:883-91. [PMID: 16543601 DOI: 10.1194/jlr.r600004-jlr200] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins that terminate with a consensus sequence known as CAAX undergo a series of posttranslational modifications that include polyisoprenylation, endoproteolysis, and carboxyl methylation. These modifications render otherwise hydrophilic proteins hydrophobic at their C termini such that they associate with membranes. Whereas prenylation occurs in the cytosol, postprenylation processing is accomplished on the cytoplasmic surface of the endoplasmic reticulum and Golgi apparatus. Among the numerous CAAX proteins encoded in mammalian genomes are many signaling molecules such as monomeric GTPases, including the Ras proteins that play an important role in cancer. In the course of their processing, nascent Ras proteins traffic from their site of synthesis in the cytosol to the endomembrane and then out to the plasma membrane (PM) by at least two pathways. Recently, retrograde pathways have been discovered that deliver mature Ras from the PM back to the Golgi. The Golgi has been identified as a platform upon which Ras can signal. Thus, the subcellular trafficking of Ras proteins has the potential to increase the complexity of Ras signaling by adding a spatial dimension. The complexity of Ras trafficking also affords a wider array of potential targets for the discovery of drugs that might inhibit tumors by interfering with Ras trafficking.
Collapse
Affiliation(s)
- Latasha P Wright
- Department of Medicine, Cell Biology & Pharmacology, New York University School of Medicine, NY 10016, USA
| | | |
Collapse
|