1
|
Lainscsek X, Kong W, Rütgen BC, Beck J, Brenig B, Nolte I, Murua Escobar H, Taher L. Transcriptomic profiling in canine B-cell lymphoma supports a synergistic effect of BTK and PI3K inhibitors. Front Vet Sci 2025; 12:1577028. [PMID: 40351764 PMCID: PMC12063356 DOI: 10.3389/fvets.2025.1577028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction B-cell receptor (BCR) signaling has revealed itself as a critical pathway in the pathogenesis of B-cell lymphoma. Within this pathway, the inhibition of Bruton's tyrosine kinase (BTK) or Phosphoinositide 3-kinases (PI3Ks) alone presents encouraging efficacy in the treatment of certain both canine and human hematological malignancies. Methods Here we characterized the effects of the BTK inhibitor Ibrutinib and the PI3K inhibitor AS-605240 as single and combined agents in the canine pre-clinical diffuse large B cell lymphoma (DLBCL) model CLBL-1 by assaying cell proliferation and metabolic activity, and performing RNA-seq to measure gene expression changes. Results We found 2,336 differentially expressed genes (DEGs) across all treatment types and time points relative to the control. The largest number of DEGs were induced by the combination of Ibrutinib and AS-605240. These genes were involved in adaptive immune response, leukotriene D4 metabolic and terms related to regulation of GTP and GTPase mediated signal transduction. Weighted gene co-expression network analysis (WGCNA) detected nine gene modules, five of which were associated with treatment response. Eighteen-percent of genes within these modules were also differentially expressed. Notably, we observed one module that was exclusively associated with the combined treatment whose gene members were related to cellular metabolism, homeostasis signaling, and protein synthesis and regulation. Conclusion Narrowing in on highly connected genes of modules associated with treatment response with large fold changes across treatments which play roles in the main targeted pathways identified PAG1, PRKAR2A, ACACA, FOS, and PRKCA as potential primary candidates of the synergistic treatment effect.
Collapse
Affiliation(s)
- Xenia Lainscsek
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Weibo Kong
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Barbara C. Rütgen
- Department for Pathobiology, Clinical Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Beck
- Chronix Biomedical GmbH, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hugo Murua Escobar
- Clinic for Hematology, Oncology and Palliative Care, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Institute of Medical Genetics, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Medeot AC, Boaglio AC, Salas G, Maidagan PM, Miszczuk GS, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. Tauroursodeoxycholate prevents estradiol 17β-d-glucuronide-induced cholestasis and endocytosis of canalicular transporters by switching off pro-cholestatic signaling pathways. Life Sci 2024; 352:122839. [PMID: 38876186 DOI: 10.1016/j.lfs.2024.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
AIMS Estradiol 17β-d-glucuronide (E217G) induces cholestasis by triggering endocytosis and further intracellular retention of the canalicular transporters Bsep and Mrp2, in a cPKC- and PI3K-dependent manner, respectively. Pregnancy-induced cholestasis has been associated with E217G cholestatic effect, and is routinely treated with ursodeoxycholic acid (UDCA). Since protective mechanisms of UDCA in E217G-induced cholestasis are still unknown, we ascertained here whether its main metabolite, tauroursodeoxycholate (TUDC), can prevent endocytosis of canalicular transporters by counteracting cPKC and PI3K/Akt activation. MAIN METHODS Activation of cPKC and PI3K/Akt was evaluated in isolated rat hepatocytes by immunoblotting (assessment of membrane-bound and phosphorylated forms, respectively). Bsep/Mrp2 function was quantified in isolated rat hepatocyte couplets (IRHCs) by assessing the apical accumulation of their fluorescent substrates, CLF and GS-MF, respectively. We also studied, in isolated, perfused rat livers (IPRLs), the status of Bsep and Mrp2 transport function, assessed by the biliary excretion of TC and DNP-SG, respectively, and Bsep/Mrp2 localization by immunofluorescence. KEY FINDINGS E217G activated both cPKC- and PI3K/Akt-dependent signaling, and pretreatment with TUDC significantly attenuated these activations. In IRHCs, TUDC prevented the E217G-induced decrease in apical accumulation of CLF and GS-MF, and inhibitors of protein phosphatases failed to counteract this protection. In IPRLs, E217G induced an acute decrease in bile flow and in the biliary excretion of TC and DNP-SG, and this was prevented by TUDC. Immunofluorescence studies revealed that TUDC prevented E217G-induced Bsep/Mrp2 endocytosis. SIGNIFICANCE TUDC restores function and localization of Bsep/Mrp2 impaired by E217G, by preventing both cPKC and PI3K/Akt activation in a protein-phosphatase-independent manner.
Collapse
Affiliation(s)
- Anabela C Medeot
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Andrea C Boaglio
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Gimena Salas
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Paula M Maidagan
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Gisel S Miszczuk
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Ismael R Barosso
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Fernando A Crocenzi
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Marcelo G Roma
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
3
|
Weisser I, Eckberg K, D'Amico S, Buttram D, Aboudehen K. Ablation of Long Noncoding RNA Hoxb3os Exacerbates Cystogenesis in Mouse Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:41-55. [PMID: 37953472 PMCID: PMC10786614 DOI: 10.1681/asn.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
SIGNIFICANCE STATEMENT Long noncoding RNAs (lncRNAs) are a class of nonprotein coding RNAs with pivotal functions in development and disease. They have emerged as an exciting new drug target category for many common conditions. However, the role of lncRNAs in autosomal dominant polycystic kidney disease (ADPKD) has been understudied. This study provides evidence implicating a lncRNA in the pathogenesis of ADPKD. We report that Hoxb3os is downregulated in ADPKD and regulates mammalian target of rapamycin (mTOR)/Akt pathway in the in vivo mouse kidney. Ablating the expression of Hoxb3os in mouse polycystic kidney disease (PKD) activated mTOR complex 2 (mTORC2) signaling and exacerbated the cystic phenotype. The results from our study provide genetic proof of concept for future studies that focus on targeting lncRNAs as a treatment option in PKD. BACKGROUND ADPKD is a monogenic disorder characterized by the formation of kidney cysts and is primarily caused by mutations in two genes, PKD1 and PKD2 . METHODS In this study, we investigated the role of lncRNA Hoxb3os in ADPKD by ablating its expression in the mouse. RESULTS Hoxb3os -null mice were viable and had grossly normal kidney morphology but displayed activation of mTOR/Akt signaling and subsequent increase in kidney cell proliferation. To determine the role of Hoxb3os in cystogenesis, we crossed the Hoxb3os -null mouse to two orthologous Pkd1 mouse models: Pkhd1/Cre; Pkd1F/F (rapid cyst progression) and Pkd1RC/RC (slow cyst progression). Ablation of Hoxb3os exacerbated cyst growth in both models. To gain insight into the mechanism whereby Hoxb3os inhibition promotes cystogenesis, we performed western blot analysis of mTOR/Akt pathway between Pkd1 single-knockout and Pkd1 - Hoxb3os double-knockout (DKO) mice. Compared with single-knockout, DKO mice presented with enhanced levels of total and phosphorylated Rictor. This was accompanied by increased phosphorylation of Akt at Ser 473 , a known mTORC2 effector site. Physiologically, kidneys from DKO mice displayed between 50% and 60% increase in cell proliferation and cyst number. CONCLUSIONS The results from this study indicate that ablation of Hoxb3os in mouse PKD exacerbates cystogenesis and dysregulates mTORC2.
Collapse
Affiliation(s)
- Ivan Weisser
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kara Eckberg
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Stephen D'Amico
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Daniel Buttram
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karam Aboudehen
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
4
|
Shi F, Collins S. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease. Int J Mol Sci 2023; 24:11497. [PMID: 37511253 PMCID: PMC10380887 DOI: 10.3390/ijms241411497] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, Mázló A. Damage-mediated macrophage polarization in sterile inflammation. Front Immunol 2023; 14:1169560. [PMID: 37465676 PMCID: PMC10351389 DOI: 10.3389/fimmu.2023.1169560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Váradi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Hansen MS, Søe K, Christensen LL, Fernandez-Guerra P, Hansen NW, Wyatt RA, Martin C, Hardy RS, Andersen TL, Olesen JB, Hartmann B, Rosenkilde MM, Kassem M, Rauch A, Gorvin CM, Frost M. GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur J Endocrinol 2023; 188:6987865. [PMID: 36747334 DOI: 10.1093/ejendo/lvac004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects. Using a GIPR-specific antagonist, we aimed to assess whether GIP acts directly on primary human osteoclasts and osteoblasts. METHODS Osteoclasts were differentiated from human CD14+ monocytes and osteoblasts from human bone. GIPR expression was determined using RNA-seq in primary human osteoclasts and in situ hybridization in human femoral bone. Osteoclastic resorptive activity was assessed using microscopy. GIPR signaling pathways in osteoclasts and osteoblasts were assessed using LANCE cAMP and AlphaLISA phosphorylation assays, intracellular calcium imaging and confocal microscopy. The bioenergetic profile of osteoclasts was evaluated using Seahorse XF-96. RESULTS GIPR is robustly expressed in mature human osteoclasts. GIP inhibits osteoclastogenesis, delays bone resorption, and increases osteoclast apoptosis by acting upon multiple signaling pathways (Src, cAMP, Akt, p38, Akt, NFκB) to impair nuclear translocation of nuclear factor of activated T cells-1 (NFATc1) and nuclear factor-κB (NFκB). Osteoblasts also expressed GIPR, and GIP improved osteoblast survival. Decreased bone resorption and improved osteoblast survival were also observed after GIP treatment of osteoclast-osteoblast co-cultures. Antagonizing GIPR with GIP(3-30)NH2 abolished the effects of GIP on osteoclasts and osteoblasts. CONCLUSIONS GIP inhibits bone resorption and improves survival of human osteoblasts, indicating that drugs targeting GIPR may impair bone resorption, whilst preserving bone formation.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Kent Søe
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Line L Christensen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Paula Fernandez-Guerra
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Nina W Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Rachael A Wyatt
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Claire Martin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rowan S Hardy
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Thomas L Andersen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Jacob B Olesen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense C DK-5000, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense C DK-5000, Denmark
| |
Collapse
|
7
|
Toodle V, Lee MH, Bachani M, Ruffin A, Vivekanandhan S, Malik N, Wang T, Johnson TP, Nath A, Steiner JP. Fluconazole Is Neuroprotective via Interactions with the IGF-1 Receptor. Neurotherapeutics 2022; 19:1313-1328. [PMID: 35831747 PMCID: PMC9587198 DOI: 10.1007/s13311-022-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2022] [Indexed: 10/17/2022] Open
Abstract
There is a continuing unmet medical need to develop neuroprotective strategies to treat neurodegenerative disorders. To address this need, we screened over 2000 compounds for potential neuroprotective activity in a model of oxidative stress and found that numerous antifungal agents were neuroprotective. Of the identified compounds, fluconazole was further characterized. Fluconazole was able to prevent neurite retraction and cell death in in vitro and in vivo models of toxicity. Fluconazole protected neurons in a concentration-dependent manner and exhibited efficacy against several toxic agents, including 3-nitropropionic acid, N-methyl D-aspartate, 6-hydroxydopamine, and the HIV proteins Tat and gp120. In vivo studies indicated that systemically administered fluconazole was neuroprotective in animals treated with 3-nitropropionic acid and prevented gp120-mediated neuronal loss. In addition to neuroprotection, fluconazole also induced proliferation of neural progenitor cells in vitro and in vivo. Fluconazole mediates these effects through upregulation and signaling via the insulin growth factor-1 receptor which results in decreased cAMP production and increased phosphorylation of Akt. Blockade of the insulin growth factor-1 receptor signaling with the selective inhibitor AG1024 abrogated the effects of fluconazole. Our studies suggest that fluconazole may be an attractive candidate for treatment of neurodegenerative diseases due to its protective properties against several categories of neuronal insults and its ability to spur neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Valerie Toodle
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Muzna Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - April Ruffin
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sneha Vivekanandhan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Yong L, Yao Y, Chen GS, Yan XX, Guo YC, Han MY, Xue JS, Jian WZ, Zhou TY. QAP14 suppresses breast cancer stemness and metastasis via activation of dopamine D1 receptor. Acta Pharmacol Sin 2022; 43:1001-1012. [PMID: 34183757 DOI: 10.1038/s41401-021-00701-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women, mainly due to metastasis, which is strongly associated with cancer stemness. Our previous studies showed that the eradication of cancer stem-like cells (CSCs) may be related to the activation of dopamine D1 receptor (D1DR). This study aimed to explicitly demonstrate the target-role of D1DR activation in antimetastatic therapy and to investigate the potential efficacy and the underlying D1DR-related mechanisms of QAP14, a new oral compound. 4T1, MDA-MB-231, and D1DR-knockout 4T1 (4T1-D1DR) cells were selected for in vitro study, while 4T1 and 4T1-D1DR cells were further used to establish a mouse allograft model for in vivo study. Our results showed that D1DR is abundantly expressed in both 4T1 and MDA-MB-231 cells and that knocking out D1DR in 4T1 cells accelerated migration and invasion in vitro as well as lung metastasis in vivo. QAP14 inhibited colony formation, cell motility, mammosphere formation and CSC frequency, induced CSC apoptosis and D1DR expression, and increased cAMP/cGMP levels. Additionally, QAP14 showed inhibitory effects on tumor growth and lung metastasis with acceptable safety in vivo. Knocking out D1DR almost completely abolished the efficacy, confirming that QAP14 exhibits its anti-CSC and antimetastatic effects through D1DR activation. The underlying mechanisms involved suppression of the nuclear factor κB (NF-κB)/protein kinase B (Akt) pathway and consequent downregulation of both epithelial-to-mesenchymal transition (EMT) process and cancer stemness. In summary, our findings suggest a potential candidate compound, QAP14, as well as a potential target, D1DR, for metastatic breast cancer therapy.
Collapse
|
9
|
Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031562. [PMID: 35163485 PMCID: PMC8836072 DOI: 10.3390/ijms23031562] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is the most common form of head and neck squamous cell carcinoma (HNSCC) and most frequently presents as oral squamous cell carcinoma (OSCC), which is associated with an alarmingly high mortality rate. Internationally, a plethora of research to further our understanding of the molecular pathways related to oral cancer is performed. This research is of value for early diagnosis, prognosis, and the investigation of new drugs that can ameliorate the harmful effects of oral cancer and provide optimal patient outcomes with minimal long-term complications. Two pathways on which the progression of OSCC depends on are those of proliferation and apoptosis, which overlap at many junctions. Herein, we aim to review these pathways and factors related to OSCC progression. Publicly available search engines, PubMed and Google Scholar, were used with the following keywords to identify relevant literature: oral cancer, proliferation, proliferation factors, genes, mutations, and tumor suppressor. We anticipate that the use of information provided through this review will further progress translational cancer research work in the field of oral cancer.
Collapse
|
10
|
Abdel-Wahab BA, Alqhtani H, Walbi IA, Albarqi HA, Aljadaan AM, Khateeb MM, Hassanein EHM. Piclamilast mitigates 1,2-dimethylhydrazine induced colon cancer in rats through modulation of Ras/PI3K/Akt/mTOR and NF-κβ signaling. Chem Biol Interact 2021; 350:109686. [PMID: 34627785 DOI: 10.1016/j.cbi.2021.109686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading type of adult cancer in both genders with high morbidity and mortality worldwide. Even though the discovery of many antineoplastic drugs for CRC, the current therapy is not adequately efficient.This study was designed to investigate the effect and mechanism of Piclamilast (PIC), a selective PDE4 inhibitor, on a DMH-induced colorectal cancer (CRC) rat model. The rats were grouped (n = 10) into group 1 (control), group 2 (PIC 3 mg/kg, p.o.), groups 3-5 received DMH (20 mg/kg/week, S.C.), and groups 4 and 5 received PIC (1 and 3 mg/kg/day, p.o.) for 15 weeks. The DMH treatment increased aberrant crypt foci (ACF), Proliferating cell nuclear antigen (PCNA), and TBARS levels, along with decreased antioxidant defenses (GSH, GSH-Px, and catalase). Increased NF-κβ expression and inflammatory cytokines were also evident. PIC dose-dependently reduced ACF and restored oxidative stress and inflammatory markers favorably. Moreover, PIC in its large, tested dose only significantly increased the intracellular level of cAMP and suppressed the activation of Ras and PI3K and its downstream Akt/mTOR signaling. Furthermore, PIC promoted CRC apoptosis, and increased the gene expression of the apoptotic factors, caspase-3 and Bax, and decreased the anti-apoptotic factor Bcl-2. The results of this study show that PIC may be a promising therapeutic agent for the treatment of CRC. PIC might inhibit the proliferation of CRC cells and induce apoptosis via multiple mechanisms that involve its antioxidant effect and inhibition of NF-κβ and Ras/PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Kingdom of Saudi Arabia; Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt.
| | - Hussain Alqhtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Ismail A Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Adel M Aljadaan
- Department of Pharmacology, College of Pharmacy, Najran University, Kingdom of Saudi Arabia; School of Medicine, University of Nottingham, United Kingdom
| | - Masood M Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| |
Collapse
|
11
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
12
|
Świerczyński M, Szymaszkiewicz A, Fichna J, Zielińska M. New insights into molecular pathways in colorectal cancer: Adiponectin, interleukin-6 and opioid signaling. Biochim Biophys Acta Rev Cancer 2021; 1875:188460. [PMID: 33184028 DOI: 10.1016/j.bbcan.2020.188460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cause of death among neoplasms around the world. The environmental factors, like diet and obesity, are crucial in CRC pathogenesis by creating cancer-favorable microenvironment and hormonal changes. Adiponectin, the adipose tissue-specific hormone, is generally considered to negatively correlate with CRC development. The interleukin 6 (IL-6) is one of the most important pro-inflammatory cytokine connected with CRC, which is strongly inflammation-associated. The opioids are variable group substantially correlated with cancers - the endogenous opioids affect immune system and cell cycle including proliferation and cell death whereas exogenous opioids are leading clinically used analgesics in terminal cancer patients. In this review we discuss the involvement of adiponectin, IL-6 and opioids in CRC pathogenesis, their link with obesity, possible cross-talk and potential novel therapeutic approach in CRC treatment.
Collapse
Affiliation(s)
- Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
13
|
Pei J, Xiao Z, Guo Z, Pei Y, Wei S, Wu H, Wang D. Sustained Stimulation of β 2AR Inhibits Insulin Signaling in H9C2 Cardiomyoblast Cells Through the PKA-Dependent Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:3887-3898. [PMID: 33116735 PMCID: PMC7585860 DOI: 10.2147/dmso.s268028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the role of β2 adrenergic receptor (β2AR) in insulin signaling transduction in H9C2 cardiomyoblast cells to understand the formation of the β2AR-insulin receptor (IR) protein complex and its role in insulin-induced Glut4 expression. METHODS H9C2 cells were treated with various protein inhibitors (CGP, β1AR inhibitor CGP20712; ICI, β2AR inhibitor ICI 118,551; PKI, PKA inhibitor myristoylated PKI; PD 0325901, MEK inhibitor; SP600125, JNK inhibitor) with or without insulin or isoproterenol (ISO) before RNA-sequencing (RNA-Seq) and quantitative-PCR (Q-PCR). Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay were carried out to investigate the formation of the β2AR-IR protein complex. The intracellular concentrations of cAMP in H9C2 cells were tested by high performance liquid chromatography (HPLC) and the phosphorylation of JNK was tested by Western blot. RESULTS Gene Ontology (GO) analysis revealed that the most significantly enriched processes in the domain of molecular function (MF) were catalytic activity and binding, whereas in the domain of biological processes (BP) were metabolic process and cellular process. Furthermore, the enriched processes in the domain of cellular components (CC) were cell and cell parts. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the most significant pathways that have been altered included the PI3K-Akt and MAPK signaling pathways. Q-PCR, which was performed to verify the gene expression levels exhibited consistent results. In evaluating the signaling pathways, the sustained stimulation of β2AR by ISO inhibited insulin signalling, and the effect was primarily through the cAMP-PKA-JNK pathway and MEK/JNK signaling pathway. Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay revealed that β2AR, IR, insulin receptor substrate 1 (IRS1), Grb2-associated binding protein 1 (GAB1) and Grb2 existed in the same protein complex. CONCLUSION The sustained stimulation of β2AR might inhibit insulin signaling transduction through the cAMP-PKA-JNK and MEK/JNK pathways in H9C2 cells.
Collapse
Affiliation(s)
- Jinli Pei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Zhengpan Xiao
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Ziyi Guo
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Yechun Pei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Shuangshuang Wei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Hao Wu
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Dayong Wang
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| |
Collapse
|
14
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
15
|
Kim K, Park SG, Park BC, Kim JH, Kim S. Serine 389 phosphorylation of 3-phosphoinositide-dependent kinase 1 by UNC-51-like kinase 1 affects its ability to regulate Akt and p70 S6kinase. BMB Rep 2020. [PMID: 32317083 PMCID: PMC7396916 DOI: 10.5483/bmbrep.2020.53.7.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Phosphorylation of the signaling component by protein kinase often leads to a kinase cascade or feedback loop. 3-Phosphoinositide-dependent kinase 1 (PDK1) signaling pathway diverges into various kinases including Akt and p70 S6 kinase (p70S6k). However, the PDK1 feedback mechanism remains elusive. Here, we demonstrated that UNC-51-like kinase (ULK1), an autophagy initiator kinase downstream of mechanistic target of rapamycin (mTOR), directly phosphorylated PDK1 on serine 389 at the linker region. Furthermore, our data showed that this phosphorylation affected the kinase activity of PDK1 toward downstream substrates. These results suggest a possible negative feedback loop between PDK1 and ULK1.
Collapse
Affiliation(s)
- Kidae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
16
|
Zhao M, Kao CS, Arndt C, Tran DD, Cho WI, Maksimovic K, Chen XXL, Khan M, Zhu H, Qiao J, Peng K, Hong J, Xu J, Kim D, Kim JR, Lee J, van Bruggen R, Yoon WH, Park J. Knockdown of genes involved in axonal transport enhances the toxicity of human neuromuscular disease-linked MATR3 mutations in Drosophila. FEBS Lett 2020; 594:2800-2818. [PMID: 32515490 DOI: 10.1002/1873-3468.13858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the nuclear matrix protein Matrin 3 (MATR3) have been identified in amyotrophic lateral sclerosis and myopathy. To investigate the mechanisms underlying MATR3 mutations in neuromuscular diseases and efficiently screen for modifiers of MATR3 toxicity, we generated transgenic MATR3 flies. Our findings indicate that expression of wild-type or mutant MATR3 in motor neurons reduces climbing ability and lifespan of flies, while their expression in indirect flight muscles (IFM) results in abnormal wing positioning and muscle degeneration. In both motor neurons and IFM, mutant MATR3 expression results in more severe phenotypes than wild-type MATR3, demonstrating that the disease-linked mutations confer pathogenicity. We conducted a targeted candidate screen for modifiers of the MATR3 abnormal wing phenotype and identified multiple enhancers involved in axonal transport. Knockdown of these genes enhanced protein levels and insolubility of mutant MATR3. These results suggest that accumulation of mutant MATR3 contributes to toxicity and implicate axonal transport dysfunction in disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ching Serena Kao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Claudia Arndt
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Duc Tran
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Woo In Cho
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mashiat Khan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hongxian Zhu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julia Qiao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kailong Peng
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jingyao Hong
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jialu Xu
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Deanna Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Wan Hee Yoon
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Moorhead WJ, Chu CC, Cuevas RA, Callahan J, Wong R, Regan C, Boufford CK, Sur S, Liu M, Gomez D, MacTaggart JN, Kamenskiy A, Boehm M, St Hilaire C. Dysregulation of FOXO1 (Forkhead Box O1 Protein) Drives Calcification in Arterial Calcification due to Deficiency of CD73 and Is Present in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:1680-1694. [PMID: 32375544 PMCID: PMC7310306 DOI: 10.1161/atvbaha.119.313765] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: The recessive disease arterial calcification due to deficiency of CD73 (ACDC) presents with extensive nonatherosclerotic medial layer calcification in lower extremity arteries. Lack of CD73 induces a concomitant increase in TNAP (tissue nonspecific alkaline phosphatase; ALPL), a key enzyme in ectopic mineralization. Our aim was to investigate how loss of CD73 activity leads to increased ALPL expression and calcification in CD73-deficient patients and assess whether this mechanism may apply to peripheral artery disease calcification. Approach and Results: We previously developed a patient-specific disease model using ACDC primary dermal fibroblasts that recapitulates the calcification phenotype in vitro. We found that lack of CD73-mediated adenosine signaling reduced cAMP production and resulted in increased activation of AKT. The AKT/mTOR (mammalian target of rapamycin) axis blocks autophagy and inducing autophagy prevented calcification; however, we did not observe autophagy defects in ACDC cells. In silico analysis identified a putative FOXO1 (forkhead box O1 protein) binding site in the human ALPL promoter. Exogenous AMP induced FOXO1 nuclear localization in ACDC but not in control cells, and this was prevented with a cAMP analogue or activation of A2a/2b adenosine receptors. Inhibiting FOXO1 reduced ALPL expression and TNAP activity and prevented calcification. Mutating the FOXO1 binding site reduced ALPL promoter activation. Importantly, we provide evidence that non-ACDC calcified femoropopliteal arteries exhibit decreased CD73 and increased FOXO1 levels compared with control arteries. Conclusions: These data show that lack of CD73-mediated cAMP signaling promotes expression of the human ALPL gene via a FOXO1-dependent mechanism. Decreased CD73 and increased FOXO1 was also observed in more common peripheral artery disease calcification.
Collapse
Affiliation(s)
- William J Moorhead
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Claire C Chu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Rolando A Cuevas
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jack Callahan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Ryan Wong
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Cailyn Regan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Camille K Boufford
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Swastika Sur
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Mingjun Liu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Delphine Gomez
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jason N MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha (J.N.M.)
| | | | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD (M.B.)
| | - Cynthia St Hilaire
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (C.S.H.)
| |
Collapse
|
18
|
You Y, Bao WL, Zhang SL, Li HD, Li H, Dang WZ, Zou SL, Cao XY, Wang X, Liu LX, Jiang H, Qu LF, Zheng M, Shen X. Sorting Nexin 10 Mediates Metabolic Reprogramming of Macrophages in Atherosclerosis Through the Lyn-Dependent TFEB Signaling Pathway. Circ Res 2020; 127:534-549. [PMID: 32316875 DOI: 10.1161/circresaha.119.315516] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE SNX10 (sorting nexin 10) has been reported to play a critical role in regulating macrophage function and lipid metabolism. OBJECTIVE To investigate the precise role of SNX10 in atherosclerotic diseases and the underlying mechanisms. METHODS AND RESULTS SNX10 expression was compared between human healthy vessels and carotid atherosclerotic plaques. Myeloid cell-specific SNX10 knockdown mice were crossed onto the APOE-/- (apolipoprotein E) background and atherogenesis (high-cholesterol diet-induced) was monitored for 16 weeks. We found that SNX10 expression was increased in atherosclerotic lesions of aortic specimens from humans and APOE-/- mice. Myeloid cell-specific SNX10 deficiency (Δ knockout [KO]) attenuated atherosclerosis progression in APOE-/- mice. The population of anti-inflammatory monocytes/macrophages was increased in the peripheral blood and atherosclerotic lesions of ΔKO mice. In vitro experiments showed that SNX10 deficiency-inhibited foam cell formation through interrupting the internalization of CD36, which requires the interaction of SNX10 and Lyn-AKT (protein kinase B). The reduced Lyn-AKT activation by SNX10 deficiency promoted the nuclear translocation of TFEB (transcription factor EB), thereby enhanced lysosomal biogenesis and LAL (lysosomal acid lipase) activity, resulting in an increase of free fatty acids to fuel mitochondrial fatty acid oxidation. This further promoted the reprogramming of macrophages and shifted toward the anti-inflammatory phenotype. CONCLUSIONS Our data demonstrate for the first time that SNX10 plays a crucial role in diet-induced atherogenesis via the previously unknown link between the Lyn-Akt-TFEB signaling pathway and macrophage reprogramming, suggest that SNX10 may be a potentially promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yan You
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.).,National Institute of Allergy and Infectious, National Institute of Health, Rockville, MD (Y. You)
| | - Wei-Lian Bao
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Su-Lin Zhang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hai-Dong Li
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hui Li
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Wen-Zhen Dang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Si-Li Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (S.-L. Zou, L.-F.Q.)
| | - Xin-Yue Cao
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Xu Wang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Li-Xin Liu
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (H.J., M.Z.)
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (S.-L. Zou, L.-F.Q.)
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (H.J., M.Z.)
| | - Xiaoyan Shen
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| |
Collapse
|
19
|
Samiea A, Yoon JSJ, Cheung ST, Chamberlain TC, Mui ALF. Interleukin-10 contributes to PGE2 signalling through upregulation of EP4 via SHIP1 and STAT3. PLoS One 2020; 15:e0230427. [PMID: 32240179 PMCID: PMC7117666 DOI: 10.1371/journal.pone.0230427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophage cells form part of our first line defense against pathogens. Macrophages become activated by microbial products such as lipopolysaccharide (LPS) to produce inflammatory mediators, such as TNFα and other cytokines, which orchestrate the host defense against the pathogen. Once the pathogen has been eradicated, the activated macrophage must be appropriately deactivated or inflammatory diseases result. Interleukin-10 (IL10) is a key anti-inflammatory cytokine which deactivates the activated macrophage. The IL10 receptor (IL10R) signals through the Jak1/Tyk2 tyrosine kinases, STAT3 transcription factor and the SHIP1 inositol phosphatase. However, IL10 has also been described to induce the activation of the cyclic adenosine monophosphate (cAMP) regulated protein kinase A (PKA). We now report that IL10R signalling leads to STAT3/SHIP1 dependent expression of the EP4 receptor for prostaglandin E2 (PGE2). In macrophages, EP4 is a Gαs-protein coupled receptor that stimulates adenylate cyclase (AC) production of cAMP, leading to downstream activation of protein kinase A (PKA) and phosphorylation of the CREB transcription factor. IL10 induction of phospho-CREB and inhibition of LPS-induced phosphorylation of p85 PI3K and p70 S6 kinase required the presence of EP4. These data suggest that IL10R activation of STAT3/SHIP1 enhances EP4 expression, and that it is EP4 which activates cAMP-dependent signalling. The coordination between IL10R and EP4 signalling also provides an explanation for why cAMP elevating agents synergize with IL10 to elicit anti-inflammatory responses.
Collapse
MESH Headings
- Animals
- Dinoprostone/metabolism
- Female
- Interleukin-10/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Oxytocics/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- RAW 264.7 Cells
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Abrar Samiea
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Jeff S. J. Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Sylvia T. Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Thomas C. Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L. -F. Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
20
|
Wypych D, Barańska J. Cross-Talk in Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:35-65. [PMID: 32034708 DOI: 10.1007/978-3-030-30651-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chapter is focused on the mechanism of action of metabotropic P2Y nucleotide receptors: P2Y1, P2Y2, P2Y12, P2Y14 and the ionotropic P2X7 receptor in glioma C6 cells. P2Y1 and P2Y12 both respond to ADP, but while P2Y1 links to PLC and elevates cytosolic Ca2+ concentration, P2Y12 negatively couples to adenylate cyclase, maintaining cAMP at low level. In glioma C6, these two P2Y receptors modulate activities of ERK1/2 and PI3K/Akt signaling and the effects depend on physiological conditions of the cells. During prolonged serum deprivation, cell growth is arrested, the expression of the P2Y1 receptor strongly decreases and P2Y12 becomes a major player responsible for ADP-evoked signal transduction. The P2Y12 receptor activates ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulates Akt activity, contributing to glioma invasiveness. In contrast, P2Y1 has an inhibitory effect on Akt pathway signaling. Furthermore, the P2X7 receptor, often responsible for apoptotic fate, is not involved in Ca2+elevation in C6 cells. The shift in nucleotide receptor expression from P2Y1 to P2Y12 during serum withdrawal, the cross talk between both receptors and the lack of P2X7 activity shows the precise self-regulating mechanism, enhancing survival and preserving the neoplastic features of C6 cells.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
21
|
Nam GS, Lee KS, Nam KS. Anti‑platelet activity of mineral‑balanced deep sea water is mediated via the regulation of Akt and ERK pathway crosstalk. Int J Mol Med 2020; 45:658-668. [PMID: 31894254 DOI: 10.3892/ijmm.2019.4424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/14/2019] [Indexed: 11/06/2022] Open
Abstract
Mineral‑balanced deep sea water (MBDSW), an unlimited natural sea source, has been demonstrated to minimize the risk of developing cardiovascular diseases, such as obesity, hypertension, inflammation and hyperlipidemia. This study investigated the effects of MBDSW [magnesium (Mg):calcium (Ca) ratio, 3:1] on platelet activation. MBDSW significantly inhibited the collagen‑ and thrombin‑induced platelet aggregation of human platelets. In collagen‑induced platelets, MBDSW inhibited intracellular calcium mobilization, granule secretion [serotonin, adenosine triphosphate (ATP) and P‑selectin expression] and thromboxane A2 (TXA2) production. Moreover, MBDSW markedly inhibited Akt and extracellular signal‑regulated kinase (ERK) phosphorylation, but not that of c‑Jun N‑terminal kinase (JNK) and p38. Moreover, MBDSW phosphorylated inositol 1,4,5‑triphosphate receptor (IP3R) and vasodilator‑stimulated phosphoprotein (VASP), and it increased the cyclic adenosine monophosphate (cAMP) level in collagen‑induced human platelets. Dipyridamole, a phosphodiesterase (PDE) inhibitor, significantly increased the cAMP level and regulated the Akt, ERK and VASP (Ser157) levels in a manner similar to that of MBDSW. In addition, LY294002, an Akt inhibitor, inhibited the phosphorylation of ERK, and U0126, an ERK inhibitor, inhibited the phosphorylation of Akt. Taken together, the results of the present investigation suggest that the inhibitory effects of MBDSW on platelet aggregation may be associated with the cross‑inhibition of Akt and ERK phosphorylation. These results strongly indicate that MBDSW may have preventive or therapeutic potential for platelet aggregation‑mediated diseases, such as thrombosis, atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Gi Suk Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk‑do 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk‑do 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk‑do 38066, Republic of Korea
| |
Collapse
|
22
|
Ramezani S, Vousooghi N, Ramezani Kapourchali F, Yousefzadeh-Chabok S, Reihanian Z, Alizadeh AM, Khodayari S, Khodayari H. Rolipram optimizes therapeutic effect of bevacizumab by enhancing proapoptotic, antiproliferative signals in a glioblastoma heterotopic model. Life Sci 2019; 239:116880. [PMID: 31678282 DOI: 10.1016/j.lfs.2019.116880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/18/2019] [Accepted: 09/15/2019] [Indexed: 01/24/2023]
Abstract
The unstable response to bevacizumab is a big dilemma in the antiangiogenic therapy of high-grade glioma that appears to be linked to an increase in the post-treatment intratumor levels of hypoxia-inducible factor 1 α (HIF1α) and active AKT. Particularly, a selective phosphodiesterase IV (PDE4) inhibitor, rolipram is capable of inhibiting HIF1α and AKT in cancer cells. Here, the effect of bevacizumab alone and in presence of rolipram on therapeutic efficacy, intratumor hypoxia levels, angiogenesis, apoptosis and proliferation mechanisms were evaluated. BALB/c mice bearing C6 glioma were received bevacizumab and rolipram either alone or combined for 30 days (n = 11/group). At the last day of treatments, apoptosis, proliferation and microvessel density, in xenografts (3/group) were detected by TUNEL staining, Ki67 and CD31 markers, respectively. Relative expression of target proteins was measured using western blotting. Bevacizumab initially hindered the tumor progression but its antitumor effect was weakened later despite the vascular regression and apoptosis induction. Unpredictably, bevacizumab-treated tumors exhibited the highest cell proliferation coupled with PDE4A, HIF1α and AKT upregulation and p53 downregulation and reversed by co-treatment with rolipram. Unlike a similar antivascular pattern to bevacizumab, rolipram consistently led to a more tumor growth suppression and proapoptotic effect versus bevacizumab. Co-treatment maximally hampered the tumor progression and elongated survival along with the major vascular regression, hypoxia, apoptosis induction, p53 and caspase activities. In conclusion, superior and persistent therapeutic efficacy of co-treatment provides a new insight into antiangiogenic therapy of malignant gliomas, suggesting to be a potential substitute in selected patients.
Collapse
Affiliation(s)
- Sara Ramezani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Guilan Road Trauma Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shahrokh Yousefzadeh-Chabok
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Guilan Road Trauma Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zoheir Reihanian
- Neurosurgery Department, Guilan University of Medical Sciences, Guilan, Iran
| | | | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Chen Y, Li Y, Hsieh T, Wang C, Cheng K, Wang L, Lin T, Cheung CHA, Wu C, Chiang H. Aging-induced Akt activation involves in aging-related pathologies and Aβ-induced toxicity. Aging Cell 2019; 18:e12989. [PMID: 31183966 PMCID: PMC6612704 DOI: 10.1111/acel.12989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/28/2023] Open
Abstract
Multicellular signals are altered in the processes of both aging and neurodegenerative diseases, including Alzheimer's disease (AD). Similarities in behavioral and cellular functional changes suggest a common regulator between aging and AD that remains undetermined. Our genetics and behavioral approaches revealed the regulatory role of Akt in both aging and AD pathogenesis. In this study, we found that the activity of Akt is upregulated during aging through epidermal growth factor receptor activation by using the fruit fly as an in vivo model. Downregulation of Akt in neurons improved cell survival, locomotor activity, and starvation challenge in both aged and Aβ42‐expressing flies. Interestingly, increased cAMP levels attenuated both Akt activation‐induced early death and Aβ42‐induced learning deficit in flies. At the molecular level, overexpression of Akt promoted Notch cleavage, suggesting that Akt is an endogenous activity regulator of γ‐secretase. Taken together, this study revealed that Akt is involved in the aging process and Aβ toxicity, and manipulating Akt can restore both neuronal functions and improve behavioral activity during the processes of aging and AD pathogenesis.
Collapse
Affiliation(s)
- Yu‐Ru Chen
- Department of Pharmacology National Cheng‐Kung University Tainan Taiwan
| | - Yu‐Hsuan Li
- Department of Pharmacology National Cheng‐Kung University Tainan Taiwan
| | - Tsung‐Chi Hsieh
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan Taiwan
| | - Chih‐Ming Wang
- School of Pharmacy College of Medicine National Cheng Kung University Tainan Taiwan
| | - Kuan‐Chung Cheng
- Department of Pharmacology National Cheng‐Kung University Tainan Taiwan
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan Taiwan
| | - Lei Wang
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Tzu‐Yu Lin
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology National Cheng‐Kung University Tainan Taiwan
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan Taiwan
| | - Chia‐Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Neurology Chang Gung Memorial Hospital Linkou Taiwan
| | - HsuehCheng Chiang
- Department of Pharmacology National Cheng‐Kung University Tainan Taiwan
- Institute of Basic Medical Sciences College of Medicine National Cheng Kung University Tainan Taiwan
| |
Collapse
|
24
|
Jiang S. A Regulator of Metabolic Reprogramming: MicroRNA Let-7. Transl Oncol 2019; 12:1005-1013. [PMID: 31128429 PMCID: PMC6531867 DOI: 10.1016/j.tranon.2019.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Let-7, a gene firstly known to control the timing of Caenorhabditis elegans larval development does not code for a protein but instead produces small non-coding RNAs, microRNAs. Higher animals have multiple isoforms of mature let-7 microRNAs. Mature let-7 family members share the same “seed sequence” and distinct from each other slightly by ‘non-seed’ sequence region. Let-7 has emerged as a central regulator of systemic energy homeostasis and it displays remarkable plasticity in metabolic responses to nutrients availability and physiological activities. In this review, we discuss recent studies highlighting post-transcriptional mechanisms that govern metabolic reprogramming in distinct cells by let-7. We focus on the participation of the let-7 clusters in immune cells, and suggest that tissue-specific regulation of the let-7 clusters by engineered mouse models might impact metabolic homeostasis and will be required to elucidate their physiological and pathological roles in the in vivo disease models.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Kim SH, Yi SJ, Lee H, Kim JH, Oh MJ, Song EJ, Kim K, Jhun BH. β 2-Adrenergic receptor (β 2-AR) agonist formoterol suppresses differentiation of L6 myogenic cells by blocking PI3K-AKT pathway. Anim Cells Syst (Seoul) 2019; 23:18-25. [PMID: 30834155 PMCID: PMC6394304 DOI: 10.1080/19768354.2018.1561516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
β2-Adrenergic receptor (β2-AR) is implicated in muscle metabolic activities such as glycogen metabolism, glucose uptake, lipolysis and muscle growth. However, the functional role of β2-AR in the differentiation of skeletal muscle is largely unknown. Here, we examined the functional role of β2-AR in L6 myoblast differentiation using the long-term-acting β2-AR-specific agonist formoterol. We observed that formoterol treatment strongly suppressed L6 myoblast differentiation and the expression of myosin heavy chain (MHC) in a dose- and time-dependent manner. Showing that both long-acting agonist (formoterol) and short-acting agonist (terbutaline) inhibited the induction of MHC protein, whereas β2-AR antagonist (ICI-118,551) upregulated MHC expression, we clearly demonstrated that β2-AR is involved in L6 myoblast differentiation. Furthermore, our pharmacological inhibition study revealed that the PI3K–AKT pathway is the main signaling pathway for myotube formation. Formoterol inhibited the activation of PI3K–AKT signaling, but not that of ERK signaling. Moreover, formoterol selectively inhibited AKT activation by IGF-I, but not by insulin. Collectively, our findings reveal a previously undocumented role of β2-AR activation in modulating the differentiation of L6 myoblasts.
Collapse
Affiliation(s)
- So-Hyeon Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Hyun Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Myung-Ju Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Eun-Ju Song
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Byung H Jhun
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
26
|
Li HM, Jang JH, Jung JS, Shin J, Park CO, Kim YJ, Ahn WG, Nam JS, Hong CW, Lee J, Jung YJ, Chen JF, Ravid K, Lee HT, Huh WK, Kabarowski JH, Song DK. G2A Protects Mice against Sepsis by Modulating Kupffer Cell Activation: Cooperativity with Adenosine Receptor 2b. THE JOURNAL OF IMMUNOLOGY 2018; 202:527-538. [PMID: 30530591 DOI: 10.4049/jimmunol.1700783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
G2A is a GPCR abundantly expressed in immune cells. G2A-/- mice showed higher lethality, higher plasma cytokines, and an impaired bacterial clearance in response to a murine model of sepsis (cecal ligation and puncture), which were blocked by GdCl3, an inhibitor of Kupffer cells. Anti-IL-10 Ab reversed the impaired bacterial clearance in G2A-/- mice. Indomethacin effectively blocked both the increased i.p. IL-10 levels and the impaired bacterial clearance, indicating that disturbed PG system is the proximal cause of these phenomena. Stimulation with LPS/C5a induced an increase in Escherichia coli phagocytosis and intracellular cAMP levels in G2A+/+ peritoneal macrophages but not G2A-/- cells, which showed more PGE2/nitrite release and intracellular reactive oxygen species levels. Heterologous coexpression of G2A and adenosine receptor type 2b (A2bAR) induced a synergistic increase in cAMP signaling in a ligand-independent manner, with the evidence of physical interaction of G2A with A2bAR. BAY 60-6583, a specific agonist for A2bAR, increased intracellular cAMP levels in Kupffer cells from G2A+/+ but not from G2A-/- mice. Both G2A and A2bAR were required for antiseptic action of lysophosphatidylcholine. These results show inappropriate activation of G2A-/- Kupffer cells to septic insults due to an impaired cAMP signaling possibly by lack of interaction with A2bAR.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ji Hye Jang
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jun-Sub Jung
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jiseon Shin
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chul O Park
- Department of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeon-Ja Kim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Won-Gyun Ahn
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ju-Suk Nam
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jongho Lee
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032; and
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dong-Keun Song
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea;
| |
Collapse
|
27
|
Ideno N, Yamaguchi H, Ghosh B, Gupta S, Okumura T, Steffen DJ, Fisher CG, Wood LD, Singhi AD, Nakamura M, Gutkind JS, Maitra A. GNAS R201C Induces Pancreatic Cystic Neoplasms in Mice That Express Activated KRAS by Inhibiting YAP1 Signaling. Gastroenterology 2018; 155:1593-1607.e12. [PMID: 30142336 PMCID: PMC6219919 DOI: 10.1053/j.gastro.2018.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Mutations at hotspots in GNAS, which encodes stimulatory G-protein, α subunits, are detected in approximately 60% of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. We generated mice with KRAS-induced IPMNs that also express a constitutively active form of GNAS in pancreas and studied tumor development. METHODS We generated p48-Cre; LSL-KrasG12D; Rosa26R-LSL-rtTA-TetO-GnasR201C mice (Kras;Gnas mice); pancreatic tissues of these mice express activated KRAS and also express a mutant form of GNAS (GNASR201C) upon doxycycline administration. Mice that were not given doxycycline were used as controls, and survival times were compared by Kaplan-Meier analysis. Pancreata were collected at different time points after doxycycline administration and analyzed by histology. Pancreatic ductal adenocarcinomas (PDACs) were isolated from mice and used to generate cell lines, which were analyzed by reverse transcription polymerase chain reaction, immunoblotting, immunohistochemistry, and colony formation and invasion assays. Full-length and mutant forms of yes-associated protein (YAP) were expressed in PDAC cells. IPMN specimens were obtained from 13 patients with IPMN undergoing surgery and analyzed by immunohistochemistry. RESULTS All Kras;Gnas mice developed pancreatic cystic lesions that resemble human IPMNs; the grade of epithelial dysplasia increased with time. None of the control mice developed cystic lesions. Approximately one third of Kras;Gnas mice developed PDACs at a median of 30 weeks after doxycycline administration, whereas 33% of control mice developed PDACs. Expression of GNASR201C did not accelerate the development of PDACs compared with control mice. However, the neoplasms observed in Kras;Gnas mice were more differentiated, and expressed more genes associated with ductal phenotypes, than in control mice. PDACs isolated from Kras;Gnas mice had activation of the Hippo pathway; in cells from these tumors, phosphorylated YAP1 was sequestered in the cytoplasm, and this was also observed in human IPMNs with GNAS mutations. Sequestration of YAP1 was not observed in PDAC cells from control mice. CONCLUSIONS In mice that express activated KRAS in the pancreas, we found expression of GNASR201C to cause development of more differentiated tumors, with gene expression pattern associated with the ductal phenotype. Expression of mutant GNAS caused phosphorylated YAP1 to be sequestered in the cytoplasm, altering tumor progression.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas.
| | - Hiroshi Yamaguchi
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Sonal Gupta
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Takashi Okumura
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Dana J Steffen
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Catherine G Fisher
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Baltimore 21287, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Baltimore 21287, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Baltimore 21287, USA
| | - Aatur D. Singhi
- Department of Anatomic Pathology, University of Pittsburgh, Pittsburgh 15260, USA
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
28
|
The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies. PLoS One 2018; 13:e0205495. [PMID: 30308003 PMCID: PMC6181369 DOI: 10.1371/journal.pone.0205495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023] Open
Abstract
Successful production of transgenic pigs requires oocytes with a high developmental competence. However, cumulus-oocyte complexes (COCs) obtained from antral follicles have a heterogeneous morphology. COCs can be classified into one of two classes: class I, with five or more layers of cumulus cells; and class II, with one or two layers of cumulus cells. Activator [e.g., epidermal growth factor (EGF)] or inhibitors (e.g., wortmannin and U0126) are added to modulate kinases in oocytes during meiosis. In the present study, we investigated the effects of kinase modulation on nuclear and cytoplasmic maturation in COCs. Class I COCs showed a significantly higher developmental competence than class II COCs. Moreover, the expression of two kinases, AKT and ERK, differed between class I and class II COCs during in vitro maturation (IVM). Initially, inhibition of the PI3K/AKT signaling pathway in class I COCs during early IVM (0-22 h) decreased developmental parameters, such as blastocyst formation rate, blastomere number, and cell survival. Conversely, EGF-mediated AKT activation in class II COCs enhanced developmental capacity. Regarding the MAPK signaling pathway, inhibition of ERK by U0126 in class II COCs during early IVM impaired developmental competence. However, transient treatment with U0126 in class II COCs increased oocyte maturation and AKT activity, improving embryonic development. Additionally, western blotting showed that inhibition of ERK activity negatively regulated the AKT signaling pathway, indicative of a relationship between AKT and MAPK signaling in the process underlying meiotic progression in pigs. These findings may help increase the developmental competence and utilization rate of pig COCs with regard to the production of transgenic pigs and improve our understanding of kinase-associated meiosis events.
Collapse
|
29
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
30
|
Relative importance of phosphatidylinositol-3 kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK3/1) signaling during maturational steroid-induced meiotic G2-M1 transition in zebrafish oocytes. ZYGOTE 2017; 26:62-75. [PMID: 29229010 DOI: 10.1017/s0967199417000545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20β-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.
Collapse
|
31
|
Lin CS, Chen TH, Lin IH, Lee AR, Chou TC. The novel compound MP407 inhibits platelet aggregation through cyclic AMP-dependent processes. Eur J Pharmacol 2017; 815:324-331. [PMID: 28939294 DOI: 10.1016/j.ejphar.2017.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/27/2022]
Abstract
Platelet hyperactivity plays a critical role for initiating several vascular diseases such as atherothrombosis. Therefore, development of effective antiplatelet agents is necessary for ameliorating platelet-related diseases. In this study, we investigated the effects of the new synthesized compound, MP407 on platelet aggregation and further elucidated the underlying mechanisms. Our results demonstrated that MP407 dose-dependently inhibited collagen-induced platelet aggregation, thromboxane B2 (TXB2) production, intracellular Ca2+ mobilization, platelet membrane GPIIb/IIIa expression, and the phosphorylation of Akt, GSK3β, p38MAPK, and phospho (Ser) PKC substrate (p47). Moreover, MP407 is able to increase the cyclic AMP formation both in resting and activated platelets. However, blocking cyclic AMP formation with 2'5'-ddAdo, an inhibitor of adenylate cyclase, greatly reversed the antiplatelet activity of MP407 and related platelet-activating pathways. MP407 also enhanced VASP phosphorylation at Ser157 in collagen-stimulated platelets, which was attenuated by addition of 2'5'-ddAdo. Therefore, the antiplatelet activity of MP407 may be modulated by cyclic AMP-dependent regulation of Akt, GSK3β, p38MAPK and VASP phosphorylation. Notably, treatment with MP407 markedly reduced the pulmonary thrombosis and the numbers of paralysis and death in mice induced by ADP injection, but did not affect the bleeding time. Taken together, MP407 may be a potential candidate or lead compound for developing novel antiplatelet or antithrombotic agents for platelet hyperactivity-triggered disease therapy.
Collapse
Affiliation(s)
- Chung-Shuen Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - An-Rong Lee
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Tz-Chong Chou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
32
|
Karakus S, Musicki B, La Favor JD, Burnett AL. cAMP-dependent post-translational modification of neuronal nitric oxide synthase neuroprotects penile erection in rats. BJU Int 2017; 120:861-872. [PMID: 28782252 DOI: 10.1111/bju.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate neuronal nitric oxide (NO) synthase (nNOS) phosphorylation, nNOS uncoupling, and oxidative stress in the penis and major pelvic ganglia (MPG), before and after the administration of the cAMP-dependent protein kinase A (PKA) agonist colforsin in a rat model of bilateral cavernous nerve injury (BCNI),which mimics nerve injury after prostatectomy. MATERIALS AND METHODS Adult male Sprague-Dawley rats were divided into BCNI and sham-operated groups. Each group included two subgroups: vehicle and colforsin (0.1 mg/kg/day i.p.). After 3 days, erectile function (intracavernosal pressure) was measured and penis and MPG were collected for molecular analyses of phospho (P)-nNOS (Ser-1412 and Ser-847), total nNOS, nNOS uncoupling, binding of protein inhibitor of nNOS (PIN) to nNOS, gp91phox subunit of NADPH oxidase, active caspase 3, PKA catalytic subunit α (PKA-Cα; by Western blot) and oxidative stress (hydrogen peroxide [H2 O2 ] and superoxide by Western blot and microdialysis method). RESULTS Erectile function was decreased 3 days after BCNI and normalized by colforsin. nNOS phosphorylation on both positive (Ser-1412) and negative (Ser-847) regulatory sites, and nNOS uncoupling, were increased after BCNI in the penis and MPG, and normalized by colforsin. H2 O2 and total reactive oxygen species production were increased in the penis after BCNI and normalized by colforsin. Protein expression of gp91phox was increased in the MPG after BCNI and was normalized by colforsin treatment. Binding of PIN to nNOS was increased in the penis after BCNI and was normalized by colforsin treatment. Protein expression of active Caspase 3 was increased in the MPG after BCNI and was normalized by colforsin treatment. Protein expression of PKA-Cα was decreased in the penis after BCNI and normalized by colforsin. CONCLUSION Collectively, BCNI impairs nNOS function in the penis and MPG by mechanisms involving its phosphorylation and uncoupling in association with increased oxidative stress, resulting in erectile dysfunction. PKA activation by colforsin reverses these molecular changes and preserves penile erection in the face of BCNI.
Collapse
Affiliation(s)
- Serkan Karakus
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin D La Favor
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells. Exp Mol Med 2017; 49:e297. [PMID: 28232663 PMCID: PMC5336561 DOI: 10.1038/emm.2016.152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
This study was performed to investigate the signaling pathway that mediates cyclic AMP (cAMP)-induced inhibition of histone deacetylase 8 (HDAC8) degradation, and the effect and underlying mechanisms of the resulting increase in HDAC8 expression on cisplatin-induced apoptosis in lung cancer cells. cAMP signaling increased HDAC8 expression via a protein kinase A (PKA)-independent pathway in H1299 non-small cell lung cancer cells. However, treatment with a selective activator of an exchange protein that was activated by cAMP (Epac) increased HDAC8 expression, and Epac2 inhibition abolished the isoproterenol (ISO)-induced increase in HDAC8 expression. ISO and the Epac activator activated Rap1, and Rap1A activation increased HDAC8 expression; moreover, inhibition of Rap1A with a dominant negative Rap1A or by shRNA-mediated knockdown abolished the ISO-induced increase in HDAC8 expression. Activation of cAMP signaling and Rap1A decreased the activating phosphorylation of Akt. Akt inhibition with a pharmacological inhibitor or expression of a dominant negative Akt inhibited the MKK4/JNK pathway and increased HDAC8 expression. The Akt inhibitor-induced increase in HDAC8 expression was abolished by pretreatment with proteasomal or lysosomal inhibitors. The ISO treatment increased cisplatin-induced apoptosis, which was abolished by HDAC8 knockdown. Exogenous HDAC8 expression increased cisplatin-induced apoptosis and decreased TIPRL expression, and the knockdown of TIPRL increased the apoptosis of cisplatin-treated cells. The ISO treatment decreased cisplatin-induced transcription of the TIPRL gene in a HDAC8-dependent manner. In conclusion, the Epac–Rap1–Akt pathway mediates cAMP signaling-induced inhibition of JNK-dependent HDAC8 degradation, and the resulting HDAC8 increase augments cisplatin-induced apoptosis by repressing TIPRL expression in H1299 lung cancer cells.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Sung Juhnn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Abstract
Aims There are reports that ataxia telangiectasia mutated (ATM) can activate the AMP-activated protein kinase (AMPK) and also Akt, two kinases that play integral parts in cardioprotection and metabolic function. We hypothesized that chloroquine and resveratrol, both known ATM activators, would also activate AMPK and Akt. Main methods Phosphorylation of AMPK and Akt was assessed after C2C12 myotubes were exposed to chloroquine or resveratrol. Additional experiments were done in cells expressing shRNA against ATM or in the presence of the ATM inhibitor KU55933. The effects of chloroquine on intracellular calcium were assessed with the fluorescent probe Calcium Green-1 AM. Key findings 0.5 mM chloroquine increased AMPK phosphorylation by nearly four-fold (P < 0.05), and 0.25 mM chloroquine roughly doubled Akt phosphorylation (P < 0.05). Chloroquine also increased autophosphorylation of ATM by ∼50% (P < 0.05). Resveratrol (0.15 mM) increased AMPK phosphorylation about three-fold (P < 0.05) but in contrast to chloroquine sharply decreased Akt phosphorylation. Chloroquine increased AMPK and Akt phosphorylation in myotubes expressing shRNA against ATM that reduced ATM protein levels by about 90%. Likewise, chloroquine-stimulated phosphorylation of AMPK and Akt and resveratrol-stimulated phosphorylation of AMPK were not altered by inhibition of ATM. Chloroquine decreased intracellular calcium by >50% concomitant with a decrease in glucose transport. Significance These ATM-independent effects of chloroquine on AMPK and Akt and the additional effect to decrease intracellular calcium are likely to partially underlie the positive metabolic effects of chloroquine that have been reported in the literature.
Collapse
|
35
|
Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression by inhibiting JNK-dependent degradation via autophagy and the proteasome system in H1299 lung cancer cells. Biochem Biophys Res Commun 2016; 470:336-342. [PMID: 26792731 DOI: 10.1016/j.bbrc.2016.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the roles of autophagy and the ubiquitin-proteasome system in the degradation of histone deacetylase 8 (HDAC8) and to clarify the mechanism by which cAMP signaling regulates this degradation. cAMP signaling was activated by treating H1299 non-small cell lung cancer cells with isoproterenol or forskolin/3-isobutyl-1-methylxanthine, and HDAC8 expression was assessed by western blot analysis. The inhibition of autophagy and ubiquitin-proteasome-dependent degradation increased HDAC8 expression. cAMP signaling inhibited JNK activation, which decreased the phosphorylation of Bcl-2, thereby reducing autophagy, and the phosphorylation of Itch, thereby reducing ubiquitination. These results suggest that the HDAC8 protein is degraded via autophagy and the ubiquitin-proteasome system and that cAMP signaling increases HDAC8 protein levels by reducing JNK-mediated autophagy and ubiquitin-proteasome-dependent degradation of the HDAC8 protein in H1299 lung cancer cells.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Sung Juhnn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
36
|
Zhang XH, Zhou SY, Feng R, Wang YZ, Kong Y, Zhou Y, Zhang JM, Wang M, Zhao JZ, Wang QM, Feng FE, Zhu XL, Wang FR, Wang JZ, Han W, Chen H, Xu LP, Liu YR, Liu KY, Huang XJ. Increased prostacyclin levels inhibit the aggregation and activation of platelets via the PI3K-AKT pathway in prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. Thromb Res 2016; 139:1-9. [PMID: 26916289 DOI: 10.1016/j.thromres.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/28/2015] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the role of prostacyclin (PGI2) in prolonged isolated thrombocytopenia (PT) following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the effect of PGI2 on the activation and aggregation of platelets in PT. METHODS We enrolled 37 patients with PT and 36 controls following allo-HSCT in this study. Platelet aggregation and activation and PGI2 levels were measured. Endothelial progenitor cells (EPCs) from either PT or control patients were cultured ex vivo with serum from either PT or control patients. PGI2 secretions were then measured. PGI2 was added to the platelets ex vivo, and platelet aggregation and activation and PI3K/Akt phosphorylation were analyzed. RESULTS A higher PGI2 level was observed in the PT patients. The activation and aggregation of platelets were significantly lower in the PT patients. EPCs from PT patients cultured in PT serum secreted higher levels of PGI2, and PGI2 inhibited platelet activation and aggregation in a concentration-dependent manner ex vivo. PI3K/Akt phosphorylation of platelets was regulated by PGI2 after allo-HSCT. Disease status, serum PGI2 level and platelet aggregation were independent risk factors in patients with PT after allo-HSCT. CONCLUSIONS Higher PGI2 levels and lower platelet activation and aggregation occurred simultaneously in PT patients. PGI2 inhibited platelet activation and aggregation, probably by regulating the phosphorylation of PI3K/Akt.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China; Collaborative Innovation Center of Hematology, Peking University, People's Republic of China.
| | - Shi-Yuan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China; Collaborative Innovation Center of Hematology, Peking University, People's Republic of China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, Ministry of Health, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Yi Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Jia-Min Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Min Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Jing-Zhong Zhao
- Peking University People's Hospital, Department of Clinical Laboratory, Beijing, People's Republic of China
| | - Qian-Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Fei-Er Feng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, People's Republic of China; Collaborative Innovation Center of Hematology, Peking University, People's Republic of China
| |
Collapse
|
37
|
Shah MS, Kim E, Davidson LA, Knight JM, Zoh RS, Goldsby JS, Callaway ES, Zhou B, Ivanov I, Chapkin RS. Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:121-134. [PMID: 26493444 PMCID: PMC4674324 DOI: 10.1016/j.bbadis.2015.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/12/2015] [Accepted: 10/17/2015] [Indexed: 02/08/2023]
Abstract
There is mounting evidence that noncoding microRNAs (miRNA) are modulated by select chemoprotective dietary agents. For example, recently we demonstrated that the unique combination of dietary fish oil (containing n-3 fatty acids) plus pectin (fermented to butyrate in the colon) (FPA) up-regulates a subset of putative tumor suppressor miRNAs in intestinal mucosa, and down-regulates their predicted target genes following carcinogen exposure as compared to control (corn oil plus cellulose (CCA)) diet. To further elucidate the biological effects of diet and carcinogen modulated miR's in the colon, we verified that miR-26b and miR-203 directly target PDE4B and TCF4, respectively. Since perturbations in adult stem cell dynamics are generally believed to represent an early step in colon tumorigenesis and to better understand how the colonic stem cell population responds to environmental factors such as diet and carcinogen, we additionally determined the effects of the chemoprotective FPA diet on miRNAs and mRNAs in colonic stem cells obtained from Lgr5-EGFP-IRES-creER(T2) knock-in mice. Following global miRNA profiling, 26 miRNAs (P<0.05) were differentially expressed in Lgr5(high) stem cells as compared to Lgr5(negative) differentiated cells. FPA treatment up-regulated miR-19b, miR-26b and miR-203 expression as compared to CCA specifically in Lgr5(high) cells. In contrast, in Lgr5(negative) cells, only miR-19b and its indirect target PTK2B were modulated by the FPA diet. These data indicate for the first time that select dietary cues can impact stem cell regulatory networks, in part, by modulating the steady-state levels of miRNAs. To our knowledge, this is the first study to utilize Lgr5(+) reporter mice to determine the impact of diet and carcinogen on miRNA expression in colonic stem cells and their progeny.
Collapse
Affiliation(s)
- Manasvi S Shah
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Intercollegiate Faculty of Genetics, Texas A&M University, College Station, TX, United States; Divison of Endocrinology, Boston Children's Hospital, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Departments of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Laurie A Davidson
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States
| | - Jason M Knight
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Electrical Engineering, Texas A&M University, College Station, TX, United States; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Roger S Zoh
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Statistics, Texas A&M University, College Station, TX, United States
| | - Jennifer S Goldsby
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Evelyn S Callaway
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States
| | - Beyian Zhou
- Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, United States; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Ivan Ivanov
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, United States; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, United States; Intercollegiate Faculty of Genetics, Texas A&M University, College Station, TX, United States; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
38
|
Bono MR, Fernández D, Flores-Santibáñez F, Rosemblatt M, Sauma D. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Lett 2015; 589:3454-60. [PMID: 26226423 DOI: 10.1016/j.febslet.2015.07.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/17/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
Extracellular ATP is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. However, extracellular adenosine acts as an immunoregulatory signal that modulates the function of several cellular components of the adaptive and innate immune response. Consequently, the balance between ATP and adenosine concentration is crucial in immune homeostasis. CD39 and CD73 are two ectonucleotidases that cooperate in the generation of extracellular adenosine through ATP hydrolysis, thus tilting the balance towards immunosuppressive microenvironments. Extracellular adenosine can prevent activation, proliferation, cytokine production and cytotoxicity in T cells through the stimulation of the A2A receptor; however, recent evidence has shown that adenosine may also affect other processes in T-cell biology. In this review, we discuss evidence that supports a role of CD73 and CD39 ectonucleotidases in controlling naive T-cell homeostasis and memory cell survival through adenosine production. Finally, we propose a novel hypothesis of a possible role of these ectonucleotidases and autocrine adenosine signaling in controlling T-cell differentiation.
Collapse
Affiliation(s)
- María Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dominique Fernández
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Fundacion Ciencia y Vida, Santiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
39
|
Yao K, Ge W. Differential regulation of kit ligand A (kitlga) expression in the zebrafish ovarian follicle cells--evidence for the existence of a cyclic adenosine 3', 5' monophosphate-mediated binary regulatory system during folliculogenesis. Mol Cell Endocrinol 2015; 402:21-31. [PMID: 25542847 DOI: 10.1016/j.mce.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 01/29/2023]
Abstract
Kit ligand (Kitl) is an important paracrine factor involved in the activation of primordial follicles from the quiescent pool and in the maintenance of meiotic arrest before germinal vesicle breakdown (GVBD). It has been reported that follicle-stimulating hormone (FSH) stimulates but luteinizing hormone (LH) suppresses the expression of Kitl in the granulosa cells in mammals. Considering that both gonadotropins signal in the follicle cells mainly by activating cyclic adenosine 3', 5'-monophosphate (cAMP) pathway, we are intrigued by how cAMP differentially regulates Kitl expression. In the present study, we demonstrated that both human chorionic gonadotropin (hCG) and pituitary adenylate cyclase activating polypeptide (PACAP) inhibited insulin-like growth factor I (IGF-I)-induced Akt phosphorylation and kitlga expression in the zebrafish follicle cells. Further experiments showed that cAMP was involved in regulating the expression of kitlga. However, two cAMP-activated effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), had converse effects. PKA promoted whereas Epac inhibited the expression of kitlga, as demonstrated by the respective activators. Interestingly, cAMP also appeared to exert differential effects on kitlga expression at different stages of follicle development during folliculogenesis, significantly stimulating kitlga expression at the early growth stage but suppressing it at the full-grown stage before final oocyte maturation, implying a potential mechanism for differential effects of the same pathway at different stages. The inhibitory effect of forskolin (activator of adenylate cyclase) and H89 (inhibitor of PKA) on IGF-I-induced expression of kitlga suggested cross-talk between the cAMP and IGF-I-activated PI3K-Akt pathways. This study, together with our previous findings on IGF-I regulation of kitlga expression, provides important clues to the underlying mechanism that regulates Kit ligand expression during folliculogenesis in the ovary.
Collapse
Affiliation(s)
- Kai Yao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Ge
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
40
|
Chen CY, Li ZL, Chung KT, Lu FJ, Chen CH. Liriodenine enhances the apoptosis effect of valproic acid in human colon cancer cells through oxidative stress upregulation and Akt inhibition. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Picault FX, Chaves-Almagro C, Projetti F, Prats H, Masri B, Audigier Y. Tumour co-expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur J Cancer 2013; 50:663-74. [PMID: 24316062 DOI: 10.1016/j.ejca.2013.11.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/21/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023]
Abstract
Using a cancer profiling array, our laboratory has shown that apelin gene is up-regulated in half of colon adenocarcinomas. We have therefore postulated that apelin signalling might play a prominent role in the growth of colon tumours. We first confirmed by immunohistochemistry that apelin peptide is overexpressed in human colon adenomas and adenocarcinomas. We also observed a significant overexpression of apelin receptor (APJ) in adjacent sections. We then demonstrated that several colorectal cancer cell lines also expressed apelin and its receptor, the highest gene and peptide expression being detected in LoVo cells. In this cell line, the expression and functionality of apelin receptor were revealed by apelin-induced adenylyl cyclase inhibition and Akt phosphorylation. In addition, apelin clearly protected LoVo cells from apoptosis by inactivating a caspase-dependent pathway and decreasing the degradation of poly ADP ribose polymerase protein (PARP). Finally, treatment of these tumour cells by the (F13A)apelin13 receptor antagonist significantly reduced their proliferation rate. Altogether, these data suggest the existence of an autocrine loop by which constitutive activation of apelin signalling should participate in the growth of colon adenocarcinomas. Accordingly, apelin signalling is a promising pharmacological target for the treatment of human colon adenomas and adenocarcinomas.
Collapse
Affiliation(s)
- François-Xavier Picault
- Cancer Research Center of Toulouse, UMR 1037 INSERM - Université Toulouse III, CHU Rangueil, Bât L3, 1, Avenue Jean Poulhès, BP 84225, 31432 Toulouse, France
| | - Carline Chaves-Almagro
- Cancer Research Center of Toulouse, UMR 1037 INSERM - Université Toulouse III, CHU Rangueil, Bât L3, 1, Avenue Jean Poulhès, BP 84225, 31432 Toulouse, France
| | - Fabrice Projetti
- Center of Biological Resources, CHU Rangueil, Bât L2, 1, Avenue Jean Poulhès, BP 84225, 31432 Toulouse, France
| | - Hervé Prats
- Cancer Research Center of Toulouse, UMR 1037 INSERM - Université Toulouse III, CHU Rangueil, Bât L3, 1, Avenue Jean Poulhès, BP 84225, 31432 Toulouse, France
| | - Bernard Masri
- Cancer Research Center of Toulouse, UMR 1037 INSERM - Université Toulouse III, CHU Rangueil, Bât L3, 1, Avenue Jean Poulhès, BP 84225, 31432 Toulouse, France
| | - Yves Audigier
- Cancer Research Center of Toulouse, UMR 1037 INSERM - Université Toulouse III, CHU Rangueil, Bât L3, 1, Avenue Jean Poulhès, BP 84225, 31432 Toulouse, France.
| |
Collapse
|
42
|
Chruscinski AJ, Singh H, Chan SM, Utz PJ. Broad-scale phosphoprotein profiling of beta adrenergic receptor (β-AR) signaling reveals novel phosphorylation and dephosphorylation events. PLoS One 2013; 8:e82164. [PMID: 24340001 PMCID: PMC3855414 DOI: 10.1371/journal.pone.0082164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023] Open
Abstract
β-adrenergic receptors (β-ARs) are model G-protein coupled receptors that mediate signal transduction in the sympathetic nervous system. Despite the widespread clinical use of agents that target β-ARs, the signaling pathways that operate downstream of β-AR stimulation have not yet been completely elucidated. Here, we utilized a lysate microarray approach to obtain a broad-scale perspective of phosphoprotein signaling downstream of β-AR. We monitored the time course of phosphorylation states of 54 proteins after β-AR activation mouse embryonic fibroblast (MEF) cells. In response to stimulation with the non-selective β-AR agonist isoproterenol, we observed previously described phosphorylation events such as ERK1/2(T202/Y204) and CREB(S133), but also novel phosphorylation events such as Cdc2(Y15) and Pyk2(Y402). All of these events were mediated through cAMP and PKA as they were reproduced by stimulation with the adenylyl cyclase activator forskolin and were blocked by treatment with H89, a PKA inhibitor. In addition, we also observed a number of novel isoproterenol-induced protein dephosphorylation events in target substrates of the PI3K/AKT pathway: GSK3β(S9), 4E-BP1(S65), and p70s6k(T389). These dephosphorylations were dependent on cAMP, but were independent of PKA and correlated with reduced PI3K/AKT activity. Isoproterenol stimulation also led to a cAMP-dependent dephosphorylation of PP1α(T320), a modification known to correlate with enhanced activity of this phosphatase. Dephosphorylation of PP1α coincided with the secondary decline in phosphorylation of some PKA-phosphorylated substrates, suggesting that PP1α may act in a feedback loop to return these phosphorylations to baseline. In summary, lysate microarrays are a powerful tool to profile phosphoprotein signaling and have provided a broad-scale perspective of how β-AR signaling can regulate key pathways involved in cell growth and metabolism.
Collapse
Affiliation(s)
- Andrzej J. Chruscinski
- Division of Cardiology and Heart Transplantation, Department of Medicine, Toronto General Hospital, Toronto, Ontario, Canada
- * E-mail:
| | - Harvir Singh
- Developmental and Reproductive Biology, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Steven M. Chan
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
43
|
Cekic C, Sag D, Day YJ, Linden J. Extracellular adenosine regulates naive T cell development and peripheral maintenance. ACTA ACUST UNITED AC 2013; 210:2693-706. [PMID: 24145516 PMCID: PMC3832923 DOI: 10.1084/jem.20130249] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adenosine receptor signaling inhibits TCR-induced activation of PI3K–Akt to reduce IL-7Rα expression on T cells, thereby regulating development and maintenance of naive T cells in the periphery. Adenosine produced as a byproduct of metabolic activity is present in all tissues and produces dose-dependent suppression of TCR signaling. Naive T cell maintenance depends on inhibition of TCR signals by environmental sensors, which are yet to be fully defined. We produced mice with a floxed adenosine A2A receptor (A2AR) gene, Adora2a, and show that either global A2AR deletion or cre-mediated T cell deletion elicits a decline in the number of naive but not memory T cells. A2AR signaling maintains naive T cells in a quiescent state by inhibiting TCR-induced activation of the phosphatidylinositide 3-kinase (PI3K)–AKT pathway, thereby reducing IL-7Rα down-regulation and naive T cell apoptosis. Patterns of IL-7Rα expression on T cells in chimeric mice reconstituted with Adora2a+/+ and Adora2a−/− bone marrow cells suggest that decreased IL-7Rα in naive T cells is a cell-intrinsic consequence of Adora2a deletion. In addition, A2AR expression increases in early thymic T cell development and contributes to progression of double-negative thymic precursors to single-positive thymocytes with increased IL-7Rα expression. Therefore, A2AR signaling regulates T cell development and maintenance to sustain normal numbers of naive T cells in the periphery.
Collapse
Affiliation(s)
- Caglar Cekic
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | | | | |
Collapse
|
44
|
Rupprecht LE, Mietlicki-Baase EG, Zimmer DJ, McGrath LE, Olivos DR, Hayes MR. Hindbrain GLP-1 receptor-mediated suppression of food intake requires a PI3K-dependent decrease in phosphorylation of membrane-bound Akt. Am J Physiol Endocrinol Metab 2013; 305:E751-9. [PMID: 23900416 PMCID: PMC3761195 DOI: 10.1152/ajpendo.00367.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) expressed in the nucleus tractus solitarius (NTS) are physiologically required for the control of feeding. Recently, NTS GLP-1R-mediated suppression of feeding was shown to occur via a rapid PKA-induced suppression of AMPK and activation of MAPK signaling. Unknown are the additional intracellular signaling pathways that account for the long-term hypophagic effects of GLP-1R activation. Because cAMP/PKA activity can promote PI3K/PIP3-dependent translocation of Akt to the plasma membrane, we hypothesize that hindbrain GLP-1R-mediated control of feeding involves a PI3K-Akt-dependent pathway. Importantly, the novel evidence presented here challenges the dogmatic view that PI3K phosphorylation results in an obligatory activation of Akt and instead supports a growing body of literature showing that activation of cAMP/PKA can inhibit Akt phosphorylation at the plasma membrane. Behavioral data show that inhibition of hindbrain PI3K activity by a fourth icv administration of LY-294002 (3.07 μg) attenuated the food intake- and body weight-suppressive effects of a fourth icv administration of the GLP-1R agonist exendin-4 (0.3 μg) in rats. Hindbrain administration of triciribine (10 μg), an inhibitor of PIP3-dependent translocation of Akt to the cell membrane, also attenuated the intake-suppressive effects of a fourth icv injection of exendin-4. Immunoblot analyses of ex vivo NTS tissue lysates and in vitro GLP-1R-expressing neurons (GT1-7) support the behavioral findings and show that GLP-1R activation decreases phosphorylation of Akt in a time-dependent fashion. Current data reveal the requirement of PI3K activation, PIP3-dependent translocation of Akt to the plasma membrane, and suppression in phosphorylation of membrane-bound Akt to mediate the food intake-suppressive effects of hindbrain GLP-1R activation.
Collapse
Affiliation(s)
- Laura E Rupprecht
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
45
|
Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:569160. [PMID: 23997795 PMCID: PMC3755423 DOI: 10.1155/2013/569160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023]
Abstract
A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6) to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release). Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK), and different mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2 (ERK1/2) as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia.
Collapse
|
46
|
Activation of a cyclic amp-guanine exchange factor in hepatocytes decreases nitric oxide synthase expression. Shock 2013; 39:70-6. [PMID: 23143065 DOI: 10.1097/shk.0b013e3182760530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adenosine 3',5'-cyclic adenosine monophosphate (cAMP) activates intracellular signaling by regulating protein kinase A, calcium influx, and cAMP-binging guanine nucleotide exchange factors (Epac [exchange protein directly activated by cAMP] or cAMP-GEF). Cyclic adenosine monophosphate inhibits cytokine-induced expression of inducible nitric oxide synthase (iNOS) in hepatocytes by a protein kinase A-independent mechanism. We hypothesized that Epac mediates this effect. A cyclic AMP analog that specifically activates Epac, 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (OPTmecAMP), and overexpression of liver-specific Epac2 both inhibited interleukin 1β/interferon γ-induced iNOS expression and nitrite production. OPTmecAMP inactivated Raf1/MEK/ERK signaling, but ERK had no effect on iNOS expression. OPTmecAMP induced a persistent Akt phosphorylation in hepatocytes that lasted up to 8 h. Overexpression of a dominant-negative Akt blocked the inhibitory effect of OPTmecAMP on iNOS production. A specific PI3K inhibitor, LY294002, attenuated the inhibition of nitrite production and iNOS expression produced by overexpressing a liver-specific Epac2 (LEpac2). OPTmecAMP also induced c-Jun N-terminal kinase (JNK) phosphorylation in hepatocytes. Overexpression of dominant-negative JNK enhanced cytokine-induced iNOS expression and nitrite production and reversed the inhibitory effects of LEpac2 on nitrite production and iNOS expression. We conclude that Epac regulates hepatocyte iNOS expression through an Akt- and JNK-mediated signaling mechanism.
Collapse
|
47
|
Wypych D, Barańska J. Cross-talk in nucleotide signaling in glioma C6 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:31-59. [PMID: 22879063 DOI: 10.1007/978-94-007-4719-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chapter is focused on the mechanism of action of metabotropic P2Y nucleotide receptors: P2Y(1), P2Y(2), P2Y(12), P2Y(14) and the ionotropic P2X(7) receptor in glioma C6 cells. P2Y(1) and P2Y(12) both respond to ADP, but while P2Y(1) links to PLC and elevates cytosolic Ca(2+) concentration, P2Y(12) negatively couples to adenylate cyclase, maintaining cAMP at low level. In glioma C6, these two P2Y receptors modulate activities of ERK1/2 and PI3K/Akt signaling and the effects depend on physiological conditions of the cells. During prolonged serum deprivation, cell growth is arrested, the expression of the P2Y(1) receptor strongly decreases and P2Y(12) becomes a major player responsible for ADP-evoked signal transduction. The P2Y(12) receptor activates ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulates Akt activity, contributing to glioma invasiveness. In contrast, P2Y(1) has an inhibitory effect on Akt pathway signaling. Furthermore, the P2X(7) receptor, often responsible for apoptotic fate, is not involved in Ca(2+)elevation in C6 cells. The shift in nucleotide receptor expression from P2Y(1) to P2Y(12) during serum withdrawal, the cross talk between both receptors and the lack of P2X(7) activity shows the precise self-regulating mechanism, enhancing survival and preserving the neoplastic features of C6 cells.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland.
| | | |
Collapse
|
48
|
Li W, Chen L, Li X, Jia X, Feng C, Zhang L, He W, Lv J, He Y, Li W, Qu X, Zhou Y, Shi Y. Cancer-related marketing centrality motifs acting as pivot units in the human signaling network and mediating cross-talk between biological pathways. MOLECULAR BIOSYSTEMS 2013; 9:3026-35. [DOI: 10.1039/c3mb70289h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Balwani S, Chaudhuri R, Nandi D, Jaisankar P, Agrawal A, Ghosh B. Regulation of NF-κB activation through a novel PI-3K-independent and PKA/Akt-dependent pathway in human umbilical vein endothelial cells. PLoS One 2012; 7:e46528. [PMID: 23071583 PMCID: PMC3465347 DOI: 10.1371/journal.pone.0046528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 09/04/2012] [Indexed: 01/04/2023] Open
Abstract
The transcription factor NF-κB regulates numerous inflammatory diseases, and proteins involved in the NF-κB-activating signaling pathway are important therapeutic targets. In human umbilical vein endothelial cells (HUVECs), TNF-α-induced IκBα degradation and p65/RelA phosphorylation regulate NF-κB activation. These are mediated by IKKs (IκB kinases) viz. IKKα, β and γ which receive activating signals from upstream kinases such as Akt. Akt is known to be positively regulated by PI-3K (phosphoinositide-3-kinase) and differentially regulated via Protein kinase A (PKA) in various cell types. However, the involvement of PKA/Akt cross talk in regulating NF-κB in HUVECs has not been explored yet. Here, we examined the involvement of PKA/Akt cross-talk in HUVECs using a novel compound, 2-methyl-pyran-4-one-3-O-β-D-2',3',4',6'-tetra-O-acetyl glucopyranoside (MPTAG). We observed that MPTAG does not directly inhibit IKK-β but prevents TNF-α-induced activation of IKK-β by blocking its association with Akt and thereby inhibits NF-κB activation. Interestingly, our results also revealed that inhibitory effect of MPTAG on Akt and NF-κB activation was unaffected by wortmannin, and was completely abolished by H-89 treatment in these cells. Thus, MPTAG-mediated inhibition of TNF-α-induced Akt activation was independent of PI-3K and dependent on PKA. Most importantly, MPTAG restores the otherwise repressed activity of PKA and inhibits the TNF-α-induced Akt phosphorylation at both Thr308 and Ser473 residues. Thus, we demonstrate for the first time the involvement of PKA/Akt cross talk in NF-κB activation in HUVECs. Also, MPTAG could be useful as a lead molecule for developing potent therapeutic molecules for diseases where NF-κB activation plays a key role.
Collapse
Affiliation(s)
- Sakshi Balwani
- Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rituparna Chaudhuri
- Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Debkumar Nandi
- Department of Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Parasuraman Jaisankar
- Department of Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
50
|
Cahova M, Palenickova E, Papackova Z, Dankova H, Skop V, Kazdova L. Epinephrine-dependent control of glucose metabolism in white adipose tissue: the role of α- and β-adrenergic signalling. Exp Biol Med (Maywood) 2012; 237:211-8. [PMID: 22302710 DOI: 10.1258/ebm.2011.011189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epinephrine controls many important and sometimes opposite processes. This pleiotropic effect is achieved via coupling to different receptor/effector systems. In epididymal white adipose tissue (EWAT) of Wistar rats, we showed that epinephrine stimulated protein kinase B (PKB) phosphorylation on Ser(473). Epinephrine further increased the glucose incorporation into glyceride-glycerol without decreasing glucose availability for other metabolic pathways (i.e. lactate production). Wortmannin (phosphatidylinositol 3-kinase inhibitor) treatment significantly decreased glucose incorporation into glyceride-glycerol and elevated the epinephrine-induced release of free fatty acids (FFA) from the adipose tissue without any change in the intensity of lipolysis measured as glycerol release. Using specific cyclic adenosine monophosphate (cAMP) analogs we demonstrated that cAMP-protein kinase A (PKA) signalling resulted in a strong PKB dephosphorylation and significantly lowered the glucose availability in EWAT. Specific activation of the Epac (exchange protein activated by cAMP)-dependent pathway had only a moderately negative effect on PKB phosphorylation and glucose metabolism. In contrast, α(1) agonist methoxamine increased PKB phosphorylation and lactate production. This effect of methoxamine was additive to the effect of insulin and it was abolished by wortmannin treatment. In EWAT of spontaneously dyslipidemic hereditary hypertriglyceridemic (HHTg) rats, we demonstrated significantly lower epinephrine-induced glucose utilization but higher sensitivity to its lipolytic effect. We conclude that in EWAT, epinephrine controls two opposite processes (FFA release and FFA retention) via two different effector systems. The impairment of α(1)-dependent, epinephrine-stimulated, glycolysis-dependent FFA esterification may contribute to the establishment of dyslipidemia in insulin resistance.
Collapse
Affiliation(s)
- Monika Cahova
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|