1
|
Iazzi M, Sadeghi S, Gupta GD. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Int J Mol Sci 2023; 24:11457. [PMID: 37511222 PMCID: PMC10380767 DOI: 10.3390/ijms241411457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.
Collapse
Affiliation(s)
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
2
|
Devant P, Boršić E, Ngwa EM, Xiao H, Chouchani ET, Thiagarajah JR, Hafner-Bratkovič I, Evavold CL, Kagan JC. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep 2023; 42:112008. [PMID: 36662620 PMCID: PMC9947919 DOI: 10.1016/j.celrep.2023.112008] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/21/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) regulate the activities of inflammasomes, which are innate immune signaling organelles that induce pyroptosis. The mechanisms by which ROS control inflammasome activities are unclear and may be multifaceted. Herein, we report that the protein gasdermin D (GSDMD), which forms membrane pores upon cleavage by inflammasome-associated caspases, is a direct target of ROS. Exogenous and endogenous sources of ROS, and ROS-inducing stimuli that prime cells for pyroptosis induction, promote oligomerization of cleaved GSDMD, leading to membrane rupture and cell death. We find that ROS enhance GSDMD activities through oxidative modification of cysteine 192 (C192). Within macrophages, GSDMD mutants lacking C192 show impaired ability to form membrane pores and induce pyroptosis. Reciprocal mutagenesis studies reveal that C192 is the only cysteine within GSDMD that mediates ROS responsiveness. Cellular redox state is therefore a key determinant of GSDMD activities.
Collapse
Affiliation(s)
- Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Elsy M Ngwa
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia.
| | - Charles L Evavold
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Evavold CL, Hafner-Bratkovič I, Devant P, D'Andrea JM, Ngwa EM, Boršić E, Doench JG, LaFleur MW, Sharpe AH, Thiagarajah JR, Kagan JC. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 2021; 184:4495-4511.e19. [PMID: 34289345 PMCID: PMC8380731 DOI: 10.1016/j.cell.2021.06.028] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
Collapse
Affiliation(s)
- Charles L Evavold
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Iva Hafner-Bratkovič
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jasmin M D'Andrea
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elsy M Ngwa
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Martin W LaFleur
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Marklew AJ, Patel W, Moore PJ, Tan CD, Smith AJ, Sassano MF, Gray MA, Tarran R. Cigarette Smoke Exposure Induces Retrograde Trafficking of CFTR to the Endoplasmic Reticulum. Sci Rep 2019; 9:13655. [PMID: 31541117 PMCID: PMC6754399 DOI: 10.1038/s41598-019-49544-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is most commonly caused by cigarette smoke (CS) exposure, is the third leading cause of death worldwide. The cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane anion channel that is widely expressed in epithelia throughout the body. In the airways, CFTR plays an important role in fluid homeostasis and helps flush mucus and inhaled pathogens/toxicants out of the lung. Inhibition of CFTR leads to mucus stasis and severe airway disease. CS exposure also inhibits CFTR, leading to the decreased anion secretion/hydration seen in COPD patients. However, the underlying mechanism is poorly understood. Here, we report that CS causes CFTR to be internalized in a clathrin/dynamin-dependent fashion. This internalization is followed by retrograde trafficking of CFTR to the endoplasmic reticulum. Although this internalization pathway has been described for bacterial toxins and cargo machinery, it has never been reported for mammalian ion channels. Furthermore, the rapid internalization of CFTR is dependent on CFTR dephosphorylation by calcineurin, a protein phosphatase that is upregulated by CS. These results provide new insights into the mechanism of CFTR internalization, and may help in the development of new therapies for CFTR correction and lung rehydration in patients with debilitating airway diseases such as COPD.
Collapse
Affiliation(s)
- Abigail J Marklew
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Waseema Patel
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Patrick J Moore
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Amanda J Smith
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - M Flori Sassano
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Michael A Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Stauffer BB, Cui G, Cottrill KA, Infield DT, McCarty NA. Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Sci Rep 2017; 7:2931. [PMID: 28592822 PMCID: PMC5462758 DOI: 10.1038/s41598-017-03103-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
Sphingomyelinase C (SMase) inhibits CFTR chloride channel activity in multiple cell systems, an effect that could exacerbate disease in CF and COPD patients. The mechanism by which sphingomyelin catalysis inhibits CFTR is not known but evidence suggests that it occurs independently of CFTR's regulatory "R" domain. In this study we utilized the Xenopus oocyte expression system to shed light on how CFTR channel activity is reduced by SMase. We found that the pathway leading to inhibition is not membrane delimited and that inhibited CFTR channels remain at the cell membrane, indicative of a novel silencing mechanism. Consistent with an effect on CFTR gating behavior, we found that altering gating kinetics influenced the sensitivity to inhibition by SMase. Specifically, increasing channel activity by introducing the mutation K1250A or pretreating with the CFTR potentiator VX-770 (Ivacaftor) imparted resistance to inhibition. In primary bronchial epithelial cells, we found that basolateral, but not apical, application of SMase leads to a redistribution of sphingomyelin and a reduction in forskolin- and VX-770-stimulated currents. Taken together, these data suggest that SMase inhibits CFTR channel function by locking channels into a closed state and that endogenous CFTR in HBEs is affected by SMase activity.
Collapse
Affiliation(s)
- B B Stauffer
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Molecular and Systems Pharmacology program, Emory University, 201 Dowman Drive, Atlanta, GA, 20322, USA
| | - G Cui
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - K A Cottrill
- Molecular and Systems Pharmacology program, Emory University, 201 Dowman Drive, Atlanta, GA, 20322, USA
| | - D T Infield
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - N A McCarty
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Cai X, Bai B, Zhang R, Wang C, Chen J. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling. Sci Rep 2017; 7:40335. [PMID: 28091541 PMCID: PMC5238433 DOI: 10.1038/srep40335] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
The apelin receptor (APJ) belongs to family A of the G protein-coupled receptors (GPCRs) and is a potential pharmacotherapeutic target for heart failure, hypertension, and other cardiovascular diseases. There is evidence APJ heterodimerizes with other GPCRs; however, the existence of APJ homodimers and oligomers remains to be investigated. Here, we measured APJ monomer-homodimer-oligomer interconversion by monitoring APJ dynamically on cells and compared their proportions, spatial arrangement, and mobility using total internal reflection fluorescence microscopy, resonance energy transfer, and proximity biotinylation. In cells with <0.3 receptor particles/μm2, approximately 60% of APJ molecules were present as dimers or oligomers. APJ dimers were present on the cell surface in a dynamic equilibrium with constant formation and dissociation of receptor complexes. Furthermore, we applied interference peptides and MALDI-TOF mass spectrometry to confirm APJ homo-dimer and explore the dimer-interfaces. Peptides corresponding to transmembrane domain (TMD)1, 2, 3, and 4, but not TMD5, 6, and 7, disrupted APJ dimerization. APJ mutants in TMD1 and TMD2 also decreased bioluminescence resonance energy transfer of APJ dimer. APJ dimerization resulted in novel functional characteristics, such as a distinct G-protein binding profile and cell responses after agonist stimulation. Thus, dimerization may serve as a unique mechanism for fine-tuning APJ-mediated functions.
Collapse
Affiliation(s)
- Xin Cai
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012 P.R. China.,Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067 P.R. China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Identification of the SNARE complex mediating the exocytosis of NMDA receptors. Proc Natl Acad Sci U S A 2016; 113:12280-12285. [PMID: 27791016 DOI: 10.1073/pnas.1614042113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the central nervous system, NMDA receptors mediate excitatory neurotransmissions and play important roles in synaptic plasticity. The regulation of NMDA receptor trafficking is critical for neural functions in the brain. Here, we directly visualized individual exocytic events of NMDA receptors in rat hippocampal neurons by total internal reflection fluorescence microscopy (TIRFM). We found that the constitutive exocytosis of NMDA receptors included both de novo exocytic and recycling events, which were regulated by different Rab proteins. We also identified the SNAP25-VAMP1-syntaxin4 complex mediating the constitutive exocytosis of NMDA receptors. Transient knockdown of each component of the SNARE complex interfered with surface delivery of NMDA receptors to both extrasynaptic and synaptic membranes. Our study uncovers the postsynaptic function of the SNAP25-VAMP1-syntaxin4 complex in mediating the constitutive exocytosis of NMDA receptors, suggesting that this SNARE complex is involved in excitatory synaptic transmission.
Collapse
|
8
|
Yamamura H, Suzuki Y, Imaizumi Y. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. J Pharmacol Sci 2015; 128:1-7. [PMID: 26002253 DOI: 10.1016/j.jphs.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022] Open
Abstract
Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
9
|
Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J. Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in Arabidopsis. THE PLANT CELL 2014; 26:1729-1745. [PMID: 24755455 PMCID: PMC4036582 DOI: 10.1105/tpc.113.122358] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana respiratory burst oxidase homolog D (RbohD) functions as an essential regulator of reactive oxygen species (ROS). However, our understanding of the regulation of RbohD remains limited. By variable-angle total internal reflection fluorescence microscopy, we demonstrate that green fluorescent protein (GFP)-RbohD organizes into dynamic spots at the plasma membrane. These RbohD spots have heterogeneous diffusion coefficients and oligomerization states, as measured by photobleaching techniques. Stimulation with ionomycin and calyculin A, which activate the ROS-producing enzymatic activity of RbohD, increases the diffusion and oligomerization of RbohD. Abscisic acid and flg22 treatments also increase the diffusion coefficient and clustering of GFP-RbohD. Single-particle analysis in clathrin heavy chain2 mutants and a Flotillin1 artificial microRNA line demonstrated that clathrin- and microdomain-dependent endocytic pathways cooperatively regulate RbohD dynamics. Under salt stress, GFP-RbohD assembles into clusters and then internalizes into the cytoplasm. Dual-color fluorescence cross-correlation spectroscopy analysis further showed that salt stress stimulates RbohD endocytosis via membrane microdomains. We demonstrate that microdomain-associated RbohD spots diffuse at the membrane with high heterogeneity, and these dynamics closely relate to RbohD activity. Our results provide insight into the regulation of RbohD activity by clustering and endocytosis, which facilitate the activation of redox signaling pathways.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lusheng Fan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qihua He
- Peking University Health Science Center, Beijing 100191, China
| | - Miguel A Botella
- Departamento de Biología Celular, Genética, y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014; 52:15-25. [PMID: 24534272 DOI: 10.1016/j.biocel.2014.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a member of the ATP-binding cassette family of membrane proteins. Although almost all members of this family are transporters, CFTR functions as a channel with specificity for anions, in particular chloride and bicarbonate. In this review we look at what is known about CFTR structure and function within the context of the ATP-binding cassette family. We also review current strategies aimed at obtaining the high resolution structure of the protein.
Collapse
|
11
|
Arant RJ, Ulbrich MH. Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. Chemphyschem 2014; 15:600-5. [PMID: 24481650 DOI: 10.1002/cphc.201301092] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 12/28/2022]
Abstract
The limit of subdiffraction imaging with fluorescent proteins currently lies at 20 nm, and therefore most protein complexes are too small (2-5 nm) to spatially resolve their individual subunits by optical means. However, the number and stoichiometry of subunits within an immobilized protein complex can be resolved by the observation of photobleaching steps of individual fluorophores or co-localization of single-molecule fluorescence emission in multiple colors. We give an overview of the proteins that have been investigated by this approach and the different techniques that can be used to immobilize and label the proteins. This minireview should serve as a guideline for scientists who want to employ single-molecule subunit counting for their research.
Collapse
Affiliation(s)
- Ryan J Arant
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | | |
Collapse
|
12
|
Yang Y, Wolfram J, Shen J, Zhao Y, Fang X, Shen H, Ferrari M. Live-cell single-molecule imaging reveals clathrin and caveolin-1 dependent docking of SMAD4 at the cell membrane. FEBS Lett 2013; 587:3912-20. [PMID: 24211445 DOI: 10.1016/j.febslet.2013.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β (TGF-β) signaling is important for many biological processes. Although the sequential events of this cascade are known, the dynamics remain speculative. Here, live-cell single-molecule total internal reflection fluorescence microscopy was used to monitor the dynamics of SMAD4, a TGF-β downstream effector, in MDA-MB-231 breast cancer cells. Contrary to previous belief, SMAD4 was detectable at the cytoplasmic membrane, displaying two subpopulations with different membrane docking behaviors. These subpopulations were regulated by clathrin and caveolin-1, and had opposing roles in the nuclear shuttling of SMAD4 and the subsequent transcriptional regulation of genes associated with cell migration. The notion that membrane-docking behaviors of downstream molecules could predict the cellular response to growth factors may revolutionize the way we view cell signaling.
Collapse
Affiliation(s)
- Yong Yang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
A cell-free assay to determine the stoichiometry of plasma membrane proteins. Biotechniques 2013; 54:191-6. [DOI: 10.2144/000113977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/07/2013] [Indexed: 11/23/2022] Open
Abstract
Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.
Collapse
|
14
|
ABCA1 dimer-monomer interconversion during HDL generation revealed by single-molecule imaging. Proc Natl Acad Sci U S A 2013; 110:5034-9. [PMID: 23479619 DOI: 10.1073/pnas.1220703110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The generation of high-density lipoprotein (HDL), one of the most critical events for preventing atherosclerosis, is mediated by ATP-binding cassette protein A1 (ABCA1). ABCA1 is known to transfer cellular cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating discoidal HDL (dHDL) particles, composed of 100-200 lipid molecules surrounded by two apoA-I molecules; however, the regulatory mechanisms are still poorly understood. Here we observed ABCA1-GFP and apoA-I at the level of single molecules on the plasma membrane via a total internal reflection fluorescence microscope. We found that about 70% of total ABCA1-GFP spots are immobilized on the plasma membrane and estimated that about 89% of immobile ABCA1 molecules are in dimers. Furthermore, an ATPase-deficient ABCA1 mutant failed to be immobilized or form a dimer. We found that the lipid acceptor apoA-I interacts with the ABCA1 dimer to generate dHDL and is followed by ABCA1 dimer-monomer interconversion. This indicates that the formation of the ABCA1 dimer is the key for apoA-I binding and nascent HDL generation. Our findings suggest the physiological significance of conversion of the ABCA1 monomer to a dimer: The dimer serves as a receptor for two apoA-I molecules for dHDL particle generation.
Collapse
|
15
|
Cystic Fibrosis: Alternative Approaches to the Treatment of a Genetic Disease. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
16
|
Valentine CD, Lukacs GL, Verkman AS, Haggie PM. Reduced PDZ interactions of rescued ΔF508CFTR increases its cell surface mobility. J Biol Chem 2012; 287:43630-8. [PMID: 23115232 DOI: 10.1074/jbc.m112.421172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of phenylalanine 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane chloride channel is the most common cause of cystic fibrosis (CF). Though several maneuvers can rescue endoplasmic reticulum-retained ΔF508CFTR and promote its trafficking to the plasma membrane, rescued ΔF508CFTR remains susceptible to quality control mechanisms that lead to accelerated endocytosis, ubiquitination, and lysosomal degradation. To investigate the role of scaffold protein interactions in rescued ΔF508CFTR surface instability, the plasma membrane mobility of ΔF508CFTR was measured in live cells by quantum dot single particle tracking. Following rescue by low temperature, chemical correctors, thapsigargin, or overexpression of GRASP55, ΔF508CFTR diffusion was more rapid than that of wild-type CFTR because of reduced interactions with PDZ domain-containing scaffold proteins. Knock-down of the plasma membrane quality control proteins CHIP and Hsc70 partially restored ΔF508CFTR-scaffold association. Quantitative comparisons of CFTR cell surface diffusion and endocytosis kinetics suggested an association between reduced scaffold binding and CFTR internalization. Our surface diffusion measurements in live cells indicate defective scaffold interactions of rescued ΔF508CFTR at the cell surface, which may contribute to its defective peripheral processing.
Collapse
Affiliation(s)
- Cathleen D Valentine
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA
| | | | | | | |
Collapse
|
17
|
Holleran JP, Glover ML, Peters KW, Bertrand CA, Watkins SC, Jarvik JW, Frizzell RA. Pharmacological rescue of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) detected by use of a novel fluorescence platform. Mol Med 2012; 18:685-96. [PMID: 22396015 DOI: 10.2119/molmed.2012.00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/28/2012] [Indexed: 12/25/2022] Open
Abstract
Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. We developed a fluorescence detection platform using fluorogen-activating proteins (FAPs) to directly detect FAP-CFTR trafficking to the cell surface using a cell-impermeant probe. By using this approach, we determined the efficacy of new corrector compounds, both alone and in combination, to rescue F508del-CFTR to the plasma membrane. Combinations of correctors produced additive or synergistic effects, improving the density of mutant CFTR at the cell surface up to ninefold over a single-compound treatment. The results correlated closely with assays of stimulated anion transport performed in polarized human bronchial epithelia that endogenously express F508del-CFTR. These findings indicate that the FAP-tagged constructs faithfully report mutant CFTR correction activity and that this approach should be useful as a screening assay in diseases that impair protein trafficking to the cell surface.
Collapse
Affiliation(s)
- John P Holleran
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | |
Collapse
|
18
|
Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu DT, Maurel C, Lin J. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. THE PLANT CELL 2011; 23:3780-97. [PMID: 22010034 PMCID: PMC3229149 DOI: 10.1105/tpc.111.091454] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 09/09/2011] [Accepted: 10/03/2011] [Indexed: 05/17/2023]
Abstract
PIP2;1 is an integral membrane protein that facilitates water transport across plasma membranes. To address the dynamics of Arabidopsis thaliana PIP2;1 at the single-molecule level as well as their role in PIP2;1 regulation, we tracked green fluorescent protein-PIP2;1 molecules by variable-angle evanescent wave microscopy and fluorescence correlation spectroscopy (FCS). Single-particle tracking analysis revealed that PIP2;1 presented four diffusion modes with large dispersion of diffusion coefficients, suggesting that partitioning and dynamics of PIP2;1 are heterogeneous and, more importantly, that PIP2;1 can move into or out of membrane microdomains. In response to salt stress, the diffusion coefficients and percentage of restricted diffusion increased, implying that PIP2;1 internalization was enhanced. This was further supported by the decrease in PIP2;1 density on plasma membranes by FCS. We additionally demonstrated that PIP2;1 internalization involves a combination of two pathways: a tyrphostin A23-sensitive clathrin-dependent pathway and a methyl-β-cyclodextrin-sensitive, membrane raft-associated pathway. The latter was efficiently stimulated under NaCl conditions. Taken together, our findings demonstrate that PIP2;1 molecules are heterogeneously distributed on the plasma membrane and that clathrin and membrane raft pathways cooperate to mediate the subcellular trafficking of PIP2;1, suggesting that the dynamic partitioning and recycling pathways might be involved in the multiple modes of regulating water permeability.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihua He
- Peking University Health Science Center, Beijing 100191, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
19
|
Krasilnikov OV, Sabirov RZ, Okada Y. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore. J Physiol Sci 2011; 61:267-78. [PMID: 21461971 PMCID: PMC10717511 DOI: 10.1007/s12576-011-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/20/2011] [Indexed: 01/13/2023]
Abstract
Despite substantial efforts, the entire cystic fibrosis transmembrane conductance regulator (CFTR) protein proved to be difficult for structural analysis at high resolution, and little is still known about the actual dimensions of the anion-transporting pathway of CFTR channel. In the present study, we therefore gauged geometrical features of the CFTR Cl(-) channel pore by a nonelectrolyte exclusion technique. Polyethylene glycols with a hydrodynamic radius (R (h)) smaller than 0.95 nm (PEG 300-1,000) added from the intracellular side greatly suppressed the inward unitary anionic conductance, whereas only molecules with R (h) ≤ 0.62 nm (PEG 200-400) applied extracellularly were able to affect the outward unitary anionic currents. Larger molecules with R (h) = 1.16-1.84 nm (PEG 1,540-3,400) added from either side were completely excluded from the pore and had no significant effect on the single-channel conductance. The cut-off radius of the inner entrance of CFTR channel pore was assessed to be 1.19 ± 0.02 nm. The outer entrance was narrower with its cut-off radius of 0.70 ± 0.16 nm and was dilated to 0.93 ± 0.23 nm when a non-hydrolyzable ATP analog, 5'-adenylylimidodiphosphate (AMP-PNP), was added to the intracellular solution. Thus, it is concluded that the structure of CFTR channel pore is highly asymmetric with a narrower extracellular entrance and that a dilating conformational change of the extracellular entrance is associated with the channel transition to a non-hydrolytic, locked-open state.
Collapse
Affiliation(s)
- Oleg V. Krasilnikov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, PE 50670-901 Brazil
| | - Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Laboratory of Molecular Physiology, Institute of Physiology and Biophysics, Academy of Science RUz, Niyazova 1, 100095 Tashkent, Uzbekistan
- Department of Biophysics, National University, Niyazova 1, 100095 Tashkent, Uzbekistan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
20
|
Yang Y, Xia T, Zhang W, Fang X. Single-molecule fluorescence imaging of membrane-bound proteins for studies of cell signal transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Ulbrich MH. Counting Molecules: Toward Quantitative Imaging. SPRINGER SERIES ON FLUORESCENCE 2011. [DOI: 10.1007/4243_2011_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Jovanovic G, Engl C, Mayhew AJ, Burrows PC, Buck M. Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2010; 156:2920-2932. [PMID: 20595257 PMCID: PMC3068692 DOI: 10.1099/mic.0.040055-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/21/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022]
Abstract
The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ(54)-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF-A-C-B-ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein-protein interactions, resulting in the release of the PspA-PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex.
Collapse
Affiliation(s)
- Goran Jovanovic
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Christoph Engl
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Antony J Mayhew
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Patricia C Burrows
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
23
|
Playford MP, Nurminen E, Pentikäinen OT, Milgram SL, Hartwig JH, Stossel TP, Nakamura F. Cystic fibrosis transmembrane conductance regulator interacts with multiple immunoglobulin domains of filamin A. J Biol Chem 2010; 285:17156-65. [PMID: 20351098 DOI: 10.1074/jbc.m109.080523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations of the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) that impair its apical localization and function cause cystic fibrosis. A previous report has shown that filamin A (FLNa), an actin-cross-linking and -scaffolding protein, interacts directly with the cytoplasmic N terminus of CFTR and that this interaction is necessary for stability and confinement of the channel to apical membranes. Here, we report that the CFTR N terminus has sequence similarity to known FLNa-binding partner-binding sites. FLNa has 24 Ig (IgFLNa) repeats, and a CFTR peptide pulled down repeats 9, 12, 17, 19, 21, and 23, which share sequence similarity yet differ from the other FLNa Ig domains. Using known structures of IgFLNa.partner complexes as templates, we generated in silico models of IgFLNa.CFTR peptide complexes. Point and deletion mutants of IgFLNa and CFTR informed by the models, including disease-causing mutations L15P and W19C, disrupted the binding interaction. The model predicted that a P5L CFTR mutation should not affect binding, but a synthetic P5L mutant peptide had reduced solubility, suggesting a different disease-causing mechanism. Taken together with the fact that FLNa dimers are elongated ( approximately 160 nm) strands, whereas CFTR is compact (6 approximately 8 nm), we propose that a single FLNa molecule can scaffold multiple CFTR partners. Unlike previously defined dimeric FLNa.partner complexes, the FLNa-monomeric CFTR interaction is relatively weak, presumptively facilitating dynamic clustering of CFTR at cell membranes. Finally, we show that deletion of all CFTR interacting domains from FLNa suppresses the surface expression of CFTR on baby hamster kidney cells.
Collapse
|
24
|
Abstract
The number of reports per year on single-molecule imaging experiments has grown roughly exponentially since the first successful efforts to optically detect a single molecule were completed over two decades ago. Single-molecule spectroscopy has developed into a field that includes a wealth of experiments at room temperature and inside living cells. The fast growth of single-molecule biophysics has resulted from its benefits in probing heterogeneous populations, one molecule at a time, as well as from advances in microscopes and detectors. This Perspective summarizes the field of live-cell imaging of single biomolecules.
Collapse
Affiliation(s)
- Samuel J Lord
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|
25
|
Tajima M, Crane JM, Verkman AS. Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 2010; 285:8163-70. [PMID: 20071343 DOI: 10.1074/jbc.m109.093948] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane assembly of aquaporin-4 (AQP4) water channels into orthogonal arrays of particles (OAPs) involves interactions of AQP4 N-terminal domains. To study in live cells the site of OAP assembly, the size and dynamics of plasma membrane OAPs, and the heterotetrameric associations of AQP4, we constructed green fluorescent protein (GFP)-labeled AQP4 "long" (M1) and "short" (M23) isoforms in which GFP was inserted at the cytoplasm-facing N or C terminus or between Val-141 and Val-142 in the second extracellular loop of AQP4. The C-terminal and extracellular loop GFP insertions did not interfere with the rapid unrestricted membrane diffusion of GFP-labeled M1 or the restricted diffusion and OAP assembly of GFP-labeled M23. Photobleaching of brefeldin A-treated cells showed comparable and minimally restricted diffusion of M1 and M23, indicating that OAP assembly occurs post-endoplasmic reticulum. Single-molecule step photobleaching and intensity analysis of GFP-labeled M1 in the absence versus presence of excess unlabeled M1 or M23 with an OAP-disrupting mutation indicated heterotetrameric AQP4 association. Time-lapse total internal reflection fluorescence imaging of M23 in live cells at 37 degrees C indicated that OAPs diffuse slowly (D approximately 10(-12) cm(2)/s) and rearrange over tens of minutes. Our biophysical measurements in live cells thus reveal extensive AQP4 monomer-monomer and tetramer-tetramer interactions.
Collapse
Affiliation(s)
- Masato Tajima
- Departments of Medicine and Physiology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
26
|
Lee TJ, Zhang H, Chang CL, Savran C, Guo P. Engineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:2453-9. [PMID: 19743427 PMCID: PMC2837281 DOI: 10.1002/smll.200900467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The bacteriophage phi29 DNA packaging motor contains a protein core with a central channel comprising twelve copies of re-engineered gp10 protein geared by six copies of packaging RNA (pRNA) and a DNA packaging protein gp16 with unknown copies. Incorporation of this nanomotor into a nanodevice would be beneficial for many applications. To this end, extension and modification of the motor components are necessary for the linkage of this motor to other nanomachines. Here the re-engineering of the motor DNA packaging protein gp16 by extending its length and doubling its size using a fusion protein technique is reported. The modified motor integrated with the eGFP-gp16 maintains the ability to convert the chemical energy from adenosine triphosphate (ATP) hydrolysis to mechanical motion and package DNA. The resulting DNA-filled capsid is subsequently converted into an infectious virion. The extended part of the gp16 arm is a fluorescent protein eGFP, which serves as a marker for tracking the motor in single-molecule studies. The activity of the re-engineered motor with eGFP-gp16 is also observed directly with a bright-field microscope via its ability to transport a 2-microm-sized cargo bound to the DNA.
Collapse
Affiliation(s)
- Tae Jin Lee
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| | - Hui Zhang
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| | - Chun-Li Chang
- School of Electrical and Computer Engineering, School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (USA)
| | - Cagri Savran
- School of Electrical and Computer Engineering, School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (USA)
| | - Peixuan Guo
- Department of Biomedical Engineering, The Vontz Center for Molecular Studies, 3125 Eden Avenue, Room 1301, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, OH 45267 (USA)
| |
Collapse
|
27
|
Mo W, Zhang JT. Oligomerization of human ATP-binding cassette transporters and its potential significance in human disease. Expert Opin Drug Metab Toxicol 2009; 5:1049-63. [PMID: 19637987 PMCID: PMC11645674 DOI: 10.1517/17425250903124371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human ATP-binding cassette transporters (ABC transporter) belong to an extremely important superfamily of membrane transporters. They use energy from ATP hydrolysis to transport a wide variety of substrates across the cellular membrane. Due to the physiological and pharmacological importance of their diverse substrates, ABC transporters have been shown to have close relationship with various human diseases such as cystic fibrosis and multi-drug resistance in cancer chemotherapy. While it has been thought traditionally that functional ABC transporters exist as monomeric full or dimeric half transporters, emerging evidence indicates that some ABC transporters oligomerize on cellular membranes and this oligomerization seems to have functional relevance. Therefore, this oligomerization process might be a promising drug target for ABC transporter-related human diseases, especially in overcoming multi-drug resistance in cancer chemotherapy. In this review, we perform a critical analysis of the past studies on the oligomerization of ABC transporters.
Collapse
Affiliation(s)
- Wei Mo
- Indiana University School of Medicine, 980 W Walnut Street, R3-C560, Indianapolis, IN 46202, Indiana, USA
| | - Jian-Ting Zhang
- Indiana University School of Medicine, IU Simon Cancer Center, Department of Pharmacology and Toxicology, 980 W Walnut Street, R3-C510, Indianapolis, IN 46202, Indiana, USA
| |
Collapse
|
28
|
Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization. Proc Natl Acad Sci U S A 2009; 106:15679-83. [PMID: 19720988 DOI: 10.1073/pnas.0908279106] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) elicits its signals through two transmembrane serine/threonine kinase receptors, type II (TbetaRII) and type I receptors. It is generally believed that the initial receptor dimerization is an essential event for receptor activation. However, previous studies suggested that TGF-beta signals by binding to the preexisting TbetaRII homodimer. Here, using single molecule microscopy to image green fluorescent protein (GFP)-labeled TbetaRII on the living cell surface, we demonstrated that the receptor could exist as monomers at the low expression level in resting cells and dimerize upon TGF-beta stimulation. This work reveals a model in which the activation of serine-threonine kinase receptors is also accomplished via dimerization of monomers, suggesting that receptor dimerization is a general mechanism for ligand-induced receptor activation.
Collapse
|
29
|
Crane JM, Tajima M, Verkman AS. Live-cell imaging of aquaporin-4 diffusion and interactions in orthogonal arrays of particles. Neuroscience 2009; 168:892-902. [PMID: 19699275 DOI: 10.1016/j.neuroscience.2009.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/03/2009] [Accepted: 08/12/2009] [Indexed: 11/26/2022]
Abstract
Orthogonal arrays of particles (OAPs) have been visualized for many years by freeze-fracture electron microscopy. Our laboratory discovered that aquaporin-4 (AQP4) is the protein responsible for OAP formation by demonstrating OAPs in AQP4-transfected cells and absence of OAPs in AQP4 knockout mice. We recently developed live-cell, single-molecule imaging methods to study AQP4 diffusion and interactions in OAPs. The methods include single particle tracking of quantum-dot labeled AQP4, and total internal reflection fluorescence microscopy of green fluorescent protein (GFP) and small fluorophore-labeled AQP4. The full-length (M1) form of AQP4 diffuses freely in membranes and does not form OAPs, whereas the shorter (M23) form of AQP4 forms OAPs and is nearly immobile. Analysis of a series of AQP4 truncations, point mutants and chimeras revealed that OAP formation by AQP4-M23 is stabilized by hydrophobic tetramer-tetramer interactions involving N-terminus residues, and that absence of OAPs in AQP4-M1 results from blocking of this interaction by residues just upstream from Met23. These biophysical methods are being extended to identify the cellular site of AQP4 assembly, AQP4 isoform interactions, OAP size and dynamics, and the determinants of regulated OAP assembly.
Collapse
Affiliation(s)
- J M Crane
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| | | | | |
Collapse
|
30
|
Zhang L, Aleksandrov LA, Zhao Z, Birtley JR, Riordan JR, Ford RC. Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 2009; 167:242-51. [PMID: 19524678 DOI: 10.1016/j.jsb.2009.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 11/30/2022]
Abstract
We describe biochemical and structural studies of the isolated cystic fibrosis transmembrane conductance regulator (CFTR) protein. Using electron cryomicroscopy, low resolution three-dimensional structures have been obtained for the non-phosphorylated protein in the absence of nucleotide and for the phosphorylated protein with ATP. In the latter state, the cytosolic nucleotide-binding domains move closer together, forming a more compact packing arrangement. Associated with this is a reorganization within the cylindrical transmembrane domains, consistent with a shift from an inward-facing to outward-facing configuration. A region of density in the non-phosphorylated protein that extends from the bottom of the cytosolic regions up to the transmembrane domains is hypothesised to represent the unique regulatory region of CFTR. These data offer insights into the architecture of this ATP-binding cassette protein, and shed light on the global motions associated with nucleotide binding and priming of the chloride channel via phosphorylation of the regulatory region.
Collapse
Affiliation(s)
- Liang Zhang
- Faculty of Life Sciences, The University of Manchester, MIB, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|