1
|
Han HS, Lee JT, Cho YD, Kim S. The activin/BMP-2 chimera AB204 promotes periodontal tissue regeneration in a buccal dehiscence model: a pilot study. J Periodontal Implant Sci 2024; 54:322-335. [PMID: 38725427 PMCID: PMC11543333 DOI: 10.5051/jpis.2303600180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 11/07/2024] Open
Abstract
PURPOSE A combination of activin and bone morphogenetic protein-2 (BMP-2), termed AB204, has been shown to improve osteogenic potential with fewer side effects than BMP-2 alone. This study was performed to evaluate the effect of AB204 on periodontal tissue regeneration in a dog buccal dehiscence model. METHODS Buccal dehiscence defects were created on the maxillary premolars (P1, P2, and P3) of 6 mongrel dogs. After 5 weeks, the dogs were randomly assigned to 1 of 3 groups: the control, collagen matrix (CM), and CM/AB204 groups. Grafting procedures were then performed. The dogs were sacrificed 8 weeks after the grafting procedure, and volumetric and histological analyses were conducted. RESULTS The thickness of the buccal gingiva in the CM/AB204 group was greater than those in the other groups at 2 weeks (P<0.05). The ridge width in the AB204/CM group exceeded the width in the other groups at 4 and 8 weeks; however, the difference was not statistically significant. Histological analysis revealed that the CM/AB204 group demonstrated the formation of new bone surrounded by newly formed periodontal ligament and cementum (P=0.035). CONCLUSIONS The combined application of CM and AB204 shows promise in facilitating the regeneration of periodontal attachment, including the formation of new bone, cementum, and periodontal ligament.
Collapse
Affiliation(s)
- Hee-Seung Han
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
- Department of Periodontology, Korea University Anam Hospital, Seoul, Korea
| | - Jung-Tae Lee
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea.
| | - Sungtae Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea.
| |
Collapse
|
2
|
Evans ET, Horst B, Arend RC, Mythreye K. Evolving roles of activins and inhibins in ovarian cancer pathophysiology. Am J Physiol Cell Physiol 2023; 324:C428-C437. [PMID: 36622068 PMCID: PMC9902228 DOI: 10.1152/ajpcell.00178.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
Activins and inhibins are unique members of the transforming growth factor-β (TGFβ) family of growth factors, with the ability to exert autocrine, endocrine, and paracrine effects in a wide range of complex physiologic and pathologic processes. Although first isolated within the pituitary, emerging evidence suggests broader influence beyond reproductive development and function. Known roles of activin and inhibin in angiogenesis and immunity along with correlations between gene expression and cancer prognosis suggest potential roles in tumorigenesis. Here, we present a review of the current understanding of the biological role of activins and inhibins as it relates to ovarian cancers, summarizing the underlying signaling mechanisms and physiologic influence, followed by detailing their roles in cancer progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Elizabeth T Evans
- Department of Gynecologic Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Ben Horst
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Department of Gynecologic Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Karthikeyan Mythreye
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
3
|
Kappes EC, Kattamuri C, Czepnik M, Yarawsky AE, Brûlé E, Wang Y, Ongaro L, Herr AB, Walton KL, Bernard DJ, Thompson TB. Follistatin Forms a Stable Complex With Inhibin A That Does Not Interfere With Activin A Antagonism. Endocrinology 2023; 164:7010688. [PMID: 36718082 DOI: 10.1210/endocr/bqad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Inhibins are transforming growth factor-β family heterodimers that suppress follicle-stimulating hormone (FSH) secretion by antagonizing activin class ligands. Inhibins share a common β chain with activin ligands. Follistatin is another activin antagonist, known to bind the common β chain of both activins and inhibins. In this study, we characterized the antagonist-antagonist complex of inhibin A and follistatin to determine if their interaction impacted activin A antagonism. We isolated the inhibin A:follistatin 288 complex, showing that it forms in a 1:1 stoichiometric ratio, different from previously reported homodimeric ligand:follistatin complexes, which bind in a 1:2 ratio. Small angle X-ray scattering coupled with modeling provided a low-resolution structure of inhibin A in complex with follistatin 288. Inhibin binds follistatin via the shared activin β chain, leaving the α chain free and flexible. The inhibin A:follistatin 288 complex was also shown to bind heparin with lower affinity than follistatin 288 alone or in complex with activin A. Characterizing the inhibin A:follistatin 288 complex in an activin-responsive luciferase assay and by surface plasmon resonance indicated that the inhibitor complex readily dissociated upon binding type II receptor activin receptor type IIb, allowing both antagonists to inhibit activin signaling. Additionally, injection of the complex in ovariectomized female mice did not alter inhibin A suppression of FSH. Taken together, this study shows that while follistatin binds to inhibin A with a substochiometric ratio relative to the activin homodimer, the complex can dissociate readily, allowing both proteins to effectively antagonize activin signaling.
Collapse
Affiliation(s)
- Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Emilie Brûlé
- Departments of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ying Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Luisina Ongaro
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Andrew B Herr
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly L Walton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel J Bernard
- Departments of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Sun F, Cheng L, Guo L, Su S, Li Y, Yan J. Activin A promotes human trophoblast invasion by upregulating integrin β3 via ALK4-SMAD4 signaling. Placenta 2022; 129:62-69. [PMID: 36244196 DOI: 10.1016/j.placenta.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Activin A has been widely regarded as an important promoter of trophoblast invasion during the first trimester of pregnancy. However, whether integrin β3 is involved in activin A-upregulated trophoblast invasion and the underlying molecular mechanisms remain largely unknown. METHODS We utilized immortalized (HTR8/SVneo) and primary human extravillous trophoblast (EVT) cells, as well as first-trimester chorionic villous explants as study models to investigate the function and underlying molecular mechanisms of integrin β3 in activin A-promoted human trophoblast invasion. RESULTS We found that activin A increased integrin β3 mRNA and protein levels in both HTR8/SVneo and primary EVT cells, and knockdown of integrin β3 significantly decreased basal and activin A-upregulated trophoblast invasion. Moreover, SB431542 (a specific inhibitor of TGF-β type Ι receptor kinase) abolished activin A-upregulated integrin β3 expression and SMAD2/3 phosphorylation. In addition, siRNA-mediated knockdown of ALK4 or SMAD4 both abolished activin A-upregulated integrin β3 expression in HTR8/SVneo cells, while knockdown of ALK4 or SMAD4 attenuated activin A-upregulated integrin β3 expression in primary EVTs. DISCUSSION Our findings reveal the mediation role of integrin β3 in activin A-upregulated human trophoblast invasion and that activin An upregulates integrin β3 expression in an ALK4-SMAD4 signaling-dependent manner.
Collapse
Affiliation(s)
- Fengxuan Sun
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Cheng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Shizhen Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China.
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Lodberg A. Principles of the activin receptor signaling pathway and its inhibition. Cytokine Growth Factor Rev 2021; 60:1-17. [PMID: 33933900 DOI: 10.1016/j.cytogfr.2021.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Biomedicine, Aarhus University, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Wilhelm Meyers Allé, DK-8000, Aarhus, Denmark.
| |
Collapse
|
6
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
7
|
Identification of two genes potentially related to myogenesis and muscle growth in Fenneropenaeus chinensis: Activin receptor II and Follistatin-like protein. Gene 2020; 770:145346. [PMID: 33333225 DOI: 10.1016/j.gene.2020.145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Activin receptor (ActR) and follistatin-like (FSTL) genes, which are involved in the Myostatin (Mstn) related TGF-β/Smad signaling pathway, play important roles in regulating the muscle generation, development and growth of muscle in vertebrate. Our previous studies have confirmed that Mstn negatively regulates muscle development and growth in Fenneropenaeus chinensis as that in vertebrate. However, the roles of ActR and FSTL in muscle development and growth in invertebrate remains unclear. In the present study, type II ActR(FcActRII) and FSTL (FcFSTL) genes from F. chinensis were cloned and characterized, and their functions on muscle development and growth were investigated. The full-length cDNAs of FcActRII and FcFSTL were 2366 bp that encoded 572 amino acids and 2474 bp that encoded 717 amino acids, respectively. Sequence analysis revealed that the overall protein sequences of the two genes shared 97% and 96% identities with Penaeus vannamei and 50%-59% and 35%-36% identities with vertebrates, respectively. In the early development stages, muscles firstly appeared in nauplius stage and developed gradually until post larval, and the mRNA expressions of FcActRII increased from gastrula to zoea stage and then decreased from zoea stage to post larval stage while that of FcFSTL was lowest in gastrula stage and increased rapidly in nauplius stage and then expressed stably from nauplius stage to post-larval stage. In the adult shrimp, the two genes were widely distributed in the examined tissues. The FcActRII expression in muscle of L group was significantly lower than that of S group, but the FcFSTL expression showed an opposite result. After down-regulating the expression of FcMstn by RNAi, FcActRII expression was significantly down-regulated while that of FcFSTL was up-regulated. The present study suggested that FcActRII and FcFSTL, regulated by FcMstn, might be involved in myogenesis and muscle growth.
Collapse
|
8
|
Son S, Yoon SH, Kim MH, Yun X. Activin A and BMP chimera (AB204) induced bone fusion in osteoporotic spine using an ovariectomized rat model. Spine J 2020; 20:809-820. [PMID: 31899374 DOI: 10.1016/j.spinee.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recombinant human bone morphogenic protein 2 (rhBMP2) has been used to induce bone fusion in patients with spinal fusion surgery. However, the effectiveness of rhBMP2 in the bone fusion process is limited in osteoporosis patients, and a high dose of rhBMP2 for enough bone fusion sometimes provokes side effects. Therefore, substitutes for rhBMP2 with a higher therapeutic potency are needed, and already several studies have published the effectiveness of Activin A/BMP2 chimera (AB204) in new bone formation process in vitro and in vivo. PURPOSE In the present study, we provide evidence that bone fusion activity of AB204 is superior to that of rhBMP2 in osteoporotic rat models. STUDY DESIGN/SETTINGS An in vivo animal study was carried out. METHODS A total of 40 Sprague-Dawley rats underwent bilateral ovariectomy. At 6 weeks after ovariectomy, a lumbar spinal bone fusion model of bilateral intertransverse process was performed. All rats were randomly divided into four groups as follows: rats receiving 5 µg of rhBMP2 (Group I), rats receiving 10 µg of rhBMP2 (Group II), rats receiving 5 µg of AB204 (Group III), and rats receiving 10 µg of AB204 (Group IV). Simple radiographs were performed at 6 and 12 weeks after bone fusion, and direct palpation, micro-CT, and immunohistochemistry (hematoxylin-eosin stain and Masson's trichrome stain) were performed at 12 weeks after bone fusion. The qualitative degree of bone fusion was assessed as manual fusion score from direct palpation, and radio-histologic fusion score from simple radiographs, micro-CT, and immunohistochemistry. Also, the quantitative degree of bone fusion was assessed using fusion bone volume by micro-CT and serum osteocalcin level as bone turnover markers. RESULTS The change of body weight was not different among the groups during follow-up. The qualitative degree of bone fusion assessed by direct palpation, simple radiographs, micro-CT, and histologic evaluation was significantly different among the four groups. Also, the quantitative degree of bone fusion including fusion bone volume and serum osteocalcin was significantly different among the groups. Especially, in manual fusion score, radio-histologic fusion score, and fusion bone volume, the AB204 group revealed superior results to the rhBMP2 group when using the same dose. Furthermore, even the low-dose AB204 group (Group III) showed superior results to the high-dose rhBMP2 group (Group II) in radio-histologic fusion score and fusion bone volume. CONCLUSION The effect of bone fusion in osteoporotic rats was significantly higher in the AB204 group than in the rhBMP2 group. CLINICAL SIGNIFICANCE If further organized animal studies and clinical trials are provided, AB204 may be a good substitute for rhBMP2 in osteoporotic spinal fusion surgery, as a superior osteogenesis inducer.
Collapse
Affiliation(s)
- Seong Son
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Seung Hwan Yoon
- Department of Neurosurgery, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea.
| | - Moon Hang Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Xiang Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
| |
Collapse
|
9
|
Abstract
Bone Morphogenetic Proteins (BMPs) together with the Growth and Differentiation Factors (GDFs) form the largest subgroup of the Transforming Growth Factor (TGF)β family and represent secreted growth factors, which play an essential role in many aspects of cell communication in higher organisms. As morphogens they exert crucial functions during embryonal development, but are also involved in tissue homeostasis and regeneration in the adult organism. Their involvement in maintenance and repair processes of various tissues and organs made these growth factors highly interesting targets for novel pharmaceutical applications in regenerative medicine. A hallmark of the TGFβ protein family is that all of the more than 30 growth factors identified to date signal by binding and hetero-oligomerization of a very limited set of transmembrane serine-threonine kinase receptors, which can be classified into two subgroups termed type I and type II. Only seven type I and five type II receptors exist for all 30plus TGFβ members suggesting a pronounced ligand-receptor promiscuity. Indeed, many TGFβ ligands can bind the same type I or type II receptor and a particular receptor of either subtype can usually interact with and bind various TGFβ ligands. The possible consequence of this ligand-receptor promiscuity is further aggravated by the finding that canonical TGFβ signaling of all family members seemingly results in the activation of just two distinct signaling pathways, that is either SMAD2/3 or SMAD1/5/8 activation. While this would implicate that different ligands can assemble seemingly identical receptor complexes that activate just either one of two distinct pathways, in vitro and in vivo analyses show that the different TGFβ members exert quite distinct biological functions with high specificity. This discrepancy indicates that our current view of TGFβ signaling initiation just by hetero-oligomerization of two receptor subtypes and transduction via two main pathways in an on-off switch manner is too simplified. Hence, the signals generated by the various TGFβ members are either quantitatively interpreted using the subtle differences in their receptor-binding properties leading to ligand-specific modulation of the downstream signaling cascade or additional components participating in the signaling activation complex allow diversification of the encoded signal in a ligand-dependent manner at all cellular levels. In this review we focus on signal specification of TGFβ members, particularly of BMPs and GDFs addressing the role of binding affinities, specificities, and kinetics of individual ligand-receptor interactions for the assembly of specific receptor complexes with potentially distinct signaling properties.
Collapse
|
10
|
Han SH, Zheng GB, Lee JH. The toxicological effect of 4-week repeated intravenous injection of activin a/BMP-2 chimera and 2-week recovery study in Beagle dog. Drug Chem Toxicol 2019; 44:250-258. [PMID: 30880490 DOI: 10.1080/01480545.2019.1572181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purposes of this study was to determine the toxicological effect of repeated intravenous administration of Activin A/BMP-2 chimera (AB204) in beagle dogs for a long period of four weeks and evaluate two-week recovery. AB204 was administered at doses of 0.08, 0.16, or 0.32 mg/kg/day to three male and three female beagle dogs for 4 weeks as the experimental group. For the control group, sterile saline was administered to three male and three female beagle dogs. For the two-week recovery test, two male and two female beagle dogs were randomly selected from the control group and the 0.32 mg/kg/day administered experimental group. General symptoms, body weight, food consumption, ophthalmological examination, electrocardiogram, urinalysis, hematology and blood biochemistry, organ weights, autopsy, and histopathological examination were observed or conducted. No animals died. There was no significant difference in any parameter evaluated between the experimental group and the control group. Histopathological examination revealed compound inflammation at the administration site in both the experimental group and the control group. The inflammation disappeared during the two-week recovery. These results indicated that repetitive intravenous injection of AB204 in beagle dog for a long period of four weeks did not show any toxicity. Therefore, no observed adverse effects level (NOAEL) of AB204 was 0.32 mg/kg/day in big animal model.
Collapse
Affiliation(s)
- Shi Huan Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, Korea.,Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul, Korea.,Department of Orthopedic Surgery, YanBian University Hospital, Yanji, Jilin Province, China
| | - Guang Bin Zheng
- Department of Orthopedic Surgery, TaiZhou Hospital, Linhai, Zhejiang Province, China
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, Seoul, Korea.,Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul, Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Medical Research Center, Seoul, Korea
| |
Collapse
|
11
|
Ryu D, Yoon BH, Oh CH, Kim MH, Kim JY, Yoon SH, Choe S. Activin A/BMP2 Chimera (AB204) Exhibits Better Spinal Bone Fusion Properties than rhBMP2. J Korean Neurosurg Soc 2018; 61:669-679. [PMID: 30396241 PMCID: PMC6280059 DOI: 10.3340/jkns.2017.0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/20/2018] [Indexed: 11/27/2022] Open
Abstract
Objective To compare the spinal bone fusion properties of activin A/BMP2 chimera (AB204) with recombinant human bone morphogenetic protein (rhBMP2) using a rat posterolateral spinal fusion model.
Methods The study was designed to compare the effects and property at different dosages of AB204 and rhBMP2 on spinal bone fusion. Sixty-one male Sprague-Dawley rats underwent posterolateral lumbar spinal fusion using one of nine treatments during the study, that is, sham; osteon only; 3.0 μg, 6.0 μg, or 10.0 μg of rhBMP2 with osteon; and 1.0 μg, 3.0 μg, 6.0 μg, or 10.0 μg of AB204 with osteon. The effects and property on spinal bone fusion was calculated at 4 and 8 weeks after treatment using the scores of physical palpation, simple radiograph, micro-computed tomography, and immunohistochemistry.
Results Bone fusion scores were significantly higher for 10.0 μg AB204 and 10.0 μg rhBMP2 than for osteon only or 1.0 μg AB204. AB204 exhibited more prolonged osteoblastic activity than rhBMP2. Bone fusion properties of AB204 were similar with the properties of rhBMP2 at doses of 6.0 and 10.0 μg, but, the properties of AB204 at doses of 3.0 μg exhibited better than the properties of rhBMP2 at doses of 3.0 μg.
Conclusion AB204 chimeras could to be more potent for treating spinal bone fusion than rhBMP2 substitutes with increased osteoblastic activity for over a longer period.
Collapse
Affiliation(s)
- Dalsung Ryu
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Byung-Hak Yoon
- Protein Engineering Laboratory, joint Center for Biosciences at Songdo Global University, Incheon, Korea
| | - Chang-Hyun Oh
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea.,Department of Neurosurgery, Cham Teun Teun Research Institute, Seoul, Korea
| | - Moon-Hang Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Ji-Yong Kim
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Seung Hwan Yoon
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Senyon Choe
- Protein Engineering Laboratory, joint Center for Biosciences at Songdo Global University, Incheon, Korea.,Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
12
|
Zheng GB, Lee JH, Jin YZ. In vitro and in vivo evaluation of osteoinductivity and bone fusion ability of an activin a/BMP2 chimera (AB204): a comparison study between AB204 and rhBMP-2. Growth Factors 2017; 35:249-258. [PMID: 29651874 DOI: 10.1080/08977194.2018.1459597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study compared osteoinductivity and osteogenic capacity between AB204 and rhBMP-2 using hMSCs in vitro and a beagle's posterolateral spinal fusion model. Cultured hMSCs were treated with AB204 or rhBMP-2 with low to high doses. Three male beagles were performed posterolateral spinal fusion with biphasic calcium phosphate (2 ml) + AB204 or rhBMP-2 (20, 50 or 200 µg). They were euthanized after 8 weeks. The fusion rate and bone formation of spine samples were examined. AB204 had higher alkaline phosphatase activity, mineralization and osteogenic-related gene expression than rhBMP-2. Fusion rates in all rhBMP-2 groups were 0. They were 100% for 50 μg and 200 μg AB204 groups. Therefore, AB204 showed higher osteogenicity than rhBMP-2. It could be a better bone graft substitute.
Collapse
Affiliation(s)
- Guang Bin Zheng
- a Department of Orthopaedics , Taizhou Hospial of Zhejiang Province, Wenzhou Medical University, Linhai , Zhejiang , China
- b Department of Orthopedic Surgery , Seoul National University, College of Medicine , Seoul , Korea
| | - Jae Hyup Lee
- b Department of Orthopedic Surgery , Seoul National University, College of Medicine , Seoul , Korea
- c Department of Orthopaedic Surgery , SMG-SNU Boramae Medical Center , Seoul , Korea
- d Institute of Medical and Biological Engineering , Seoul National University Medical Research Center , Seoul , Korea
| | - Yuan-Zhe Jin
- b Department of Orthopedic Surgery , Seoul National University, College of Medicine , Seoul , Korea
| |
Collapse
|
13
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
14
|
Nadjar-Boger E, Krol E, Funkenstein B. Two Activin Type 2B Receptors from Sea Bream Function Similarly in vitro. THE BIOLOGICAL BULLETIN 2016; 230:56-67. [PMID: 26896178 DOI: 10.1086/bblv230n1p56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Myostatin (MSTN) and activin are members of the transforming growth factor-β superfamily. Both signal through the activin type II receptors (ActRII and ActRIIB). In a previous report, we demonstrated that fish possess at least 2 genes for ActRIIB: ActRIIB-1 and ActRIIB-2, which differ in their amino acid sequence. We also showed that affinity-purified, fish-soluble ActRIIB-1 (extracellular domain; ECD), produced in the yeast Pichia pastoris, inhibited recombinant mouse/rat/human mature MSTN activity in vitro using a reporter gene assay in the mammalian A204 cell line. In the present study, we produced soluble ActRIIB-2a in P. pastoris, and showed that it is N-glycosylated, similar to soluble ActRIIB-1. Inhibition of MSTN and activin A activities by affinity-purified ActRIIB-2a was compared with that of soluble ActRIIB-1 using the CAGA-luciferase assay in A204 cells. The findings of this study provide evidence that both paralogs, which probably resulted from gene duplication, did not diversify in their functionality (neofunctionalization), but rather retained a similar function. Both ActRIIB isoforms are equally potent in the mammalian system, and both exhibited an inhibitory effect on mammalian MSTN and activin A. Moreover--in spite of the amino acid differences in ECD between the two paralogs--it appears that the residues important for ligand binding are conserved, and that they recognize the mammalian ligands activin A and MSTN to the same extent.
Collapse
Affiliation(s)
- Elisabeth Nadjar-Boger
- Department of Marine Biology & Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, P.O.B 8030, Haifa 31080, Israel
| | - Ekaterina Krol
- Department of Marine Biology & Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, P.O.B 8030, Haifa 31080, Israel
| | - Bruria Funkenstein
- Department of Marine Biology & Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, P.O.B 8030, Haifa 31080, Israel
| |
Collapse
|
15
|
Reader KL, Gold E. Activins and activin antagonists in the human ovary and ovarian cancer. Mol Cell Endocrinol 2015; 415:126-32. [PMID: 26277402 DOI: 10.1016/j.mce.2015.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
Abstract
Activins are members of the transforming growth factor β superfamily that play an important role in controlling cell proliferation and differentiation in many organs including the ovary. It is essential that activin signalling be tightly regulated as imbalances can lead to uncontrolled cell proliferation and cancer. This review describes the expression and function of the activins and their known antagonists in both normal and cancerous human ovaries.
Collapse
Affiliation(s)
- Karen L Reader
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | - Elspeth Gold
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
Bauer J, Ozden O, Akagi N, Carroll T, Principe DR, Staudacher JJ, Spehlmann ME, Eckmann L, Grippo PJ, Jung B. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer 2015; 14:182. [PMID: 26497569 PMCID: PMC4619565 DOI: 10.1186/s12943-015-0456-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
Background Understanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer. Method Mitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) −/− or wild type mice. Colon cancer cell lines (+/− SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays. Results In primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling. Conclusion Although activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Bauer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Ozkan Ozden
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Naomi Akagi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Timothy Carroll
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Jonas J Staudacher
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Martina E Spehlmann
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, CA, USA
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Yoon BH, Lee JH, Na K, Ahn C, Cho J, Ahn HC, Choi J, Oh H, Kim BM, Choe S. The effects of a single intravenous injection of novel activin A/BMP-2 (AB204) on toxicity and the respiratory and central nervous systems. Drug Chem Toxicol 2015; 39:284-9. [PMID: 26446865 DOI: 10.3109/01480545.2015.1092548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice.
Collapse
Affiliation(s)
- Byung-Hak Yoon
- a Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Smart Valley , Incheon , Republic of Korea .,b Department of Basic Science , Hongik Univesity , Mapo-Gu, Seoul , Repulic of Korea
| | - Jae Hyup Lee
- c Department of Orthopedic Surgery , College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center , Seoul , Republic of Korea
| | - Kyuheum Na
- d Dong-a Socio Holdings Research Institute, Giheung-Gu , Yongin , Gyeonggi , Republic of Korea , and
| | - Chihoon Ahn
- a Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Smart Valley , Incheon , Republic of Korea
| | - Jongho Cho
- d Dong-a Socio Holdings Research Institute, Giheung-Gu , Yongin , Gyeonggi , Republic of Korea , and
| | - Hyun Chan Ahn
- d Dong-a Socio Holdings Research Institute, Giheung-Gu , Yongin , Gyeonggi , Republic of Korea , and
| | - Jungyoun Choi
- a Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Smart Valley , Incheon , Republic of Korea
| | - Hyosun Oh
- a Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Smart Valley , Incheon , Republic of Korea
| | - Byong Moon Kim
- d Dong-a Socio Holdings Research Institute, Giheung-Gu , Yongin , Gyeonggi , Republic of Korea , and
| | - Senyon Choe
- a Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Smart Valley , Incheon , Republic of Korea .,e Drug Discovery Collaboratory, Qualcomm Institute, University of California San Diego , La Jolla , CA , U.S.A
| |
Collapse
|
18
|
Yoon BH, Lee JH, Na K, Cho J, Choe S. The toxicological evaluation of repetitive 2- and 4-week intravenous injection of Activin A/BMP-2 chimera (AB204) into rats. Regul Toxicol Pharmacol 2015; 73:1-8. [DOI: 10.1016/j.yrtph.2015.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 02/04/2023]
|
19
|
Falcigno L, D'Auria G, Calvanese L, Marasco D, Iacobelli R, Scognamiglio PL, Brun P, Danesin R, Pasqualin M, Castagliuolo I, Dettin M. Osteogenic properties of a short BMP-2 chimera peptide. J Pept Sci 2015; 21:700-9. [DOI: 10.1002/psc.2793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Lucia Falcigno
- Department of Pharmacy
- ; University of Naples “Federico II”; via Mezzocannone 16 80134 Naples Italy
- Institute of Biostructure and Bioimaging (IBB); CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Gabriella D'Auria
- Department of Pharmacy
- ; University of Naples “Federico II”; via Mezzocannone 16 80134 Naples Italy
- Institute of Biostructure and Bioimaging (IBB); CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Luisa Calvanese
- CIRPeB; University of Naples “Federico II”; via Mezzocannone 16 80134 Naples Italy
| | - Daniela Marasco
- Department of Pharmacy
- ; University of Naples “Federico II”; via Mezzocannone 16 80134 Naples Italy
- Institute of Biostructure and Bioimaging (IBB); CNR; via Mezzocannone, 16 80134 Naples Italy
| | - Roberta Iacobelli
- Department of Pharmacy
- ; University of Naples “Federico II”; via Mezzocannone 16 80134 Naples Italy
| | | | - Paola Brun
- Department of Molecular Medicine; University of Padua; via Gabelli 63 35127 Padua Italy
| | - Roberta Danesin
- Department of Industrial Engineering; University of Padua; via Marzolo 9 35131 Padua Italy
| | - Matteo Pasqualin
- Department of Molecular Medicine; University of Padua; via Gabelli 63 35127 Padua Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine; University of Padua; via Gabelli 63 35127 Padua Italy
| | - Monica Dettin
- Department of Industrial Engineering; University of Padua; via Marzolo 9 35131 Padua Italy
| |
Collapse
|
20
|
Abstract
Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand-receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Thomas D Mueller
- Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
21
|
Personalized risk assessment of heart failure patients: More perspectives from transforming growth factor super-family members. Clin Chim Acta 2015; 443:94-9. [DOI: 10.1016/j.cca.2014.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023]
|
22
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoon BH, Esquivies L, Ahn C, Gray PC, Ye SK, Kwiatkowski W, Choe S. An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2. J Bone Miner Res 2014; 29:1950-9. [PMID: 24692083 PMCID: PMC4276739 DOI: 10.1002/jbmr.2238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/02/2014] [Accepted: 03/13/2014] [Indexed: 12/27/2022]
Abstract
Recombinant bone morphogenetic protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue, which, when mutated to the corresponding BMP2 residue, resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures.
Collapse
Affiliation(s)
- Byung-Hak Yoon
- Protein Engineering Laboratory, Joint Center for Biosciences at Songdo Global University Campus, Incheon, Republic of Korea; Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Breen MJ, Moran DM, Liu W, Huang X, Vary CPH, Bergan RC. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors. PLoS One 2013; 8:e72407. [PMID: 23967299 PMCID: PMC3742533 DOI: 10.1371/journal.pone.0072407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 07/15/2013] [Indexed: 12/25/2022] Open
Abstract
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.
Collapse
Affiliation(s)
- Michael J. Breen
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Diarmuid M. Moran
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenzhe Liu
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Funkenstein B, Krol E, Esterin E, Kim YS. Structural and functional characterizations of activin type 2B receptor (acvr2b) ortholog from the marine fish, gilthead sea bream, Sparus aurata: evidence for gene duplication of acvr2b in fish. J Mol Endocrinol 2012; 49:175-92. [PMID: 22911153 DOI: 10.1530/jme-12-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myostatin (MSTN), a negative regulator of muscle growth and a member of the transforming growth factor-β superfamily, can bind the two activin type 2 receptors (ACVR2). It has been previously shown that WT mice injected with ACVR2B extracellular domain (ACVR2B-ECD) had higher muscle mass. Likewise, fish larvae immersed in Pichia pastoris culture supernatant, containing goldfish Acvr2b-ECD, showed enhanced larval growth. However, it is not clear whether fish Mstn1 and Mstn2 signal through the same receptor and whether fish express more than one acvr2b gene. In the current study, three cDNAs encoding acvr2b (saacvr2b-1, saacvr2b-2a, and saacvr2b-2b) were cloned from gilthead sea bream. All three contain the short extracellular binding domain, a short transmembrane region, and a conserved catalytic domain of serine/threonine protein kinase. Bioinformatics analysis provided evidence for the existence of two acvr2b genes (acvr2b-1 and acvr2b-2) in several other fish species as well, probably as a result of gene or genome duplication. The two isoforms differ in their amino acid sequences. The direct inhibitory effect of Acvr2b-ECD on Mstn activity was tested in vitro. The saAcvr2b-1-ECD was expressed in the yeast P. pastoris. Evidence is provided for N-glycosylation of Acvr2b-1-ECD. The affinity-purified Acvr2b-1-ECD inhibited recombinant mouse/rat/human mature MSTN activity when determined in vitro using the CAGA-luciferase assay in A204 cells. A lower inhibitory activity was obtained when unprocessed purified, furin-digested, and activated saMstn1 was used. Results of this study demonstrate for the first time the existence of two acvr2b genes in fish. In addition, the study shows that bioactive fish Acvr2b-ECD can be produced from P. pastoris.
Collapse
Affiliation(s)
- Bruria Funkenstein
- Department of Marine Biology and Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
26
|
Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition. Mol Cell Endocrinol 2012; 359:2-12. [PMID: 21763751 DOI: 10.1016/j.mce.2011.06.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 12/29/2022]
Abstract
Like other members of the transforming growth factor-β (TGF-β) superfamily, activins are synthesised as precursor molecules comprising an N-terminal prodomain and C-terminal mature region. During synthesis, the prodomain interacts non-covalently with mature activin, maintaining the molecule in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases and activin is secreted from the cell non-covalently associated with its propeptide. Extracellularly, the propeptide interacts with heparan sulfate proteoglycans to regulate activin localization within tissues. The mature activin dimer exhibits the classic 'open-hand' structure of TGF-β ligands with 'finger-like' domains projecting outward from the cysteine knot core of the molecule. These finger domains form the binding epitopes for type I and II serine/threonine kinase receptors. Activins ability to access its signalling receptors is regulated by the extracellular binding proteins, follistatin, follistatin-like-3, and by inhibins, which, in the presence of betaglycan, sequester type II receptors.
Collapse
Affiliation(s)
- Kelly L Walton
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Vic 3168, Australia
| | | | | |
Collapse
|
27
|
Knight PG, Satchell L, Glister C. Intra-ovarian roles of activins and inhibins. Mol Cell Endocrinol 2012; 359:53-65. [PMID: 21664422 DOI: 10.1016/j.mce.2011.04.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 01/11/2023]
Abstract
Granulosa cells are the main ovarian source of inhibins, activins and activin-binding protein (follistatin) while germ (oogonia, oocytes) and somatic (theca, granulosa, luteal) cells express activin receptors, signaling components and inhibin co-receptor (betaglycan). Activins are implicated in various intra-ovarian roles including germ cell survival and primordial follicle assembly; follicle growth from preantral to mid-antral stages; suppression of thecal androgen production; promotion of granulosa cell proliferation, FSHR and CYP19A1 expression; enhancement of oocyte developmental competence; retardation of follicle luteinization and/or atresia and involvement in luteolysis. Inhibins (primarily inhibin A) are produced in greatest amounts by preovulatory follicles (and corpus luteum in primates) and suppress FSH secretion through endocrine negative feedback. Together with follistatin, inhibins act locally to oppose auto-/paracrine activin (and BMP) signaling thus modulating many of the above processes. The balance between activin-inhibin shifts during follicle development with activin signalling prevailing at earlier stages but declining as inhibin and betaglycan expression rise.
Collapse
Affiliation(s)
- Phil G Knight
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Reading RG6 6UB, UK.
| | | | | |
Collapse
|
28
|
Zhu J, Lin SJ, Zou C, Makanji Y, Jardetzky TS, Woodruff TK. Inhibin α-subunit N terminus interacts with activin type IB receptor to disrupt activin signaling. J Biol Chem 2012; 287:8060-70. [PMID: 22267736 DOI: 10.1074/jbc.m111.293381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibin is a heterodimeric peptide hormone produced in the ovary that antagonizes activin signaling and FSH synthesis in the pituitary. The inhibin β-subunit interacts with the activin type II receptor (ActRII) to functionally antagonize activin. The inhibin α-subunit mature domain (N terminus) arose relatively early during the evolution of the hormone, and inhibin function is decreased by an antibody directed against the α-subunit N-terminal extension region or by deletion of the N-terminal region. We hypothesized that the α-subunit N-terminal extension region interacts with the activin type I receptor (ALK4) to antagonize activin signaling in the pituitary. Human or chicken free α-subunit inhibited activin signaling in a pituitary gonadotrope-derived cell line (LβT2) in a dose-dependent manner, whereas an N-terminal extension deletion mutant did not. An α-subunit N-terminal peptide, but not a control peptide, was able to inhibit activin A signaling and decrease activin-stimulated FSH synthesis. Biotinylated inhibin A, but not activin A, bound ALK4. Soluble ALK4-ECD bioneutralized human free α-subunit in LβT2 cells, but did not affect activin A function. Competitive binding ELISAs with N-terminal mutants and an N-terminal region peptide confirmed that this region is critical for direct interaction of the α-subunit with ALK4. These data expand our understanding of how endocrine inhibin achieves potent antagonism of local, constitutive activin action in the pituitary, through a combined mechanism of competitive binding of both ActRII and ALK4 by each subunit of the inhibin heterodimer, in conjunction with the co-receptor betaglycan, to block activin receptor-ligand binding, complex assembly, and downstream signaling.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
29
|
Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors. J Neurosci 2011; 31:14660-8. [PMID: 21994382 DOI: 10.1523/jneurosci.3516-11.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The members of the R7 regulator of G-protein signaling (RGS) protein subfamily are versatile regulators of G-protein signaling throughout the nervous system. Recent studies indicate that they are often found in complexes with membrane anchor proteins that serve as versatile modulators of their activity, intracellular targeting, and stability. One striking example is the interplay between the membrane anchor R9AP and the RGS9-1 · Gβ5 GTPase-activating complex responsible for the rapid inactivation of the G-protein transducin in vertebrate photoreceptor cells during their recovery from light excitation. The amount of this complex in photoreceptors sets their temporal resolution and is precisely regulated by the expression level of R9AP, which serves to protect the RGS9-1 and Gβ5 subunits from intracellular proteolysis. In this study, we investigated the mechanism by which R9AP performs its protective function in mouse rods and found that it is entirely confined to recruiting RGS9-1 · Gβ5 to cellular membranes. Furthermore, membrane attachment of RGS9-1 · Gβ5 is sufficient for its stable expression in rods even in the absence of R9AP. Our second finding is that RGS9-1 · Gβ5 possesses targeting information that specifies its exclusion from the outer segment and that this information is neutralized by association with R9AP to allow outer segment targeting. Finally, we demonstrate that the ability of R9AP · RGS9-1 · Gβ5 to accelerate GTP hydrolysis on transducin is independent of its means of membrane attachment, since replacing the transmembrane domain of R9AP with a site for lipid modification did not impair the catalytic activity of this complex.
Collapse
|
30
|
Choi SC, Han JK. Negative Regulation of Activin Signal Transduction. VITAMINS & HORMONES 2011; 85:79-104. [DOI: 10.1016/b978-0-12-385961-7.00005-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Wang Q, Wen YG, Li DP, Xia J, Zhou CZ, Yan DW, Tang HM, Peng ZH. Upregulated INHBA expression is associated with poor survival in gastric cancer. Med Oncol 2010; 29:77-83. [PMID: 21132402 DOI: 10.1007/s12032-010-9766-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/23/2010] [Indexed: 01/05/2023]
Abstract
Expression microarrays are widely used for investigating the candidate molecular targets in human cancer. While genome-wide expression signatures screened by gene set enrichment analysis (GSEA) were not performed in Chinese gastric cancer (GC). To gain new molecular targets for GC, GSEA analysis was performed. In the present study, GSEA were used to pick out differentially expressed gene sets of our database. Total RNA of paired tissue samples (n = 48) and a tissue microarray containing 132 paired tissues were used to further validate expression levels of INHBA and its correction with clinicopathological factors. Upregulated INHBA expression in gastric cancer was screened and further confirmed by qPCR and immunostaining analysis. Increased INHBA expression was significantly correlated with the diameter of cancer and depth of tumor invasion. Patients with higher expression levels of INHBA had a shorter disease-free survival rate. It was effective to gain new molecular targets for GC by GSEA analysis. INHBA may be a poor survival indicator of GC.
Collapse
Affiliation(s)
- Quan Wang
- Department of General Surgery, Shanghai First People's Hospital, College of Medicine, Shanghai Jiao Tong University, 85 Wujin Road, 200080 Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
L6E9 myoblasts are deficient of myostatin and additional TGF-beta members are candidates to developmentally control their fiber formation. J Biomed Biotechnol 2010; 2010:326909. [PMID: 20396675 PMCID: PMC2853858 DOI: 10.1155/2010/326909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/11/2009] [Accepted: 02/05/2010] [Indexed: 12/20/2022] Open
Abstract
This work provides evidence that the robust myoblast differentiation observed in L6E9 cells is causally linked to deficiency of myostatin, which, conversely, has been found to be expressed in C2C12 cells. However, despite the absence of endogenous myostatin, L6E9 myoblasts expressed functional Activin receptors type II (ActRIIs) and follistatin as well as the highly related TGF-β members Activins and GDF11, suggesting that in this cell line the regulation of fiber size might be under the control of multiple regulators regardless of myostatin. In line with this hypothesis, delivery of a dominant-negative ActRIIb form or the increase of follistatin, as obtained via Trichostatin treatment or stable transfection of a short human follistatin form, enhanced the L6E9 cell differentiation and further increased the size of myotubes, suggesting that L6E9 myoblasts provide a spontaneous myostatin knock-out in vitro model to study TGF-β ligands involved in developmental regulation of fiber size.
Collapse
|
33
|
Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE, Ucran JA, Martinez-Hackert E, Pearsall RS, Underwood KW, Seehra J, Kumar R. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J Biol Chem 2010; 285:21037-48. [PMID: 20385559 DOI: 10.1074/jbc.m110.114959] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu(79) effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways.
Collapse
|
34
|
Song C, Wang X, Zhou H. Molecular cloning of activin type I and type II receptors and differential regulation of their expression by activin in grass carp pituitary cells. Gen Comp Endocrinol 2010; 166:211-6. [PMID: 19699739 DOI: 10.1016/j.ygcen.2009.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/03/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Activins, like other members of the transforming growth factor-beta superfamily, signal via two structurally related transmembrane serine/threonine kinase receptors classified as types II and I. Two cDNAs encoding activin type IIB receptor (ActRIIB) and activin type IB receptor (ActRIB) were cloned and characterized from grass carp. The deduced ActRIIB protein of 510 amino acids shared 79-90% identity with those in other vertebrates, while the predicted ActRIB protein of 505 amino acids exhibited high sequence identity (80-96%) to its counterparts in human, rat, mouse, frog, and zebrafish. Comparative analysis showed that both receptors contained the conserved amino acid residues required for ligand binding, and comprised the characteristic regions of an extracellular ligand binding domain, a single transmembrane region, and an intracellular serine/threonine kinase domain. Real-time PCR analysis revealed that both ActRIIB and ActRIB transcripts were ubiquitously expressed in all tissues examined, in particular with high expression levels in extra-gonadal tissues, including pituitary, brain, and liver. Using a static incubation approach, the feedback effects of exogenous activin on ActRIIB and ActRIB mRNA expression were examined at the pituitary level. Activin significantly stimulated ActRIB mRNA expression in a time- and dose-dependent manner, but had no effect on ActRIIB mRNA levels. These findings support the notion that activin receptors may serve as a local regulatory point involving in pituitary function of activin in fish.
Collapse
Affiliation(s)
- Chunlei Song
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | |
Collapse
|
35
|
Kelber JA, Panopoulos AD, Shani G, Booker EC, Belmonte JC, Vale WW, Gray PC. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene 2009; 28:2324-36. [PMID: 19421146 PMCID: PMC2749668 DOI: 10.1038/onc.2009.97] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/23/2009] [Accepted: 03/28/2009] [Indexed: 01/20/2023]
Abstract
Cripto is a developmental oncoprotein that signals via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Smad2/3 pathways. However, the molecular basis for Cripto coupling to these pathways during embryogenesis and tumorigenesis is not fully understood. In this regard, we recently demonstrated that Cripto forms a cell surface complex with the HSP70 family member glucose-regulated protein-78 (GRP78). Here, we provide novel functional evidence demonstrating that cell surface GRP78 is a necessary mediator of Cripto signaling in human tumor, mammary epithelial and embryonic stem cells. We show that targeted disruption of the cell surface Cripto/GRP78 complex using shRNAs or GRP78 immunoneutralization precludes Cripto activation of MAPK/PI3K pathways and modulation of activin-A, activin-B, Nodal and transforming growth factor-beta1 signaling. We further demonstrate that blockade of Cripto binding to cell surface GRP78 prevents Cripto from increasing cellular proliferation, downregulating E-Cadherin, decreasing cell adhesion and promoting pro-proliferative responses to activin-A and Nodal. Thus, disrupting the Cripto/GRP78 binding interface blocks oncogenic Cripto signaling and may have important therapeutic value in the treatment of cancer.
Collapse
Affiliation(s)
- J A Kelber
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Activin receptor signaling regulates prostatic epithelial cell adhesion and viability. Neoplasia 2009; 11:365-76. [PMID: 19308291 DOI: 10.1593/neo.81544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022] Open
Abstract
Mutational changes coupled with endocrine, paracrine, and/or autocrine signals regulate cell division during carcinogenesis. The hormone signals remain undefined, although the absolute requirement in vitro for fetal serum indicates the necessity for a fetal serum factor(s) in cell proliferation. Using prostatic cancer cell (PCC) lines as a model of cancer cell proliferation, we have identified the fetal serum component activin A and its signaling through the activin receptor type II (ActRII), as necessary, although not sufficient, for PCC proliferation. Activin A induced Smad2 phosphorylation and PCC proliferation, but only in the presence of fetal bovine serum (FBS). Conversely, activin A antibodies and inhibin A suppressed FBS-induced PCC proliferation confirming activin A as one of multiple serum components required for PCC proliferation. Basic fibroblast growth factor was subsequently shown to synergize activin A-induced PCC proliferation. Inhibition of ActRII signaling using a blocking antibody or antisense-P decreased mature ActRII expression, Smad2 phosphorylation, and the apparent viability of PCCs and neuroblastoma cells grown in FBS. Suppression of ActRII signaling in PCC and neuroblastoma cells did not induce apoptosis as indicated by the ratio of active/inactive caspase 3 but did correlate with increased cell detachment and ADAM-15 expression, a disintegrin whose expression is strongly correlated with prostatic metastasis. These findings indicate that ActRII signaling is required for PCC and neuroblastoma cell viability, with ActRII mediating cell fate via the regulation of cell adhesion. That ActRII signaling governs both cell viability and cell adhesion has important implications for developing therapeutic strategies to regulate cancer growth and metastasis.
Collapse
|
37
|
Rasl11b knock down in zebrafish suppresses one-eyed-pinhead mutant phenotype. PLoS One 2008; 3:e1434. [PMID: 18197245 PMCID: PMC2186344 DOI: 10.1371/journal.pone.0001434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 12/09/2007] [Indexed: 11/25/2022] Open
Abstract
The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFβ/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep−/− mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors.
Collapse
|
38
|
Kelber JA, Shani G, Booker EC, Vale WW, Gray PC. Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J Biol Chem 2007; 283:4490-500. [PMID: 18089557 DOI: 10.1074/jbc.m704960200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cripto plays critical roles during embryogenesis and has been implicated in promoting the growth and spread of tumors. Cripto is required for signaling by certain transforming growth factor-beta superfamily members, such as Nodal, but also antagonizes others, such as activin. The opposing effects of Cripto on Nodal and activin signaling seem contradictory, however, because these closely related ligands utilize the same type I (ALK4) and type II (ActRII/IIB) receptors. Here, we have addressed this apparent paradox by demonstrating that Cripto forms analogous receptor complexes with Nodal and activin and functions as a noncompetitive activin antagonist. Our results show that activin-A and Nodal elicit similar maximal signaling responses in the presence of Cripto that are substantially lower than that of activin-A in the absence of Cripto. In addition, we provide biochemical evidence for complexes containing activin-A, Cripto, and both receptor types and show that the assembly of such complexes is competitively inhibited by Nodal. We further demonstrate that Nodal and activin-A share the same binding site on ActRII and that ALK4 has distinct and separable binding sites for activin-A and Cripto. Finally, we show that ALK4 mutants with disrupted activin-A binding retain Cripto binding and prevent the effects of Cripto on both activin-A and Nodal signaling. Together, our data indicate that Cripto facilitates Nodal signaling and inhibits activin signaling by forming receptor complexes with these ligands that are structurally and functionally similar.
Collapse
Affiliation(s)
- Jonathan A Kelber
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
39
|
Korupolu RV, Muenster U, Read JD, Vale W, Fischer WH. Activin A/bone morphogenetic protein (BMP) chimeras exhibit BMP-like activity and antagonize activin and myostatin. J Biol Chem 2007; 283:3782-90. [PMID: 18056265 DOI: 10.1074/jbc.m704530200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activins and bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta family of growth and differentiation factors that induce signaling in target cells by assembling type II and type I receptors at the cell surface. Ligand residues involved in type II binding are located predominantly in the C-terminal region that forms an extended beta-sheet, whereas residues involved in type I binding are located in the alpha-helical and preceding loop central portion of the molecule. To test whether the central residues are sufficient to determine specificity toward type I receptors, activin A/BMP chimeras were constructed in which the central residues (45-79) of activin A were replaced with corresponding residues of BMP2 and BMP7. The chimeras were assessed for activin type II receptor (Act RII) binding, activin-like bioactivity, and BMP-like activity as well as antagonistic properties toward activin A and myostatin. ActA/BMP7 chimera retained Act RII binding affinity comparable with wild type activin A, whereas ActA/BMP2 chimera showed a slightly reduced affinity toward Act RII. Both the chimeras were devoid of significant activin bioactivity in 293T cells in the A3 Lux reporter assay up to concentrations 10-fold higher than the minimal effective activin A concentration (approximately 4 nM). In contrast, these chimeras showed BMP-like activity in a BRE-Luc assay in HepG2 cells as well as induced osteoblast-like phenotype in C2C12 cells expressing alkaline phosphatase. Furthermore, both the chimeras activated Smad1 but not Smad2 in C2C12 cells. Also, both the chimeras antagonized ligands that signal via activin type II receptor, such as activin A and myostatin. These data indicate that activin residues in the central region determine its specificity toward type I receptors. ActA/BMP chimeras can be useful in the study of receptor specificities and modulation of transforming growth factor-beta members, activins, and BMPs.
Collapse
Affiliation(s)
- Radhika V Korupolu
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
40
|
Looyenga BD, Hammer GD. Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery. Mol Endocrinol 2007; 21:2440-57. [PMID: 17652186 DOI: 10.1210/me.2006-0402] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inhibin and activin are members of the TGFbeta family that perform mutually antagonistic signaling roles in the anterior pituitary, gonads, and adrenal gland. Unopposed activin signaling in inhibin-null (Inha-/-) mice causes the formation of granulosa cell tumors in the gonads and adrenal cortex, which depend upon FSH for efficient growth and progression. In this study, we demonstrate that Smad3, a key effector of activin signaling, is expressed at high levels and is constitutively activated in tumors from these mice. Removal of Smad3 from Inha-/- mice by a genetic cross to Smad3-null (Madh3-/-) mice leads to a significant decrease in cyclinD2 expression and a significant attenuation of tumor progression in the gonads and adrenal. The decrease in cyclinD2 levels in compound knockout mice is related to a reduction in mitogenic signaling through the phosphoinositide-3-kinase (PI3-kinase)/Akt pathway, which is required for normal cell cycle progression in tumor cells. Loss of PI3-kinase/Akt signaling cannot be attributed to alterations in IGF expression, suggesting instead that signaling through the FSH receptor is attenuated. Gene expression profiling in the ovaries of Madh3-/- and Inha-/-:Madh3-/- compound knockout mice supports this hypothesis and further suggests that Smad3 is specifically required for FSH to activate PI3-kinase/Akt, but not protein kinase A. Together these observations imply that activin/Smad3 signaling is necessary for efficient signaling by FSH in Inha-/- tumor cells and that interruption of this pathway uncouples FSH from its intracellular mitogenic effectors.
Collapse
Affiliation(s)
- Brendan D Looyenga
- Cellular and Molecular Biology Graduate Program, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
41
|
Tomaszewski J, Joseph A, Archambeault D, Yao HHC. Essential roles of inhibin beta A in mouse epididymal coiling. Proc Natl Acad Sci U S A 2007; 104:11322-7. [PMID: 17592132 PMCID: PMC2040897 DOI: 10.1073/pnas.0703445104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Indexed: 12/11/2022] Open
Abstract
Testis-derived testosterone has been recognized as the key factor for morphogenesis of the Wolffian duct, the precursor of several male reproductive tract structures. Evidence supports that testosterone is required for the maintenance of the Wolffian duct via its action on the mesenchyme. However, it remains uncertain how testosterone alone is able to facilitate formation of regionally specific structures such as the epididymis, vas deferens, and seminal vesicle from a straight Wolffian duct. In this study, we identified inhibin beta A (or Inhba) as a regional paracrine factor in mouse mesonephroi that controls coiling of the epithelium in the anterior Wolffian duct, the future epididymis. Inhba was expressed specifically in the mesenchyme of the anterior Wolffian duct at embryonic day 12.5 before the production of androgens. In the absence of Inhba, the epididymis failed to develop the characteristic coiling in the epithelium, which showed a dramatic decrease in proliferation. This loss of epididymal coiling did not result from testosterone deficiency, because testosterone production and parameters for testosterone action such as testis descent and anogenital distance remained normal. We further found that initial Inhba expression did not require testosterone as Inhba was also expressed in the anterior Wolffian duct of female embryos where no testosterone was produced. However, Inhba expression at later stages depended on testosterone. These results demonstrated that Inhba, a mesenchyme-specific gene, acts collectively with testosterone to facilitate epididymal coiling by stimulating epithelial proliferation.
Collapse
Affiliation(s)
| | - Avenel Joseph
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Urbana, IL 61802
| | - Denise Archambeault
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Urbana, IL 61802
| | - Humphrey Hung-Chang Yao
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Urbana, IL 61802
| |
Collapse
|
42
|
Yin H, Zhou Q, Panda M, Yeh LCC, Zavala MC, Lee JC. A fluorescence study of type I and type II receptors of bone morphogenetic proteins with bis-ANS (4, 4′-dianilino-1, 1′-bisnaphthyl-5, 5′ disulfonic acid). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:493-501. [PMID: 17363346 DOI: 10.1016/j.bbapap.2007.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/01/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
Crystallography studies on several members of the bone morphogenetic protein (BMP) receptors suggested that hydrophobic regions in these proteins play an important role in their structure and function. In the present study, the environment sensitive fluorescent probe 4, 4'-dianilino-1, 1'-bisnaphthyl-5, 5' disulfonic acid (bis-ANS) was used to study the hydrophobic regions of the extracellular domain of the type I and II receptors for bone morphogenetic proteins (ecBMPR-IB and ecBMPR-II). A single bis-ANS binding site per receptor molecule was found for both receptors, but the two receptors interacted with bis-ANS with distinctive characteristics. A significant shift in the emission maximum from 498 to 510 nm was detected when bis-ANS binds ecBMPR-IB, but a negligible change in the emission maximum was observed when the dye binds ecBMPR-II. Under identical reaction conditions, the maximum fluorescence intensities of the probe (I(max)) for the ecBMPR-IB and -II are 4.0 and 6.2 x 10(4) arbitrary units, respectively. The probe binds to ecBMPR-IB and -II with K(d)=11.0 and 17.5 microM, respectively. The bis-ANS modified site on both receptor types was not readily accessible to acrylamide quenching. Fluorescence energy transfer experiments further revealed close proximity between the tyrosine (in ecBMPR-IB) and the tryptophan residue (in ecBMPR-II) and the respective bis-ANS binding site in these receptors. The binding of bis-ANS did not alter the ligand binding activity of ecBMPR-IB, but enhanced that of ecBMPR-II. These results show that the bis-ANS-modified hydrophobic site on the ecBMPR-IB and -II molecules plays a different functional role.
Collapse
Affiliation(s)
- Huiran Yin
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
43
|
A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC STRUCTURAL BIOLOGY 2007; 7:6. [PMID: 17295905 PMCID: PMC1802081 DOI: 10.1186/1472-6807-7-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 02/12/2007] [Indexed: 02/07/2023]
Abstract
Background Bone morphogenetic proteins (BMPs) are key regulators in the embryonic development and postnatal tissue homeostasis in all animals. Loss of function or dysregulation of BMPs results in severe diseases or even lethality. Like transforming growth factors β (TGF-βs), activins, growth and differentiation factors (GDFs) and other members of the TGF-β superfamily, BMPs signal by assembling two types of serine/threonine-kinase receptor chains to form a hetero-oligomeric ligand-receptor complex. BMP ligand receptor interaction is highly promiscuous, i.e. BMPs bind more than one receptor of each subtype, and a receptor bind various ligands. The activin type II receptors are of particular interest, since they bind a large number of diverse ligands. In addition they act as high-affinity receptors for activins but are also low-affinity receptors for BMPs. ActR-II and ActR-IIB therefore represent an interesting example how affinity and specificity might be generated in a promiscuous background. Results Here we present the high-resolution structures of the ternary complexes of wildtype and a variant BMP-2 bound to its high-affinity type I receptor BMPR-IA and its low-affinity type II receptor ActR-IIB and compare them with the known structures of binary and ternary ligand-receptor complexes of BMP-2. In contrast to activin or TGF-β3 no changes in the dimer architecture of the BMP-2 ligand occur upon complex formation. Functional analysis of the ActR-IIB binding epitope shows that hydrophobic interactions dominate in low-affinity binding of BMPs; polar interactions contribute only little to binding affinity. However, a conserved H-bond in the center of the type II ligand-receptor interface, which does not contribute to binding in the BMP-2 – ActR-IIB interaction can be mutationally activated resulting in a BMP-2 variant with high-affinity for ActR-IIB. Further mutagenesis studies were performed to elucidate the binding mechanism allowing us to construct BMP-2 variants with defined type II receptor binding properties. Conclusion Binding specificity of BMP-2 for its three type II receptors BMPR-II, Act-RII and ActR-IIB is encoded on single amino acid level. Exchange of only one or two residues results in BMP-2 variants with a dramatically altered type II receptor specificity profile, possibly allowing construction of BMP-2 variants that address a single type II receptor. The structure-/function studies presented here revealed a new mechanism, in which the energy contribution of a conserved H-bond is modulated by surrounding intramolecular interactions to achieve a switch between low- and high-affinity binding.
Collapse
|
44
|
Shidaifat F, Al-Zuhair I, Bani-Ismail Z. Interaction of testosterone with inhibin alpha and betaA subunits to regulate prostate gland growth. Endocrine 2007; 31:38-43. [PMID: 17709896 DOI: 10.1007/s12020-007-0011-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/01/2022]
Abstract
Testosterone regulation of prostate gland growth has been shown to involve reciprocal interaction with inhibin and activin. This study was therefore conducted to correlate the effect of testosterone on prostate gland proliferation and differentiation with the level of expression of inhibin alpha and betaA subunits. Immature dogs were treated with testosterone for 0, 3, 7, and 14 days and prostate gland growth was assessed by morphological and immunohistological localization of differentiation and proliferation markers. The results showed that testosterone treatment resulted in an initial significant increase in PCNA proliferation index by days 3 and 7, followed by a significant decrease by day 14 post-treatment. Interestingly, the decrease of cell proliferation was associated with structural and biochemical changes characteristic of glandular and stromal differentiation of the prostate gland. These changes include progressive glandular ductal canalization and inter-ductal stroma differentiation which were apparent from a gradual shift from vimentin expression to vimentin and alpha-actin expression. Testosterone also had a differential effect on inhibin alpha and beta subunits. Although testosterone treatment resulted in significant and constant inhibition of alpha subunit mRNA expression, it resulted in a significant increase of betaA mRNA expression by day 3, followed by a decrease by days 7 and 14. These results indicated that testosterone acts first to drive proliferation of undifferentiated prostatic cells and then to maintain a low proliferation turnover of differentiated cells. Because it has been shown that activin is an antagonistic regulator of androgens, the attenuated stimulatory effect of testosterone on cell proliferation by day 14 might be mediated, at least in part, by interplay between testosterone and activin.
Collapse
Affiliation(s)
- Falah Shidaifat
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | | | | |
Collapse
|
45
|
Jung BH, Beck SE, Cabral J, Chau E, Cabrera BL, Fiorino A, Smith EJ, Bocanegra M, Carethers JM. Activin type 2 receptor restoration in MSI-H colon cancer suppresses growth and enhances migration with activin. Gastroenterology 2007; 132:633-44. [PMID: 17258738 PMCID: PMC4154562 DOI: 10.1053/j.gastro.2006.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 11/09/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Colon cancers with high-frequency microsatellite instability (MSI-H) develop frameshift mutations in tumor suppressors as part of their pathogenesis. ACVR2 is mutated at its exon 10 polyadenine tract in >80% of MSI-H colon cancers, coinciding with loss of protein. ACVR2 transmits the growth effects of activin via phosphorylation of SMAD proteins to affect gene transcription. The functional effect of activin in colon cancers has not been studied. We developed and characterized a cell model in which we studied how activin signaling affects growth. METHODS hMLH1 and ACVR2 mutant HCT116 cells were previously stably transferred with chromosome 2 (HCT116+chr2), restoring a single regulated copy of wild-type ACVR2 but not hMLH1. Both HCT116+chr2 and parental HCT116 cells (as well as HEC59 and ACVR2 and hMSH2 complemented HEC59+chr2 cells) were assessed for genetic complementation and biologic function. RESULTS HCT116+chr2 cells and HEC59+chr2 cells, but not ACVR2-mutant HCT116 or HEC59 cells, acquired wild-type ACVR2 as well as expression of ACVR2 wild-type messenger RNA. Complemented ACVR2 protein complexed with ACVR1 with activin treatment, generating nuclear phosphoSMAD2 and activin-specific gene transcription. ACVR2-restored cells showed decreased growth and reduced S phase but increased cellular migration following activin treatment. ACVR2 small interfering RNA reversed these effects in complemented cells. CONCLUSIONS ACVR2-complemented MSI-H colon cancers restore activin-SMAD signaling, decrease growth, and slow their cell cycle following ligand stimulation but show increased cellular migration. Activin is growth suppressive and enhances migration similar to transforming growth factor beta in colon cancer, indicating that abrogation of the effects of activin contribute to the pathogenesis of MSI-H colon cancers.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/drug effects
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Activins/metabolism
- Activins/pharmacology
- Adaptor Proteins, Signal Transducing
- Autocrine Communication
- Carrier Proteins/metabolism
- Cell Movement/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Chromosomes, Human, Pair 2/genetics
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- Humans
- Microsatellite Instability
- MutL Protein Homolog 1
- Mutation
- Nuclear Proteins/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-myc/metabolism
- Signal Transduction/drug effects
- Smad2 Protein/metabolism
- Time Factors
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Barbara H Jung
- Department of Medicine, University of California, San Diego, La Jolla 92093-0063, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gray PC, Shani G, Aung K, Kelber J, Vale W. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol 2006; 26:9268-78. [PMID: 17030617 PMCID: PMC1698529 DOI: 10.1128/mcb.01168-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
47
|
Altuntas CZ, Johnson JM, Tuohy VK. Autoimmune targeted disruption of the pituitary-ovarian axis causes premature ovarian failure. THE JOURNAL OF IMMUNOLOGY 2006; 177:1988-96. [PMID: 16849513 DOI: 10.4049/jimmunol.177.3.1988] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea and high serum levels of follicle-stimulating hormone (FSH). POF causes female infertility and represents a substantial women's health risk affecting 1% of women by age 40. Although ovarian autoimmunity has been associated with POF, the identity of ovarian Ags recognized is unknown. In this study, we show that autoimmune-targeted disruption of the pituitary-ovarian axis leads to POF. Immunization of SWXJ female mice with the p215-234 peptide derived from mouse inhibin-alpha activates CD4(+) T cells and induces experimental autoimmune oophoritis with a unique biphasic phenotype characterized by an early stage of enhanced fertility followed by a delayed stage of POF. Affected mice show high serum levels of inhibin-alpha-neutralizing Abs that prevent inhibin-mediated down-regulation of activin-induced pituitary FSH release. The loss of activin/FSH down-regulation leads to prolonged metestrus-diestrus, superovulation, increased numbers of mature follicles, increased offspring, accelerated depletion of primordial follicles, and ultimately premature infertility. Thus, inhibin-alpha-targeted experimental autoimmune oophoritis is initiated by CD4(+) Th1 T cells that stimulate B cells to produce inhibin-alpha-neutralizing Abs directly capable of mediating POF and transferring disease into naive recipients. Our inhibin-alpha autoimmune model of POF shows how premature infertility may develop in the context of elevated FSH levels thereby closely mimicking the hallmark features of human POF.
Collapse
Affiliation(s)
- Cengiz Z Altuntas
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
48
|
Allendorph GP, Vale WW, Choe S. Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 2006; 103:7643-8. [PMID: 16672363 PMCID: PMC1456805 DOI: 10.1073/pnas.0602558103] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the complete signaling complex formed between bone morphogenetic protein 2 (BMP-2) and the extracellular domains (ECDs) of its type I receptor [bone morphogenetic protein receptor type Ia (BMPR-Ia)-ECD] and its type II receptor [activin receptor type II (ActRII)-ECD] shows two fundamental structural constraints for receptor assembly. First, the homodimeric BMP-2 ligand assembles two pairs of each receptor symmetrically, where each of the receptor ECDs does not make physical contact. Therefore, conformational communication between receptor ECDs, if any, should be propagated through the central ligand. Second, the type I and II receptor interfaces of the complex, when compared with those of binary complexes such as BMP-2/BMPR Ia-ECD, BMP-7/ActRII-ECD, and activin/ActRIIb-ECD, respectively, show there are common sets of positions repeatedly used by both ligands and receptors. Therefore, specificity-determining amino acid differences at the receptor interfaces should also account for the disparity in affinity of individual receptors for different ligand subunits. We find that a specific mutation to BMP-2 increases its affinity to ActRII-ECD by 5-fold. These results together establish that the specific signaling output is largely determined by two variables, the ligand-receptor pair identity and the mode of cooperative assembly of relevant receptors governed by the ligand flexibility in a membrane-restricted manner.
Collapse
Affiliation(s)
| | - Wylie W. Vale
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037
| | | |
Collapse
|
49
|
Wiater E, Harrison CA, Lewis KA, Gray PC, Vale WW. Identification of distinct inhibin and transforming growth factor beta-binding sites on betaglycan: functional separation of betaglycan co-receptor actions. J Biol Chem 2006; 281:17011-17022. [PMID: 16621788 DOI: 10.1074/jbc.m601459200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Betaglycan is a co-receptor that mediates signaling by transforming growth factor beta (TGFbeta) superfamily members, including the distinct and often opposed actions of TGFbetas and inhibins. Loss of betaglycan expression, or abrogation of betaglycan function, is implicated in several human and animal diseases, although both betaglycan actions and the ligands involved in these disease states remain unclear. Here we identify a domain spanning amino acids 591-700 of the betaglycan extracellular domain as the only inhibin-binding region in betaglycan. This binding site is within the betaglycan ZP domain, but inhibin binding is not integral to the ZP motif of other proteins. We show that the inhibin and TGFbeta-binding residues of this domain overlap and identify individual amino acids essential for binding of each ligand. Mutation of Val614 to Tyr abolishes both inhibin and TGFbeta binding to this domain. Full-length betaglycan V614Y, and other mutations, retain TGFbeta binding activity via a distinct site, but are unable to bind inhibin-A. These betaglycan mutants fail to mediate inhibin antagonism of activin signaling but can present TGFbeta to TbetaRII. Separating the co-receptor actions of betaglycan toward inhibin and TGFbeta will allow the clarification of the role of betaglycan in disease states such as renal cell carcinoma and endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Ezra Wiater
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Craig A Harrison
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037; Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Kathy A Lewis
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Wylie W Vale
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California 92037.
| |
Collapse
|
50
|
De Crescenzo G, Hinck CS, Shu Z, Zúñiga J, Yang J, Tang Y, Baardsnes J, Mendoza V, Sun L, López-Casillas F, O'Connor-McCourt M, Hinck AP. Three key residues underlie the differential affinity of the TGFbeta isoforms for the TGFbeta type II receptor. J Mol Biol 2005; 355:47-62. [PMID: 16300789 DOI: 10.1016/j.jmb.2005.10.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 08/16/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
TGFbeta1, beta2, and beta3 are 25kDa homodimeric polypeptides that play crucial non-overlapping roles in development, tumor suppression, and wound healing. They exhibit 70-82% sequence identity and transduce their signals by binding and bringing together the TGFbeta type I and type II receptors, TbetaRI and TbetaRII. TGFbeta2 differs from the other isoforms in that it binds TbetaRII weakly and is dependent upon the co-receptor betaglycan for function. To explore the physicochemical basis underlying these differences, we generated a series of single amino acid TbetaRII variants based on the crystal structure of the TbetaRII:TGFbeta3 complex and examined these in terms of their TGFbeta isoform binding affinity and their equilibrium stability. The results showed that TbetaRII Ile53 and Glu119, which contact TGFbeta3 Val92 and Arg25, respectively, together with TbetaRII Asp32, Glu55, and Glu75, which contact TGFbeta3 Arg94, each contribute significantly, between 1 kcal mol(-1) to 1.5 kcal mol(-1), to ligand binding affinities. These contacts likely underlie the estimated 4.1 kcal mol(-1) lower affinity with which TbetaRII binds TGFbeta2 as these three ligand residues are unchanged in TGFbeta1 but are conservatively substituted in TGFbeta2 (Lys25, Ile92, and Lys94). To test this hypothesis, a TGFbeta2 variant was generated in which these three residues were changed to those in TGFbetas 1 and 3. This variant exhibited receptor binding affinities comparable to those of TGFbetas 1 and 3. Together, these results show that these three residues underlie the lowered affinity of TGFbeta2 for TbetaRII and that all isoforms likely induce assembly of the TGFbeta signaling receptors in the same overall manner.
Collapse
Affiliation(s)
- Gregory De Crescenzo
- Biotechnology Research Institute, National Research Council, Montreal, Que. Canada H4P2R2
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|