1
|
Gottesfeld JM. Milestones in transcription and chromatin published in the Journal of Biological Chemistry. J Biol Chem 2019; 294:1652-1660. [PMID: 30710013 DOI: 10.1074/jbc.tm118.004162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During Herbert Tabor's tenure as Editor-in-Chief from 1971 to 2010, JBC has published many seminal papers in the fields of chromatin structure, epigenetics, and regulation of transcription in eukaryotes. As of this writing, more than 21,000 studies on gene transcription at the molecular level have been published in JBC since 1971. This brief review will attempt to highlight some of these ground-breaking discoveries and show how early studies published in JBC have influenced current research. Papers published in the Journal have reported the initial discovery of multiple forms of RNA polymerase in eukaryotes, identification and purification of essential components of the transcription machinery, and identification and mechanistic characterization of various transcriptional activators and repressors and include studies on chromatin structure and post-translational modifications of the histone proteins. The large body of literature published in the Journal has inspired current research on how chromatin organization and epigenetics impact regulation of gene expression.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
2
|
Ayanlaja AA, Zhang B, Ji G, Gao Y, Wang J, Kanwore K, Gao D. The reversible effects of glial cell line-derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol 2018; 53:212-222. [PMID: 30059726 DOI: 10.1016/j.semcancer.2018.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor, and a member of the transforming growth factor β (TGF-β) superfamily acting on different neuronal activities. GDNF was originally identified as a neurotrophic factor crucially involved in the survival of dopaminergic neurons of the nigrostriatal pathway and is currently an established therapeutic target in Parkinson's disease. However, GDNF was later reported to be highly expressed in gliomas, especially in glioblastomas, and was demonstrated as a potent proliferation factor involved in the development and migration of gliomas. Here, we review our current understanding and progress made so far by researchers in our laboratories with references to relevant articles to support our discoveries. We present past and recent discoveries on the mechanisms involved in the protection of neurons by GDNF and examine its emerging roles in gliomas, as well as reasons for the abnormal expression in Glioblastoma Multiforme (GBM). Collectively, our work establishes a paradigm by which the ability of GDNF to protect dopaminergic neurons from degradation and its corresponding effects on glioma cells points to an underlying biological vulnerability in the effects of GDNF in the normal brain which can be subverted for use by cancer cells. Hence, presenting novel opportunities for intervention in glioma therapies.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Baole Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jie Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
3
|
Zhang BL, Guo TW, Gao LL, Ji GQ, Gu XH, Shao YQ, Yao RQ, Gao DS. Egr-1 and RNA POL II facilitate glioma cell GDNF transcription induced by histone hyperacetylation in promoter II. Oncotarget 2018; 8:45105-45116. [PMID: 28187447 PMCID: PMC5542170 DOI: 10.18632/oncotarget.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
The specific mechanisms for epigenetic regulation of gene transcription remain to be elucidated. We previously demonstrated that hyperacetylation of histone H3K9 in promoter II of glioma cells promotes high transcription of the glial cell line-derived neurotrophic factor (GDNF) gene. This hyperacetylation significantly enhanced Egr-1 binding and increased the recruitment of RNA polymerase II (RNA POL II) to that region (P < 0.05). Egr-1 expression was abnormally increased in C6 glioma cells. Further overexpression of Egr-1 significantly increased Egr-1 binding to GDNF promoter II, while increasing RNA POL II recruitment, thus increasing GDNF transcription (P < 0.01). When the acetylation of H3K9 in the Egr-1 binding site was significantly reduced by the histone acetyltransferase (HAT) inhibitor curcumin, binding of Egr-1 to GDNF promoter II, RNA POL II recruitment, and GDNF mRNA expression were significantly downregulated (P < 0.01). Moreover, curcumin attenuated the effects of Egr-1 overexpression on Egr-1 binding, RNA POL II recruitment, and GDNF transcription (P < 0.01). Egr-1 and RNA POL II co-existed in the nucleus of C6 glioma cells, with overlapping regions, but they were not bound to each other. In conclusion, highly expressed Egr-1 may be involved in the recruitment of RNA POL II in GDNF promoter II in a non-binding manner, and thereby involved in regulating GDNF transcription in high-grade glioma cells. This regulation is dependent on histone hyperacetylation in GDNF promoter II.
Collapse
Affiliation(s)
- Bao-Le Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting-Wen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Le-Le Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guang-Quan Ji
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiao-He Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yu-Qi Shao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rui-Qin Yao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
4
|
Hibino E, Inoue R, Sugiyama M, Kuwahara J, Matsuzaki K, Hoshino M. Identification of heteromolecular binding sites in transcription factors Sp1 and TAF4 using high-resolution nuclear magnetic resonance spectroscopy. Protein Sci 2017; 26:2280-2290. [PMID: 28857320 PMCID: PMC5654864 DOI: 10.1002/pro.3287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 01/17/2023]
Abstract
The expression of eukaryotic genes is precisely controlled by interactions between general transcriptional factors and promoter-specific transcriptional activators. The fourth element of TATA-box binding protein-associated factor (TAF4), an essential subunit of the general transcription factor TFIID, serves as a coactivator for various promoter-specific transcriptional regulators. Interactions between TAF4 and site-specific transcriptional activators, such as Sp1, are important for regulating the expression levels of genes of interest. However, only limited information is available on the molecular mechanisms underlying the interactions between these transcriptional regulatory proteins. We herein analyzed the interaction between the transcriptional factors Sp1 and TAF4 using high-resolution solution nuclear magnetic resonance spectroscopy. We found that four glutamine-rich (Q-rich) regions in TAF4 were largely disordered under nearly physiological conditions. Among them, the first Q-rich region in TAF4 was essential for the interaction with another Q-rich region in the Sp1 molecule, most of which was largely disordered. The residues responsible for this interaction were specific and highly localized in a defined region within a range of 20-30 residues. Nevertheless, a detailed analysis of 13 C-chemical shift values suggested that no significant conformational change occurred upon binding. These results indicate a prominent and exceptional binding mode for intrinsically disordered proteins other than the well-accepted concept of "coupled folding and binding."
Collapse
Affiliation(s)
- Emi Hibino
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoSakyo‐ku606‐8501Japan
| | - Rintaro Inoue
- Research Reactor Institute, Kyoto UniversitySennan‐gunOsaka590‐0494Japan
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto UniversitySennan‐gunOsaka590‐0494Japan
| | - Jun Kuwahara
- Faculty of Pharmaceutical SciencesDoshisha Women's UniversityKyotanabe cityKyoto610‐0395Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoSakyo‐ku606‐8501Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoSakyo‐ku606‐8501Japan
| |
Collapse
|
5
|
Mao Y, Chen H, Lin Y, Xu X, Hu Z, Zhu Y, Wu J, Xu X, Zheng X, Xie L. microRNA-330 inhibits cell motility by downregulating Sp1 in prostate cancer cells. Oncol Rep 2013; 30:327-33. [PMID: 23670210 DOI: 10.3892/or.2013.2452] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 12/26/2022] Open
Abstract
microRNAs (miRNAs), small non-coding RNAs, have emerged as key regulators of a large number of genes. The present study aimed to explore novel biological functions of miR-330 in the human prostate cancer cell lines DU145 and PC3. We confirmed that miR-330 was downregulated and inversely correlated with specificity protein 1 (Sp1) expression. Overexpression of miR-330 by transfection of a chemically synthesized miR-330 mimic induced a reduction in expression levels of the Sp1 protein, accompanied by significant suppression of cellular migration and invasion capability. In addition, the Sp1-knockdown experiments presented similar phenomena. Finally, the luciferase reporter assay validated Sp1 as the direct target of miR-330. These findings indicate that miR-330 acts as an anti-metastatic miRNA in prostate cancer.
Collapse
Affiliation(s)
- Yeqing Mao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
8
|
Wang X, Truckses DM, Takada S, Matsumura T, Tanese N, Jacobson RH. Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators. Proc Natl Acad Sci U S A 2007; 104:7839-44. [PMID: 17483474 PMCID: PMC1876534 DOI: 10.1073/pnas.0608570104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Indexed: 11/18/2022] Open
Abstract
TBP-associated factor 4 (TAF4), an essential subunit of the TFIID complex acts as a coactivator for multiple transcriptional regulators, including Sp1 and CREB. However, little is known regarding the structural properties of the TAF4 subunit that lead to the coactivator function. Here, we report the crystal structure at 2.0-A resolution of the human TAF4-TAFH domain, a conserved domain among all metazoan TAF4, TAF4b, and ETO family members. The hTAF4-TAFH structure adopts a completely helical fold with a large hydrophobic groove that forms a binding surface for TAF4 interacting factors. Using peptide phage display, we have characterized the binding preference of the hTAF4-TAFH domain for a hydrophobic motif, DPsiPsizetazetaPsiPhi, that is present in a number of nuclear factors, including several important transcriptional regulators with roles in activating, repressing, and modulating posttranslational modifications. A comparison of the hTAF4-TAFH structure with the homologous ETO-TAFH domain reveals several critical residues important for hTAF4-TAFH target specificity and suggests that TAF4 has evolved in response to the increased transcriptional complexity of metazoans.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| | - Dagmar M. Truckses
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| | - Tatsushi Matsumura
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Naoko Tanese
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Raymond H. Jacobson
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| |
Collapse
|
9
|
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006; 127:59-69. [PMID: 17018277 DOI: 10.1016/j.cell.2006.09.015] [Citation(s) in RCA: 790] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/15/2006] [Accepted: 09/08/2006] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by a glutamine repeat expansion in huntingtin protein. Transcriptional deregulation and altered energy metabolism have been implicated in HD pathogenesis. We report here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1alpha, a transcriptional coactivator that regulates several metabolic processes, including mitochondrial biogenesis and respiration. Mutant huntingtin represses PGC-1alpha gene transcription by associating with the promoter and interfering with the CREB/TAF4-dependent transcriptional pathway critical for the regulation of PGC-1alpha gene expression. Crossbreeding of PGC-1alpha knockout (KO) mice with HD knockin (KI) mice leads to increased neurodegeneration of striatal neurons and motor abnormalities in the HD mice. Importantly, expression of PGC-1alpha partially reverses the toxic effects of mutant huntingtin in cultured striatal neurons. Moreover, lentiviral-mediated delivery of PGC-1alpha in the striatum provides neuroprotection in the transgenic HD mice. These studies suggest a key role for PGC-1alpha in the control of energy metabolism in the early stages of HD pathogenesis.
Collapse
Affiliation(s)
- Libin Cui
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegeneration, Charlestown, MA 02129 USA
| | | | | | | | | | | |
Collapse
|
10
|
Wright KJ, Marr MT, Tjian R. TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. Proc Natl Acad Sci U S A 2006; 103:12347-52. [PMID: 16895980 PMCID: PMC1567882 DOI: 10.1073/pnas.0605499103] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activator-dependent recruitment of TFIID initiates formation of the transcriptional preinitiation complex. TFIID binds core promoter DNA elements and directs the assembly of other general transcription factors, leading to binding of RNA polymerase II and activation of RNA synthesis. How TATA box-binding protein (TBP) and the TBP-associated factors (TAFs) are assembled into a functional TFIID complex with promoter recognition and coactivator activities in vivo remains unknown. Here, we use RNAi to knock down specific TFIID subunits in Drosophila tissue culture cells to determine which subunits are most critical for maintaining stability of TFIID in vivo. Contrary to expectations, we find that TAF4 rather than TBP or TAF1 plays the most critical role in maintaining stability of the complex. Our analysis also indicates that TAF5, TAF6, TAF9, and TAF12 play key roles in stability of the complex, whereas TBP, TAF1, TAF2, and TAF11 contribute very little to complex stability. Based on our results, we propose that holo-TFIID comprises a stable core subcomplex containing TAF4, TAF5, TAF6, TAF9, and TAF12 decorated with peripheral subunits TAF1, TAF2, TAF11, and TBP. Our initial functional studies indicate a specific and significant role for TAF1 and TAF4 in mediating transcription from a TATA-less, downstream core promoter element (DPE)-containing promoter, whereas a TATA-containing, DPE-less promoter was far less dependent on these subunits. In contrast to both TAF1 and TAF4, RNAi knockdown of TAF5 had little effect on transcription from either class of promoter. These studies significantly alter previous models for the assembly, structure, and function of TFIID.
Collapse
Affiliation(s)
- Kevin J. Wright
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, CA 94720
| | - Michael T. Marr
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, CA 94720
| | - Robert Tjian
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, CA 94720
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Wu Y, Lu Y, Hu Y, Li R. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line. J Cell Biochem 2006; 96:751-9. [PMID: 16088961 DOI: 10.1002/jcb.20577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105.
Collapse
Affiliation(s)
- Yimin Wu
- Department of Biochemistry and Molecular Genetics, School of Medicine, PO Box 800733, University of Virginia, Charlottesville, Virginia 22908-0733, USA
| | | | | | | |
Collapse
|
12
|
Brunkhorst A, Neuman T, Hall A, Arenas E, Bartfai T, Hermanson O, Metsis M. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity. Biochem Biophys Res Commun 2005; 325:574-9. [PMID: 15530431 DOI: 10.1016/j.bbrc.2004.10.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Indexed: 11/24/2022]
Abstract
The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF(II)135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo.
Collapse
Affiliation(s)
- Adrian Brunkhorst
- Group of Transcriptional Networks, Unit of Functional Genomics, Center for Genomics and Bioinformatics (CGB), Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Takahata S, Ryu H, Ohtsuki K, Kasahara K, Kawaichi M, Kokubo T. Identification of a novel TATA element-binding protein binding region at the N terminus of the Saccharomyces cerevisiae TAF1 protein. J Biol Chem 2003; 278:45888-902. [PMID: 12939271 DOI: 10.1074/jbc.m306886200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIID, a multiprotein complex composed of TATA element-binding protein (TBP) and 14 TBP-associated factors (TAFs), can directly recognize core promoter elements and mediate transcriptional activation. The TAF N-terminal domain (TAND) of TAF1 may play a significant role in these two principal TFIID functions by regulating the access of TBP to the TATA element. In yeast, TAND consists of two subdomains, TAND1 (10-37 amino acids (aa)) and TAND2 (46-71 aa), which interact with the concave and convex surfaces of TBP, respectively. Here we demonstrate that another region located on the C-terminal side of TAND2 (82-139 aa) can also bind to TBP and induce transcriptional activation when tethered to DNA as a GAL4 fusion protein. As these properties are the same as those of TAND1, we denoted this sequence as TAND3. Detailed mutational analyses revealed that three blocks of hydrophobic amino acid residues located within TAND3 are required not only for TBP binding and transcriptional activation but also for supporting cell growth and the efficient transcription of a subset of genes. We also show that the surface of TBP recognized by TAND3 is broader than that recognized by TAND1, although these regions overlap partially. Supporting these observations is that TAND1 can be at least partly functionally substituted by TAND3.
Collapse
Affiliation(s)
- Shinya Takahata
- Division of Molecular and Cellular Biology, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, USA
| | | | | | | | | | | |
Collapse
|
14
|
Johannessen M, Olsen PA, Sørensen R, Johansen B, Seternes OM, Moens U. A role of the TATA box and the general co-activator hTAF(II)130/135 in promoter-specific trans-activation by simian virus 40 small t antigen. J Gen Virol 2003; 84:1887-1897. [PMID: 12810884 DOI: 10.1099/vir.0.19057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small t antigen (st-ag) of simian virus 40 can exert pleiotropic effects on biological processes such as DNA replication, cell cycle progression and gene expression. One possible mode of achieving these effects is through stimulation of NFkappaB-responsive genes encoding growth factors, cytokines, transcription factors and cell cycle regulatory proteins. Indeed, a previous study has shown that st-ag enhanced NFkappaB-mediated transcription. This study demonstrates that promoters possessing a consensus TATA box (i.e. TATAAAAG) in the context of either NFkappaB- or Sp1-binding sites are trans-activated by st-ag. Overexpressing the general transcription factor hTAF(II)130/135, but not hTAF(II)28 or hTAF(II)80, stimulated the activity of promoters in a consensus TATA box-dependent mode. Converting the consensus TATA motif into a non-consensus TATA box strongly impaired activation by st-ag and hTAF(II)130/135. Conversely, mutating a non-consensus TATA motif into the consensus TATA box rendered the mutated promoter inducible by st-ag and hTAF(II)130/135. Mutation of the TATA box had no effect on TNFalpha- or RelA/p65-mediated induction of NFkappaB-responsive promoters, indicating a specific st-ag effect on hTAF(II)130/135. St-ag stimulated the intrinsic transcriptional activity of hTAF(II)130/135. Substitutions in the conserved HPDKGG motif in the N-terminal region or a mutation that impaired the interaction with protein phosphatase 2A abrogated the ability of st-ag to activate hTAF(II)130/135-mediated transcription. These results indicate that trans-activation of promoters by st-ag may depend on a consensus TATA motif and suggest that such promoters recruit the general transcription factor hTAF(II)130/135.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Petter Angell Olsen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Rita Sørensen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Bjarne Johansen
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ole Morten Seternes
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Ugo Moens
- Department of Biochemistry, Section for Molecular Genetics, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
15
|
Yatherajam G, Zhang L, Kraemer SM, Stargell LA. Protein-protein interaction map for yeast TFIID. Nucleic Acids Res 2003; 31:1252-60. [PMID: 12582245 PMCID: PMC150223 DOI: 10.1093/nar/gkg204] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major rate-limiting step in transcription initiation by RNA polymerase II is recognition and binding of the TATA element by the transcription factor TFIID. TFIID is composed of TATA binding protein (TBP) and approximately a dozen TBP-associated factors (TAFs). Emerging consensus regarding the role of TAFs is that TFIID assumes a gene specific activity that is regulated by interaction with other factors. In spite of many studies demonstrating the essential nature of TAFs in transcription, very little is known about the subunit contacts within TFIID. To understand fully the functional role of TAFs, it is imperative to define TAF-TAF interactions and their topological arrangement within TFIID. We performed a systematic two-hybrid analysis using the 13 essential TAFs of the Saccharomyces cerevisiae TFIID complex and TBP. Specific interactions were defined for each component, and the biological significance of these interactions is supported by numerous genetic and biochemical studies. By combining the interaction profiles presented here, and the available studies utilizing specific TAFs, we propose a working hypothesis for the arrangement of components in the TFIID complex. Thus, these results serve as a foundation for understanding the overall architecture of yeast TFIID.
Collapse
Affiliation(s)
- Gayatri Yatherajam
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
16
|
Thattaliyath BD, Firulli BA, Firulli AB. The basic-helix-loop-helix transcription factor HAND2 directly regulates transcription of the atrial naturetic peptide gene. J Mol Cell Cardiol 2002; 34:1335-44. [PMID: 12392994 DOI: 10.1006/jmcc.2002.2085] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HAND basic Helix-Loop-Helix (bHLH) transcription factors are essential for the development of heart and extra embryonic structures. Although essential for embryonic development, the molecular pathways in which HAND factors participate are poorly understood. In efforts to identify downstream transcriptional targets, we have determined that HAND2 regulates the transcription of the Atrial Naturetic Peptide (ANP) gene. Results show that ANP expression is reduced in HAND2 null mice. Transactivation assays show significant transcriptional upregulation of ANP by HAND2 and cotransfection experiments using HAND2 and E12 suggest that an E-protein/HAND heterodimer is the likely trans -acting complex. The required cis -elements reside within a 258bp proximal region that contains three evolutionarily conserved Ebox consensus sites. Surprisingly, mutations in these three sites suggest HAND2 activity is DNA-binding independent. In addition, HAND2 and the homeobox factor Nkx2.5 exhibit transcriptional synergy in the regulation of ANP. Taken together, this data shows that HAND2 is an upstream transcriptional regulator of ANP expression, and furthermore HAND2 can synergistically interact with Nkx2.5, showing a functional relationship between HAND2 and Nkx2.5 supporting the genetic observation, that mice null for both HAND2 and Nkx2.5 lack ventricle specification.
Collapse
Affiliation(s)
- Bijoy D Thattaliyath
- Department of Physiology, Mail Code-7756, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
17
|
Molander C, Hackzell A, Ohta M, Izumi H, Funa K. Sp1 is a key regulator of the PDGF beta-receptor transcription. Mol Biol Rep 2002; 28:223-33. [PMID: 12153142 DOI: 10.1023/a:1015701232589] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mouse PDGF beta-receptor promoter is tightly controlled by NF-Y that binds to a CCAAT box located upstream of the initiation site [1, 2]. In this report, we show that Sp1 plays an essential role in the PDGF beta-receptor transcription. Within the upstream GC rich area there are two Sp1 binding sites located in close proximity to the CCAAT box. Deletion of the GC rich region resulted in a 50% decrease of the transcriptional activity of the promoter, and a complete loss of its responsiveness to over-expression of Sp1. There was an additive effect between NF-Y and Sp I in reporter activity when they were co-transfected together with the promoter-reporter construct. Furthermore, transfection of NF-Y failed to enhance transcriptional activity when the Sp1 binding sites were deleted from the promoter, suggesting an important role for Sp1 in this NF-Y controlled transcription. We have recently reported that c-Myc represses PDGF beta-receptor transcription through its interference with the transactivation activity of NF-Y [3]. In the case of p21(wafl/cip1) transcription, c-Myc was shown to repress its transcription by sequestering Sp1 [4]. However, we could not find any effect of Sp1 in the c-Myc-mediated repression on the PFDGF beta-receptor promoter, since the deletion of SpI binding sites could not attenuate the repression by c-Myc on the promoter activity.
Collapse
Affiliation(s)
- C Molander
- Institute of Anatomy and Cell Biology, Göteborg University, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
18
|
Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002; 296:2238-43. [PMID: 11988536 DOI: 10.1126/science.1072613] [Citation(s) in RCA: 517] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of a polyglutamine tract in the huntingtin protein. Transcriptional dysregulation has been implicated in HD pathogenesis. Here, we report that huntingtin interacts with the transcriptional activator Sp1 and coactivator TAFII130. Coexpression of Sp1 and TAFII130 in cultured striatal cells from wild-type and HD transgenic mice reverses the transcriptional inhibition of the dopamine D2 receptor gene caused by mutant huntingtin, as well as protects neurons from huntingtin-induced cellular toxicity. Furthermore, soluble mutant huntingtin inhibits Sp1 binding to DNA in postmortem brain tissues of both presymptomatic and affected HD patients. Understanding these early molecular events in HD may provide an opportunity to interfere with the effects of mutant huntingtin before the development of disease symptoms.
Collapse
Affiliation(s)
- Anthone W Dunah
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Center for Aging, Genetics and Neurodegeneration, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Silkov A, Wolstein O, Shachar I, Dikstein R. Enhanced apoptosis of B and T lymphocytes in TAFII105 dominant-negative transgenic mice is linked to nuclear factor-kappa B. J Biol Chem 2002; 277:17821-9. [PMID: 11856754 DOI: 10.1074/jbc.m200696200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 12-14 TBP-associated factors (TAF(II)s). Some TAF(II)s act as bridges between transcription activators and the general transcription machinery through direct interaction with activation domains. Although TAF-mediated transcription activation has been established, there is little genetic evidence connecting it to binding of an activator. TAF(II)105 is a substoichiometric subunit of transcription factor IID highly expressed in B lymphocytes. In this study, we examined the physiological role of TAF(II)105 and its mechanism of action in vivo by expressing two forms of dominant-negative mutant TAF(II)105 in mice. We show that TAF(II)105 has a pro-survival role in B and T lymphocytes, where the native protein is expressed. In addition, TAF(II)105 is important for T cell maturation and for production of certain antibody isotypes. These phenotypic alterations were absent in mice expressing a dominant-negative mutant that lacks one of the domains mediating p65/RelA binding in vitro. These findings provide support to the notion that interaction between the activator and TAF is important for their function in vivo.
Collapse
Affiliation(s)
- Antonina Silkov
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
20
|
Abstract
The general transcription factor TFIID facilitates recruitment of the transcription machinery to gene promoters and regulates initiation of transcription by RNA polymerase II. hTAF(II)130, a component of TFIID, interacts with and serves as a coactivator for multiple transcriptional regulatory proteins, including Sp1 and CREB. A yeast two-hybrid screen has identified an interaction between hTAF(II)130 and heterochromatin protein 1 (HP1), a chromatin-associated protein whose function has been implicated in gene silencing. We find that hTAF(II)130 associates with HP1 in an isoform-specific manner: HP1alpha and HP1gamma bind to hTAF(II)130, but not HP1beta. In addition, we show that endogenous hTAF(II)130 and components of TFIID in HeLa nuclear extracts associate with glutathione S-transferase-HP1alpha and -HP1gamma. hTAF(II)130 possesses a pentapeptide HP1-binding motif, and mutation of the hTAF(II)130 HP1 box compromises the interaction of hTAF(II)130 with HP1. We demonstrate that Gal4-HP1 proteins interfere with hTAF(II)130-mediated activation of transcription. Our results suggest that HP1alpha and HP1gamma associate with hTAF(II)130 to mediate repression of transcription, supporting a new model of transcriptional repression involving a specific interaction between a component of TFIID and chromatin.
Collapse
Affiliation(s)
- Milo F Vassallo
- Department of Microbiology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
21
|
Banik U, Beechem JM, Klebanow E, Schroeder S, Weil PA. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J Biol Chem 2001; 276:49100-9. [PMID: 11677244 DOI: 10.1074/jbc.m109246200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a combination of fluorescence anisotropy spectroscopy and fluorescence-based native gel electrophoresis methods to examine the effects of the transcription factor IID-specific subunit TAF130p (TAF145p) upon the TATA box DNA binding properties of TATA box-binding protein (TBP). Purified full-length recombinant TAF130p decreases TBP-TATA DNA complex formation at equilibrium by competing directly with DNA for binding to TBP. Interestingly, we have found that full-length TAF130p is capable of binding multiple molecules of TBP with nanomolar binding affinity. The biological implications of these findings are discussed.
Collapse
Affiliation(s)
- U Banik
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
22
|
Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X. Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 2001; 75:11811-20. [PMID: 11689662 PMCID: PMC114767 DOI: 10.1128/jvi.75.23.11811-11820.2001] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first complete genome sequence of a marine invertebrate virus. White spot bacilliform virus (WSBV; or white spot syndrome virus) is a major shrimp pathogen with a high mortality rate and a wide host range. Its double-stranded circular DNA genome of 305,107 bp contains 181 open reading frames (ORFs). Nine homologous regions containing 47 repeated minifragments that include direct repeats, atypical inverted repeat sequences, and imperfect palindromes were identified. This is the largest animal virus that has been completely sequenced. Although WSBV is morphologically similar to insect baculovirus, the two viruses are not detectably related at the amino acid level. Rather, some WSBV genes are more homologous to eukaryotic genes than viral genes. In fact, sequence analysis indicates that WSBV differs from all known viruses, although a few genes display a weak homology to herpesvirus genes. Most of the ORFs encode proteins that bear no homology to any known proteins, either suggesting that WSBV represents a novel class of viruses or perhaps implying a significant evolutionary distance between marine and terrestrial viruses. The most unique feature of WSBV is the presence of an intact collagen gene, a gene encoding an extracellular matrix protein of animal cells that has never been found in any viruses. Determination of the genome of WSBV will facilitate a better understanding of the molecular mechanism underlying the pathogenesis of the WSBV virus and will also provide useful information concerning the evolution and divergence of marine and terrestrial animal viruses at the molecular level.
Collapse
Affiliation(s)
- F Yang
- The Third Institute of Oceanography, Xiamen 361005, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Walker AK, Rothman JH, Shi Y, Blackwell T. Distinct requirements for C.elegans TAF(II)s in early embryonic transcription. EMBO J 2001; 20:5269-79. [PMID: 11566890 PMCID: PMC125634 DOI: 10.1093/emboj/20.18.5269] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TAF(II)s are conserved components of the TFIID, TFTC and SAGA-related mRNA transcription complexes. In yeast (y), yTAF(II)17 is required broadly for transcription, but various other TAF(II)s appear to have more specialized functions. It is important to determine how TAF(II)s contribute to transcription in metazoans, which have larger and more diverse genomes. We have examined TAF(II) functions in early Caenorhabditis elegans embryos, which can survive without transcription for several cell generations. We show that taf-10 (yTAF(II)17) and taf-11 (yTAF(II)25) are required for a significant fraction of transcription, but apparently are not needed for expression of multiple developmental and other metazoan-specific genes. In contrast, taf-5 (yTAF(II)48; human TAF(II)130) seems to be required for essentially all early embryonic mRNA transcription. We conclude that TAF-10 and TAF-11 have modular functions in metazoans, and can be bypassed at many metazoan-specific genes. The broad involvement of TAF-5 in mRNA transcription in vivo suggests a requirement for either TFIID or a TFTC-like complex.
Collapse
Affiliation(s)
- Amy K. Walker
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| | - Joel H. Rothman
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| | - Yang Shi
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| | - T.Keith Blackwell
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA Corresponding author e-mail:
| |
Collapse
|
24
|
Kim LJ, Seto AG, Nguyen TN, Goodrich JA. Human Taf(II)130 is a coactivator for NFATp. Mol Cell Biol 2001; 21:3503-13. [PMID: 11313476 PMCID: PMC100272 DOI: 10.1128/mcb.21.10.3503-3513.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Accepted: 02/20/2001] [Indexed: 11/20/2022] Open
Abstract
NFATp is one member of a family of transcriptional activators that regulate the expression of cytokine genes. To study mechanisms of NFATp transcriptional activation, we established a reconstituted transcription system consisting of human components that is responsive to activation by full-length NFATp. The TATA-associated factor (TAF(II)) subunits of the TFIID complex were required for NFATp-mediated activation in this transcription system, since TATA-binding protein (TBP) alone was insufficient in supporting activated transcription. In vitro interaction assays revealed that human TAF(II)130 (hTAF(II)130) and its Drosophila melanogaster homolog dTAF(II)110 bound specifically and reproducibly to immobilized NFATp. Sequences contained in the C-terminal domain of NFATp (amino acids 688 to 921) were necessary and sufficient for hTAF(II)130 binding. A partial TFIID complex assembled from recombinant hTBP, hTAF(II)250, and hTAF(II)130 supported NFATp-activated transcription, demonstrating the ability of hTAF(II)130 to serve as a coactivator for NFATp in vitro. Overexpression of hTAF(II)130 in Cos-1 cells inhibited NFATp activation of a luciferase reporter. These studies demonstrate that hTAF(II)130 is a coactivator for NFATp and represent the first biochemical characterization of the mechanism of transcriptional activation by the NFAT family of activators.
Collapse
Affiliation(s)
- L J Kim
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|