1
|
Faheem I, Nagaraja V. Multifunctional Mycobacterial Topoisomerases with Distinctive Features. ACS Infect Dis 2025; 11:366-385. [PMID: 39825760 DOI: 10.1021/acsinfecdis.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, Mycobacterium tuberculosis retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task. DNA topoisomerases make up a unique class of ubiquitous enzymes that ensure steady-state level supercoiling and solve topological problems occurring during DNA transactions in cells. They continue to be attractive targets for the discovery of novel classes of antibacterials and to develop better molecules from existing drugs by virtue of their reaction mechanism. The limited repertoire of topoisomerases in M. tuberculosis, key differences in their properties compared to topoisomerases from other bacteria, their essentiality for the pathogen's survival, and validation as candidates for drug discovery provide an opportunity to exploit them in drug discovery efforts. The present review provides insights into their organization, structure, function, and regulation to further efforts in targeting them for new inhibitor discovery. First, the structure and biochemical properties of DNA gyrase and Topoisomerase I (TopoI) of mycobacteria are described compared to the well-studied counterparts from other bacteria. Next, we provide an overview of known inhibitors of DNA gyrase and emerging novel bacterial topoisomerase inhibitors (NBTIs). We also provide an update on TopoI-specific compounds, highlighting mycobacteria-specific inhibitors.
Collapse
Affiliation(s)
- Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
2
|
Studies on the antibacterial activities and molecular mechanism of GyrB inhibitors by 3D-QSAR, molecular docking and molecular dynamics simulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Gupta RS, Suggett C. Conserved Signatures in Protein Sequences Reliably Demarcate Different Clades of Rodents/Glires Species and Consolidate Their Evolutionary Relationships. Genes (Basel) 2022; 13:genes13020288. [PMID: 35205335 PMCID: PMC8871558 DOI: 10.3390/genes13020288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
The grandorder Glires, consisting of the orders Rodentia and Lagomorpha, encompasses a significant portion of the extant mammalian species including Rat, Mouse, Squirrel, Guinea pig and Beaver. Glires species play an important role in the ecosystem and provide valuable animal models for genetic studies and animal testing. Thus, it is important to reliably determine their evolutionary relationships and identify molecular characteristics that are specific for different species groups within the Glires. In this work, we have constructed a phylogenetic tree for >30 genome sequenced Glires species based on concatenated sequences of 25 conserved proteins. In this tree, members of different orders, suborders, and families within Glires formed strongly supported clades, and their interrelationships were also generally reliably resolved. In parallel, we conducted comparative analyses on more than 1500 protein sequences from Glires species to identify highly conserved molecular markers. These markers were comprised of conserved signature indels (CSIs) in proteins, which are specific for different Rodentia/Glires clades. Of the 41 novel CSIs identified in this work, some are specific for the entire Glires, Rodentia, or Lagomorpha clades, whereas many others reliably demarcate different family/suborder level clades of Rodentia (viz. Myomorpha, Castorimorpha, Sciuromorpha, Hystricomorpha, and Muroidea). Additionally, some of the CSIs also provide information regarding the interrelationships among Rodentia subgroups. Our analysis has also identified one CSI that is commonly shared by the Glires and Scandentia species (tree shrew), however, its evolutionary significance is unclear. Several of the identifed rodents-specific CSIs are present in conserved disease-related proteins. Thus, they provide novel molecular markers for genetic and biochemical studies on the functions of these proteins.
Collapse
|
4
|
Gupta D, Sachdeva E, Haque MA, Rahman S, Bansal R, Ethayathulla AS, Hassan MI, Kaur P. Effect of chemical denaturants on the conformational stability of GyrB subunit of DNA gyrase from Salmonella enterica serovar Typhi. Int J Biol Macromol 2017; 103:165-174. [DOI: 10.1016/j.ijbiomac.2017.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
|
5
|
Gupta RS, Epand RM. Phylogenetic analysis of the diacylglycerol kinase family of proteins and identification of multiple highly-specific conserved inserts and deletions within the catalytic domain that are distinctive characteristics of different classes of DGK homologs. PLoS One 2017; 12:e0182758. [PMID: 28829789 PMCID: PMC5567653 DOI: 10.1371/journal.pone.0182758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) family of proteins, which phosphorylates diacylglycerol into phosphatidic acid, play important role in controlling diverse cellular processes in eukaryotic organisms. Most vertebrate species contain 10 different DGK isozymes, which are grouped into 5 different classes based on the presence or absence of specific functional domains. However, the relationships among different DGK isozymes or how they have evolved from a common ancestor is unclear. The catalytic domain constitutes the single largest sequence element within the DGK proteins that is commonly and uniquely shared by all family members, but there is limited understanding of the overall function of this domain. In this work, we have used the catalytic domain sequences to construct a phylogenetic tree for the DGK family members from representatives of the main vertebrate classes and have also examined the distributions of various DGK isozymes in eukaryotic phyla. In a tree based on catalytic domain sequences, the DGK homologs belonging to different classes formed strongly supported clusters which were separated by long branches, and the different isozymes within each class also generally formed monophyletic groupings. Further, our analysis of the sequence alignments of catalytic domains has identified >10 novel sequence signatures consisting of conserved signature indels (inserts or deletions, CSIs) that are distinctive characteristics of either particular classes of DGK isozymes, or are commonly shared by members of two or more classes of DGK isozymes. The conserved indels in protein sequences are known to play important functional roles in the proteins/organisms where they are found. Thus, our identification of multiple highly specific CSIs that are distinguishing characteristics of different classes of DGK homologs points to the existence of important differences in the catalytic domain function among the DGK isozymes. The identified CSIs in conjunction with the results of blast searches on species distribution of DGK isozymes also provide useful insights into the evolutionary relationships among the DGK family of proteins.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Alnajar S, Khadka B, Gupta RS. Ribonucleotide Reductases from Bifidobacteria Contain Multiple Conserved Indels Distinguishing Them from All Other Organisms: In Silico Analysis of the Possible Role of a 43 aa Bifidobacteria-Specific Insert in the Class III RNR Homolog. Front Microbiol 2017; 8:1409. [PMID: 28824557 PMCID: PMC5535262 DOI: 10.3389/fmicb.2017.01409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/11/2017] [Indexed: 01/05/2023] Open
Abstract
Bifidobacteria comprises an important group/order of bacteria whose members have widespread usage in the food and health industry due to their health-promoting activity in the human gastrointestinal tract. However, little is known about the underlying molecular properties that are responsible for the probiotic effects of these bacteria. The enzyme ribonucleotide reductase (RNR) plays a key role in all organisms by reducing nucleoside di- or tri- phosphates into corresponding deoxyribose derivatives required for DNA synthesis, and RNR homologs belonging to classes I and III are present in either most or all Bifidobacteriales. Comparative analyses of these RNR homologs have identified several novel sequence features in the forms of conserved signature indels (CSIs) that are exclusively found in bifidobacterial RNRs. Specifically, in the large subunit of the aerobic class Ib RNR, three CSIs have been identified that are uniquely found in the Bifidobacteriales homologs. Similarly, the large subunit of the anaerobic class III RNR contains five CSIs that are also distinctive characteristics of bifidobacteria. Phylogenetic analyses indicate that these CSIs were introduced in a common ancestor of the Bifidobacteriales and retained by all descendants, likely due to their conferring advantageous functional roles. The identified CSIs in the bifidobacterial RNR homologs provide useful tools for further exploration of the novel functional aspects of these important enzymes that are exclusive to these bacteria. We also report here the results of homology modeling studies, which indicate that most of the bifidobacteria-specific CSIs are located within the surface loops of the RNRs, and of these, a large 43 amino acid insert in the class III RNR homolog forms an extension of the allosteric regulatory site known to be essential for protein function. Preliminary docking studies suggest that this large CSI may be playing a role in enhancing the stability of the RNR dimer complex. The possible significances of the identified CSIs, as well as the distribution of RNR homologs in the Bifidobacteriales, are discussed.
Collapse
Affiliation(s)
- Seema Alnajar
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada
| |
Collapse
|
7
|
Gubaev A, Weidlich D, Klostermeier D. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism. Nucleic Acids Res 2016; 44:10354-10366. [PMID: 27557712 PMCID: PMC5137430 DOI: 10.1093/nar/gkw740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/20/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023] Open
Abstract
The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors.
Collapse
Affiliation(s)
- Airat Gubaev
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Daniela Weidlich
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, D-48149 Muenster, Germany
| |
Collapse
|
8
|
Lin TY, Nagano S, Gardiner Heddle J. Functional Analyses of the Toxoplasma gondii DNA Gyrase Holoenzyme: A Janus Topoisomerase with Supercoiling and Decatenation Abilities. Sci Rep 2015; 5:14491. [PMID: 26412236 PMCID: PMC4585971 DOI: 10.1038/srep14491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022] Open
Abstract
A number of important protozoan parasites including those responsible for toxoplasmosis and malaria belong to the phylum Apicomplexa and are characterised by their possession of a relict plastid, the apicoplast. Being required for survival, apicoplasts are potentially useful drug targets and their attractiveness is increased by the fact that they contain “bacterial” gyrase, a well-established antibacterial drug target. We have cloned and purified the gyrase proteins from the apicoplast of Toxoplasma gondii (the cause of toxoplasmosis), reconstituted the functional enzyme and succeeded in characterising it. We discovered that the enzyme is inhibited by known gyrase inhibitors and that, as well as the expected supercoiling activity, it is also able to decatenate DNA with high efficiency. This unusual dual functionality may be related to the apparent lack of topoisomerase IV in the apicoplast.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Soshichiro Nagano
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
9
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
10
|
Marathe SA, Kumar R, Ajitkumar P, Nagaraja V, Chakravortty D. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi. J Antimicrob Chemother 2013; 68:139-152. [PMID: 23070736 DOI: 10.1093/jac/dks375] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. METHOD We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RT-PCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. RESULTS Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. CONCLUSIONS The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon γ (IFNγ), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumin's ability to hinder the bactericidal action of ciprofloxacin and IFNγ might significantly augment Salmonella pathogenesis.
Collapse
Affiliation(s)
- Sandhya A Marathe
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research and Biosafety Laboratories, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
11
|
Cunningham ML. The role of enzymology in a structure-based drug discovery program: bacterial DNA gyrase. Methods Mol Biol 2012; 841:179-207. [PMID: 22222453 DOI: 10.1007/978-1-61779-520-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The capability to accurately, rapidly, and reproducibly determine the affinity of a ligand for a target protein or enzyme is a vital component for a successful structure-based drug design effort. In order to successfully drive a structure-based drug design (SBDD) project forward, multiple distinct assays, each with particular strengths and weaknesses, need to be employed. Using bacterial DNA gyrase as an example, a range of assays are described that will fully support an SBDD program.
Collapse
|
12
|
Schoeffler AJ, May AP, Berger JM. A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Res 2010; 38:7830-44. [PMID: 20675723 PMCID: PMC2995079 DOI: 10.1093/nar/gkq665] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA topoisomerases manage chromosome supercoiling and organization in all forms of life. Gyrase, a prokaryotic heterotetrameric type IIA topo, introduces negative supercoils into DNA by an ATP-dependent strand passage mechanism. All gyrase orthologs rely on a homologous set of catalytic domains for function; however, these enzymes also can possess species-specific auxiliary regions. The gyrases of many gram-negative bacteria harbor a 170-amino acid insertion of unknown architecture and function in the metal- and DNA-binding TOPRIM domain of the GyrB subunit. We have determined the structure of the 212 kDa Escherichia coli gyrase DNA binding and cleavage core containing this insert to 3.1 Å resolution. We find that the insert adopts a novel, extended fold that braces the GyrB TOPRIM domain against the coiled-coil arms of its partner GyrA subunit. Structure-guided deletion of the insert greatly reduces the DNA binding, supercoiling and DNA-stimulated ATPase activities of gyrase. Mutation of a single amino acid at the contact point between the insert and GyrA more modestly impairs supercoiling and ATP turnover, and does not affect DNA binding. Our data indicate that the insert has two functions, acting as a steric buttress to pre-configure the primary DNA-binding site, and serving as a relay that may help coordinate communication between different functional domains.
Collapse
Affiliation(s)
- Allyn J. Schoeffler
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley and Fluidigm Corporation, South San Francisco, CA 94080, USA,*To whom correspondence should be addressed. Tel: 505 643 9483; Fax: 505 666 2768;
| | - Andrew P. May
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley and Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley and Fluidigm Corporation, South San Francisco, CA 94080, USA,*To whom correspondence should be addressed. Tel: 505 643 9483; Fax: 505 666 2768;
| |
Collapse
|
13
|
A unique 45-amino-acid region in the toprim domain of Plasmodium falciparum gyrase B is essential for its activity. EUKARYOTIC CELL 2009; 8:1759-69. [PMID: 19700639 DOI: 10.1128/ec.00149-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA gyrase is the only topoisomerase that can introduce negative supercoils into the DNA at the cost of ATP hydrolysis. Some but not all the steps of the topoisomerization reaction are understood clearly for both eukaryotic topoII and DNA gyrase. This study is an attempt to understand whether the B subunit of DNA gyrase binds to DNA directly, which may be central to the stimulation of its ATPase activity essential for gyrase function. We have dissected the Plasmodium falciparum gyrase B (PfGyrB) subunit to identify a 45-amino-acid region in the toprim domain that is responsible for its intrinsic DNA binding activity, DNA-stimulated ATPase activity, and DNA cleavage. We find that DNA has to enter through the ATP-operated clamp of PfGyrB to gain access to the DNA binding region. Furthermore, the rate of ATP hydrolysis of PfGyrB increases significantly with increasing DNA length, suggesting a possible communication between the ATPase domain and the DNA binding region that can account for its optimal ATPase activity. These results not only highlight the mechanism of GyrB action in the deadly human parasite P. falciparum but also provide meaningful insights into the current mechanistic model of DNA transport by gyrase during the topoisomerization reaction.
Collapse
|
14
|
Dar MA, Sharma A, Mondal N, Dhar SK. Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. EUKARYOTIC CELL 2007; 6:398-412. [PMID: 17220464 PMCID: PMC1828931 DOI: 10.1128/ec.00357-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/20/2006] [Indexed: 11/20/2022]
Abstract
DNA gyrase, a typical type II topoisomerase that can introduce negative supercoils in DNA, is essential for replication and transcription in prokaryotes. The apicomplexan parasite Plasmodium falciparum contains the genes for both gyrase A and gyrase B in its genome. Due to the large sizes of both proteins and the unusual codon usage of the highly AT-rich P. falciparum gyrA (PfgyrA) and PfgyrB genes, it has so far been impossible to characterize these proteins, which could be excellent drug targets. Here, we report the cloning, expression, and functional characterization of full-length PfGyrB and functional domains of PfGyrA. Unlike Escherichia coli GyrB, PfGyrB shows strong intrinsic ATPase activity and follows a linear pattern of ATP hydrolysis characteristic of dimer formation in the absence of ATP analogues. These unique features have not been reported for any known gyrase so far. The PfgyrB gene complemented the E. coli gyrase temperature-sensitive strain, and, together with the N-terminal domain of PfGyrA, it showed typical DNA cleavage activity. Furthermore, PfGyrA contains a unique leucine heptad repeat that might be responsible for dimerization. These results confirm the presence of DNA gyrase in eukaryotes and confer great potential for drug development and organelle DNA replication in the deadliest human malarial parasite, P. falciparum.
Collapse
Affiliation(s)
- Mohd Ashraf Dar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
15
|
Costenaro L, Grossmann JG, Ebel C, Maxwell A. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering. Structure 2007; 15:329-39. [PMID: 17355868 DOI: 10.1016/j.str.2007.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 01/12/2007] [Accepted: 01/18/2007] [Indexed: 11/15/2022]
Abstract
DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.
Collapse
Affiliation(s)
- Lionel Costenaro
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
16
|
Huang YY, Deng JY, Gu J, Zhang ZP, Maxwell A, Bi LJ, Chen YY, Zhou YF, Yu ZN, Zhang XE. The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA). Nucleic Acids Res 2006; 34:5650-9. [PMID: 17038336 PMCID: PMC1636481 DOI: 10.1093/nar/gkl695] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/03/2006] [Accepted: 09/09/2006] [Indexed: 11/23/2022] Open
Abstract
As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified.
Collapse
Affiliation(s)
- You-Yi Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070, China
| | - Jiao-Yu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Jing Gu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes CentreColney, Norwich NR4 7UH, UK
| | - Li-Jun Bi
- State Key Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
| | - Yuan-Yuan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Ya-Feng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Zi-Niu Yu
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| |
Collapse
|
17
|
Smith AB, Maxwell A. A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site. Nucleic Acids Res 2006; 34:4667-76. [PMID: 16963775 PMCID: PMC1635281 DOI: 10.1093/nar/gkl636] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/14/2022] Open
Abstract
DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase 'cleavage complex', but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB-GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB-gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place.
Collapse
Affiliation(s)
- Andrew B. Smith
- Department of Biological Chemistry, John Innes CentreNorwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes CentreNorwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Gupta R, China A, Manjunatha UH, Ponnanna NM, Nagaraja V. A complex of DNA gyrase and RNA polymerase fosters transcription in Mycobacterium smegmatis. Biochem Biophys Res Commun 2006; 343:1141-5. [PMID: 16579974 DOI: 10.1016/j.bbrc.2006.02.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/24/2022]
Abstract
We report here the existence of a complex between RNA polymerase (RNAP) and DNA gyrase in Mycobacterium smegmatis. The interaction between the two enzymes was detected during our attempts to purify DNA gyrase from M. smegmatis. RNAP subunits co-eluted along with DNA gyrase in two different affinity chromatography column procedures employed to purify the latter enzyme. A complex containing both the enzymes was isolated through gel filtration chromatography and sucrose density gradient centrifugation of the cell free extracts. The complex exhibited both DNA supercoiling and transcription activities. Reduction in the transcription activity of the complex in the presence of DNA gyrase inhibitor indicates a role for DNA gyrase in stimulating transcription.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
19
|
Pacholec M, Hillson NJ, Walsh CT. NovJ/NovK catalyze benzylic oxidation of a beta-hydroxyl tyrosyl-S-pantetheinyl enzyme during aminocoumarin ring formation in novobiocin biosynthesis. Biochemistry 2005; 44:12819-26. [PMID: 16171397 DOI: 10.1021/bi051297m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bicyclic coumarin ring in the aminocoumarin natural product antibiotics that target bacterial DNA gyrase is assembled from tyrosine by nonribosomal peptide synthetase logic. Tyrosine has previously been shown to be activated and installed as a phosphopantetheinyl thioester on the thiolation domain of NovH and then hydroxylated on the benzylic carbon by the heme protein NovI, generating beta-OH-Tyr-S-NovH. This aminoacyl-S-protein is the substrate for the next two orfs, Streptomyces sphaeroides NovJ and NovK, that have now been expressed in and purified from Escherichia coli as a J2K2 heterotetramer. NovJ/NovK use NADP as an electron acceptor to oxidize the beta-OH of the tyrosyl moiety to yield the tethered beta-ketotyrosyl-S-NovH. The enol tautomer is the form that predominates in the subsequently cyclized aminocoumarin scaffold. The labile beta-ketotyrosyl thioester moiety was identified by hydrolytic release from NovH, analysis by mass spectroscopy, and comparison with a synthetic sample. We also have identified a residue in NovJ that when mutated results in a 50-fold reduction in catalytic activity.
Collapse
Affiliation(s)
- M Pacholec
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
20
|
Pacholec M, Tao J, Walsh CT. CouO and NovO: C-Methyltransferases for Tailoring the Aminocoumarin Scaffold in Coumermycin and Novobiocin Antibiotic Biosynthesis. Biochemistry 2005; 44:14969-76. [PMID: 16274243 DOI: 10.1021/bi051599o] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the biosynthesis of the streptomycete aminocoumarin antibiotics novobiocin and the dimeric coumermycin A(1), the bicyclic coumarin scaffold is C-methylated adjacent to the phenolic oxygen. The SAM-dependent C-methyltransferases NovO and CouO have been heterologously expressed and purified from Escherichia coli and shown to act after the aminocoumarin ring has been constructed by prior action of Nov/CouHIJK. Neither C-methyltransferase works on the tyrosyl-derived S-pantetheinyl intermediates tethered to NovH or on the subsequently released free aminocoumarin. NovL ligates the aminocoumarin to prenylhydroxybenzoate to yield novobiocic acid, which is the substrate for NovO before it is O-glycosylated by NovM. In coumermycin assembly, the corresponding ligase CouL makes the bis-amide by tandem ligation of two aminocoumarins to a dicarboxypyrrole. CouO works on both the mono- and bis-amides for mono- and di-C-methylation adjacent to the phenolic hydroxyl before it is glycosylated by CouM. Thus, the specific timing of C-methylation in the aminocoumarin antibiotic pathways is established.
Collapse
Affiliation(s)
- Michelle Pacholec
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
21
|
Pacholec M, Freel Meyers CL, Oberthür M, Kahne D, Walsh CT. Characterization of the aminocoumarin ligase SimL from the simocyclinone pathway and tandem incubation with NovM,P,N from the novobiocin pathway. Biochemistry 2005; 44:4949-56. [PMID: 15779922 DOI: 10.1021/bi047303g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Simocyclinone D(8) consists of an anguicycline C-glycoside tethered by a tetraene diester linker to an aminocoumarin. Unlike the antibiotics novobiocin, clorobiocin, and coumermycin A(1), the phenolic hydroxyl group of the aminocoumarin in simocyclinone is not glycosylated with a decorated noviosyl moiety that is the pharmacophore for targeting bacterial DNA gyrase. We have expressed the Streptomyces antibioticus simocyclinone ligase SimL, purified it from Escherichia coli, and established its ATP-dependent amide bond forming activity with a variety of polyenoic acids including retinoic acid and fumagillin. We have then used the last three enzymes from the novobiocin pathway, NovM, NovP, and NovN, to convert a SimL product to a novel novobiocin analogue, in which the 3-prenyl-4-hydroxybenzoate of novobiocin is replaced with a tetraenoate moiety, to evaluate antibacterial activity.
Collapse
Affiliation(s)
- Michelle Pacholec
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Manjunatha UH, Maxwell A, Nagaraja V. A monoclonal antibody that inhibits mycobacterial DNA gyrase by a novel mechanism. Nucleic Acids Res 2005; 33:3085-94. [PMID: 15930158 PMCID: PMC1142348 DOI: 10.1093/nar/gki622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DNA gyrase is a DNA topoisomerase indispensable for cellular functions in bacteria. We describe a novel, hitherto unknown, mechanism of specific inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis DNA gyrase by a monoclonal antibody (mAb). Binding of the mAb did not affect either GyrA–GyrB or gyrase–DNA interactions. More importantly, the ternary complex of gyrase–DNA–mAb retained the ATPase activity of the enzyme and was competent to catalyse DNA cleavage–religation reactions, implying a new mode of action different from other classes of gyrase inhibitors. DNA gyrase purified from fluoroquinolone-resistant strains of M.tuberculosis and M.smegmatis were inhibited by the mAb. The absence of cross-resistance of the drug-resistant enzymes from two different sources to the antibody-mediated inhibition corroborates the new mechanism of inhibition. We suggest that binding of the mAb in the proximity of the primary dimer interface region of GyrA in the heterotetrameric enzyme appears to block the release of the transported segment after strand passage, leading to enzyme inhibition. The specific inhibition of mycobacterial DNA gyrase with the mAb opens up new avenues for designing novel lead molecules for drug discovery and for probing gyrase mechanism.
Collapse
Affiliation(s)
- Ujjini H Manjunatha
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, 560 012, India
| | | | | |
Collapse
|
23
|
Pierrat OA, Maxwell A. Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase. Biochemistry 2005; 44:4204-15. [PMID: 15766248 DOI: 10.1021/bi0478751] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.
Collapse
Affiliation(s)
- Olivier A Pierrat
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
24
|
Mitscher LA. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 2005; 105:559-92. [PMID: 15700957 DOI: 10.1021/cr030101q] [Citation(s) in RCA: 605] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lester A Mitscher
- Department of Medicinal Chemistry and Molecular Biosciences and The Chemical Methodologies and Library Development Center of Excellence, The University of Kansas, Lawrence, Kansas 66045-7582, USA.
| |
Collapse
|
25
|
Freel Meyers CL, Oberthür M, Heide L, Kahne D, Walsh CT. Assembly of dimeric variants of coumermycins by tandem action of the four biosynthetic enzymes CouL, CouM, CouP, and NovN. Biochemistry 2005; 43:15022-36. [PMID: 15554710 DOI: 10.1021/bi048457z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coumermycin A(1) is a member of the aminocoumarin family of antibiotics. Unlike its structural relatives, novobiocin and clorobiocin, coumermycin A(1) is a dimer built on a 3-methyl-2,4-dicarboxypyrrole scaffold and bears two decorated noviose sugar components which are the putative target binding motifs for DNA gyrase. Starting with this scaffold, we have utilized the ligase CouL for mono- and bisamide formation with aminocoumarins to provide substrates for the glycosyltransferase CouM. CouM was subsequently shown to catalyze mono- and bisnoviosylation of the resulting CouL products. CouP was shown to possess 4'-O-methyltransferase activity on products from tandem CouL, CouM assays. A fourth enzyme, NovN, the 3'-O-carbamoyltransferase from the novobiocin operon, was then able to carbamoylate either or both arms of the CouP product. The tandem action of CouL, CouM, CouP, and NovN thus generates a biscarbamoyl analogue of the pseudodimer coumermycin A(1). Starting from alternative dicarboxy scaffolds, these four enzymes can be utilized in tandem to create additional variants of dimeric aminocoumarin antibiotics.
Collapse
Affiliation(s)
- Caren L Freel Meyers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Li K, Pasternak C, Härtig E, Haberzettl K, Maxwell A, Klug G. Thioredoxin can influence gene expression by affecting gyrase activity. Nucleic Acids Res 2004; 32:4563-75. [PMID: 15328368 PMCID: PMC516065 DOI: 10.1093/nar/gkh794] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The expression of many genes of facultatively photosynthetic bacteria of the genus Rhodobacter is controlled by the oxygen tension. Among these are the genes of the puf and puc operons, which encode proteins of the photosynthetic apparatus. Previous results revealed that thioredoxins are involved in the regulated expression of these operons, but it remained unsolved as to the mechanisms by which thioredoxins affect puf and puc expression. Here we show that reduced TrxA of Rhodobacter capsulatus and Rhodobacter sphaeroides and oxidized TrxC of R.capsulatus interact with DNA gyrase and alter its DNA supercoiling activity. While TrxA enhances supercoiling, TrxC exerts a negative effect on this activity. Furthermore, inhibition of gyrase activity strongly reduces puf and puc expression. Our results reveal a new signaling pathway by which oxygen can affect the expression of bacterial genes.
Collapse
Affiliation(s)
- Kuanyu Li
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Pi N, Meyers CLF, Pacholec M, Walsh CT, Leary JA. Mass spectrometric characterization of a three-enzyme tandem reaction for assembly and modification of the novobiocin skeleton. Proc Natl Acad Sci U S A 2004; 101:10036-41. [PMID: 15218104 PMCID: PMC454160 DOI: 10.1073/pnas.0403526101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tripartite scaffold of the natural product antibiotic novobiocin is assembled by the tandem action of novobiocin ligase (NovL) and novobiocic acid noviosyl transferase (NovM). The noviosyl ring of the tripartite scaffold is further decorated by a methyltransferase (NovP) and a carbamoyltransferase (NovN), resulting in the formation of novobiocin. To facilitate kinetic evaluation of alternate substrate usage by NovL and NovM toward the creation of variant antibiotic scaffolds, an electrospray ionization/MS assay for obtaining kinetic measurements is presented for NovL and NovM separately, in each case with natural substrate and the 3-methyl-4-hydroxybenzoic acid analog. Additionally, assays of tandem two-enzyme (NovL/NovM) and three-enzyme (NovL/NovM/NovP) incubations were developed. The development of these assays allows for the direct detection of each intermediate followed by its utilization as substrate for the next enzyme, as well as the subsequent formation of final product as a function of time. This MS tandem assay is useful for optimization of conditions for chemoenzymatic generation of novobiocin and is also suitable for evaluation of competitive usage of variant substrate analogs by multiple enzymes. The studies presented here serve as a platform for the subsequent expansion of the repertoire of coumarin-based antibiotics.
Collapse
Affiliation(s)
- Na Pi
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | | | | | | | | |
Collapse
|
28
|
Zheng Y, Roberts RJ, Kasif S. Segmentally variable genes: a new perspective on adaptation. PLoS Biol 2004; 2:E81. [PMID: 15094797 PMCID: PMC387263 DOI: 10.1371/journal.pbio.0020081] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022] Open
Abstract
Genomic sequence variation is the hallmark of life and is key to understanding diversity and adaptation among the numerous microorganisms on earth. Analysis of the sequenced microbial genomes suggests that genes are evolving at many different rates. We have attempted to derive a new classification of genes into three broad categories: lineage-specific genes that evolve rapidly and appear unique to individual species or strains; highly conserved genes that frequently perform housekeeping functions; and partially variable genes that contain highly variable regions, at least 70 amino acids long, interspersed among well-conserved regions. The latter we term segmentally variable genes (SVGs), and we suggest that they are especially interesting targets for biochemical studies. Among these genes are ones necessary to deal with the environment, including genes involved in host–pathogen interactions, defense mechanisms, and intracellular responses to internal and environmental changes. For the most part, the detailed function of these variable regions remains unknown. We propose that they are likely to perform important binding functions responsible for protein–protein, protein–nucleic acid, or protein–small molecule interactions. Discerning their function and identifying their binding partners may offer biologists new insights into the basic mechanisms of adaptation, context-dependent evolution, and the interaction between microbes and their environment. Segmentally variable genes show a mosaic pattern of one or more rapidly evolving, variable regions. Discerning their function may provide new insights into the forces that shape genome diversity and adaptation
Collapse
Affiliation(s)
- Yu Zheng
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
29
|
Walsh C, Freel Meyers CL, Losey HC. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem 2003; 46:3425-36. [PMID: 12877577 DOI: 10.1021/jm030257i] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
30
|
Freel Meyers CL, Oberthür M, Anderson JW, Kahne D, Walsh CT. Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin. Biochemistry 2003; 42:4179-89. [PMID: 12680772 DOI: 10.1021/bi0340088] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminocoumarin class of antibiotics, exemplified by novobiocin, is composed of tripartite l-noviosylaminocoumarin prenylbenzoate natural products. The decorated noviosyl sugar component interacts with the target bacterial enzyme DNA gyrase. We have subcloned the putative 40 kDa l-noviosyl transferase from Streptomyces spheroides into Escherichia coli, expressed it in soluble form, and purified it to homogeneity as a C-terminal His(8) fusion protein. The aglycone novobiocic acid, obtained from selective degradation of novobiocin, and TDP-l-noviose, obtained by an 11-step chemical synthesis from l-rhamnose, were shown to be robust substrates for NovM to produce the desmethyldescarbamoyl novobiocin intermediate with a k(cat) of >300 min(-1). NovM displays activity with variant coumarin aglycones, suggesting it may be a promiscuous catalyst for noviosylation of a range of planar scaffolds. Conversely, NovM shows no activity with and is inhibited by TDP-l-rhamnose (K(i) = 83.5 +/- 5.5 microM), the sugar donor that most closely structurally resembles the natural substrate TDP-l-noviose. The NovM reaction products generated during the course of this work will serve as substrates for subsequent analysis of the NovP and NovN tailoring enzymes that impart the noviose decorations required for DNA gyrase binding and antibiotic activity.
Collapse
Affiliation(s)
- Caren L Freel Meyers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Miao XS, Metcalfe CD. Determination of pharmaceuticals in aqueous samples using positive and negative voltage switching microbore liquid chromatography/electrospray ionization tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:27-34. [PMID: 12526003 DOI: 10.1002/jms.394] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Analytical methods were developed for atorvastatin, novobiocin and roxithromycin using microbore liquid chromatography/electrospray ionization tandem mass spectrometry (microbore LC/ESI-MS/MS) in positive and negative voltage switching mode. Atorvastatin and roxithromycin require the positive-ion mode, whereas the negative-ion mode is required for the determination of novobiocin. Using the positive and negative voltage switching function, the three analytes were determined with one injection, and the time required was half that required using separately run positive- and negative-ion modes, without any reduction in sensitivity. A microbore LC column (100 x 1.0 mm i.d.) was chosen for chromatographic separation with mobile phase solvents acetonitrile and 10 mM aqueous ammonium acetate. The flow-rate was 0.1 ml min(-1) and the injection volume was 1 micro l. The analytes were quantified in the multiple reaction monitoring mode with external standards. By switching the positive and negative voltage, the three analytes were determined with a 4 min chromatographic run and with instrumental detection limits of 1-3 pg. This analytical method, using a microbore LC column combined with solid-phase extraction, was applied successfully to the determination of trace levels of the above pharmaceuticals in aqueous samples. Atorvastatin was detected in a sewage treatment plant final effluent.
Collapse
Affiliation(s)
- Xiu-Sheng Miao
- Water Quality Centre, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | |
Collapse
|
32
|
Jain P, Nagaraja V. An orphan gyrB in the Mycobacterium smegmatis genome uncovered by comparative genomics. J Genet 2002; 81:105-10. [PMID: 12717039 DOI: 10.1007/bf02715907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA gyrase is an essential topoisomerase found in all bacteria. It is encoded by gyrB and gyrA genes. These genes are organized differently in different bacteria. Direct comparison of Mycobacterium tuberculosis and Mycobacterium smegmatis genomes reveals presence of an additional gyrB in M. smegmatis flanked by novel genes. Analysis of the amino acid sequence of GyrB from different organisms suggests that the orphan GyrB in M. smegmatis may have an important cellular role.
Collapse
Affiliation(s)
- P Jain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India.
| | | |
Collapse
|
33
|
Manjunatha UH, Dalal M, Chatterji M, Radha DR, Visweswariah SS, Nagaraja V. Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase. Nucleic Acids Res 2002; 30:2144-53. [PMID: 12000834 PMCID: PMC115291 DOI: 10.1093/nar/30.10.2144] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A rapid single step immunoaffinity purification procedure is described for Mycobacterium smegmatis DNA gyrase. The mycobacterial enzyme is a 340 kDa heterotetrameric protein comprising two subunits each of GyrA and GyrB, exhibiting subtle differences and similarities to the well-characterised Escherichia coli gyrase. In contrast to E.coli gyrase, the M.smegmatis enzyme exhibits strong decatenase activity at physiological Mg2+ concentrations. Further, the enzymes exhibited marked differences in ATPase activity, DNA binding characteristics and susceptibility to fluoroquinolones. The holoenzyme showed very low intrinsic ATPase activity and was stimulated 20-fold in the presence of DNA. The DNA-stimulated ATPase kinetics revealed apparent K0.5 and kcat of 0.68 mM and 0.39 s(-1), respectively. The dissociation constant for DNA was found to be 9.2 nM, which is 20 times weaker than that of E.coli DNA gyrase. The differences between the enzymes were further substantiated as they exhibited varied sensitivity to moxifloxacin and ciprofloxacin. In spite of these differences, mycobacterial DNA gyrase is a functionally and mechanistically conserved enzyme and the variations in activity seem to reflect functional optimisation for its physiological role during mycobacterial genome replication.
Collapse
Affiliation(s)
- U H Manjunatha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from all other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. The structural themes common to all topoisomerases include hinged clamps that open and close to bind DNA, the presence of DNA binding cavities for temporary storage of DNA segments, and the coupling of protein conformational changes to DNA rotation or DNA movement. For the type II topoisomerases, the binding and hydrolysis of ATP further modulate conformational changes in the enzymes to effect changes in DNA topology.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
35
|
Chatterji M, Nagaraja V. GyrI: a counter-defensive strategy against proteinaceous inhibitors of DNA gyrase. EMBO Rep 2002; 3:261-7. [PMID: 11850398 PMCID: PMC1084011 DOI: 10.1093/embo-reports/kvf038] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase-DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (GyrI) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. GyrI reduces intrinsic as well as toxin-stabilized gyrase-DNA covalent complexes. Furthermore, GyrI reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, GyrI is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.
Collapse
Affiliation(s)
- Monalisa Chatterji
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
36
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
37
|
Schio L, Chatreaux F, Loyau V, Murer M, Ferreira A, Mauvais P, Bonnefoy A, Klich M. Fine Tuning of physico-chemical parameters to optimise a new series of novobiocin analogues. Bioorg Med Chem Lett 2001; 11:1461-4. [PMID: 11378377 DOI: 10.1016/s0960-894x(01)00257-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of novobiocin analogues has been synthesised by removing the lipophilic aryl chain in novobiocin and introducing an amino substituent. The structural modifications have been dictated by the control of lipophilicity and the dissociation constant of the resulting compounds. Antibacterial activity of the new coumarin derivatives could be correlated with the amount of uncharged form in physiological conditions.
Collapse
Affiliation(s)
- L Schio
- Medicinal Chemistry, Aventis Pharma, 102 route de Noisy, F-93235 Cedex, Romainville, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Manjunatha UH, Somesh BP, Nagaraja V, Visweswariah SS. A Mycobacterium smegmatis gyrase B specific monoclonal antibody reveals association of gyrase A and B subunits in the cell. FEMS Microbiol Lett 2001; 194:87-92. [PMID: 11150671 DOI: 10.1111/j.1574-6968.2001.tb09451.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA gyrase is a unique topoisomerase, which plays important roles in macromolecular events like DNA replication, transcription and genetic recombination. In this study a high affinity monoclonal antibody to the gyrase B (GyrB) subunit of Mycobacterium smegmatis was characterized, which did not cross-react with either the Escherichia coli GyrB subunit or with GyrB subunits from other mycobacterial species. The antibody recognized an epitope in the N-terminus, novobiocin-binding domain of GyrB. Immunoprecipitation of gyrase from M. smegmatis cell lysate revealed an association, mediated by ionic interactions, of gyrase A and GyrB subunits in the cell. This antibody is a valuable tool for structure-function analysis and immunocytological studies of mycobacterial DNA gyrase.
Collapse
Affiliation(s)
- U H Manjunatha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|