1
|
Rodríguez-Mortera R, Torres P, Fernàndez-Bernal A, Berdún R, Ramírez-Núñez O, Martín-Garí M, Serrano JC, He JC, Prat J, Pamplona R, Uribarri J, Portero-Otin M. Non-enzymatic modification of aminophospholipids induces angiogenesis, inflammation, and insulin signaling dysregulation in human renal glomerular endothelial cells in vitro. Free Radic Biol Med 2025; 235:15-24. [PMID: 40268103 DOI: 10.1016/j.freeradbiomed.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
AIMS/HYPOTHESIS Advanced glycation end-products (AGEs) formation in proteins are involved in healthy aging and a variety of diseases including Alzheimer's disease, atherosclerosis, and diabetic complications. However, the biological effects of the non-enzymatic modification of aminophospholipids (lipid-AGEs) at cellular level are poorly understood. This study aimed to investigate the effects of lipid-AGEs on angiogenesis, inflammation, insulin signaling, and mitochondrial function in human renal glomerular endothelial cells (HRGEC), exploring their potential role in the pathophysiology of diabetic nephropathy (DN). METHODS HRGEC cells were exposed to non-enzymatically modified phosphatidylethanolamine (PE) by AGEs (lipid-AGEs), non-modified PE (nmPE) (aminophospholipid without modification), employed as a negative control, and lipopolysaccharides (LPS) as a positive control. Angiogenesis was assessed through vascular network formation metrics, including capillary area, junction density, and endpoints, under different extracellular matrices. Gene expression of inflammatory and angiogenic markers was quantified by RT-qPCR. Insulin signaling components, including IRS1 and AKT phosphorylation, were evaluated by immunoblotting. Mitochondrial function was assessed using high-resolution respirometry to determine ATP production rates from glycolysis and oxidative phosphorylation. RESULTS Lipid-AGEs induced dose-, time-, and matrix-dependent angiogenesis, with effects comparable to LPS, particularly in Engelbreth-Holm-Swarm extracellular matrix (ECM) (capillary area increase: 25 %, p < 0.05). Lipid-AGEs significantly upregulated the expression of inflammatory genes IL8 and NFKB (p < 0.05), and the angiogenesis-related markers TGFB1 and ANGPT2 (p < 0.05). Insulin signaling was disrupted, as lipid-AGEs enhanced inhibitory phosphorylation of IRS1 (Ser-1101, 1.8-fold increase, p < 0.01) and modulated AKT (Ser-473) and p42/p44 ERK activation. At lower doses, lipid-AGEs reduced eNOS phosphorylation (p < 0.05) impairing insulin responsiveness. High-resolution respirometry revealed that lipid-AGEs reduced basal oxygen consumption rates (OCR) by 20 % (p < 0.05), with no significant changes in glycolytic ATP production. CONCLUSION Lipid-AGEs induce angiogenesis, inflammation, and insulin signaling disruption in HRGEC, contributing to endothelial dysfunction. These findings underscore the potential role of lipid-AGEs in age-related decline of renal function, as well as the pathogenic potential in DN highlighting their relevance as therapeutic targets for mitigating vascular and metabolic complications in diabetes.
Collapse
Affiliation(s)
- Reyna Rodríguez-Mortera
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Pascual Torres
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Omar Ramírez-Núñez
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - José Ce Serrano
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - John C He
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Prat
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Jaime Uribarri
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain.
| |
Collapse
|
2
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
3
|
Zhao Y, Yang M, Liu Y, Wan Z, Chen M, He Q, Liao Y, Shuai P, Shi J, Guo S. Pathogenesis of cardiovascular diseases: effects of mitochondrial CF6 on endothelial cell function. Mol Cell Biochem 2025; 480:841-853. [PMID: 38985252 DOI: 10.1007/s11010-024-05065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiovascular disease (CVD) stands as a predominant global cause of morbidity and mortality, necessitating effective and cost-efficient therapies for cardiovascular risk reduction. Mitochondrial coupling factor 6 (CF6), identified as a novel proatherogenic peptide, emerges as a significant risk factor in endothelial dysfunction development, correlating with CVD severity. CF6 expression can be heightened by CVD risk factors like mechanical force, hypoxia, or high glucose stimuli through the NF-κB pathway. Many studies have explored the CF6-CVD relationship, revealing elevated plasma CF6 levels in essential hypertension, atherosclerotic cardiovascular disease (ASCVD), stroke, and preeclampsia patients. CF6 acts as a vasoactive and proatherogenic peptide in CVD, inducing intracellular acidosis in vascular endothelial cells, inhibiting nitric oxide (NO) and prostacyclin generation, increasing blood pressure, and producing proatherogenic molecules, significantly contributing to CVD development. CF6 induces an imbalance in endothelium-dependent factors, including NO, prostacyclin, and asymmetric dimethylarginine (ADMA), promoting vasoconstriction, vascular remodeling, thrombosis, and insulin resistance, possibly via C-src Ca2+ and PRMT-1/DDAH-2-ADMA-NO pathways. This review offers a comprehensive exploration of CF6 in the context of CVD, providing mechanistic insights into its role in processes impacting CVD, with a focus on CF6 functions, intracellular signaling, and regulatory mechanisms in vascular endothelial cells.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Youren Liu
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhengwei Wan
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mengchun Chen
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiumei He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Shuai
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Shujin Guo
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Schleh MW, Ryan BJ, Ahn C, Ludzki AC, Van Pelt DW, Pitchford LM, Chugh OK, Luker AT, Luker KE, Samovski D, Abumrad NA, Burant CF, Horowitz JF. Impaired suppression of fatty acid release by insulin is a strong predictor of reduced whole-body insulin-mediated glucose uptake and skeletal muscle insulin receptor activation. Acta Physiol (Oxf) 2025; 241:e14249. [PMID: 39487600 DOI: 10.1111/apha.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
AIM To examine factors underlying why most, but not all, adults with obesity exhibit impaired insulin-mediated glucose uptake, we compared: (1) adipose tissue fatty acid (FA) release, (2) skeletal muscle lipid droplet (LD) characteristics, and (3) insulin signalling events, in skeletal muscle of adults with obesity with relatively high versus low insulin-mediated glucose uptake. METHODS Seventeen adults with obesity (BMI: 36 ± 3 kg/m2) completed a 2 h hyperinsulinemic-euglycemic clamp with stable isotope tracer infusions to measure glucose rate of disappearance (glucose Rd) and FA rate of appearance (FA Ra). Skeletal muscle biopsies were collected at baseline and 30 min into the insulin infusion. Participants were stratified into HIGH (n = 7) and LOW (n = 10) insulin sensitivity cohorts by their glucose Rd during the hyperinsulinemic clamp (LOW< 400; HIGH >550 nmol/kgFFM/min/[μU/mL]). RESULTS Insulin-mediated suppression of FA Ra was lower in LOW compared with HIGH (p < 0.01). In skeletal muscle, total intramyocellular lipid content did not differ between cohorts. However, the size of LDs in the subsarcolemmal region (SS) of type II muscle fibres was larger in LOW compared with HIGH (p = 0.01). Additionally, insulin receptor-β (IRβ) interactions with regulatory proteins CD36 and Fyn were lower in LOW versus HIGH (p < 0.01), which aligned with attenuated insulin-mediated Tyr phosphorylation of IRβ and downstream insulin-signalling proteins in LOW. CONCLUSION Collectively, reduced ability for insulin to suppress FA mobilization, with accompanying modifications in intramyocellular LD size and distribution, and diminished IRβ interaction with key regulatory proteins may be key contributors to impaired insulin-mediated glucose uptake commonly found in adults with obesity.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Dmitri Samovski
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nada A Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Den Hartogh DJ, MacPherson REK, Tsiani E. Muscle cell palmitate-induced insulin resistance, JNK, IKK/NF-κB, and STAT3 activation are attenuated by carnosic and rosmarinic acid. Appl Physiol Nutr Metab 2025; 50:1-14. [PMID: 39805098 DOI: 10.1139/apnm-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids, often observed in obesity, lead to impaired insulin action, and promote the development of insulin resistance and type 2 diabetes mellitus. c-Jun N-terminal kinase (JNK), inhibitor of kappa B (IκB) kinase (IKK)-nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3) are known to be involved in skeletal muscle insulin resistance. We reported previously that carnosic acid (CA) and rosmarinic acid (RA) attenuated the palmitate-induced skeletal muscle insulin resistance, an effect that was associated with increased AMPK activation and reduced mammalian target of rapamycin-p70S6K signaling. In the present study, we examined the effects of CA and RA on JNK, IKK-NF-κB, and STAT3. Exposure of cells to palmitate increased the phosphorylation/activation of JNK, IKKα/β, IκBα, NF-κBp65, and STAT3. Importantly, CA and RA attenuated the deleterious effects of palmitate. Our data indicate that CA and RA have the potential to counteract the palmitate-induced skeletal muscle cell insulin resistance by modulating JNK, IKK-NF-κB, and STAT3 signaling.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Roszczyc-Owsiejczuk K, Imierska M, Sokołowska E, Kuźmicki M, Pogodzińska K, Błachnio-Zabielska A, Zabielski P. shRNA-mediated down-regulation of Acsl1 reverses skeletal muscle insulin resistance in obese C57BL6/J mice. PLoS One 2024; 19:e0307802. [PMID: 39178212 PMCID: PMC11343424 DOI: 10.1371/journal.pone.0307802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/12/2024] [Indexed: 08/25/2024] Open
Abstract
Prolonged consumption of diet rich in fats is regarded as the major factor leading to the insulin resistance (IR) and type 2 diabetes (T2D). Emerging evidence link excessive accumulation of bioactive lipids such as diacylglycerol (DAG) and ceramide (Cer), with impairment of insulin signaling in skeletal muscle. Until recently, little has been known about the involvement of long-chain acyl-CoAs synthetases in the above mechanism. To examine possible role of long-chain acyl-coenzyme A synthetase 1 (Acsl1) (a major muscular ACSL isoform) in mediating HFD-induced IR we locally silenced Acsl1 in gastrocnemius of high-fat diet (HFD)-fed C57BL/6J mice through electroporation-delivered shRNA and compared it to non-silenced tissue within the same animal. Acsl1 down-regulation decreased the content of muscular long-chain acyl-CoA (LCACoA) and both the Cer (C18:1-Cer and C24:1-Cer) and DAG (C16:0/18:0-DAG, C16:0/18:2-DAG, C18:0/18:0-DAG) and simultaneously improved insulin sensitivity and glucose uptake as compared with non-silenced tissue. Acsl1 down-regulation decreased expression of mitochondrial β-oxidation enzymes, and the content of both the short-chain acylcarnitine (SCA-Car) and short-chain acyl-CoA (SCACoA) in muscle, pointing towards reduction of mitochondrial FA oxidation. The results indicate, that beneficial effects of Acsl1 partial ablation on muscular insulin sensitivity are connected with inhibition of Cer and DAG accumulation, and outweigh detrimental impact of decreased mitochondrial fatty acids metabolism in skeletal muscle of obese HFD-fed mice.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuźmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Harris DD, Sabe SA, Broadwin M, Stone C, Bellam K, Malhotra A, Abid MR, Sellke FW. Dipeptidyl peptidase 4 inhibitor sitagliptin decreases myocardial fibrosis and modulates myocardial insulin signaling in a swine model of chronic myocardial ischemia. PLoS One 2024; 19:e0307922. [PMID: 39074126 PMCID: PMC11285952 DOI: 10.1371/journal.pone.0307922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Although both clinical data and animal models suggest cardiovascular benefits following administration of Dipeptidyl Peptidase 4 (DPP-4) inhibitors, the underlying mechanisms remain unclear. We therefore sought to evaluate the effect of the DPP-4 inhibitor sitagliptin on myocardial fibrosis, and insulin signaling in chronic myocardial ischemia using a swine model. An ameroid constrictor placement on the left coronary circumflex artery of thirteen Yorkshire swine to model chronic myocardial ischemia. After two weeks of recovery, swine were assigned to one of two groups: control (CON, n = 8), or sitagliptin 100mg daily (SIT, n = 5). After 5 weeks of treatment, the swine underwent terminal harvest with collection of myocardial tissue. Fibrosis was quantified using Masson's trichrome. Protein expression was quantified by Immunoblotting. Trichrome stain demonstrated a significant decrease in perivascular and interstitial fibrosis in the SIT group relative to CON (all p<0.05). Immunoblot showed a reduction in Jak2, the pSTAT3 to STAT 3 Ratio, pSMAD 2/3, and SMAD 2/3, and an increase in STAT 3 in the SIT group relative to CON (all p<0.05). SIT treatment was associated with increased expression of insulin receptor one and decreased expression of makers for insulin resistance, including phospho-PKC- alpha, RBP-4, SIRT1, and PI3K (p<0.05). Sitagliptin results in a reduction in perivascular and interstitial fibrosis and increased insulin sensitivity in chronically ischemic swine myocardium. This likely contributes to the improved cardiovascular outcomes seen with DPP-4 inhibitors.
Collapse
Affiliation(s)
- Dwight D. Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Chris Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Krishna Bellam
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Akshay Malhotra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States of America
| |
Collapse
|
9
|
He R, Chen Y. The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders. Curr Med Sci 2024; 44:463-474. [PMID: 38900388 DOI: 10.1007/s11596-024-2902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases, such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles (EVs) that play a role in the regulation of whole-body metabolism. Exosomes are a subtype of EVs, and accumulating evidence indicates that adipose tissue exosomes (AT Exos) mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms. However, the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated. In this review, we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders. Moreover, we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.
Collapse
Affiliation(s)
- Rui He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory of Endocrinology & Metabolism, Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Endocrinology & Metabolism, Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China.
| |
Collapse
|
10
|
Verma N, Mittal M, Ali Mahdi A, Awasthi V, Kumar P, Goel A, Banik SP, Chakraborty S, Rungta M, Bagchi M, Bagchi D. Clinical Evaluation of a Novel, Patented Green Coffee Bean Extract (GCB70®), Enriched in 70% Chlorogenic Acid, in Overweight Individuals. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:315-325. [PMID: 38227783 DOI: 10.1080/27697061.2023.2284994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVE Obesity and overweight are challenging health problems of the millennium that lead to diabetes, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and atherosclerosis. Green coffee bean exhibited significant promise in healthy weight management, potentiating glucose-insulin sensitization and supporting liver health. The safety and efficacy of a novel, patented water-soluble green coffee bean extract (GCB70® enriched in 70% total chlorogenic acid and <1% caffeine) was investigated in 105 participants for 12 consecutive weeks. An institutional review board and Drugs Controller General (India) (DCGI) approvals were obtained, and the study was registered at ClinicalTrials.gov. METHOD Body weight, body mass index (BMI), waist circumference, lipid profile, plasma leptin, glycosylated hemoglobin (HbA1c), and total blood chemistry were assessed over a period of 12 weeks of treatment. Safety was affirmed. RESULTS GCB70 (500 mg BID) supplementation significantly reduced body weight (approximately 6%; p = 0.000**) in approximately 97% of the study population. About a 5.65% statistically significant reduction (p = 0.000**) in BMI was observed in 96% of the study volunteers. Waist circumference was significantly reduced by 6.77% and 6.62% in 98% of the male and female participants, respectively. Plasma leptin levels decreased by 13.6% in 99% of the study population as compared to the baseline value. Upon completion of 12 weeks' treatment, fasting glucose levels decreased by 13.05% (p = 0.000**) in 79% of the study population. There was a statistically significant decrease in HbA1c levels in both male and female participants (p = 0.000**), while 86.7% of the study participants showed a statistically significant decrease in thyroid-stimulating hormone (TSH) levels (p = 0.000**). The mean decrease in TSH levels on completion of the treatment was 14.07% in the study population as compared to baseline levels. Total blood chemistry analysis exhibited broad-spectrum safety. CONCLUSIONS This investigation demonstrated that GCB70 is safe and efficacious in healthy weight management.
Collapse
Affiliation(s)
- Narsingh Verma
- Department of Physiology, and Department of Transfusion Medicine, King George's Medical University (KGMU), Lucknow, India
| | - Madhukar Mittal
- Department of Endocrinology, King George's Medical University (KGMU), Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Vandana Awasthi
- Department of Physiology, and Department of Transfusion Medicine, King George's Medical University (KGMU), Lucknow, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, New York, USA
| | - Mehul Rungta
- R&D Department, Chemical Resources (CHERESO), Panchkula, Haryana, India
| | - Manashi Bagchi
- Department of R&D, Dr. Herbs LLC, Concord, California, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, New York, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, New York, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
11
|
Zhao Z, Xiang X, Chen Q, Du J, Zhu S, Xu X, Shen Y, Wen S, Li Y, Xu W, Mai K, Ai Q. Sterol Regulatory Element Binding Protein 1: A Mediator for High-Fat Diet-Induced Hepatic Gluconeogenesis and Glucose Intolerance in Fish. J Nutr 2024; 154:1505-1516. [PMID: 38460786 DOI: 10.1016/j.tjnut.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Shunlang Wen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Yang W, Jiang W, Liao W, Yan H, Ai W, Pan Q, Brashear WA, Xu Y, He L, Guo S. An estrogen receptor α-derived peptide improves glucose homeostasis during obesity. Nat Commun 2024; 15:3410. [PMID: 38649684 PMCID: PMC11035554 DOI: 10.1038/s41467-024-47687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Estrogen receptor α (ERα) plays a crucial role in regulating glucose and energy homeostasis during type 2 diabetes mellitus (T2DM). However, the underlying mechanisms remain incompletely understood. Here we find a ligand-independent effect of ERα on the regulation of glucose homeostasis. Deficiency of ERα in the liver impairs glucose homeostasis in male, female, and ovariectomized (OVX) female mice. Mechanistic studies reveal that ERα promotes hepatic insulin sensitivity by suppressing ubiquitination-induced IRS1 degradation. The ERα 1-280 domain mediates the ligand-independent effect of ERα on insulin sensitivity. Furthermore, we identify a peptide based on ERα 1-280 domain and find that ERα-derived peptide increases IRS1 stability and enhances insulin sensitivity. Importantly, administration of ERα-derived peptide into obese mice significantly improves glucose homeostasis and serum lipid profiles. These findings pave the way for the therapeutic intervention of T2DM by targeting the ligand-independent effect of ERα and indicate that ERα-derived peptide is a potential insulin sensitizer for the treatment of T2DM.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Wang Liao
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Hui Yan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Wesley A Brashear
- High Performance Research Computing, Texas A&M University, College Station, TX, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Zhang C, Steadman M, Santos HP, Shaikh SR, Xavier RM. GPAT1 Activity and Abundant Palmitic Acid Impair Insulin Suppression of Hepatic Glucose Production in Primary Mouse Hepatocytes. J Nutr 2024; 154:1109-1118. [PMID: 38354952 PMCID: PMC11007742 DOI: 10.1016/j.tjnut.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glycerol-3-phosphate acyltransferase (GPAT) activity is correlated with obesity and insulin resistance in mice and humans. However, insulin resistance exists in people with normal body weight, and individuals with obesity may be metabolically healthy, implying the presence of complex pathophysiologic mechanisms underpinning insulin resistance. OBJECTIVE We asked what conditions related to GPAT1 must be met concurrently for hepatic insulin resistance to occur. METHODS Mouse hepatocytes were overexpressed with GPATs via adenoviral infection or exposed to high or low concentrations of glucose. Glucose production by the cells and phosphatidic acid (PA) content in the cells were assayed, GPAT activity was measured, relative messenger RNA expressions of sterol-regulatory element-binding protein 1c (SREBP1c), carbohydrate response element-binding protein (ChREBP), and GPAT1 were analyzed, and insulin signaling transduction was examined. RESULTS Overexpressing GPAT1 in mouse hepatocytes impaired insulin's suppression of glucose production, together with an increase in both N-ethylmaleimide-resistant GPAT activity and the content of di-16:0 PA. Akt-mediated insulin signaling was inhibited in hepatocytes that overexpressed GPAT1. When the cells were exposed to high-glucose concentrations, insulin suppression of glucose production was impaired, and adding palmitic acid exacerbated this impairment. High-glucose exposure increased the expression of SREBP1c, ChREBP, and GPAT1 by ∼2-, 5-, and 5.7-fold, respectively. The addition of 200 mM palmitic acid or linoleic acid to the culture media did not change the upregulation of expression of these genes by high glucose. High-glucose exposure increased di-16:0 PA content in the cells, and adding palmitic acid further increased di-16:0 PA content. The effect was specific to palmitic acid because linoleic acid did not show these effects. CONCLUSION These data demonstrate that high-GPAT1 activity, whether induced by glucose exposure or acquired by transfection, and abundant palmitic acid can impair insulin's ability to suppress hepatic glucose production in primary mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Mathew Steadman
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hudson P Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Saame R Shaikh
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rose Mary Xavier
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
14
|
Bai G, Chen J, Liu Y, Chen J, Yan H, You J, Zou T. Neonatal resveratrol administration promotes skeletal muscle growth and insulin sensitivity in intrauterine growth-retarded suckling piglets associated with activation of FGF21-AMPKα pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3719-3728. [PMID: 38160249 DOI: 10.1002/jsfa.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyi Bai
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyong Chen
- Medical College, Huanghe Science and Technology University, Zhengzhou, China
| | - Yue Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Otani T, Mizokami A, Takeuchi H, Inai T, Hirata M. The role of adhesion molecules in osteocalcin-induced effects on glucose and lipid metabolism in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119701. [PMID: 38417588 DOI: 10.1016/j.bbamcr.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy. Additionally, GluOC upregulated the expression of integrin αVβ3 and activation of focal adhesion kinase (FAK) and prevented insulin receptor substrate 1 (IRS1) degradation by inhibiting the ubiquitin-proteasome system via the FAK-PLC-PKC axis, which activated IRS1-Akt-mediated glucose transporter 4 (GLUT4) transport. Furthermore, we showed that GluOC elevated the expression of the insulin-independent glucose transporters GLUT1 and GLUT8, which facilitated insulin stimulation-independent glucose transport. The GluOC-induced activation of integrin αVβ3 signaling promoted microtubule assembly, which improved glucose and lipid metabolism via its involvement in intracellular vesicular transport. GluOC treatment also suppressed collagen type 1 formation, which might prevent adipose tissue fibrosis in obese individuals. Overall, our results imply that GluOC promotes glucose and lipid metabolism via ACAM, integrin αVβ3, and GLUT1 and 8 expression, directly affecting adipocytes.
Collapse
Affiliation(s)
- Takahito Otani
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| | - Akiko Mizokami
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tetsuichiro Inai
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| |
Collapse
|
16
|
Girona J, Soler O, Samino S, Junza A, Martínez-Micaelo N, García-Altares M, Ràfols P, Esteban Y, Yanes O, Correig X, Masana L, Rodríguez-Calvo R. Lipidomics Reveals Myocardial Lipid Composition in a Murine Model of Insulin Resistance Induced by a High-Fat Diet. Int J Mol Sci 2024; 25:2702. [PMID: 38473949 DOI: 10.3390/ijms25052702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Ectopic fat accumulation in non-adipose tissues is closely related to diabetes-related myocardial dysfunction. Nevertheless, the complete picture of the lipid metabolites involved in the metabolic-related myocardial alterations is not fully characterized. The aim of this study was to characterize the specific lipid profile in hearts in an animal model of obesity/insulin resistance induced by a high-fat diet (HFD). The cardiac lipidome profiles were assessed via liquid chromatography-mass spectrometry (LC-MS)/MS-MS and laser desorption/ionization-mass spectrometry (LDI-MS) tissue imaging in hearts from C57BL/6J mice fed with an HFD or standard-diet (STD) for 12 weeks. Targeted lipidome analysis identified a total of 63 lipids (i.e., 48 triacylglycerols (TG), 5 diacylglycerols (DG), 1 sphingomyelin (SM), 3 phosphatidylcholines (PC), 1 DihydroPC, and 5 carnitines) modified in hearts from HFD-fed mice compared to animals fed with STD. Whereas most of the TG were up-regulated in hearts from animals fed with an HFD, most of the carnitines were down-regulated, thereby suggesting a reduction in the mitochondrial β-oxidation. Roughly 30% of the identified metabolites were oxidated, pointing to an increase in lipid peroxidation. Cardiac lipidome was associated with a specific biochemical profile and a specific liver TG pattern. Overall, our study reveals a specific cardiac lipid fingerprint associated with metabolic alterations induced by HFD.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oria Soler
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Sara Samino
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Alexandra Junza
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Neus Martínez-Micaelo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - María García-Altares
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Pere Ràfols
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Xavier Correig
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, 43002 Tarragona, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Chen L, Taniguchi H, Bagnicka E. Microproteomic-Based Analysis of the Goat Milk Protein Synthesis Network and Casein Production Evaluation. Foods 2024; 13:619. [PMID: 38397596 PMCID: PMC10887518 DOI: 10.3390/foods13040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Goat milk has been consumed by humans since ancient times and is highly nutritious. Its quality is mainly determined by its casein content. Milk protein synthesis is controlled by a complex network with many signal pathways. Therefore, the aim of our study is to clearly depict the signal pathways involved in milk protein synthesis in goat mammary epithelial cells (GMECs) using state-of-the-art microproteomic techniques and to identify the key genes involved in the signal pathway. The microproteomic analysis identified more than 2253 proteins, with 323 pathways annotated from the identified proteins. Knockdown of IRS1 expression significantly influenced goat casein composition (α, β, and κ); therefore, this study also examined the insulin receptor substrate 1 (IRS1) gene more closely. A total of 12 differential expression proteins (DEPs) were characterized as upregulated or downregulated in the IRS1-silenced sample compared to the negative control. The enrichment and signal pathways of these DEPs in GMECs were identified using GO annotation and KEGG, as well as KOG analysis. Our findings expand our understanding of the functional genes involved in milk protein synthesis in goats, paving the way for new approaches for modifying casein content for the dairy goat industry and milk product development.
Collapse
Affiliation(s)
- Li Chen
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
18
|
Szablewski L. Changes in Cells Associated with Insulin Resistance. Int J Mol Sci 2024; 25:2397. [PMID: 38397072 PMCID: PMC10889819 DOI: 10.3390/ijms25042397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Insulin is a polypeptide hormone synthesized and secreted by pancreatic β-cells. It plays an important role as a metabolic hormone. Insulin influences the metabolism of glucose, regulating plasma glucose levels and stimulating glucose storage in organs such as the liver, muscles and adipose tissue. It is involved in fat metabolism, increasing the storage of triglycerides and decreasing lipolysis. Ketone body metabolism also depends on insulin action, as insulin reduces ketone body concentrations and influences protein metabolism. It increases nitrogen retention, facilitates the transport of amino acids into cells and increases the synthesis of proteins. Insulin also inhibits protein breakdown and is involved in cellular growth and proliferation. On the other hand, defects in the intracellular signaling pathways of insulin may cause several disturbances in human metabolism, resulting in several chronic diseases. Insulin resistance, also known as impaired insulin sensitivity, is due to the decreased reaction of insulin signaling for glucose levels, seen when glucose use in response to an adequate concentration of insulin is impaired. Insulin resistance may cause, for example, increased plasma insulin levels. That state, called hyperinsulinemia, impairs metabolic processes and is observed in patients with type 2 diabetes mellitus and obesity. Hyperinsulinemia may increase the risk of initiation, progression and metastasis of several cancers and may cause poor cancer outcomes. Insulin resistance is a health problem worldwide; therefore, mechanisms of insulin resistance, causes and types of insulin resistance and strategies against insulin resistance are described in this review. Attention is also paid to factors that are associated with the development of insulin resistance, the main and characteristic symptoms of particular syndromes, plus other aspects of severe insulin resistance. This review mainly focuses on the description and analysis of changes in cells due to insulin resistance.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Klimczak S, Śliwińska A. Epigenetic regulation of inflammation in insulin resistance. Semin Cell Dev Biol 2024; 154:185-192. [PMID: 36109307 DOI: 10.1016/j.semcdb.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
Abstract
Epigenetics focuses on the study of changes in gene expression based on modifications that do not interfere with the DNA sequence, such as DNA methylation, post-translational histone modification, and non-coding RNA. Epigenetic changes regulate the expression of many genes, including inflammatory ones. Chronic inflammation is often accompanied by insulin resistance (IR), which is characteristic of inter alia type 2 diabetes. Recently, it has been reported that altered epigenetic signature in the promoter regions of inflammatory genes may contribute to the development of IR. Therefore, the aim of this review is to present the current state of knowledge regarding the epigenetic regulation of inflammation in IR. It includes original papers published from 2014 to 2022. It appears that hypomethylation of the SOCS3 gene increases the risk of IR, while the alteration of H3K4me in the NF-kB promoter promotes changes in inflammatory phenotype. Finally, in hyperglycemic states associated with IR, altered levels of H3K4/K9m3 and H3K9/K14ac result in increased expression of the inflammatory cytokine IL-6. In addition, numerous miRNAs have been identified that may become a target in the fight against diseases related to inflammation and IR. Future studies should examine the epigenetic modifications of IR inflammatory markers associated with environmental factors.
Collapse
Affiliation(s)
- S Klimczak
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; AllerGen, Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland.
| | - A Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
20
|
Peifer-Weiß L, Al-Hasani H, Chadt A. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle. Int J Mol Sci 2024; 25:1910. [PMID: 38339185 PMCID: PMC10855711 DOI: 10.3390/ijms25031910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.
Collapse
Affiliation(s)
- Leon Peifer-Weiß
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf, Germany; (L.P.-W.); (H.A.-H.)
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, 85764 Neuherberg, Germany
| |
Collapse
|
21
|
Shah DS, McNeilly AD, McCrimmon RJ, Hundal HS. The C5aR1 complement receptor: A novel immunomodulator of insulin action in skeletal muscle. Cell Signal 2024; 113:110944. [PMID: 37890688 DOI: 10.1016/j.cellsig.2023.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.
Collapse
Affiliation(s)
- Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alison D McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
22
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
23
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
24
|
Ahmed M, Biswas T, Mondal S. The strategic involvement of IRS in cancer progression. Biochem Biophys Res Commun 2023; 680:141-160. [PMID: 37738904 DOI: 10.1016/j.bbrc.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Insulin Receptor Substrate (IRS), an intracellular molecule devoid of an intrinsic kinase activity, is activated upon binding to IR which thereby works as a scaffold, organizing all signaling complexes and initiating the signaling process downstream. The level of IRS proteins and their stability in the cell is mostly maintained through the phosphorylation status of their tyrosine and serine residues. IRS is positively regulated by phosphorylation of its Tyr residues whereas a Ser residue phosphorylation attenuates it, although there exist some exceptions as well. Other post-translational modifications like O-linked glycosylation, N-linked glycosylation and acetylation also play a prominent role in IRS regulation. Since the discovery of the Warburg effect, people have been curious to find out all possible signaling networks and molecules that could lead to cancer and no doubt, the insulin signaling pathway is identified as one such pathway, which is highly deregulated in cancers. Eminent studies reveal that IRS is a pertinent regulator of cancer and is highly overexpressed in the five most commonly occurring cancers namely- Prostate, Ovarian, Breast, Colon and Lung cancers. IRS1 and IRS2 family members are actively involved in the progression, invasion and metastasis of these cancers. Recently, less studied IRS4 has also emerged as a contributor in ovarian, breast, colorectal and lung cancer, but no such studies related to IRS4 are found in Prostate cancer. The involvement of other IRS family members in cancer is still undiscovered and so paves the way for further exploration. This review is a time-lapse study of IRSs in the context of cancer done over the past two decades and it highlights all the major discoveries made till date, in these cancers from the perspective of IRS.
Collapse
Affiliation(s)
- Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
25
|
Wang J, Casimiro-Garcia A, Johnson BG, Duffen J, Cain M, Savary L, Wang S, Nambiar P, Lech M, Zhao S, Xi L, Zhan Y, Olson J, Stejskal JA, Lin H, Zhang B, Martinez RV, Masek-Hammerman K, Schlerman FJ, Dower K. A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes. Sci Rep 2023; 13:16919. [PMID: 37805649 PMCID: PMC10560236 DOI: 10.1038/s41598-023-43759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCβ, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/β inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/β inhibition to T2D and obesity in humans is warranted.
Collapse
Affiliation(s)
- Ju Wang
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| | | | - Bryce G Johnson
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Duffen
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michael Cain
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Mediar Therapeutics, Boston, MA, USA
| | - Leigh Savary
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Instem Life Science Systems Ltd, Mount Ida College, South Hadley, MA, USA
| | - Stephen Wang
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Novartis Gene Therapies, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Prashant Nambiar
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Strand Therapeutics, Cambridge, MA, USA
| | - Matthew Lech
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shanrong Zhao
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Amunix Pharmaceuticals, San Francisco, CA, USA
| | - Li Xi
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Yutian Zhan
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jennifer Olson
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - James A Stejskal
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT, USA
- Charles River Laboratories, Shrewsbury, MA, USA
| | - Hank Lin
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Sunovion Pharmaceuticals Inc., Marlborough, MA, USA
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Data Sciences, Biogen, Cambridge, MA, USA
| | - Robert V Martinez
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
- Center for Technological Innovation, Pfizer Worldwide Research and Development, San Francisco, CA, USA
| | | | - Franklin J Schlerman
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Ken Dower
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
26
|
Chen X, Liu Z, Liu W, Wang S, Jiang R, Hu K, Sheng L, Xu G, Kou X, Song Y. NF-κB-Inducing Kinase Provokes Insulin Resistance in Skeletal Muscle of Obese Mice. Inflammation 2023:10.1007/s10753-023-01820-7. [PMID: 37171694 DOI: 10.1007/s10753-023-01820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023]
Abstract
Skeletal muscle is crucial for preserving glucose homeostasis. Insulin resistance and abnormalities in glucose metabolism result from a range of pathogenic factors attacking skeletal muscle in obese individuals. To relieve insulin resistance and restore glucose homeostasis, blocking the cell signaling pathways induced by those pathogenic factors seems an attractive strategy. It has been discovered that insulin sensitivity in obese people is inversely linked with the activity of NF-κB inducing kinase (NIK) in skeletal muscle. In order to evaluate NIK's pathological consequences, mechanism of action, and therapeutic values, an obese mouse model reproduced by feeding a high-fat diet was treated with a NIK inhibitor, B022. C2C12 myoblasts overexpressing NIK were utilized to assess insulin signaling and glucose uptake. B022 thus prevented high-fat diet-induced NIK activation and insulin desensitization in skeletal muscle. The insulin signaling in C2C12 myoblasts was compromised by the upregulation of NIK brought on by oxidative stress, lipid deposition, inflammation, or adenoviral vector. This inhibition of insulin action is mostly due to an inhibitory serine phosphorylation of IRS1 caused by ERK, JNK, and PKC that were activated by NIK. In summary, NIK integrates signals from several pathogenic factors to impair insulin signaling by igniting a number of IRS1-inhibiting kinases, and it also has significant therapeutic potential for treating insulin resistance.
Collapse
Affiliation(s)
- Xueqin Chen
- Department of Pharmacology, Pharmacy College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Xinxiang key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang, Henan, 453003, China
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Zhuoqun Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Wenjun Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Shu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210100, China
| | - Ran Jiang
- Department of Pharmacology, Pharmacy College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Xinxiang key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang, Henan, 453003, China
| | - Kua Hu
- Department of Pharmacology, Pharmacy College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Xinxiang key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang, Henan, 453003, China
| | - Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.
| | - Guangxu Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210100, China.
| | - Xinhui Kou
- Department of Pharmacy, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.
| | - Yu Song
- Department of Pharmacology, Pharmacy College, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Xinxiang key Laboratory for Epigenetic Molecular Pharmacology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
27
|
Chen X, Liu P, Zhang W, Li X, Wang C, Han F, Liu W, Huang Y, Li M, Li Y, Sun X, Fan X, Li W, Xiong Y, Qian L. ETNPPL modulates hyperinsulinemia-induced insulin resistance through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocytes. J Cell Physiol 2023; 238:1046-1062. [PMID: 36924049 DOI: 10.1002/jcp.30993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Hyperinsulinemia is a critical risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine phosphate phospholyase (ETNPPL), a newly discovered metabolic enzyme that converts phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde, is abundantly expressed in liver tissue. Whether it plays a role in the regulation of hyperinsulinemia-induced IR in hepatocytes remains elusive. Here, we established an in vitro hyperinsulinemia-induced IR model in the HepG2 human liver cancer cell line and primary mouse hepatocyte via a high dose of insulin treatment. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without insulin stimulation. To explore the underlying mechanism of ETNPPL mediating hyperinsulinemia-induced IR in HepG2, we performed genome-wide transcriptional analysis using RNA sequencing (RNA-seq) to identify the downstream target gene of ETNPPL. The results showed that ETNPPL expression levels in both mRNA and protein were significantly upregulated in hyperinsulinemia-induced IR in HepG2 and primary mouse hepatocytes. Upon silencing ETNPPL, hyperinsulinemia-induced IR was ameliorated. Under normal conditions without IR in hepatocytes, overexpressing ETNPPL promotes IR, reactive oxygen species (ROS) generation, and AKT inactivation. Transcriptome analysis revealed that salt-inducible kinase 1 (SIK1) is markedly downregulated in the ETNPPL knockdown HepG2 cells. Moreover, disrupting SIK1 prevents ETNPPL-induced ROS accumulation, damage to the PI3K/AKT pathway and IR. Our study reveals that ETNPPL mediates hyperinsulinemia-induced IR through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocyte cells. Targeting ETNPPL may present a potential strategy for hyperinsulinemia-associated metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Xueyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Ping Liu
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Wei Zhang
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Caihua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Wenxuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Yaoyao Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Man Li
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Yujia Li
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Xiaomin Sun
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Wenqing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China.,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China.,Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China.,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, China
| |
Collapse
|
28
|
Den Hartogh DJ, Vlavcheski F, Tsiani E. Muscle Cell Insulin Resistance Is Attenuated by Rosmarinic Acid: Elucidating the Mechanisms Involved. Int J Mol Sci 2023; 24:ijms24065094. [PMID: 36982168 PMCID: PMC10049470 DOI: 10.3390/ijms24065094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity and elevated blood free fatty acid (FFA) levels lead to impaired insulin action causing insulin resistance in skeletal muscle, and contributing to the development of type 2 diabetes mellitus (T2DM). Mechanistically, insulin resistance is associated with increased serine phosphorylation of the insulin receptor substrate (IRS) mediated by serine/threonine kinases including mTOR and p70S6K. Evidence demonstrated that activation of the energy sensor AMP-activated protein kinase (AMPK) may be an attractive target to counteract insulin resistance. We reported previously that rosemary extract (RE) and the RE polyphenol carnosic acid (CA) activated AMPK and counteracted the FFA-induced insulin resistance in muscle cells. The effect of rosmarinic acid (RA), another polyphenolic constituent of RE, on FFA-induced muscle insulin resistance has never been examined and is the focus of the current study. Muscle cell (L6) exposure to FFA palmitate resulted in increased serine phosphorylation of IRS-1 and reduced insulin-mediated (i) Akt activation, (ii) GLUT4 glucose transporter translocation, and (iii) glucose uptake. Notably, RA treatment abolished these effects, and restored the insulin-stimulated glucose uptake. Palmitate treatment increased the phosphorylation/activation of mTOR and p70S6K, kinases known to be involved in insulin resistance and RA significantly reduced these effects. RA increased the phosphorylation of AMPK, even in the presence of palmitate. Our data indicate that RA has the potential to counteract the palmitate-induced insulin resistance in muscle cells, and further studies are required to explore its antidiabetic properties.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
29
|
Gaspar RC, Lyu K, Hubbard BT, Leitner BP, Luukkonen PK, Hirabara SM, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline GW, Pauli JR, Perry RJ, Petersen KF, Shulman GI. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2023; 66:567-578. [PMID: 36456864 PMCID: PMC11194860 DOI: 10.1007/s00125-022-05838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.
Collapse
Affiliation(s)
- Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- School of Applied Science, University of Campinas, Limeira, SP, Brazil
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brooks P Leitner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sandro M Hirabara
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Institute of Physical Activity Science and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines 2023; 11:biomedicines11020559. [PMID: 36831095 PMCID: PMC9952994 DOI: 10.3390/biomedicines11020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.
Collapse
|
31
|
Handy RM, Holloway GP. Insights into the development of insulin resistance: Unraveling the interaction of physical inactivity, lipid metabolism and mitochondrial biology. Front Physiol 2023; 14:1151389. [PMID: 37153211 PMCID: PMC10157178 DOI: 10.3389/fphys.2023.1151389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
While impairments in peripheral tissue insulin signalling have a well-characterized role in the development of insulin resistance and type 2 diabetes (T2D), the specific mechanisms that contribute to these impairments remain debatable. Nonetheless, a prominent hypothesis implicates the presence of a high-lipid environment, resulting in both reactive lipid accumulation and increased mitochondrial reactive oxygen species (ROS) production in the induction of peripheral tissue insulin resistance. While the etiology of insulin resistance in a high lipid environment is rapid and well documented, physical inactivity promotes insulin resistance in the absence of redox stress/lipid-mediated mechanisms, suggesting alternative mechanisms-of-action. One possible mechanism is a reduction in protein synthesis and the resultant decrease in key metabolic proteins, including canonical insulin signaling and mitochondrial proteins. While reductions in mitochondrial content associated with physical inactivity are not required for the induction of insulin resistance, this could predispose individuals to the detrimental effects of a high-lipid environment. Conversely, exercise-training induced mitochondrial biogenesis has been implicated in the protective effects of exercise. Given mitochondrial biology may represent a point of convergence linking impaired insulin sensitivity in both scenarios of chronic overfeeding and physical inactivity, this review aims to describe the interaction between mitochondrial biology, physical (in)activity and lipid metabolism within the context of insulin signalling.
Collapse
|
32
|
Lv F, Wang Y, Shan D, Guo S, Chen G, Jin L, Zheng W, Feng H, Zeng X, Zhang S, Zhang Y, Hu X, Xiao RP. Blocking MG53 S255 Phosphorylation Protects Diabetic Heart From Ischemic Injury. Circ Res 2022; 131:962-976. [PMID: 36337049 PMCID: PMC9770150 DOI: 10.1161/circresaha.122.321055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions. METHODS Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice. RESULTS We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53S255 phosphorylation was mediated by GSK3β (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3β-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3β, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in db/db mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting. CONCLUSIONS S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.
Collapse
Affiliation(s)
- Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Yingfan Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Sile Guo
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Han Feng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Xiaohu Zeng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Shuo Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
- Peking-Tsinghua Center for Life Sciences, Beijing, China (R.-P.X.)
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China (R.-P.X.)
| |
Collapse
|
33
|
Xie F, Zou T, Chen J, Liang P, Wang Z, You J. Polysaccharides from Enteromorpha prolifera improves insulin sensitivity and promotes adipose thermogenesis in diet-induced obese mice associated with activation of PGC-1α-FNDC5/irisin pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Sarabhai T, Koliaki C, Mastrototaro L, Kahl S, Pesta D, Apostolopoulou M, Wolkersdorfer M, Bönner AC, Bobrov P, Markgraf DF, Herder C, Roden M. Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle. Diabetologia 2022; 65:301-314. [PMID: 34704121 PMCID: PMC8741704 DOI: 10.1007/s00125-021-05596-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
AIMS/HYPOTHESIS Energy-dense nutrition generally induces insulin resistance, but dietary composition may differently affect glucose metabolism. This study investigated initial effects of monounsaturated vs saturated lipid meals on basal and insulin-stimulated myocellular glucose metabolism and insulin signalling. METHODS In a randomised crossover study, 16 lean metabolically healthy volunteers received single meals containing safflower oil (SAF), palm oil (PAL) or vehicle (VCL). Whole-body glucose metabolism was assessed from glucose disposal (Rd) before and during hyperinsulinaemic-euglycaemic clamps with D-[6,6-2H2]glucose. In serial skeletal muscle biopsies, subcellular lipid metabolites and insulin signalling were measured before and after meals. RESULTS SAF and PAL raised plasma oleate, but only PAL significantly increased plasma palmitate concentrations. SAF and PAL increased myocellular diacylglycerol and activated protein kinase C (PKC) isoform θ (p < 0.05) but only PAL activated PKCɛ. Moreover, PAL led to increased myocellular ceramides along with stimulated PKCζ translocation (p < 0.05 vs SAF). During clamp, SAF and PAL both decreased insulin-stimulated Rd (p < 0.05 vs VCL), but non-oxidative glucose disposal was lower after PAL compared with SAF (p < 0.05). Muscle serine1101-phosphorylation of IRS-1 was increased upon SAF and PAL consumption (p < 0.05), whereas PAL decreased serine473-phosphorylation of Akt more than SAF (p < 0.05). CONCLUSIONS/INTERPRETATION Lipid-induced myocellular insulin resistance is likely more pronounced with palmitate than with oleate and is associated with PKC isoforms activation and inhibitory insulin signalling. TRIAL REGISTRATION ClinicalTrials.gov .NCT01736202. FUNDING German Federal Ministry of Health, Ministry of Culture and Science of the State North Rhine-Westphalia, German Federal Ministry of Education and Research, European Regional Development Fund, German Research Foundation, German Center for Diabetes Research.
Collapse
Affiliation(s)
- Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Chrysi Koliaki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Martin Wolkersdorfer
- Landesapotheke Salzburg, Department of Production, Hospital Pharmacy, Salzburg, Austria
| | - Anna C Bönner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
| |
Collapse
|
35
|
Carnosic Acid Attenuates the Free Fatty Acid-Induced Insulin Resistance in Muscle Cells and Adipocytes. Cells 2022; 11:cells11010167. [PMID: 35011728 PMCID: PMC8750606 DOI: 10.3390/cells11010167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance.
Collapse
|
36
|
Kakehi S, Tamura Y, Ikeda SI, Kaga N, Taka H, Ueno N, Shiuchi T, Kubota A, Sakuraba K, Kawamori R, Watada H. Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation. Am J Physiol Endocrinol Metab 2021; 321:E766-E781. [PMID: 34719943 DOI: 10.1152/ajpendo.00254.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization (HCI) to mice with normal or high-fat diet (HFD) and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. Although 2-wk HFD alone did not alter intramyocellular diacylglycerol (IMDG) accumulation, HCI alone increased it by 1.9-fold and HCI after HFD further increased it by 3.3-fold. Parallel to this, we found increased protein kinase C ε (PKCε) activity, reduced insulin-induced 2-deoxyglucose (2-DOG) uptake, and reduced phosphorylation of insulin receptor β (IRβ) and Akt, key molecules for insulin signaling pathway. Lipin1, which converts phosphatidic acid to diacylglycerol, showed increase of its activity by HCI, and dominant-negative lipin1 expression in muscle prevented HCI-induced IMDG accumulation and impaired insulin-induced 2-DOG uptake. Furthermore, 24-h leg cast immobilization in human increased lipin1 expression. Thus, even short-term immobilization increases IMDG and impairs insulin sensitivity in muscle via enhanced lipin1 activity.NEW & NOTEWORTHY Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization to mice with normal or high-fat diet and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. We found that even short-term immobilization increases intramyocellular diacylglycerol and impairs insulin sensitivity in muscle via enhanced lipin1 activity.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Noriko Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Institute for Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Atsushi Kubota
- Department of Sports Medicine, Juntendo University, Chiba, Japan
| | | | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
37
|
Lee A, Sugiura Y, Cho IH, Setou N, Koh E, Song GJ, Lee S, Yang HJ. In Vivo Hypoglycemic Effects, Potential Mechanisms and LC-MS/MS Analysis of Dendropanax Trifidus Sap Extract. Nutrients 2021; 13:4332. [PMID: 34959884 PMCID: PMC8703777 DOI: 10.3390/nu13124332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
Extracts of medicinal plants have been widely used to benefit human health. Dendropanax morbiferus (DM) has been well-studied for its anti-inflammatory and anti-oxidative effects, while Dendropanax trifidus (DT) is a lesser-known ecotype phylogenetically similar to DM, which has received significantly less attention. Studies thus far have primarily focused on leaf and bark extracts of DM, and not much is yet known about the properties of either DM or DT sap. Therefore, here we performed in vivo toxicity and efficacy studies, in order to assess the biological effects of DT sap. To establish a safe dosage range, single dose or two-week daily administrations of various concentrations were performed for ICR mice. Measurements of survival ratio, body/organ weight, blood chemistry, histochemistry and Western blots were performed. A concentration of ≤0.5 mg/g DT sap was found to be safe for long-term administration. Interestingly, DT sap significantly reduced blood glucose in female mice. In addition, increasing concentrations of DT sap decreased phosphorylated (p) insulin receptor substrate (IRS)-1(ser1101)/IRS-1 in liver tissues, while increasing pAMP-activated protein kinase (AMPK)/AMPK in both the liver and spleen. To analyze its components, liquid chromatography-tandem mass spectrometry of DT sap was performed in comparison with Acer saccharum (AS) sap. Components such as estradiol, trenbolone, farnesol, dienogest, 2-hydroxyestradiol and linoleic acid were found to be highly enriched in DT sap compared to AS sap. Our results indicate DT sap exhibits hypoglycemic effects, which may be due to the abundance of the bioactive components.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (S.L.)
| | - Yuki Sugiura
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | - Ik-Hyun Cho
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Noriko Setou
- Department of Disaster Psychiatry, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea;
| | - Seungheun Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (S.L.)
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (S.L.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
| |
Collapse
|
38
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
39
|
Ding W, Liu H, Qin Z, Liu M, Zheng M, Cai D, Liu J. Dietary Antioxidant Anthocyanins Mitigate Type II Diabetes through Improving the Disorder of Glycometabolism and Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13350-13363. [PMID: 34730960 DOI: 10.1021/acs.jafc.1c05630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insulin resistance (IR) is one of the pathological reasons for type II diabetes mellitus (T2DM). Therefore, it is important to prevent the body from developing T2DM by improving IR and maintaining glucose homeostasis. Anthocyanins (ACNs) are water-soluble pigments and are widely distributed in natural products. This article summarizes research on the bioavailability and metabolism of ACNs. Moreover, we further elaborate on how ACNs reduce IR and hyperglycemia during the development of T2DM based on studies over the past 20 years. Many studies have demonstrated that ACNs are small molecules that target the pancreatic, liver, muscle, and adipose tissues, preventing IR and hyperglycemia. However, the molecular mechanisms are still unclear. Therefore, we envision whether the molecular mechanism of reducing T2DM by ACNs could be more deeply investigated.
Collapse
Affiliation(s)
- Wei Ding
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Ziqi Qin
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, 130118 Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, 130118 Changchun, China
| |
Collapse
|
40
|
Haider N, Lebastchi J, Jayavelu AK, Batista TM, Pan H, Dreyfuss JM, Carcamo-Orive I, Knowles JW, Mann M, Kahn CR. Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. J Clin Invest 2021; 131:e151818. [PMID: 34506305 DOI: 10.1172/jci151818] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance is present in one-quarter of the general population, predisposing these people to a wide range of diseases. Our aim was to identify cell-intrinsic determinants of insulin resistance in this population using induced pluripotent stem cell-derived (iPSC-derived) myoblasts (iMyos). We found that these cells exhibited a large network of altered protein phosphorylation in vitro. Integrating these data with data from type 2 diabetic iMyos revealed critical sites of conserved altered phosphorylation in IRS-1, AKT, mTOR, and TBC1D1 in addition to changes in protein phosphorylation involved in Rho/Rac signaling, chromatin organization, and RNA processing. There were also striking differences in the phosphoproteome in cells from men versus women. These sex-specific and insulin-resistance defects were linked to functional differences in downstream actions. Thus, there are cell-autonomous signaling alterations associated with insulin resistance within the general population and important differences between men and women, many of which also occur in diabetes, that contribute to differences in physiology and disease.
Collapse
Affiliation(s)
- Nida Haider
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasmin Lebastchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology, Brown, Alpert Medical School, Providence, Rhode Island, USA
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Carcamo-Orive
- Division of Cardiovascular Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University School of Medicine, Stanford, California, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Slieker RC, Donnelly LA, Fitipaldi H, Bouland GA, Giordano GN, Åkerlund M, Gerl MJ, Ahlqvist E, Ali A, Dragan I, Elders P, Festa A, Hansen MK, van der Heijden AA, Mansour Aly D, Kim M, Kuznetsov D, Mehl F, Klose C, Simons K, Pavo I, Pullen TJ, Suvitaival T, Wretlind A, Rossing P, Lyssenko V, Legido Quigley C, Groop L, Thorens B, Franks PW, Ibberson M, Rutter GA, Beulens JWJ, 't Hart LM, Pearson ER. Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes: An IMI-RHAPSODY Study. Diabetes 2021; 70:2683-2693. [PMID: 34376475 PMCID: PMC8564413 DOI: 10.2337/db20-1281] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/01/2021] [Indexed: 11/23/2022]
Abstract
Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this heterogeneity, investigators of a previous study clustered people with diabetes according to five diabetes subtypes. The aim of the current study is to investigate the etiology of these clusters by comparing their molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered based on five clinical characteristics. In a subset, genetic (N = 12,828), metabolomic (N = 2,945), lipidomic (N = 2,593), and proteomic (N = 1,170) data were obtained in plasma. For each data type, each cluster was compared with the other four clusters as the reference. The insulin-resistant cluster showed the most distinct molecular signature, with higher branched-chain amino acid, diacylglycerol, and triacylglycerol levels and aberrant protein levels in plasma were enriched for proteins in the intracellular PI3K/Akt pathway. The obese cluster showed higher levels of cytokines. The mild diabetes cluster with high HDL showed the most beneficial molecular profile with effects opposite of those seen in the insulin-resistant cluster. This study shows that clustering people with type 2 diabetes can identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue metabolism. This provides novel biological insights into the diverse aetiological processes that would not be evident when type 2 diabetes is viewed as a homogeneous disease.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Louise A Donnelly
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, U.K
| | - Hugo Fitipaldi
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Gerard A Bouland
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Mikael Åkerlund
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | | | - Emma Ahlqvist
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Ashfaq Ali
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Iulian Dragan
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra Elders
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Andreas Festa
- Eli Lilly Regional Operations GmbH, Vienna, Austria
- 1st Medical Department, LK Stockerau, Niederösterreich, Austria
| | - Michael K Hansen
- Cardiovascular and Metabolic Disease Research, Janssen Research & Development, Spring House, PA
| | - Amber A van der Heijden
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Dina Mansour Aly
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
| | - Min Kim
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicines, King's College London, London, U.K
| | - Dmitry Kuznetsov
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Vienna, Austria
| | - Timothy J Pullen
- Department of Diabetes, Guy's Campus, King's College London, London, U.K
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Cristina Legido Quigley
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Cardiovascular and Metabolic Disease Research, Janssen Research & Development, Spring House, PA
| | - Leif Groop
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
- Finnish Institute of Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, Clinical Research Centre, Lund University, SUS, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guy A Rutter
- Department of Diabetes, Guy's Campus, King's College London, London, U.K
- Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, U.K.
| |
Collapse
|
42
|
Abstract
Tumour necrosis factor (TNF) is a classical, pleiotropic pro-inflammatory cytokine. It is also the first 'adipokine' described to be produced from adipose tissue, regulated in obesity and proposed to contribute to obesity-associated metabolic disease. In this review, we provide an overview of TNF in the context of metabolic inflammation or metaflammation, its discovery as a metabolic messenger, its sites and mechanisms of action and some critical considerations for future research. Although we focus on TNF and the studies that elucidated its immunometabolic actions, we highlight a conceptual framework, generated by these studies, that is equally applicable to the complex network of pro-inflammatory signals, their biological activity and their integration with metabolic regulation, and to the field of immunometabolism more broadly.
Collapse
Affiliation(s)
- Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard-MIT Broad Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
- The Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
43
|
Shi C, Yang EJ, Tao S, Ren G, Mou PK, Shim JS. Natural products targeting cancer cell dependency. J Antibiot (Tokyo) 2021; 74:677-686. [PMID: 34163025 DOI: 10.1038/s41429-021-00438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Precision cancer medicine is a tailored treatment approach for individual cancer patients with different genomic characteristics. Mutated or hyperactive oncogenes have served as main drug targets in current precision cancer medicine, while defective or inactivated tumor suppressors in general have not been considered as druggable targets. Synthetic lethality is one of very few approaches that enable to target defective tumor suppressors with pharmacological agents. Synthetic lethality exploits cancer cell dependency on a protein or pathway, which arises when the function of a tumor suppressor is defective. This approach has been proven to be effective in clinical settings since the successful clinical introduction of BRCA-PARP synthetic lethality for the treatment of breast and ovarian cancer with defective BRCA. Subsequently, large-scale screenings with RNAi, CRISPR/Cas9-sgRNAs, and chemical libraries have been applied to identify synthetic lethal partners of tumor suppressors. Natural products are an important source for the discovery of pharmacologically active small molecules. However, little effort has been made in the discovery of synthetic lethal small molecules from natural products. This review introduces recent advances in the discovery of natural products targeting cancer cell dependency and discusses potentials of natural products in the precision cancer medicine.
Collapse
Affiliation(s)
- Changxiang Shi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
44
|
Exploration of the lactation function of protein phosphorylation sites in goat mammary tissues by phosphoproteome analysis. BMC Genomics 2021; 22:703. [PMID: 34583635 PMCID: PMC8479986 DOI: 10.1186/s12864-021-07993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphorylation plays an important role in lactation. Differentially modified phosphorylation sites and phosphorylated proteins between peak lactation (PL, 90 days postpartum) and late lactation (LL, 280 days postpartum) were investigated using an integrated approach, namely, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and tandem mass tag (TMT) labeling, to determine the molecular changes in the mammary tissues during the different stages of goat lactation. RESULTS A total of 1,938 (1,111 upregulated, 827 downregulated) differentially modified phosphorylation sites of 1,172 proteins were identified (P values < 0.05 and fold change of phosphorylation ratios > 1.5). Multiple phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, JUN, and TSC2 were different in PL compared with LL. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the calcium signaling pathway, oxytocin signaling pathway and MAPK signaling pathway were enriched. The western blot results showed that the phosphorylation levels of ACACA (Ser80), EIF4EBP1 (Thr46) and IRS1 (Ser312) increased and JUN (Ser63) decreased in PL compared with LL. These results were consistent with the phosphoproteome results. CONCLUSIONS In this study, we identified for the first time the differentially modified phosphorylation sites in goat mammary tissues between PL and LL. These results indicate that the multiple differentially modified phosphorylation sites of FASN, ACACA, mTOR, PRKAA, IRS1, RPS6KB, EIF4EBP1, TSC2, and JUN and proteins involved in the calcium signaling pathway, oxytocin signaling pathway, and MAPK signaling pathway are worthy of further exploration.
Collapse
|
45
|
Tashiro E, Nagasawa Y, Itoh S, Imoto M. Involvement of miR-3180-3p and miR-4632-5p in palmitic acid-induced insulin resistance. Mol Cell Endocrinol 2021; 534:111371. [PMID: 34157350 DOI: 10.1016/j.mce.2021.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
Insulin resistance is defined as a failure to trigger the activation of the PI3K-AKT pathway by normal levels of insulin; therefore, it is well linked to metabolic disorders. Although multiple mechanisms contribute to insulin resistance, one major cause is elevated concentrations of plasma free fatty acids, which are known to suppress insulin signaling. However, the underlying mechanism is still elusive. Here, we found that palmitic acid increased the expression of two miRNAs, miR-3180-3p and miR-4632-5p, in HepG2 cells. Transfection of HepG2 cells with miR-3180-3p or miR-4632-5p reduced insulin-induced activation of the PI3K-AKT pathway. Moreover, palmitic acid or two miRNAs inhibited insulin-induced phosphorylation of Tyr612 on IRS-1 without affecting insulin receptor activation. Therefore, two miRNAs are suggested to be involved in palmitic acid-induced insulin resistance through suppression of insulin-induced IRS-1 phosphorylation. Identification of miR-3180-3p and miR-4632-5p targets could provide valuable information for the development of therapeutic drugs for type 2 diabetes.
Collapse
Affiliation(s)
- Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan; Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan.
| | - Yumi Nagasawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
46
|
McKeegan K, Mason SA, Trewin AJ, Keske MA, Wadley GD, Della Gatta PA, Nikolaidis MG, Parker L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol 2021; 44:102005. [PMID: 34049222 PMCID: PMC8167146 DOI: 10.1016/j.redox.2021.102005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for their role in insulin resistance and the development of cardiometabolic disease including type 2 diabetes mellitus (T2D). Conversely, evidence supports the notion that ROS are a necessary component for glucose cell transport and adaptation to physiological stress including exercise and muscle contraction. Although genetic rodent models and cell culture studies indicate antioxidant treatment to be an effective strategy for targeting ROS to promote health, human findings are largely inconsistent. In this review we discuss human research that has investigated antioxidant treatment and glycemic control in the context of health (healthy individuals and during exercise) and disease (insulin resistance and T2D). We have identified key factors that are likely to influence the effectiveness of antioxidant treatment: 1) the context of treatment including whether oxidative distress or eustress is present (e.g., hyperglycemia/lipidaemia or during exercise and muscle contraction); 2) whether specific endogenous antioxidant deficiencies are identified (redox screening); 3) whether antioxidant treatment is specifically designed to target and restore identified deficiencies (antioxidant specificity); 4) and the bioavailability and bioactivity of the antioxidant which are influenced by treatment dose, duration, and method of administration. The majority of human research has failed to account for these factors, limiting their ability to robustly test the effectiveness of antioxidants for health promotion and disease prevention. We propose that a modern "redox screening" and "personalized antioxidant treatment" approach is required to robustly explore redox regulation of human physiology and to elicit more effective antioxidant treatment in humans.
Collapse
Affiliation(s)
- Kathryn McKeegan
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
47
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
48
|
Kaleem A, Javed S, Rehman N, Abdullah R, Iqtedar M, Aftab MN, Hoessli DC, Haq IU. Phosphorylated and O-GlcNAc Modified IRS-1 (Ser1101) and -2 (Ser1149) Contribute to Human Diabetes Type II. Protein Pept Lett 2021; 28:333-339. [PMID: 32798372 DOI: 10.2174/0929866527666200813210407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prevalence of the chronic metabolic disorder Type 2 diabetes mellitus (T2DM) is increasing steadily, and has even turned into an epidemic in some countries. T2DM results from defective responses to insulin and obesity is a major factor behind insulin resistance in T2DM. Insulin receptor substrate (IRS) proteins are adaptor proteins in the insulin receptor signalling pathway. The insulin signalling is controlled through tyrosine phosphorylation of IRS-1 and IRS-2, and dysregulation of IRS proteins signalling may lead to glucose intolerance and eventually insulin resistance. OBJECTIVE In this work, we suggest that both glycosylation (O-GlcNAc modification) and phosphorylation of IRS-1 and -2 are involved in the pathogenesis of T2DM. METHODS Phosphorylation and O-GlcNAc modifications (Ser1101 in IRS-1 and Ser1149 in IRS-2) proteins were determined experimentally by sandwich ELISA with specific antibodies and with bioinformatics tools. RESULTS When IRS-1 (on Ser1101) and IRS-2 (Ser1149) become glycosylated following an increase in UDP-GlcNAc pools, it may contribute to insulin resistance. Whereas when the same (IRS-1 on Ser1101 and IRS-2 on Ser1149) are phosphorylated, the insulin signalling is inhibited. DISCUSSION In this work OGlcNAc-modified proteins were specifically detected using O-Glc- NAc-specific antibodies, suggesting that elevated levels of O-GlcNAc-modified proteins are found, independently of their possible involvement in Advanced Glycation End products (AGEs). CONCLUSION This study suggests a mechanism, which is controlled by posttranslational modifications, and may contribute to the pathogenesis of type II diabetes.
Collapse
Affiliation(s)
- Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab 54000, Pakistan
| | - Sabahat Javed
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab 54000, Pakistan
| | - Nayab Rehman
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab 54000, Pakistan
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab 54000, Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore, Punjab 54000, Pakistan
| | - Mohammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ikram-Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
49
|
Long-Chain Acylcarnitines Decrease the Phosphorylation of the Insulin Receptor at Tyr1151 Through a PTP1B-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22126470. [PMID: 34208786 PMCID: PMC8235348 DOI: 10.3390/ijms22126470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation of lipid intermediates may interfere with energy metabolism pathways and regulate cellular energy supplies. As increased levels of long-chain acylcarnitines have been linked to insulin resistance, we investigated the effects of long-chain acylcarnitines on key components of the insulin signalling pathway. We discovered that palmitoylcarnitine induces dephosphorylation of the insulin receptor (InsR) through increased activity of protein tyrosine phosphatase 1B (PTP1B). Palmitoylcarnitine suppresses protein kinase B (Akt) phosphorylation at Ser473, and this effect is not alleviated by the inhibition of PTP1B by the insulin sensitizer bis-(maltolato)-oxovanadium (IV). This result indicates that palmitoylcarnitine affects Akt activity independently of the InsR phosphorylation level. Inhibition of protein kinase C and protein phosphatase 2A does not affect the palmitoylcarnitine-mediated inhibition of Akt Ser473 phosphorylation. Additionally, palmitoylcarnitine markedly stimulates insulin release by suppressing Akt Ser473 phosphorylation in insulin-secreting RIN5F cells. In conclusion, long-chain acylcarnitines activate PTP1B and decrease InsR Tyr1151 phosphorylation and Akt Ser473 phosphorylation, thus limiting the cellular response to insulin stimulation.
Collapse
|
50
|
Feeding diversified protein sources exacerbates hepatic insulin resistance via increased gut microbial branched-chain fatty acids and mTORC1 signaling in obese mice. Nat Commun 2021; 12:3377. [PMID: 34099716 PMCID: PMC8184893 DOI: 10.1038/s41467-021-23782-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.
Collapse
|