1
|
Zhou D, Zeng Y, Luo W, Leng C, Li C. Senior-Loken Syndrome: Ocular Perspectives on Genetics, Pathogenesis, and Management. Biomolecules 2025; 15:667. [PMID: 40427560 PMCID: PMC12109206 DOI: 10.3390/biom15050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Senior-Loken syndrome (SLSN) is a group of rare autosomal recessive disorders caused by dysfunction of the primary cilium, primarily affecting the kidneys (typically leading to nephronophthisis) and eyes (typically leading to retinal degeneration). Moreover, patients with SLSN may experience additional multisystemic symptoms, such as developmental delay, intellectual disability, ataxia, and nystagmus. To date, eight genes have been demonstrated to cause SLSN, all encoding for proteins involved in the structure and functions of the primary cilium. This places SLSN within an expanding category of diseases known as "ciliopathies". Due to the genetic heterogeneity and significant phenotypic overlap with other ciliopathies, establishing a definitive diagnosis during the initial consultation remains a challenge for clinicians. Furthermore, current research on SLSN-related ciliopathies predominantly focuses on renal involvement, while the ocular manifestations remain insufficiently explored and lack a comprehensive review. Therefore, with the goal of offering practical guidance for clinical practice, this review aims to provide a comprehensive overview of the clinical features, along with an ocular perspective on the molecular mechanisms, genetic underpinnings, and advances in the treatment of SLSN.
Collapse
Affiliation(s)
- Di Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100076, China;
| | - Yi Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Weihan Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Chenyang Leng
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Chen Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| |
Collapse
|
2
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
3
|
Shao S, Chen Y, Deng H, Pan J. Quantitative proteomics reveals insights into the assembly of IFT trains and ciliary assembly. J Cell Sci 2024; 137:jcs262152. [PMID: 38853670 DOI: 10.1242/jcs.262152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.
Collapse
Affiliation(s)
- Shangjin Shao
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266000, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Core Facility Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Core Facility Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266000, China
| |
Collapse
|
4
|
Kuwasako K, Dang W, He F, Takahashi M, Tsuda K, Nagata T, Tanaka A, Kobayashi N, Kigawa T, Güntert P, Shirouzu M, Yokoyama S, Muto Y. 1H, 13C, and 15N resonance assignments and solution structure of the N-terminal divergent calponin homology (NN-CH) domain of human intraflagellar transport protein 54. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:71-78. [PMID: 38551798 DOI: 10.1007/s12104-024-10170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.
Collapse
Affiliation(s)
- Kanako Kuwasako
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan
| | - Weirong Dang
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Fahu He
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Kengo Tsuda
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Nagata
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Advanced Energy, Graduate School of Energy Science, Kyoto University, Gokasho, Kyoto, Uji, 611-0011, Japan
| | - Akiko Tanaka
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Yokohama NMR Facility, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich, 8093, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192- 0397, Japan
| | - Mikako Shirouzu
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Yokohama, 230-0045, Japan.
| | - Yutaka Muto
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan.
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan.
| |
Collapse
|
5
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Li H, Li Q, Wang S, He J, Li C. The MIP-T3 from shrimp Litopenaeus vannamei restricts white spot syndrome virus infection via regulating NF-κB activation. FISH & SHELLFISH IMMUNOLOGY 2022; 127:56-64. [PMID: 35697271 DOI: 10.1016/j.fsi.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In vertebrate, MIP-T3 (microtubule-interacting protein associated with TRAF3) functions as a regulator of innate immune response that involves many cellular processes. However, the immune response regulated by shrimp (an arthropod) MIP-T3 remains unrevealed. In the present study, a MIP-T3 homolog from shrimp Litopenaeus vannamei (named as LvMIP-T3) was cloned and identified. LvMIP-T3 had a 2076 bp open reading frame (ORF), encoding a polypeptide of 691 amino acids that contained a classic coiled-coil domain in the C-terminal that showed a high degree of conservation to other homologs. LvMIP-T3 could interact with LvTRAF6, a member of the canonical NF-κB pathway, but not LvTRAF3, which implies that LvMIP-T3 is able to regulate NF-κB activity via its interaction with LvTRAF6. In addition, LvMIP-T3 was substantially inducted in response to white spot syndrome virus (WSSV) challenge, and we demonstrated that LvMIP-T3 facilitated the expression of NF-κB-mediated several Penaeidins (antimicrobial peptides, AMPs) to oppose infection. Taken together, we identified a MIP-T3 homolog from shrimp L. vannamei that played a positive role in the TRAF6/NF-κB/AMPs axis mediated defense response, which will contribute to better understand the regulator relationship among members of the canonical NF-κB pathway in shrimp, and provides some insights into disease resistance breeding.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Qinyao Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Sheng Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China.
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China.
| |
Collapse
|
7
|
Toriyama M, Ishii KJ. Primary Cilia in the Skin: Functions in Immunity and Therapeutic Potential. Front Cell Dev Biol 2021; 9:621318. [PMID: 33644059 PMCID: PMC7905053 DOI: 10.3389/fcell.2021.621318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The skin is the biggest organ and provides a physical and immunological barrier against pathogen infection. The distribution of primary cilia in the skin of mice has been reported, but which cells in human skin have them has not, and we still know very little about how they change in response to immune reactions or disease. This review introduces several studies that describe mechanisms of cilia regulation by immune reaction and the physiological relevance of cilia regulating proliferation and differentiation of stroma cells, including skin-resident Langerhans cells. We discuss the possibility of primary cilia pathology in allergic atopic dermatitis and the potential for therapies targeting primary cilia signaling.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan.,Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Vitre B, Guesdon A, Delaval B. Non-ciliary Roles of IFT Proteins in Cell Division and Polycystic Kidney Diseases. Front Cell Dev Biol 2020; 8:578239. [PMID: 33072760 PMCID: PMC7536321 DOI: 10.3389/fcell.2020.578239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.
Collapse
|
9
|
Wilson SK, Heckendorn J, Martorelli Di Genova B, Koch LL, Rooney PJ, Morrissette N, Lebrun M, Knoll LJ. A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathog 2020; 16:e1008650. [PMID: 32628723 PMCID: PMC7365478 DOI: 10.1371/journal.ppat.1008650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.
Collapse
Affiliation(s)
- Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | | | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Lindsey L. Koch
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Peggy J. Rooney
- Stratatech Corporation, Charmany Drive, Madison, Wisconsin, United States of America
| | - Naomi Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | | | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang Z. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol 2020; 318:C1092-C1106. [PMID: 32233951 DOI: 10.1152/ajpcell.00450.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.
Collapse
Affiliation(s)
- Wei Qu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Chao Quan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qi Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - David Zhang
- College of William & Mary, Williamsburg, Virginia
| | - Tamia Guest
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caroline Cazin
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pierre F Ray
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
11
|
MIP-T3 Expression Associated with Defects of Ciliogenesis in Airway of COPD Patients. Can Respir J 2020; 2020:1350872. [PMID: 32104517 PMCID: PMC7035511 DOI: 10.1155/2020/1350872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction. Some studies have found that cilia were shorter in COPD smokers than in nonsmokers or healthy smokers. However, the structural abnormalities of cilia and the cause of such abnormalities in COPD patients still remain unknown. Tumor necrosis factor alpha receptor 3 interacting protein 1 (MIP-T3) may play an important role in the progress of ciliary protein transporting.
Collapse
|
12
|
Peruzza L, Shekhar MS, Kumar KV, Swathi A, Karthic K, Hauton C, Vijayan KK. Temporal changes in transcriptome profile provide insights of White Spot Syndrome Virus infection in Litopenaeus vannamei. Sci Rep 2019; 9:13509. [PMID: 31534145 PMCID: PMC6751192 DOI: 10.1038/s41598-019-49836-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Shrimp aquaculture is severely affected by WSSV. Despite an increasing effort to understand host/virus interaction by characterizing changes in gene expression (GE) following WSSV infection, the majority of published studies have focussed on a single time-point, providing limited insight on the development of host-pathogen interaction over the infection cycle. Using RNA-seq, we contrasted GE in gills of Litopenaeus vannamei at 1.5, 18 and 56 hours-post-infection (hpi), between WSSV-challenged and control shrimps. Time course analysis revealed 5097 differentially expressed genes: 63 DEGs were viral genes and their expression in WSSV group either peaked at 18 hpi (and decreased at 56 hpi) or increased linearly up to 56 hpi, suggesting a different role played by these genes during the course of infection. The remaining DEGs showed that WSSV altered the expression of metabolic, immune, apoptotic and cytoskeletal genes and was able to inhibit NF-κB and JAK/STAT pathways. Interestingly, GE changes were not consistent through the course of infection but were dynamic with time, suggesting the complexity of host-pathogen interaction. These data offer novel insights into the cellular functions that are affected during the course of infection and ultimately provide a valuable resource towards our understanding of the host-pathogen dynamics and its variation with time.
Collapse
Affiliation(s)
- Luca Peruzza
- School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom.
| | - M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - K Vinaya Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - A Swathi
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - K Karthic
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom
| | - K K Vijayan
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai, 600004, Tamil Nadu, India
| |
Collapse
|
13
|
Zhu X, Liang Y, Gao F, Pan J. IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis. Cell Mol Life Sci 2017; 74:3425-3437. [PMID: 28417161 PMCID: PMC11107664 DOI: 10.1007/s00018-017-2525-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics. The N-terminal calponin homology (CH) domain of IFT54 interacts with tubulins/MTs and has been proposed to transport tubulin during ciliogenesis, whereas the C-terminal coiled-coil (CC) domain binds IFT20. However, the precise function of these domains in vivo is not well understood. We showed that in Chlamydomonas, loss of IFT54 completely blocks ciliogenesis but does not affect spindle formation and proper cell cycle progression, even though IFT54 interacts with mitotic MTs. Interestingly, IFT54 lacking the CH domain allows proper flagellar assembly. The CH domain is required for the association of IFT54 with the axoneme but not with mitotic MTs, and also regulates the flagellar import of IFT54 but not IFT81 and IFT46. The C-terminal CC domain is essential for IFT54 to bind IFT20, and for its recruitment to the basal body and incorporation into IFT complexes. Complete loss of IFT54 or the CC domain destabilizes IFT20. ift54 mutant cells expressing the CC domain alone rescue the stability of IFT20 and form stunted flagella with accumulation of both IFT-A component IFT43 and IFT-B component IFT46, indicating that IFT54 also functions in IFT turn-around at the flagellar tip.
Collapse
Affiliation(s)
- Xin Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yinwen Liang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Feng Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| |
Collapse
|
14
|
Lopez CE, Sheehan HC, Vierra DA, Azzinaro PA, Meedel TH, Howlett NG, Irvine SQ. Proteomic responses to elevated ocean temperature in ovaries of the ascidian Ciona intestinalis. Biol Open 2017; 6:943-955. [PMID: 28500033 PMCID: PMC5550911 DOI: 10.1242/bio.024786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism.
Collapse
Affiliation(s)
- Chelsea E Lopez
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Hannah C Sheehan
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - David A Vierra
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul A Azzinaro
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Thomas H Meedel
- Biology Department, Rhode Island College, Providence, RI 02908, USA
| | - Niall G Howlett
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Steven Q Irvine
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
15
|
Cheng J, Wang J, Wang S, Li R, Ning X, Xing Q, Ma X, Zhang L, Wang S, Hu X, Bao Z. Characterization of the TRAF3IP1 gene in Yesso scallop (Patinopecten yessoensis) and its expression in response to bacterial challenge. Genes Genet Syst 2017; 91:267-276. [PMID: 27990012 DOI: 10.1266/ggs.16-00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is an important adaptor that transmits upstream activation signals to induce innate immune responses. TRAF3 interacting protein 1 (TRAF3IP1) interacts specifically with TRAF3, but its function in innate immunity remains unclear, especially in marine invertebrates. In this study, to better understand the functions of TRAFs in innate immune responses, we identified and characterized the first bivalve TRAF3IP1 gene, PyTRAF3IP1, from Yesso scallop (Patinopecten yessoensis), one of the most important mollusk species for aquaculture. The PyTRAF3IP1 cDNA is 2,367 bp, with an open reading frame of 1,629 bp encoding 542 amino acids. Phylogenetic and protein structural analysis confirmed the gene's identity and revealed that PyTRAF3IP1 was more similar to vertebrate TRAF3IP1s than to those of invertebrates. PyTRAF3IP1 was expressed in all the adult tissues and developmental stages sampled, implying that it plays versatile roles in many biological processes. Furthermore, PyTRAF3IP1 expression was dramatically induced in the acute phase (3-6 h) after infection with both Gram-positive (Micrococcus luteus) and Gram-negative (Vibrio anguillarum) bacteria, even stronger induction being observed after V. anguillarum challenge. This is the first report of the characterization and immune response involvement of TRAF3IP1 in marine invertebrates, and suggests that TRAF3IP1 contributes to innate immunity in bivalves.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean Univeristy of China), Ministry of Education
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Galgano D, Onnis A, Pappalardo E, Galvagni F, Acuto O, Baldari CT. The T cell IFT20 interactome reveals new players in immune synapse assembly. J Cell Sci 2017; 130:1110-1121. [PMID: 28154159 DOI: 10.1242/jcs.200006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Abstract
Sustained signalling at the immune synapse (IS) requires the synaptic delivery of recycling endosome-associated T cell antigen receptors (TCRs). IFT20, a component of the intraflagellar transport system, controls TCR recycling to the IS as a complex with IFT57 and IFT88. Here, we used quantitative mass spectrometry to identify additional interaction partners of IFT20 in Jurkat T cells. In addition to IFT57 and IFT88, the analysis revealed new binding partners, including IFT54 (also known as TRAF3IP1), GMAP-210 (also known as TRIP11), Arp2/3 complex subunit-3 (ARPC3), COP9 signalosome subunit-1 (CSN1, also known as GPS1) and ERGIC-53 (also known as LMAN1). A direct interaction between IFT20 and both IFT54 and GMAP-210 was confirmed in pulldown assays. Confocal imaging of antigen-specific conjugates using T cells depleted of these proteins by RNA interference showed that TCR accumulation and phosphotyrosine signalling at the IS were impaired in the absence of IFT54, ARPC3 or ERGIC-53. Similar to in IFT20-deficient T cells, this defect resulted from a reduced ability of endosomal TCRs to polarize to the IS despite a correct translocation of the centrosome towards the antigen-presenting cell contact. Our data underscore the traffic-related role of an IFT20 complex that includes components of the intracellular trafficking machinery in IS assembly.
Collapse
Affiliation(s)
- Donatella Galgano
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| | - Elisa Pappalardo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Siena 53100, Italy
| |
Collapse
|
17
|
Taschner M, Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a028092. [PMID: 27352625 DOI: 10.1101/cshperspect.a028092] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT), the bidirectional movement of a multicomponent transport system between the ciliary base and tip. Since its initial discovery more than two decades ago, considerable effort has been invested in dissecting the molecular mechanisms of IFT in a variety of model organisms. Importantly, IFT was shown to be essential for mammalian development, and defects in this process cause a number of human pathologies known as ciliopathies. Here, we review current knowledge of IFT with a particular emphasis on the IFT machinery and specific mechanisms of ciliary cargo recognition and transport.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
18
|
Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 2016; 129:2106-19. [PMID: 27068536 DOI: 10.1242/jcs.187120] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Biology Department, Salem State University, Salem, MA 01970, USA
| | - Karl Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Branch Craige
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Julie M Craft
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
19
|
Taschner M, Weber K, Mourão A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 2016; 35:773-90. [PMID: 26912722 PMCID: PMC4818760 DOI: 10.15252/embj.201593164] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Mayanka Awasthi
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Marc Stiegler
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
20
|
Bizet AA, Becker-Heck A, Ryan R, Weber K, Filhol E, Krug P, Halbritter J, Delous M, Lasbennes MC, Linghu B, Oakeley EJ, Zarhrate M, Nitschké P, Garfa-Traore M, Serluca F, Yang F, Bouwmeester T, Pinson L, Cassuto E, Dubot P, Elshakhs NAS, Sahel JA, Salomon R, Drummond IA, Gubler MC, Antignac C, Chibout S, Szustakowski JD, Hildebrandt F, Lorentzen E, Sailer AW, Benmerah A, Saint-Mezard P, Saunier S. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun 2015; 6:8666. [PMID: 26487268 PMCID: PMC4617596 DOI: 10.1038/ncomms9666] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/17/2015] [Indexed: 01/20/2023] Open
Abstract
Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.
Collapse
Affiliation(s)
- Albane A. Bizet
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anita Becker-Heck
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Rebecca Ryan
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Emilie Filhol
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Pauline Krug
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Nephrology, Department of Internal Medicine, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Marion Delous
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | | | - Bolan Linghu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Edward J. Oakeley
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Mohammed Zarhrate
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Inserm UMR-1163, Genomic Core Facility, 75015 Paris, France
| | - Patrick Nitschké
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Bioinformatics Core Facility, 75015 Paris, France
| | - Meriem Garfa-Traore
- Cell Imaging Platform, INSERM US24 Structure Fédérative de recherche Necker, Paris Descartes Sorbonne Paris Cité University, 75015 Paris, France
| | - Fabrizio Serluca
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Fan Yang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Tewis Bouwmeester
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Lucile Pinson
- Department of Medical Genetic, Arnaud de Villeneuve University Health Center, 34090 Montpellier, France
| | - Elisabeth Cassuto
- Nephrology department, L'Archet II Hospital, Nice University Health Center, 06202 Nice, France
| | - Philippe Dubot
- Hemodialysis-Nephrology Department, William Morey Hospital, 71321 Chalon-sur-Saône, France
| | - Neveen A. Soliman Elshakhs
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, 11956 Cairo, Egypt
| | - José A. Sahel
- INSERM U968, CNRS UMR 7210; Sorbonne Universités, Université Pierre et Marie Curie, UMR S968, Institut de la vision, 75012 Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM, Direction de l'Hospitalisation et de l'Organisation des Soins, Centre d'Investigation Clinique 1423, 75012 Paris, France
| | - Rémi Salomon
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Assistance Publique—Hôpitaux de Paris, Pediatric Nephrologic department, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Iain A. Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Marie-Claire Gubler
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Corinne Antignac
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Genetics, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Salahdine Chibout
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | | | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Andreas W. Sailer
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Alexandre Benmerah
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | | | - Sophie Saunier
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France
- Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
21
|
Bhogaraju S, Weber K, Engel BD, Lechtreck KF, Lorentzen E. Getting tubulin to the tip of the cilium: One IFT train, many different tubulin cargo-binding sites? Bioessays 2014; 36:463-7. [DOI: 10.1002/bies.201400007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sagar Bhogaraju
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| | - Kristina Weber
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| | | | - Esben Lorentzen
- Department of Structural Cell Biology; Max-Planck-Institute of Biochemistry; Martinsried Germany
| |
Collapse
|
22
|
van Zuylen WJ, Doyon P, Clément JF, Khan KA, D'Ambrosio LM, Dô F, St-Amant-Verret M, Wissanji T, Emery G, Gingras AC, Meloche S, Servant MJ. Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity. PLoS Pathog 2012; 8:e1002747. [PMID: 22792062 PMCID: PMC3390413 DOI: 10.1371/journal.ppat.1002747] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 04/30/2012] [Indexed: 01/08/2023] Open
Abstract
Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNβ, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses. In response to pathogens, such as viruses and bacteria, infected cells defend themselves by generating a set of cytokines called type I interferon (IFN). Since Type I IFN (namely IFN alpha and beta) are potent antiviral agents, understanding the cellular mechanisms by which infected cells produce type I IFN is required to identify novel cellular targets for future antiviral therapies. Notably, a protein called Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) was demonstrated to be an essential mediator of this antiviral response. However, how TRAF3 reacts in response to a viral infection is still not totally understood. We now demonstrate that, through its capacity to interact with other proteins (namely Sec16A and p115) that normally control protein secretion, TRAF3 resides close to the nucleus in uninfected cells, in a region called the ER-to-Golgi Intermediate Compartment (ERGIC). Following viral infection, the ERGIC reorganizes into small punctate structures allowing TRAF3 to associate with Mitochondrial AntiViral Signaling (MAVS), an essential adaptor of the anti-viral type I IFN response. Thus, our study reveals an unpredicted role of the protein secretion system for the proper localization of TRAF3 and the antiviral response.
Collapse
Affiliation(s)
| | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | | | - Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | - Lisa M. D'Ambrosio
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | | | - Tasheen Wissanji
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | - Gregory Emery
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Meloche
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada
- Departments of Pharmacology and Molecular Biology, Université de Montréal, Montréal, Québec Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
- * E-mail:
| |
Collapse
|
23
|
Papic N, Maxwell CI, Delker DA, Liu S, Heale BSE, Hagedorn CH. RNA-sequencing analysis of 5' capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses 2012; 4:581-612. [PMID: 22590687 PMCID: PMC3347324 DOI: 10.3390/v4040581] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/31/2012] [Accepted: 04/03/2012] [Indexed: 12/28/2022] Open
Abstract
We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05). Most of the differentially expressed genes (>80%) and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling) were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens.
Collapse
Affiliation(s)
- Neven Papic
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Christopher I. Maxwell
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
- Huntsman Cancer Institute, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA
| | - Don A. Delker
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Shuanghu Liu
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Bret S. E. Heale
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
| | - Curt H. Hagedorn
- Department of Medicine, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA; (N.P.); (C.I.M.); (D.A.D.); (S.L.); (B.S.E.H.)
- Department of Experimental Pathology, University of Utah, 30 N 1900 E #3C310, Salt Lake City, UT 84132, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-801-587-4619; Fax: +1-801-585-0187
| |
Collapse
|
24
|
Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 2012; 244:55-74. [PMID: 22017431 DOI: 10.1111/j.1600-065x.2011.01055.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A large and diverse group of receptors utilizes the family of cytoplasmic signaling proteins known as tumor necrosis factor receptor (TNFR)-associated factors (TRAFs). In recent years, there has been a resurgence of interest and exploration of the roles played by TRAF3 and TRAF5 in cellular regulation, particularly in cells of the immune system, the cell types of focus in this review. This work has revealed that TRAF3 and TRAF5 can play diverse roles for different receptors even in the same cell type, as well as distinct roles in different cell types. Evidence indicates that TRAF3 and TRAF5 play important roles beyond the TNFR-superfamily (SF) and viral mimics of its members, mediating certain innate immune receptor and cytokine receptor signals, and most recently, signals delivered by the T-cell receptor (TCR) signaling complex. Additionally, much research has demonstrated the importance of TRAF3-mediated cellular regulation via its cytoplasmic interactions with additional signaling proteins. In particular, we discuss below evidence for the participation by TRAF3 in a number of the regulatory post-translational modifications involving ubiquitin that are important in various signaling pathways.
Collapse
Affiliation(s)
- Joanne M Hildebrand
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sau A, Filomeni G, Pezzola S, D'Aguanno S, Tregno FP, Urbani A, Serra M, Pasello M, Picci P, Federici G, Caccuri AM. Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and -resistant human osteosarcoma cell lines. ACTA ACUST UNITED AC 2012; 8:994-1006. [DOI: 10.1039/c1mb05295k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Berbari NF, Kin NW, Sharma N, Michaud EJ, Kesterson RA, Yoder BK. Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Dev Biol 2011; 360:66-76. [PMID: 21945076 PMCID: PMC4059607 DOI: 10.1016/j.ydbio.2011.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 08/12/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Tumor necrosis factor alpha receptor 3 interacting protein 1 (Traf3ip1), also known as MIPT3, was initially characterized through its interactions with tubulin, actin, TNFR-associated factor-3 (Traf3), IL-13R1, and DISC1. It functions as an inhibitor of IL-13-mediated phosphorylation of Stat6 and in sequestration of Traf3 and DISC1 to the cytoskeleton. Studies of the Traf3ip1 homologs in C. elegans (DYF-11), Zebrafish (elipsa), and Chlamydomonas (IFT54) revealed that the protein localizes to the cilium and is required for ciliogenesis. Similar localization data has now been reported for mammalian Traf3ip1. This raises the possibility that Traf3ip1 has an evolutionarily conserved role in mammalian ciliogenesis in addition to its previously indicated functions. To evaluate this possibility, a Traf3ip1 mutant mouse line was generated. Traf3ip1 mutant cells are unable to form cilia. Homozygous Traf3ip1 mutant mice are not viable and have both neural developmental defects and polydactyly, phenotypes typical of mouse mutants with ciliary assembly defects. Furthermore, in Traf3ip1 mutants the hedgehog pathway is disrupted, as evidenced by abnormal dorsal-ventral neural tube patterning and diminished expression of a hedgehog reporter. Analysis of the canonical Wnt pathway indicates that it was largely unaffected; however, specific domains in the pharyngeal arches have elevated levels of reporter activity. Interestingly, Traf3ip1 mutant embryos and cells failed to show alterations in IL-13 signaling, one of the pathways associated with its initial discovery. Novel phenotypes observed in Traf3ip1 mutant cells include elevated cytosolic levels of acetylated microtubules and a marked increase in cell size in culture. The enlarged Traf3ip1 mutant cell size was associated with elevated basal mTor pathway activity. Taken together, these data demonstrate that Traf3ip1 function is highly conserved in ciliogenesis and is important for proper regulation of a number of essential developmental and cellular pathways. The Traf3ip1 mutant mouse and cell lines will provide valuable resources to assess cilia function in mammalian development and also serve as a tool to explore the potential connections between cilia and cytoskeletal dynamics, mTor regulation, and cell volume control.
Collapse
Affiliation(s)
- Nicolas F. Berbari
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Nicholas W. Kin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Neeraj Sharma
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Edward J. Michaud
- School of Physician Assistant Studies, South College, Knoxville, Tennessee 37909
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
27
|
Taschner M, Bhogaraju S, Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 2011; 83:S12-22. [PMID: 22118932 DOI: 10.1016/j.diff.2011.11.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/25/2023]
Abstract
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.
Collapse
Affiliation(s)
- Michael Taschner
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
28
|
Ng MHJ, Ho TH, Kok KH, Siu KL, Li J, Jin DY. MIP-T3 is a negative regulator of innate type I IFN response. THE JOURNAL OF IMMUNOLOGY 2011; 187:6473-82. [PMID: 22079989 DOI: 10.4049/jimmunol.1100719] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TNFR-associated factor (TRAF) 3 is an important adaptor that transmits upstream activation signals to protein kinases that phosphorylate transcription factors to induce the production of type I IFNs, the important effectors in innate antiviral immune response. MIP-T3 interacts specifically with TRAF3, but its function in innate IFN response remains unclear. In this study, we demonstrated a negative regulatory role of MIP-T3 in type I IFN production. Overexpression of MIP-T3 inhibited RIG-I-, MDA5-, VISA-, TBK1-, and IKKε-induced transcriptional activity mediated by IFN-stimulated response elements and IFN-β promoter. MIP-T3 interacted with TRAF3 and perturbed in a dose-dependent manner the formation of functional complexes of TRAF3 with VISA, TBK1, IKKε, and IFN regulatory factor 3. Consistent with this finding, retinoic acid-inducible gene I- and TBK1-induced phosphorylation of IFN regulatory factor 3 was significantly diminished when MIP-T3 was overexpressed. Depletion of MIP-T3 facilitated Sendai virus-induced activation of IFN production and attenuated the replication of vesicular stomatitis virus. In addition, MIP-T3 was found to be dissociated from TRAF3 during the course of Sendai virus infection. Our findings suggest that MIP-T3 functions as a negative regulator of innate IFN response by preventing TRAF3 from forming protein complexes with critical downstream transducers and effectors.
Collapse
Affiliation(s)
- Ming-Him James Ng
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
29
|
Hwangbo C, Park J, Lee JH. mda-9/Syntenin protein positively regulates the activation of Akt protein by facilitating integrin-linked kinase adaptor function during adhesion to type I collagen. J Biol Chem 2011; 286:33601-12. [PMID: 21828040 DOI: 10.1074/jbc.m110.206789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.
Collapse
Affiliation(s)
- Cheol Hwangbo
- Medical and Biomaterials Research Center and Department of Biochemistry, College of Natural Sciences, Kangwon National University Chuncheon 200-701, Korea
| | | | | |
Collapse
|
30
|
Guo CW, Liu G, Xiong S, Ge F, Fuse T, Wang YF, Kitazato K. The C-terminus of MIP-T3 protein is required for ubiquitin-proteasome-mediated degradation in human cells. FEBS Lett 2011; 585:1350-6. [DOI: 10.1016/j.febslet.2011.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/23/2011] [Accepted: 04/08/2011] [Indexed: 12/30/2022]
|
31
|
Guo CW, Xiong S, Liu G, Wang YF, He QY, Zhang XE, Zhang ZP, Ge F, Kitazato K. Proteomic analysis reveals novel binding partners of MIP-T3 in human cells. Proteomics 2010; 10:2337-47. [PMID: 20391533 DOI: 10.1002/pmic.201000130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MIP-T3 (microtubule-interacting protein associated with TRAF3) is a microtubule-interacting protein that evolutionarily conserved from worms to humans, but whose cellular functions remains unknown. To get insight into the functions of MIP-T3, we set out to identify MIP-T3 interacting proteins by immunoprecipitation in human embryonic kidney 293 cells and MS analysis. As the results, a total of 34 proteins were identified and most of them were novel MIP-T3 putative partners. The MIP-T3-associated proteins could be grouped into nine clusters based on their molecule functions, including cytoskeleton, chaperone, nucleic acid binding, kinase and so on. Three MIP-T3-interacted proteins - actin, HSPA8 and tubulin - were further confirmed by reciprocal coimmunoprecipitations and colocalization analysis. The interaction of MIP-T3 with both actin filaments and microtubule suggested that MIP-T3 may play an important role in regulation of cytoskeleton dynamics in cells. Our results therefore not only uncover a large number of MIP-T3-associated proteins that possess a variety of cellular functions, but also provide new research directions for the study of the functions of MIP-T3.
Collapse
Affiliation(s)
- Chao-Wan Guo
- Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki City, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 11:11.9D.1-11.9D.19. [PMID: 19918944 DOI: 10.1002/0471142735.im1109ds87] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor necrosis factor (TNF) superfamily consists of a wide variety of cell-bound and secreted proteins that regulate numerous cellular processes. In particular, TNF-family proteins regulate the proliferation and death of tumor cells, as well as activated immune cells. This overview discusses the mammalian TNF receptor-associated factors (TRAFs), of which TRAF1, 2, 3, 5, and 6 have been shown to interact directly or indirectly with members of the TNF receptor superfamily. Structural features of TRAF proteins are described along with a discussion of TRAF-interacting proteins and the signaling pathways activated by the TRAF proteins. Finally, we examine the phenotypes observed in TRAF-knockout mice.
Collapse
Affiliation(s)
- Hyunil Ha
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Daehee Han
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Yongwon Choi
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Follit JA, Xu F, Keady B, Pazour GJ. Characterization of mouse IFT complex B. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:457-68. [PMID: 19253336 PMCID: PMC2753169 DOI: 10.1002/cm.20346] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The primary cilium plays a key role in the development of mammals and in the maintenance of health. Primary cilia are assembled and maintained by the process of intraflagellar transport (IFT). In this work, we characterize mouse IFT complex B by identifying all of the mammalian orthologues of complex B and B-associated proteins previously identified in Chlamydomonas and Caenorhabditis and also identify a new component (IFT25/Hspb11) of complex B by database analysis. We tagged each of these proteins with the FLAG epitope and show that all except IFT172 and IFT20 localize to cilia and the peri-basal body or centrosomal region at the base of cilia. All of the proteins except IFT172 immunoprecipitate IFT88 indicating that they are co-assembled into a complex. IFT20 is the only complex B protein that localizes to the Golgi apparatus. However, overexpression of IFT54/Traf3ip1, the mouse orthologue of Dyf-11/Elipsa, displaces IFT20 from the Golgi apparatus. IFT54 does not localize to the Golgi complex nor does it interact with GMAP210, which is the protein that anchors IFT20 to the Golgi apparatus. This suggests that IFT54s effect on IFT20 is a dominant negative phenotype caused by its overexpression. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
| | | | - Brian Keady
- Program in Molecular Medicine University of Massachusetts Medical School Biotech II, Suite 213 373 Plantation Street Worcester, MA 01605
| | - Gregory J. Pazour
- Program in Molecular Medicine University of Massachusetts Medical School Biotech II, Suite 213 373 Plantation Street Worcester, MA 01605
| |
Collapse
|
34
|
Goebel J, Forrest K, Wills-Karp M, Roszman TL. Tubulin Polymerization Modulates Interleukin-2 Receptor Signal Transduction in Human T Cells. J Recept Signal Transduct Res 2008; 26:87-106. [PMID: 16595340 DOI: 10.1080/10799890600567372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Few data exist on the modulation of cytokine receptor signaling by the actin or tubulin cytoskeleton. Therefore, we studied interleukin-2 receptor (IL-2R) signaling in phytohemagglutinine (PHA)-pretreated human T cells in the context of alterations in the cytoskeletal system induced by cytochalasin D (CyD), jasplaklinolide (Jas), taxol (Tax), or colchicine (Col). We found that changes in cytoskeletal tubulin polymerization altered the strength of several IL-2-triggered signals. Moreover, Tax-induced tubulin hyperpolymerization augmented the surface expression of the IL-2R ss -chain and enhanced the association of the IL-2R beta -chain with cytoskeletal tubulin. The IL-2R beta-chain, in turn, was constitutively associated with tubulin and, more weakly, actin. To exclude the possibility that these associations are artifacts caused by PHA, we confirmed them in T cells from TCR-transgenic DO 11.10 mice stimulated with their nominal antigen. We conclude that altered polymerization of cytoskeletal components, especially tubulin, is accompanied by modulation of IL-2 signaling at the receptor level.
Collapse
Affiliation(s)
- Jens Goebel
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, USA. Jens.Goebel@cchmc
| | | | | | | |
Collapse
|
35
|
Kunitomo H, Iino Y. Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. Genes Cells 2008; 13:13-25. [PMID: 18173744 DOI: 10.1111/j.1365-2443.2007.01147.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cilia and flagella play critical roles in cell motility, development and sensory perception in animals. Formation and maintenance of cilia require a conserved protein transport system called intraflagellar transport (IFT). Here, we show that Caenorhabditis elegans dyf-11 encodes an evolutionarily conserved protein required for cilium biogenesis. dyf-11 is expressed in most of the ciliated neurons and is regulated by DAF-19, a crucial transcription factor for ciliary genes in C. elegans. dyf-11 mutants exhibit stunted cilia, fluorescent dye-filling defects (Dyf) of sensory neurons, and abnormal chemotaxis (Che). Cell- and stage-specific rescue experiments indicated that DYF-11 is required for formation and maintenance of sensory cilia in cell-autonomous manner. Fluorescent protein-tagged DYF-11 localizes to cilia and moves antero- and retrogradely via IFT. Analysis of DYF-11 movement in bbs mutants further suggested that DYF-11 is likely associated with IFT complex B. Domain analysis using DYF-11 deletion constructs revealed that the coiled-coil region is required for proper localization and ciliogenesis. We further show that Traf3ip1/MIP-T3, the mammalian orthologue of DYF-11, localizes to cilia in the MDCK renal epithelial cells.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
36
|
Li C, Inglis PN, Leitch CC, Efimenko E, Zaghloul NA, Mok CA, Davis EE, Bialas NJ, Healey MP, Héon E, Zhen M, Swoboda P, Katsanis N, Leroux MR. An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes. PLoS Genet 2008; 4:e1000044. [PMID: 18369462 PMCID: PMC2268012 DOI: 10.1371/journal.pgen.1000044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/28/2008] [Indexed: 11/30/2022] Open
Abstract
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development. The transport of protein complexes and associated cargo along microtubule tracks represents an essential eukaryotic process responsible for a multitude of cellular functions, including cell division, vesicle movement to membranes, and trafficking along dendrites, axons, and cilia. The latter organelles are hair-like cellular appendages implicated in cell and fluid motility, sensing and transducing information from their environment, and development. Their biogenesis and maintenance depends on a kinesin- and dynein-mediated motility process termed intraflagellar transport (IFT). In addition to comprising these specialized molecular motors, the IFT machinery consists of large multisubunit complexes whose exact composition and organization has not been fully defined. Here we identify a protein, DYF-11/MIP-T3, that is conserved in all ciliated organisms and is associated with IFT in C. elegans. Disruption of C. elegans DYF-11 results in structurally compromised cilia, likely as a result of IFT motor and subunit misassembly. Animals lacking DYF-11 display chemosensory anomalies, consistent with a role for the protein in cilia-associated sensory processes. In zebrafish, MIP-T3 is essential for gastrulation movements during development, similar to that observed for other ciliary components, including Bardet-Biedl syndrome proteins. In conclusion, we have identified a novel IFT machinery component that is also essential for development in vertebrates.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter N. Inglis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carmen C. Leitch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, Huddinge, Sweden
| | - Norann A. Zaghloul
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Calvin A. Mok
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Microbiology and Medical Genetics, University of Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Erica E. Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nathan J. Bialas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael P. Healey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Microbiology and Medical Genetics, University of Toronto, Ontario, Canada
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, Huddinge, Sweden
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
37
|
Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol 2008; 10:437-44. [PMID: 18364699 DOI: 10.1038/ncb1706] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 02/28/2008] [Indexed: 11/09/2022]
Abstract
The formation and function of cilia involves the movement of intraflagellar transport (IFT) particles underneath the ciliary membrane, along axonemal microtubules. Although this process has been studied extensively, its molecular basis remains incompletely understood. For example, it is unknown how the IFT particle interacts with transmembrane proteins. To study the IFT particle further, we examined elipsa, a locus characterized by mutations that cause particularly early ciliogenesis defects in zebrafish. We show here that elipsa encodes a coiled-coil polypeptide that localizes to cilia. Elipsa protein binds to Ift20, a component of IFT particles, and Elipsa homologue in Caenorhabditis elegans, DYF-11, translocates in sensory cilia, similarly to the IFT particle. This indicates that Elipsa is an IFT particle polypeptide. In the context of zebrafish embryogenesis, Elipsa interacts genetically with Rabaptin5, a well-studied regulator of endocytosis, which in turn interacts with Rab8, a small GTPase, known to localize to cilia. We show that Rabaptin5 binds to both Elipsa and Rab8, suggesting that these proteins provide a bridging mechanism between the IFT particle and protein complexes that assemble at the ciliary membrane.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Department of Ophthalmology, Harvard Medical School, MEEI, R513, 243 Charles St. Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans. Genetics 2008; 178:989-1002. [PMID: 18245347 DOI: 10.1534/genetics.107.082453] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function.
Collapse
|
39
|
Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:131-51. [PMID: 17633023 DOI: 10.1007/978-0-387-70630-6_11] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor necrosis factor receptor (TNFR) superfamily molecule CD40 is expressed by a wide variety of cell types following activation signals, and constitutively on B lymphocytes, macrophages, and dendritic cells. CD40 signals to cells stimulate kinase activation, gene expression, production of a antibody and a variety of cytokines, expression or upregulation of surface molecules, and protection or promotion of apoptosis. Initial steps in CD40-mediated signal cascades involve the interactions of CD40 with various members of the TNFR-associated factor (TRAF) family of cytoplasmic proteins. This review summarizes current understanding of the nature of these interactions, and how they induce and regulate CD40 functions.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, Interdisciplinary Graduate Program in Immunology, University of Iowa and the Iowa City VAMC, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
40
|
Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking Activates Growth and Survival pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:173-87. [PMID: 17633026 DOI: 10.1007/978-0-387-70630-6_14] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epstein-Barr Virus (EBV) Latent Infection Membrane Protein 1 (LMP1) is expressed in all the EBV related malignancies. LMP1 expression is critical for transformation of human B-cells by EBV. LMP1 expression in human B cells induces activation and adhesion molecule expression and cell dumping, which are characteristic of CD40 activated B lymphocytes. In immortalized fibroblasts, LMP1 mimics aspects of activated ras in enabling serum, contact, and anchorage independent growth. Reverse genetic analyses implicate six transmembrane domains (TM), TM1-6, and two C-terminal cytosolic domains, transformation effector sites 1 and 2 (TES1 and 2) or C-terminal activation regions 1 and 2 (CTAR1 and 2) as the essential domains for LMP1 effects. The 6 transmembrane domains cause intermolecular interaction, whereas the C-terminal domains signal through tumor necrosis factor receptor (TNFR) associated factors (TRAFs) or TNFR associated death domain proteins (TRADD) and activate NF-kappaB, JNK, and p38. LMP1 TES1/CTAR1 directly recruits TRAFs 1, 2, 3 and 5 whereas LMP1 TES2/CTAR2 indirectly recruits TRAF6 via BS69. LMP1 TES1/CTAR1 activates TRAF2, NIK, IKKalpha and p52 mediated noncanonical NF-KB pathway and LMP1 TES2/CTAR2 activates TRAF6, TAB1, TAK1, IKKalpha/ IKKbeta/ IKKgamma mediated canonical NF-KB pathway. Interestingly, TRAF3 is a negative regulator of noncanonical NF-kappaB activation, although a positive role in LMP1 signaling has also been described. LMP1 mediated JNK activation is predominantly TES2/CTAR2 dependent and requires TRAF6. LMP1 specifically increases TRAF3 partitioning into lipid rafts and interestingly does not induce degradation of any of the TRAFs upon NF-kappaB activation. Studies of the chemistry and biology of LMP1-TRAF interaction mediated activation of signaling pathways are important for controlling EBV infected cell survival and growth.
Collapse
Affiliation(s)
- Vishal Soni
- Channing Laboratory and Infectious Disease Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
41
|
He JQ, Oganesyan G, Saha SK, Zarnegar B, Cheng G. TRAF3 and its biological function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:48-59. [PMID: 17633016 DOI: 10.1007/978-0-387-70630-6_4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor receptor associated factor 3 (TRAF3) is one of the most enigmatic members in the TRAF family that consists of six members, TRAF1 to 6. Despite its similarities with other TRAFs in terms of structure and protein-protein association, overexpression of TRAF3 does not induce activation of the commonly known TRAF-inducible signaling pathways, namely NF-kappaB and JNK. This lack of a simple functional assay in combination with the mysterious early lethality of the TRAF3-deficient mice has made the study of the biological function of TRAF3 challenging for almost ten years. Excitingly, TRAF3 has been identified recently to perform two seemingly distinct roles. Namely, TRAF3 functions as a negative regulator of the NF-kappaB pathway and separately, as a positive regulator of type I IFN production, placing itself as a critical regulator of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jeannie Q He
- Department of Microbiology, Immunology and Molecular Genetics, 8University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B, Camargo LM, Oliver KR, Beher D, Shearman MS, Whiting PJ. Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25:42-55. [PMID: 14962739 DOI: 10.1016/j.mcn.2003.09.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 09/05/2003] [Accepted: 09/11/2003] [Indexed: 11/27/2022] Open
Abstract
Disrupted In Schizophrenia 1 (DISC1) was identified as a potential susceptibility gene for schizophrenia due to its disruption by a balanced t(1;11) (q42;q14) translocation, which has been shown to cosegregate with major psychiatric disease in a large Scottish family. We have demonstrated that DISC1 exists in a neurodevelopmentally regulated protein complex with Nudel. The complex is abundant at E17 and in early postnatal life but is greatly reduced in the adult. Nudel has previously been shown to bind Lis1, a gene underlying lissencephaly in humans. Critically, we show that the predicted peptide product resulting from the Scottish translocation removes the interaction domain for Nudel. DISC1 interacts with Nudel through a leucine zipper domain and binds to a novel DISC1-interaction domain on Nudel, which is independent from the Lis1 binding site. We show that Nudel is able to act as a bridge between DISC1 and Lis1 to allow formation of a trimolecular complex. Nudel has been implicated to play a role in neuronal migration, together with the developmental variation in the abundance of the DISC1-Nudel complex, may implicate a defective DISC1-Nudel complex as a neurodevelopmental cause of schizophrenia.
Collapse
Affiliation(s)
- N J Brandon
- Merck Sharp and Dohme, The Neuroscience Research Centre, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yasui T, Luftig M, Soni V, Kieff E. Latent infection membrane protein transmembrane FWLY is critical for intermolecular interaction, raft localization, and signaling. Proc Natl Acad Sci U S A 2003; 101:278-83. [PMID: 14695890 PMCID: PMC314176 DOI: 10.1073/pnas.2237224100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relatively little is known about the biochemical mechanisms through which the Epstein-Barr virus latent infection integral membrane protein 1 (LMP1) transmembrane domains cause constitutive LMP1 aggregation and continuous cytoplasmic C terminus-mediated signal transduction. We now evaluate the role of the three consecutive LMP1 hydrophobic transmembrane pairs, transmembrane domains (TM)1-2, TM3-4, and TM5-6, in intermolecular aggregation and NF-kappaB activation. LMP1TM1-2 enabled approximately 40% of wild-type LMP1 cytoplasmic domain-mediated NF-kappaB activation, whereas TM3-4 or TM5-6 assayed in parallel had almost no effect independent of LMP1TM1-2. Alanine mutagenesis of conserved residues in LMP1TM1-2 identified FWLY(38-41) to be critical for LMP1TM1-2 intermolecular association with LMP1TM3-6. Further, in contrast to wild-type LMP1, LMP1 with FWLY(38-41) mutated to AALA(38-41) did not (i). significantly partition to lipid Rafts or Barges and effectively intermolecularly associate, (ii). enable cytoplasmic C terminus engagement of tumor necrosis factor receptor-associated factor 3, (iii). activate NF-kappaB, and thereby (iv). induce tumor necrosis factor receptor-associated factor 1 expression. Other LMP1 intermolecular associations were observed that involved LMP1TM1-2/LMP1TM1-2 or LMP1TM3-4/LMP1TM3-6 interactions; these probably also contribute to LMP1 aggregation. Because FWLY(38-41) was essential for LMP1-mediated signal transduction, and LMP1 activation of NF-kappaB is essential for proliferating B lymphocyte survival, inhibition of LMP1FWLY(41)-mediated LMP1/LMP1 intermolecular interactions is an attractive therapeutic target.
Collapse
Affiliation(s)
- Teruhito Yasui
- Brigham and Women's Hospital, Department of Medicine, Harvard University, 181 Longwood Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
44
|
Dadgostar H, Doyle SE, Shahangian A, Garcia DE, Cheng G. T3JAM, a novel protein that specifically interacts with TRAF3 and promotes the activation of JNK(1). FEBS Lett 2003; 553:403-7. [PMID: 14572659 DOI: 10.1016/s0014-5793(03)01072-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.
Collapse
Affiliation(s)
- Hajir Dadgostar
- Medical Scientist Training Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Niu Y, Murata T, Watanabe K, Kawakami K, Yoshimura A, Inoue JI, Puri RK, Kobayashi N. MIP-T3 associates with IL-13Ralpha1 and suppresses STAT6 activation in response to IL-13 stimulation. FEBS Lett 2003; 550:139-43. [PMID: 12935900 DOI: 10.1016/s0014-5793(03)00860-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To unravel the mechanism of interleukin-13 (IL-13)-specific functions, we sought to identify IL-13 receptor (IL-13R) binding molecules. A novel human IL-13Ralpha1 binding protein (IL13RBP1) has been identified using yeast tri-hybrid system, which was found to encode the same protein as MIP-T3 (microtubule interacting protein that associates with tumor necrosis factor (TNF) receptor associating factor-3 (TRAF3)). It constitutively associates with IL-13Ralpha1 and suppresses IL-4/13-induced signal transducer and activator of transcription-6 (STAT6) phosphorylation. IL-13-induced STAT6 activation was also inhibited as determined by dual luciferase assay and electrophoretic mobility shift assay (EMSA). These results suggest that MIP-T3 is a novel inhibitor of IL-13 signaling and may be a useful molecule in ameliorating various conditions in which IL-13 plays a central role.
Collapse
Affiliation(s)
- Yamei Niu
- Division of Molecular Pharmacology of Infectious Agents, Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Reed JC, Doctor K, Rojas A, Zapata JM, Stehlik C, Fiorentino L, Damiano J, Roth W, Matsuzawa SI, Newman R, Takayama S, Marusawa H, Xu F, Salvesen G, Godzik A. Comparative analysis of apoptosis and inflammation genes of mice and humans. Genome Res 2003; 13:1376-88. [PMID: 12819136 PMCID: PMC403667 DOI: 10.1101/gr.1053803] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 04/08/2003] [Indexed: 02/07/2023]
Abstract
Apoptosis (programmed cell death) plays important roles in many facets of normal mammalian physiology. Host-pathogen interactions have provided evolutionary pressure for apoptosis as a defense mechanism against viruses and microbes, sometimes linking apoptosis mechanisms with inflammatory responses through NFkappaB induction. Proteins involved in apoptosis and NFkappaB induction commonly contain evolutionarily conserved domains that can serve as signatures for identification by bioinformatics methods. Using a combination of public (NCBI) and private (RIKEN) databases, we compared the repertoire of apoptosis and NFkappaB-inducing genes in humans and mice from cDNA/EST/genomic data, focusing on the following domain families: (1) Caspase proteases; (2) Caspase recruitment domains (CARD); (3) Death Domains (DD); (4) Death Effector Domains (DED); (5) BIR domains of Inhibitor of Apoptosis Proteins (IAPs); (6) Bcl-2 homology (BH) domains of Bcl-2 family proteins; (7) Tumor Necrosis Factor (TNF)-family ligands; (8) TNF receptors (TNFR); (9) TIR domains; (10) PAAD (PYRIN; PYD, DAPIN); (11) nucleotide-binding NACHT domains; (12) TRAFs; (13) Hsp70-binding BAG domains; (14) endonuclease-associated CIDE domains; and (15) miscellaneous additional proteins. After excluding redundancy due to alternative splice forms, sequencing errors, and other considerations, we identified cDNAs derived from a total of 227 human genes among these domain families. Orthologous murine genes were found for 219 (96%); in addition, several unique murine genes were found, which appear not to have human orthologs. This mismatch may be due to the still fragmentary information about the mouse genome or genuine differences between mouse and human repertoires of apoptotic genes. With this caveat, we discuss similarities and differences in human and murine genes from these domain families.
Collapse
Affiliation(s)
- John C Reed
- The Burnham Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003; 14:193-209. [PMID: 12787559 DOI: 10.1016/s1359-6101(03)00021-2] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Members of the TNF receptor superfamily play pivotal roles in numerous biological events in metazoan organisms. Ligand-mediated trimerization by corresponding homo- or heterotrimeric ligands, the TNF family ligands, causes recruitment of several intracellular adaptors, which activate multiple signal transduction pathways. While recruitment of death domain (DD) containing adaptors such as Fas associated death domain (FADD) and TNFR associated DD (TRADD) can lead to the activation of a signal transduction pathway that induces apoptosis, recruitment of TRAF family proteins can lead to the activation of transcription factors such as, NF-kappaB and JNK thereby promoting cell survival and differentiation as well as immune and inflammatory responses. Individual TNF receptors are expressed in different cell types and have a range of affinities for various intracellular adaptors, which provide tremendous signaling and biological specificities. In addition, numerous signaling modulators are involved in regulating activities of signal transduction pathways downstream of receptors in this superfamily. Most of the TNF receptor superfamily members as well as many of their signaling mediators, have been uncovered in the last two decades. However, much remains unknown about how individual signal transduction pathways are regulated upon activation by any particular TNF receptor, under physiological conditions.
Collapse
Affiliation(s)
- Paul W Dempsey
- Department of Microbiology, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, 8-240 Factor Building, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
48
|
Arron JR, Walsh MC, Choi Y. TRAF‐MediatedTNFR‐Family Signaling. ACTA ACUST UNITED AC 2002; Chapter 11:11.9D.1-11.9D.14. [DOI: 10.1002/0471142735.im1109ds51] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph R. Arron
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine Philadelphia Pennsylvania
| | - Matthew C. Walsh
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine Philadelphia Pennsylvania
| | - Yongwon Choi
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine Philadelphia Pennsylvania
| |
Collapse
|
49
|
Propst SM, Estell K, Schwiebert LM. CD40-mediated activation of NF-kappa B in airway epithelial cells. J Biol Chem 2002; 277:37054-63. [PMID: 12122011 DOI: 10.1074/jbc.m205778200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported previously that airway epithelial cells (AEC) express CD40 and that activation of this molecule stimulates the expression of inflammatory mediators, including the chemokine RANTES (regulated on activation normal T cell expressed and secreted). Because NF-kappaB regulates the expression of many inflammatory mediators, such as RANTES, we utilized CD40-mediated induction of RANTES expression to investigate the mechanisms that underlie CD40-mediated activation of NF-kappaB in AEC. Results demonstrate that, in AEC, intact NF-kappaB sites were required for CD40-mediated activation of the RANTES promoter. To examine activation of NF-kappaB binding directly, electrophoretic mobility shift analyses were performed. These analyses revealed that CD40 ligation stimulated NF-kappaB binding and that the activated NF-kappaB complexes were composed of p65 subunits. Additional studies focused on the CD40-triggered signaling pathways that facilitate NF-kappaB activation. Findings show that CD40 engagement activated the IkappaB kinases IKK-alpha and IKK-beta and stimulated IkappaBalpha phosphorylation. Analyses also examined the role of tumor necrosis factor-associated factor (TRAF) molecules in CD40-mediated NF-kappaB activation within AEC. Stable transfectants expressing wild-type or mutant forms of the cytoplasmic domain of CD40 suggested that TRAF3, but not TRAF2, binding was essential for CD40-mediated RANTES expression. Further studies indicated that exogenous expression of wild-type TRAF3 enhanced activation of the RANTES promoter, whereas exogenous expression of wild-type TRAF2 inhibited this activation; TRAF3-mediated enhancement was dependent upon NF-kappaB. Together, these findings suggest that, in AEC, ligation of CD40 regulates the expression of inflammatory mediators, such as RANTES, via activation of NF-kappaB. Moreover, these results suggest that CD40-mediated signaling in AEC differs with previously reported findings observed in other cell models, such as B lymphocytes.
Collapse
Affiliation(s)
- Stacie M Propst
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
50
|
Xu YC, Wu RF, Gu Y, Yang YS, Yang MC, Nwariaku FE, Terada LS. Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J Biol Chem 2002; 277:28051-7. [PMID: 12023963 DOI: 10.1074/jbc.m202665200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that the angiogenic factors TNFalpha and HIV-1 Tat activate an NAD(P)H oxidase in endothelial cells, which operates upstream of c-Jun N-terminal kinase (JNK), a MAPK involved in the determination of cell fate. To further understand oxidant-related signaling pathways, we screened lung and endothelial cell libraries for interaction partners of p47(phox) and recovered the orphan adapter TNF receptor-associated factor 4 (TRAF4). Domain analysis suggested a tail-to-tail interaction between the C terminus of p47(phox) and the conserved TRAF domain of TRAF4. In addition, TRAF4, like p47(phox), was recovered largely in the cytoskeleton/membrane fraction. Coexpression of p47(phox) and TRAF4 increased oxidant production and JNK activation, whereas each alone had minimal effect. In addition, a fusion between p47(phox) and the TRAF4 C terminus constitutively activated JNK, and this activation was decreased by the antioxidant N-acetyl cysteine. In contrast, overexpression of the p47(phox) binding domain of TRAF4 blocked endothelial cell JNK activation by TNFalpha and HIV-1 Tat, suggesting an uncoupling of p47(phox) from upstream signaling events. A secondary screen of endothelial cell proteins for TRAF4-interacting partners yielded a number of proteins known to control cell fate. We conclude that endothelial cell agonists such as TNFalpha and HIV-1 Tat initiate signals that enter basic signaling cassettes at the level of TRAF4 and an NAD(P)H oxidase. We speculate that endothelial cells may target endogenous oxidant production to specific sites critical to cytokine signaling as a mechanism for increasing signal specificity and decreasing toxicity of these reactive species.
Collapse
Affiliation(s)
- You Cheng Xu
- Department of Internal Medicine, University of Texas Southwestern and The Dallas Veterans Affairs Medical Center, Dallas, Texas 75216, USA
| | | | | | | | | | | | | |
Collapse
|