1
|
Characterization of a Read-through Fusion Transcript, BCL2L2-PABPN1, Involved in Porcine Adipogenesis. Genes (Basel) 2022; 13:genes13030445. [PMID: 35327999 PMCID: PMC8955228 DOI: 10.3390/genes13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
cis-Splicing of adjacent genes (cis-SAGe) has been involved in multiple physiological and pathological processes in humans. However, to the best of our knowledge, there is no report of cis-SAGe in adipogenic regulation. In this study, a cis-SAGe product, BCL2L2–PABPN1 (BP), was characterized in fat tissue of pigs with RT-PCR and RACE method. BP is an in-frame fusion product composed of 333 aa and all the functional domains of both parents. BP is highly conserved among species and rich in splicing variants. BP was found to promote proliferation and inhibit differentiation of primary porcine preadipocytes. A total of 3074/44 differentially expressed mRNAs (DEmRs)/known miRNAs (DEmiRs) were identified in porcine preadipocytes overexpressing BP through RNA-Seq analysis. Both DEmRs and target genes of DEmiRs were involved in various fat-related pathways with MAPK and PI3K-Akt being the top enriched. PPP2CB, EGFR, Wnt5A and EHHADH were hub genes among the fat-related pathways identified. Moreover, ssc-miR-339-3p was found to be critical for BP regulating adipogenesis through integrated analysis of mRNA and miRNA data. The results highlight the role of cis-SAGe in adipogenesis and contribute to further revealing the mechanisms underlying fat deposition, which will be conductive to human obesity control.
Collapse
|
2
|
Liu X, Riquelme MA, Tian Y, Zhao D, Acosta FM, Gu S, Jiang JX. ATP Inhibits Breast Cancer Migration and Bone Metastasis through Down-Regulation of CXCR4 and Purinergic Receptor P2Y11. Cancers (Basel) 2021; 13:cancers13174293. [PMID: 34503103 PMCID: PMC8428338 DOI: 10.3390/cancers13174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The skeleton is the most frequent metastatic site for advanced breast cancer, and complications resulting from breast cancer metastasis are a leading cause of death in patients. Therefore, the discovery of new targets for the treatment of breast cancer bone metastasis is of great significance. ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells in the bone. The aim of our study was to unveil the underlying molecular mechanism of ATP and purinergic signaling in inhibiting the bone metastasis of breast cancer cells. We demonstrated that CXCR4 and P2Y11 are key factors in regulating this process, and understanding of this important mechanism will aid in identifying new targets and developing first-in-class therapeutics. Abstract ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Yi Tian
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (X.L.); (M.A.R.); (Y.T.); (D.Z.); (F.M.A.); (S.G.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
3
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
4
|
Communi D, Horckmans M, Boeynaems JM. P2Y 4, P2Y 6 and P2Y 11 receptors: From the early days of cloning to their function. Biochem Pharmacol 2020; 187:114347. [PMID: 33232731 DOI: 10.1016/j.bcp.2020.114347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023]
Abstract
The family of P2Y nucleotide receptors is composed of eight members differentiated by their pharmacology and their coupling to specific G-proteins and transduction mechanisms. The laboratory studying these nucleotide receptors at IRIBHM institute (Free University of Brussels) has participated actively in their cloning. We used classical cloning by homology strategies relying on polymerase chain reactions with degenerate primers or on DNA libraries screening with P2Y receptors-related primers or probes, respectively. We identified and characterised four of the eight human P2Y receptors cloned so far: P2Y4, P2Y6, P2Y11 and P2Y13 receptors. These human receptors displayed specific features in terms of pharmacology such as affinity for pyrimidine nucleotides for P2Y4 and P2Y6 receptors and differential G-protein coupling. Their specific and restricted tissue distribution compared to ubiquitous P2Y1 and P2Y2 receptors led us to study their physiological role in chosen cell systems or using mice deficient for these P2Y subtypes. These studies revealed over the years that the P2Y11 receptor was able to confer tolerogenic and tumorigenic properties to human dendritic cells and that P2Y4 and P2Y6 receptors were involved in mouse heart post-natal development and cardioprotection. P2Y receptors and their identified target genes could constitute therapeutic targets to regulate cardiac hypertrophy and regeneration. The multiple roles of P2Y receptors identified in the ischemic heart and cardiac adipose tissue could have multiple innovative clinical applications and present a major interest in the field of cardiovascular diseases. P2Y receptors can induce cardioprotection by the regulation of cardiac inflammation and the modulation of the volume and composition of cardiac adipose tissue. These findings might lead to the pre-clinical validation of P2Y receptors as new targets for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Didier Communi
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Brussels, Belgium.
| | - Michael Horckmans
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
5
|
Barresi V, Cosentini I, Scuderi C, Napoli S, Di Bella V, Spampinato G, Condorelli DF. Fusion Transcripts of Adjacent Genes: New Insights into the World of Human Complex Transcripts in Cancer. Int J Mol Sci 2019; 20:ijms20215252. [PMID: 31652751 PMCID: PMC6862657 DOI: 10.3390/ijms20215252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Salvatore Napoli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
6
|
Kim P, Jang YE, Lee S. FusionScan: accurate prediction of fusion genes from RNA-Seq data. Genomics Inform 2019; 17:e26. [PMID: 31610622 PMCID: PMC6808644 DOI: 10.5808/gi.2019.17.3.e26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Identification of fusion gene is of prominent importance in cancer research field because of their potential as carcinogenic drivers. RNA sequencing (RNA-Seq) data have been the most useful source for identification of fusion transcripts. Although a number of algorithms have been developed thus far, most programs produce too many false-positives, thus making experimental confirmation almost impossible. We still lack a reliable program that achieves high precision with reasonable recall rate. Here, we present FusionScan, a highly optimized tool for predicting fusion transcripts from RNA-Seq data. We specifically search for split reads composed of intact exons at the fusion boundaries. Using 269 known fusion cases as the reference, we have implemented various mapping and filtering strategies to remove false-positives without discarding genuine fusions. In the performance test using three cell line datasets with validated fusion cases (NCI-H660, K562, and MCF-7), FusionScan outperformed other existing programs by a considerable margin, achieving the precision and recall rates of 60% and 79%, respectively. Simulation test also demonstrated that FusionScan recovered most of true positives without producing an overwhelming number of false-positives regardless of sequencing depth and read length. The computation time was comparable to other leading tools. We also provide several curative means to help users investigate the details of fusion candidates easily. We believe that FusionScan would be a reliable, efficient and convenient program for detecting fusion transcripts that meet the requirements in the clinical and experimental community. FusionScan is freely available at http://fusionscan.ewha.ac.kr/.
Collapse
Affiliation(s)
- Pora Kim
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea
| | - Ye Eun Jang
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul 03760, Korea
| | - Sanghyuk Lee
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul 03760, Korea.,Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Harris FR, Zhang P, Yang L, Hou X, Leventakos K, Weroha SJ, Vasmatzis G, Kovtun IV. Targeting HER2 in patient-derived xenograft ovarian cancer models sensitizes tumors to chemotherapy. Mol Oncol 2018; 13:132-152. [PMID: 30499260 PMCID: PMC6360362 DOI: 10.1002/1878-0261.12414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. About 75% of ovarian cancer patients relapse and/or develop chemo‐resistant disease after initial response to standard‐of‐care treatment with platinum‐based therapies. HER2 amplifications and overexpression in ovarian cancer are reported to vary, and responses to HER2 inhibitors have been poor. Next generation sequencing technologies in conjunction with testing using patient‐derived xenografts (PDX) allow validation of personalized treatments. Using a whole‐genome mate‐pair next generation sequencing (MPseq) protocol, we identified several high grade serous ovarian cancers (HGS‐OC) with DNA alterations in genes encoding members of the ERBB2 pathway. The efficiency of anti‐HER2 therapy was tested in three different PDX lines with the identified alterations and high levels of HER2 protein expression. Treatment responses to pertuzumab or pertuzumab/trastuzumab were compared in each PDX line WITH standard carboplatin and paclitaxel combination treatment. In all three PDX models, HER2‐targeted therapy resulted in significant inhibition of tumor growth compared with untreated controls. However, the responses in each case were inferior to those to chemotherapy, even for chemo‐resistant lines. When chemotherapy and HER2‐targeted therapy were administered together, a significant regression of tumor was observed after 6 weeks of treatment compared with chemotherapy alone. Post‐treatment analysis of these tissues revealed that inhibition of the ERBB2 pathway occurred at the level of phosphorylation and expression of downstream targets. In conclusion, while targeting of presumably activated ERBB2 pathway alone in HGS‐OC results in a modest treatment benefit, a combination therapy including both chemotherapy drugs and HER2 inhibitors provides a far better response. Further studies are needed to address development of recurrence and sensitivity of recurrent disease to HER2‐targeted therapy.
Collapse
Affiliation(s)
- Faye R Harris
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Piyan Zhang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin Yang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaonan Hou
- Departments of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Saravut J Weroha
- Departments of Medical Oncology, Mayo Clinic, Rochester, MN, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Irina V Kovtun
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Abstract
Adenosine 5′-triphosphate acts as an extracellular signalling molecule (purinergic signalling), as well as an intracellular energy source. Adenosine 5′-triphosphate receptors have been cloned and characterised. P1 receptors are selective for adenosine, a breakdown product of adenosine 5′-triphosphate after degradation by ectonucleotidases. Four subtypes are recognised, A1, A2A, A2B and A3 receptors. P2 receptors are activated by purine and by pyrimidine nucleotides. P2X receptors are ligand-gated ion channel receptors (seven subunits (P2X1-7)), which form trimers as both homomultimers and heteromultimers. P2Y receptors are G protein-coupled receptors (eight subtypes (P2Y1/2/4/6/11/12/13/14)). There is both purinergic short-term signalling and long-term (trophic) signalling. The cloning of P2X-like receptors in primitive invertebrates suggests that adenosine 5′-triphosphate is an early evolutionary extracellular signalling molecule. Selective purinoceptor agonists and antagonists with therapeutic potential have been developed for a wide range of diseases, including thrombosis and stroke, dry eye, atherosclerosis, kidney failure, osteoporosis, bladder incontinence, colitis, neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
P2Y 11 Receptors: Properties, Distribution and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:107-122. [PMID: 29134605 DOI: 10.1007/5584_2017_89] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P2Y11 receptor is a G protein-coupled receptor that is stimulated by endogenous purine nucleotides, particularly ATP. Amongst P2Y receptors it has several unique properties; (1) it is the only human P2Y receptor gene that contains an intron in the coding sequence; (2) the gene does not appear to be present in the rodent genome; (3) it couples to stimulation of both phospholipase C and adenylyl cyclase. Its absence in mice and rats, along with a limited range of selective pharmacological tools, has hampered the development of our knowledge and understanding of its properties and functions. Nonetheless, through a combination of careful use of the available tools, suppression of receptor expression using siRNA and genetic screening for SNPs, possible functions of native P2Y11 receptors have been identified in a variety of human cells and tissues. Many are in blood cells involved in inflammatory responses, consistent with extracellular ATP being a damage-associated signalling molecule in the immune system. Thus proposed potential therapeutic applications relate, in the main, to modulation of acute and chronic inflammatory responses.
Collapse
|
10
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
11
|
Dreisig K, Kornum BR. A critical look at the function of the P2Y11 receptor. Purinergic Signal 2016; 12:427-37. [PMID: 27246167 DOI: 10.1007/s11302-016-9514-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/17/2016] [Indexed: 11/30/2022] Open
Abstract
The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine "P2Y11-like receptor" and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5'-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.
Collapse
Affiliation(s)
- Karin Dreisig
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
12
|
Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 2016; 8:562-77. [PMID: 26966239 PMCID: PMC4824033 DOI: 10.1093/gbe/evw025] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Quan Lei
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Cong Li
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Chunhua Huang
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Hanhua Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| |
Collapse
|
13
|
Functional Characterization of MC1R-TUBB3 Intergenic Splice Variants of the Human Melanocortin 1 Receptor. PLoS One 2015; 10:e0144757. [PMID: 26657157 PMCID: PMC4676704 DOI: 10.1371/journal.pone.0144757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.
Collapse
|
14
|
Zhou J, Liao J, Zheng X, Shen H. Chimeric RNAs as potential biomarkers for tumor diagnosis. BMB Rep 2014; 45:133-40. [PMID: 22449698 DOI: 10.5483/bmbrep.2012.45.3.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection.
Collapse
Affiliation(s)
- Jianhua Zhou
- Nantong University, Nantong, JiangSu, P. R. China
| | | | | | | |
Collapse
|
15
|
Long-range transcriptome sequencing reveals cancer cell growth regulatory chimeric mRNA. Neoplasia 2013; 14:1087-96. [PMID: 23226102 DOI: 10.1593/neo.121342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 08/16/2012] [Accepted: 09/30/2012] [Indexed: 12/15/2022] Open
Abstract
mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (≈2 x 10(-5) of all mRNA). Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.
Collapse
|
16
|
Ma L, Yang S, Zhao W, Tang Z, Zhang T, Li K. Identification and analysis of pig chimeric mRNAs using RNA sequencing data. BMC Genomics 2012; 13:429. [PMID: 22925561 PMCID: PMC3531304 DOI: 10.1186/1471-2164-13-429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 08/17/2012] [Indexed: 01/04/2023] Open
Abstract
Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs.
Collapse
Affiliation(s)
- Lei Ma
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P R China
| | | | | | | | | | | |
Collapse
|
17
|
Boeynaems JM, Communi D, Robaye B. Overview of the pharmacology and physiological roles of P2Y receptors. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
P2 receptors are involved in the mediation of motivation-related behavior. Purinergic Signal 2011; 1:21-9. [PMID: 18404397 PMCID: PMC2096569 DOI: 10.1007/s11302-004-4745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 11/23/2022] Open
Abstract
The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli.
Collapse
|
19
|
Ritz K, van Schaik BDC, Jakobs ME, Aronica E, Tijssen MA, van Kampen AHC, Baas F. Looking ultra deep: short identical sequences and transcriptional slippage. Genomics 2011; 98:90-5. [PMID: 21624457 DOI: 10.1016/j.ygeno.2011.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 01/26/2023]
Abstract
Studying transcriptomes by ultra deep sequencing provides an in-depth picture of transcriptional regulation and it facilitates the detection of rare transcriptional events. Using ultra deep sequencing of amplicons we identified known isoforms and also various new low frequency variants. Most of these variants likely involve the splicing machinery except for two events that we named variations affecting multiple exons, which are mainly deletions affecting parts of adjacent exons and intra-exonic deletions. Both events involve short identical sequences of 1 to 8 nucleotides at the junction and canonical splice sites are missing. They were identified in different genes and species at very low frequencies. We excluded that they are an artifact of PCR, sequencing, or reverse transcription. We propose that these variants represent intramolecular slippage events that require short identical sequences for reannealing of dissociated transcripts.
Collapse
Affiliation(s)
- Katja Ritz
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Nacu S, Yuan W, Kan Z, Bhatt D, Rivers CS, Stinson J, Peters BA, Modrusan Z, Jung K, Seshagiri S, Wu TD. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med Genomics 2011; 4:11. [PMID: 21261984 PMCID: PMC3041646 DOI: 10.1186/1755-8794-4-11] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 01/24/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. METHODS We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. RESULTS Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%.We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines. CONCLUSIONS Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer.
Collapse
Affiliation(s)
- Serban Nacu
- Department of Bioinformatics and Molecular Biology, Genentech, Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kornum BR, Kawashima M, Faraco J, Lin L, Rico TJ, Hesselson S, Axtell RC, Kuipers H, Weiner K, Hamacher A, Kassack MU, Han F, Knudsen S, Li J, Dong X, Winkelmann J, Plazzi G, Nevsimalova S, Hong SC, Honda Y, Honda M, Högl B, Ton TGN, Montplaisir J, Bourgin P, Kemlink D, Huang YS, Warby S, Einen M, Eshragh JL, Miyagawa T, Desautels A, Ruppert E, Hesla PE, Poli F, Pizza F, Frauscher B, Jeong JH, Lee SP, Strohl KP, Longstreth WT, Kvale M, Dobrovolna M, Ohayon MM, Nepom GT, Wichmann HE, Rouleau GA, Gieger C, Levinson DF, Gejman PV, Meitinger T, Peppard P, Young T, Jennum P, Steinman L, Tokunaga K, Kwok PY, Risch N, Hallmayer J, Mignot E. Common variants in P2RY11 are associated with narcolepsy. Nat Genet 2011; 43:66-71. [PMID: 21170044 PMCID: PMC3019286 DOI: 10.1038/ng.734] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/19/2010] [Indexed: 12/20/2022]
Abstract
Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y₁₁ gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10⁻¹⁰, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.
Collapse
Affiliation(s)
- Birgitte R Kornum
- Center for Sleep Sciences and Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dalziel M, Kolesnichenko M, das Neves RP, Iborra F, Goding C, Furger A. Alpha-MSH regulates intergenic splicing of MC1R and TUBB3 in human melanocytes. Nucleic Acids Res 2010; 39:2378-92. [PMID: 21071418 PMCID: PMC3064779 DOI: 10.1093/nar/gkq1125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing enables higher eukaryotes to increase their repertoire of proteins derived from a restricted number of genes. However, the possibility that functional diversity may also be augmented by splicing between adjacent genes has been largely neglected. Here, we show that the human melanocortin 1 receptor (MC1R) gene, a critical component of the facultative skin pigmentation system, has a highly complex and inefficient poly(A) site which is instrumental in allowing intergenic splicing between this locus and its immediate downstream neighbour tubulin-β-III (TUBB3). These transcripts, which produce two distinct protein isoforms localizing to the plasma membrane and the endoplasmic reticulum, seem to be restricted to humans as no detectable chimeric mRNA could be found in MC1R expressing mouse melanocytes. Significantly, treatment with the MC1R agonist α-MSH or activation of the stress response kinase p38-MAPK, both key molecules associated with ultraviolet radiation dermal insult and subsequent skin tanning, result in a shift in expression from MC1R in favour of chimeric MC1R-TUBB3 isoforms in cultured melanocytes. We propose that these chimeric proteins serve to equip melanocytes with novel cellular phenotypes required as part of the pigmentation response.
Collapse
Affiliation(s)
- Martin Dalziel
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
23
|
Jacobson KA, Boeynaems JM. P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today 2010; 15:570-8. [PMID: 20594935 PMCID: PMC2920619 DOI: 10.1016/j.drudis.2010.05.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/12/2010] [Accepted: 05/21/2010] [Indexed: 12/31/2022]
Abstract
Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G-protein-coupled receptors, termed P2Y. The receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease and thrombosis. On the horizon are novel treatments for cardiovascular diseases, inflammatory diseases and neurodegeneration.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. <>
| | | |
Collapse
|
24
|
Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Eckstein N, Royer HD, Communi D, Boeynaems JM, Hausmann R, Schmalzing G, Kassack MU. NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells. J Pharmacol Exp Ther 2010; 332:238-47. [PMID: 19815812 DOI: 10.1124/jpet.109.157750] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The G protein-coupled P2Y(11) receptor is involved in immune system modulation. In-depth physiological evaluation is hampered, however, by a lack of selective and potent ligands. By screening a library of sulfonic and phosphonic acid derivatives at P2Y(11) receptors recombinantly expressed in human 1321N1 astrocytoma cells (calcium and cAMP assays), the selective non-nucleotide P2Y(11) agonist NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] was identified. NF546 had a pEC(50) of 6.27 and is relatively selective for P2Y(11) over P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(12), P2X(1), P2X(2), and P2X(2)-X(3). Adenosine-5'-O-(3-thio)triphosphate (ATPgammaS), a nonhydrolyzable analog of the physiological P2Y(11) agonist ATP, and NF546 use a common binding site as suggested by molecular modeling studies and their competitive behavior toward the nanomolar potency antagonist NF340 [4,4'-(carbonylbis(imino-3,1-(4-methyl-phenylene)carbonylimino))bis(naphthalene-2,6-disulfonic acid) tetrasodium salt] in Schild analysis. The pA(2) of NF340 was 8.02 against ATPgammaS and 8.04 against NF546 (calcium assays). NF546 was further tested for P2Y(11)-mediated effects in monocyte-derived dendritic cells. Similarly to ATPgammaS, NF546 led to thrombospondin-1 secretion and inhibition of lipopolysaccharide-stimulated interleukin-12 release, whereas NF340 inhibited these effects. Further, for the first time, it was shown that ATPgammaS or NF546 stimulation promotes interleukin 8 (IL-8) release from dendritic cells, which could be inhibited by NF340. In conclusion, we have described the first selective, non-nucleotide agonist NF546 for P2Y(11) receptors in both recombinant and physiological expression systems and could show a P2Y(11)-stimulated IL-8 release, further supporting the immunomodulatory role of P2Y(11) receptors.
Collapse
Affiliation(s)
- Sabine Meis
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Biochemistry, Heinrich-Heine-University of Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chad Brenner J, Chinnaiyan AM. Translocations in epithelial cancers. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1796:201-15. [PMID: 19406209 PMCID: PMC2752494 DOI: 10.1016/j.bbcan.2009.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/21/2009] [Indexed: 01/09/2023]
Abstract
Genomic translocations leading to the expression of chimeric transcripts characterize several hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked to essential molecular events in hematologic malignancies, the identification and characterization of recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions that drive several epithelial cancers and the recent technological advances that increase the speed and reliability of recurrent gene fusion discovery are explored.
Collapse
Affiliation(s)
- J. Chad Brenner
- Michigan Center for Translational Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Howard Hughes Medical Institute, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM. Transcriptome sequencing to detect gene fusions in cancer. Nature 2009; 458:97-101. [PMID: 19136943 PMCID: PMC2725402 DOI: 10.1038/nature07638] [Citation(s) in RCA: 638] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/10/2008] [Indexed: 01/03/2023]
Abstract
Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully used integrative transcriptome sequencing to 're-discover' the BCR-ABL1 (ref. 10) gene fusion in a chronic myelogenous leukaemia cell line and the TMPRSS2-ERG gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimaeric transcripts in cancer cell lines and tumours. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimaeras using high-throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Profiling/methods
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Molecular Sequence Data
- Neoplasms/genetics
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Prostatic Neoplasms/genetics
- Sequence Analysis, DNA/instrumentation
- Sequence Analysis, DNA/methods
Collapse
Affiliation(s)
- Christopher A. Maher
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Shanker Kalyana-Sundaram
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Bo Han
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Xiaojun Jing
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Lee Sam
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Terrence Barrette
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Nallasivam Palanisamy
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
27
|
Abstract
In recent years, genome-wide detection of alternative splicing based on Expressed Sequence Tag (EST) sequence alignments with mRNA and genomic sequences has dramatically expanded our understanding of the role of alternative splicing in functional regulation. This chapter reviews the data, methodology, and technical challenges of these genome-wide analyses of alternative splicing, and briefly surveys some of the uses to which such alternative splicing databases have been put. For example, with proper alternative splicing database schema design, it is possible to query genome-wide for alternative splicing patterns that are specific to particular tissues, disease states (e.g., cancer), gender, or developmental stages. EST alignments can be used to estimate exon inclusion or exclusion level of alternatively spliced exons and evolutionary changes for various species can be inferred from exon inclusion level. Such databases can also help automate design of probes for RT-PCR and microarrays, enabling high throughput experimental measurement of alternative splicing.
Collapse
|
28
|
Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MKB. Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:8544-53. [PMID: 18056402 PMCID: PMC2292245 DOI: 10.4049/jimmunol.179.12.8544] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neutrophils undergo rapid constitutive apoptosis that is delayed by a range of pathogen- and host-derived inflammatory mediators. We have investigated the ability of the nucleotide ATP, to which neutrophils are exposed both in the circulation and at sites of inflammation, to modulate the lifespan of human neutrophils. We found that physiologically relevant concentrations of ATP cause a concentration-dependent delay of neutrophil apoptosis (assessed by morphology, annexin V/To-Pro3 staining, and mitochondrial membrane permeabilization). We found that even brief exposure to ATP (10 min) was sufficient to cause a long-lasting delay of apoptosis and showed that the effects were not mediated by ATP breakdown to adenosine. The P2 receptor mediating the antiapoptotic actions of ATP was identified using a combination of more selective ATP analogs, receptor expression studies, and study of downstream signaling pathways. Neutrophils were shown to express the P2Y11 receptor and inhibition of P2Y11 signaling using the antagonist NF157 abrogated the ATP-mediated delay of neutrophil apoptosis, as did inhibition of type I cAMP-dependent protein kinases activated downstream of P2Y11, without effects on constitutive apoptosis. Specific targeting of P2Y11 could retain key immune functions of neutrophils but reduce the injurious effects of increased neutrophil longevity during inflammation.
Collapse
Affiliation(s)
- Kathryn R Vaughan
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Devader C, Drew CM, Geach TJ, Tabler J, Townsend-Nicholson A, Dale L. A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway. FEBS Lett 2007; 581:5332-6. [PMID: 17977530 DOI: 10.1016/j.febslet.2007.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
We describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y(11). When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y(11). Activity can be blocked by compounds known to act as antagonists of mammalian P2Y(11). Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y(11). Xenopus P2Y(11) is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system.
Collapse
Affiliation(s)
- Christelle Devader
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
30
|
Guzmán-Aranguez A, Crooke A, Peral A, Hoyle CHV, Pintor J. Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Prog Retin Eye Res 2007; 26:674-87. [PMID: 17931952 DOI: 10.1016/j.preteyeres.2007.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diadenosine polyphosphates are a family of dinucleotides with emerging biochemical, physiological, pharmacological and therapeutic properties in the eye and other tissues. These compounds are formed by two adenosine moieties linked by their ribose 5'-ends to a variable number of phosphates. Diadenosine polyphosphates are present as active components of ocular secretions such as tears and aqueous humour and they can activate P2 purinergic receptors present on the ocular surface, anterior segment and retina. Both metabotropic and ionotropic actions mediated by P2Y and P2X receptors, respectively are responsible for the control of processes such as induction of tear secretion, lysozyme production or acceleration of corneal wound healing. Inside the eye the dinucleotide Ap(4)A can reduce intraocular pressure by acting on P2Y(1) receptors present in trabecular meshwork cells and on P2X(2) receptors present on the cholinergic terminals located in the ciliary muscle. In the retina, derivatives of diadenosine polyphosphates can improve the re-absorption of fluids in retinal detachment. Altogether, diadenosine polyphosphates are not only dinucleotides with roles in the physiology of the eye but it is also possible that their properties may serve to help in the treatment of some ocular pathologies.
Collapse
Affiliation(s)
- Ana Guzmán-Aranguez
- Departamento de Bioquímica, E.U. de Optica, Universidad Complutense de Madrid (UCM), C/Arcos de Jalón s/n, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Wang K, Ubriaco G, Sutherland LC. RBM6-RBM5 transcription-induced chimeras are differentially expressed in tumours. BMC Genomics 2007; 8:348. [PMID: 17908320 PMCID: PMC2174484 DOI: 10.1186/1471-2164-8-348] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/01/2007] [Indexed: 11/29/2022] Open
Abstract
Background Transcription-induced chimerism, a mechanism involving the transcription and intergenic splicing of two consecutive genes, has recently been estimated to account for ~5% of the human transcriptome. Despite this prevalence, the regulation and function of these fused transcripts remains largely uncharacterised. Results We identified three novel transcription-induced chimeras resulting from the intergenic splicing of a single RNA transcript incorporating the two neighbouring 3p21.3 tumour suppressor locus genes, RBM6 and RBM5, which encode the RNA Binding Motif protein 6 and RNA Binding Motif protein 5, respectively. Each of the three novel chimeric transcripts lacked exons 3, 6, 20 and 21 of RBM6 and exon 1 of RBM5. Differences between the transcripts were associated with the presence or absence of exon 4, exon 5 and a 17 nucleotide (nt) sequence from intron 10 of RBM6. All three chimeric transcripts incorporated the canonical splice sites from both genes (excluding the 17 nt intron 10 insertion). Differential expression was observed in tumour tissue compared to non-tumour tissue, and amongst tumour types. In breast tumour tissue, chimeric expression was associated with elevated levels of RBM6 and RBM5 mRNA, and increased tumour size. No protein expression was detected by in vitro transcription/translation. Conclusion These results suggest that RBM6 mRNA experiences altered co-transcriptional gene regulation in certain cancers. The results also suggest that RBM6-RBM5 transcription-induced chimerism might be a process that is linked to the tumour-associated increased transcriptional activity of the RBM6 gene. It appears that none of the transcription-induced chimeras generates a protein product; however, the novel alternative splicing, which affects putative functional domains within exons 3, 6 and 11 of RBM6, does suggest that the generation of these chimeric transcripts has functional relevance. Finally, the association of chimeric expression with breast tumour size suggests that RBM6-RBM5 chimeric expression may be a potential tumour differentiation marker.
Collapse
Affiliation(s)
- Ke Wang
- Tumour Biology Group, Regional Cancer Program of the Sudbury Regional Hospital, Sudbury, Ontario, Canada
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Gino Ubriaco
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Leslie C Sutherland
- Tumour Biology Group, Regional Cancer Program of the Sudbury Regional Hospital, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
32
|
HYBRIDdb: a database of hybrid genes in the human genome. BMC Genomics 2007; 8:128. [PMID: 17519042 PMCID: PMC1890557 DOI: 10.1186/1471-2164-8-128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 05/23/2007] [Indexed: 11/30/2022] Open
Abstract
Background Hybrid genes are candidate risk factors for human tumors by inducing mutation, translocation, inversion, or rearrangement of genes. The occurrence of hybrid genes may also have given rise to new transcripts during hominid evolution. Description HYBRIDdb is a database of hybrid genes in humans. This system encompasses the bioinformatics analysis of mRNA, EST, cDNA, and genomic DNA sequences in the INDC databases, and can be used to identify hybrid genes. We searched for hybrid genes among the 28,171 genes listed in the NCBI database, and analyzed their structural patterns in the human genome. The 2,344 gene pairs were detected as hybrid forms of transcriptional products. We classified the hybrid genes into two groups: chromosomal-mediated translocation fusion transcripts and transcription-mediated fusion transcripts. Conclusion The HYBRIDdb database will provide genome scientists with insight into potential roles for hybrid genes in human evolution and disease.
Collapse
|
33
|
Abstract
Current knowledge about the variety and complexity of the processes that allow regulated gene expression in living organisms calls for a new understanding of genes. A 'postgenomic' understanding of genes as entities constituted during genome expression is outlined and illustrated with specific examples that formed part of a survey research instrument developed by two of the authors for an ongoing empirical study of conceptual change in contemporary biology.
Collapse
Affiliation(s)
- Karola C Stotz
- Cognitive Science Program, Indiana University Bloomington, Bloomington, IN 47406-7512, USA.
| | | | | |
Collapse
|
34
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 1007] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roux M, Levéziel H, Amarger V. Cotranscription and intergenic splicing of the PPARG and TSEN2 genes in cattle. BMC Genomics 2006; 7:71. [PMID: 16595010 PMCID: PMC1450281 DOI: 10.1186/1471-2164-7-71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 04/04/2006] [Indexed: 11/30/2022] Open
Abstract
Background Intergenic splicing resulting in the combination of mRNAs sequences from distinct genes is a newly identified mechanism likely to contribute to protein diversity. Few cases have been described, most of them involving neighboring genes and thus suggesting a cotranscription event presumably due to transcriptional termination bypass. Results We identified bovine chimeric transcripts resulting from cotranscription and intergenic splicing of two neighboring genes, PPARG and TSEN2. These two genes encode the Peroxisome Proliferator Activated Receptors γ1 and γ2 and the tRNA Splicing Endonuclease 2 homolog and are situated in the same orientation about 50 kb apart on bovine chromosome 22q24. Their relative position is conserved in human and mouse. We identified two types of chimeric transcripts containing all but the last exon of the PPARG gene followed by all but the first exon of the TSEN2 gene. The two chimers differ by the presence/absence of an intermediate exon resulting from transcription of a LINE L2 sequence situated between the two genes. Both transcripts use canonical splice sites for all exons coming from both genes, as well as for the LINE L2 sequence. One of these transcripts harbors a premature STOP codon and the other encodes a putative chimeric protein combining most of the PPARγ protein and the entire TSEN2 protein, but we could not establish the existence of this protein. Conclusion By showing that both individual and chimeric transcripts are transcribed from PPARG and TSEN2, we demonstrated regulation of transcription termination. Further, the existence and functionality of a chimeric protein harboring active motifs that are a priori unrelated is hypothesized.
Collapse
Affiliation(s)
- Matthieu Roux
- Unité de Génétique Moléculaire Animale, UMR1061 INRA/Université de Limoges, Faculté des Sciences et Techniques, 123 av Albert Thomas, 87060 Limoges Cedex, France
| | - Hubert Levéziel
- Unité de Génétique Moléculaire Animale, UMR1061 INRA/Université de Limoges, Faculté des Sciences et Techniques, 123 av Albert Thomas, 87060 Limoges Cedex, France
| | - Valérie Amarger
- Unité de Génétique Moléculaire Animale, UMR1061 INRA/Université de Limoges, Faculté des Sciences et Techniques, 123 av Albert Thomas, 87060 Limoges Cedex, France
- UMR 1280 Physiologie des Adaptations Nutritionnelles, Centre INRA de Nantes, BP71627, 44316 Nantes cedex 3, France
| |
Collapse
|
36
|
Abstract
Chromosome translocation and gene fusion are frequent events in the human genome and are often the cause of many types of tumor. ChimerDB is the database of fusion sequences encompassing bioinformatics analysis of mRNA and expressed sequence tag (EST) sequences in the GenBank, manual collection of literature data and integration with other known database such as OMIM. Our bioinformatics analysis identifies the fusion transcripts that have non-overlapping alignments at multiple genomic loci. Fusion events at exon-exon borders are selected to filter out the cloning artifacts in cDNA library preparation. The result is classified into two groups--genuine chromosome translocation and fusion between neighboring genes owing to intergenic splicing. We also integrated manually collected literature and OMIM data for chromosome translocation as an aid to assess the validity of each fusion event. The database is available at http://genome.ewha.ac.kr/ChimerDB/ for human, mouse and rat genomes.
Collapse
Affiliation(s)
| | | | - Seungyoon Nam
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoul 151-747, Korea
| | - Seokmin Shin
- School of Chemistry, Seoul National UniversitySeoul 151-747, Korea
| | - Sanghyuk Lee
- To whom correspondence should be addressed. Tel: +82 232772888; Fax: +82 232772384;
| |
Collapse
|
37
|
Abstract
We outline three very different concepts of the gene-instrumental, nominal, and postgenomic. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype.
Collapse
Affiliation(s)
- Paul E Griffiths
- Biohumanities Project, University of Queensland, 301 Michie Building, Brisbane, QLD, 4072, Australia.
| | | |
Collapse
|
38
|
Parra G, Reymond A, Dabbouseh N, Dermitzakis ET, Castelo R, Thomson TM, Antonarakis SE, Guigó R. Tandem chimerism as a means to increase protein complexity in the human genome. Genes Dev 2006; 16:37-44. [PMID: 16344564 PMCID: PMC1356127 DOI: 10.1101/gr.4145906] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/28/2005] [Indexed: 11/24/2022]
Abstract
The "one-gene, one-protein" rule, coined by Beadle and Tatum, has been fundamental to molecular biology. The rule implies that the genetic complexity of an organism depends essentially on its gene number. The discovery, however, that alternative gene splicing and transcription are widespread phenomena dramatically altered our understanding of the genetic complexity of higher eukaryotic organisms; in these, a limited number of genes may potentially encode a much larger number of proteins. Here we investigate yet another phenomenon that may contribute to generate additional protein diversity. Indeed, by relying on both computational and experimental analysis, we estimate that at least 4%-5% of the tandem gene pairs in the human genome can be eventually transcribed into a single RNA sequence encoding a putative chimeric protein. While the functional significance of most of these chimeric transcripts remains to be determined, we provide strong evidence that this phenomenon does not correspond to mere technical artifacts and that it is a common mechanism with the potential of generating hundreds of additional proteins in the human genome.
Collapse
Affiliation(s)
- Genís Parra
- Grup de Recerca en Informàtica Biomèdica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, and Programa de Bioinformàtica i Genòmica, Centre de Regulació Genòmica, E08003 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Akiva P, Toporik A, Edelheit S, Peretz Y, Diber A, Shemesh R, Novik A, Sorek R. Transcription-mediated gene fusion in the human genome. Genome Res 2005; 16:30-6. [PMID: 16344562 PMCID: PMC1356126 DOI: 10.1101/gr.4137606] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription of a gene usually ends at a regulated termination point, preventing the RNA-polymerase from reading through the next gene. However, sporadic reports suggest that chimeric transcripts, formed by transcription of two consecutive genes into one RNA, can occur in human. The splicing and translation of such RNAs can lead to a new, fused protein, having domains from both original proteins. Here, we systematically identified over 200 cases of intergenic splicing in the human genome (involving 421 genes), and experimentally demonstrated that at least half of these fusions exist in human tissues. We showed that unique splicing patterns dominate the functional and regulatory nature of the resulting transcripts, and found intergenic distance bias in fused compared with nonfused genes. We demonstrate that the hundreds of fused genes we identified are only a subset of the actual number of fused genes in human. We describe a novel evolutionary mechanism where transcription-induced chimerism followed by retroposition results in a new, active fused gene. Finally, we provide evidence that transcription-induced chimerism can be a mechanism contributing to the evolution of protein complexes.
Collapse
|
40
|
von Kügelgen I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 2005; 110:415-32. [PMID: 16257449 DOI: 10.1016/j.pharmthera.2005.08.014] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 08/23/2005] [Indexed: 11/29/2022]
Abstract
Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and it is blocked by suramin and reactive blue 2 (RB2). The P2Y12-receptor plays a crucial role in platelet aggregation as well as in inhibition of neuronal cells. It is activated by ADP and very potently by 2-methylthio-ADP. Nucleotide antagonists including N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (=cangrelor; AR-C69931MX), the nucleoside analogue AZD6140, as well as active metabolites of the thienopyridine compounds clopidogrel and prasugrel block the receptor. These P2Y12-antagonists are used in pharmacotherapy to inhibit platelet aggregation. The P2Y13-receptor is expressed in immunocytes and neuronal cells and is again activated by ADP and 2-methylthio-ADP. The 2-chloro-5-nitro pyridoxal-phosphate analogue 6-(2'-chloro-5'-nitro-azophenyl)-pyridoxal-alpha5-phosphate (MRS2211) is a selective antagonist. mRNA encoding for the human P2Y14-receptor is found in many tissues. However, a physiological role of the receptor has not yet been established. UDP-glucose and related analogues act as agonists; antagonists are not known. Finally, UDP has been reported to act on receptors for cysteinyl leukotrienes as an additional agonist--indicating a dual agonist specificity of these receptors.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| |
Collapse
|
41
|
Královicová J, Vorechovský I. Intergenic transcripts in genes with phase I introns. Genomics 2005; 85:431-40. [PMID: 15780746 DOI: 10.1016/j.ygeno.2004.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality-control mechanism that detects and degrades aberrant transcripts prematurely terminating translation. NMD may be elicited by intergenic transcripts that contain premature termination codons (PTCs), but chimeric mRNAs of genes that have introns of identical phase would be predicted to lack PTCs and escape NMD. We examined intron phase I-containing HLA class II genes for the presence of intergenic mRNAs and found an extraordinary diversity of correctly spliced and polyadenylated intergenic transcripts. They lacked a significant homology at the chimeric joins and had no PTCs. Their expression levels were very low and positively correlated with the expression of natural transcripts. In contrast, pair-wise mixtures of separately transcribed plasmids carrying full-length HLA-DQB1, -DQA1, -DRB1, and -DRA cDNAs produced only hybrid molecules that lacked canonical exon boundaries, had homologous chimeric joins, and occasionally contained PTCs, implicating in vitro artifacts generated by template switching of Taq polymerase and reverse transcriptase. A differential exon structure of hybrid molecules observed in vitro and in cellular RNA preparations suggests that intergenic mRNAs with canonical exon boundaries arise in vivo during exon joining and/or transcription. Since the observed intergenic mRNAs may encode mixed class II heterodimers that were previously shown to present antigens it will be interesting to determine functional properties of such molecules in future studies.
Collapse
Affiliation(s)
- Jana Královicová
- Division of Human Genetics, University of Southampton School of Medicine, Southampton University Hospital, MP808, Tremona Road, Southampton SO16 6YD, UK
| | | |
Collapse
|
42
|
Hahn Y, Bera TK, Gehlhaus K, Kirsch IR, Pastan IH, Lee B. Finding fusion genes resulting from chromosome rearrangement by analyzing the expressed sequence databases. Proc Natl Acad Sci U S A 2004; 101:13257-61. [PMID: 15326299 PMCID: PMC516526 DOI: 10.1073/pnas.0405490101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromosomal rearrangements resulting in gene fusions are frequently involved in carcinogenesis. Here, we describe a semiautomatic procedure for identifying fusion gene transcripts by using publicly available mRNA and EST databases. With this procedure, we have identified 96 transcript sequences that are derived from 60 known fusion genes. Also, 47 or more additional sequences appear to be derived from 20 or more previously unknown putative fusion genes. We have experimentally verified the presence of a previously unknown IRA1/RGS17 fusion in the breast cancer cell line MCF7. The fusion gene encodes the full-length RGS17 protein, a regulator of G protein-coupled signaling, under the control of the IRA1 gene promoter. This study demonstrates that databases of ESTs can be used to discover fusion genes resulting from structural rearrangement of chromosomes.
Collapse
Affiliation(s)
- Yoonsoo Hahn
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hogarth DK, Sandbo N, Taurin S, Kolenko V, Miano JM, Dulin NO. Dual role of PKA in phenotypic modulation of vascular smooth muscle cells by extracellular ATP. Am J Physiol Cell Physiol 2004; 287:C449-56. [PMID: 15238360 DOI: 10.1152/ajpcell.00547.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extracellular ATP is released from activated platelets and endothelial cells and stimulates proliferation of vascular smooth muscle cells (VSMC). We found that ATP stimulates a profound but transient activation of protein kinase A (PKA) via purinergic P2Y receptors. The specific inhibition of PKA by adenovirus-mediated transduction of the PKA inhibitor (PKI) attenuates VSMC proliferation in response to ATP, suggesting a positive role for transient PKA activation in VSMC proliferation. By contrast, isoproterenol and forskolin, which stimulate a more sustained PKA activation, inhibit VSMC growth as expected. On the other hand, the activity of serum response factor (SRF) and the SRF-dependent expression of smooth muscle (SM) genes, such as SM-alpha-actin and SM22, are extremely sensitive to regulation by PKA, and even transient PKA activation by ATP is sufficient for their downregulation. Analysis of the dose responses of PKA activation, VSMC proliferation, SRF activity, and SM gene expression to ATP, with or without PKI overexpression, suggests the following model for the phenotypic modulation of VSMC by ATP, in which the transient PKA activation plays a critical role. At low micromolar doses, ATP elicits a negligible effect on DNA synthesis but induces profound SRF activity and SM gene expression, thus promoting the contractile VSMC phenotype. At high micromolar doses, ATP inhibits SRF activity and SM gene expression and promotes VSMC growth in a manner dependent on transient PKA activation. Transformation of VSMC by high doses of ATP can be prevented and even reversed by inhibition of PKA activity.
Collapse
Affiliation(s)
- D Kyle Hogarth
- Section of Pulmonary and Critical Care Medicine, Dept. of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC 6076, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
44
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
45
|
Kolfschoten GM, Pradet-Balade B, Hahne M, Medema JP. TWE-PRIL; a fusion protein of TWEAK and APRIL. Biochem Pharmacol 2003; 66:1427-32. [PMID: 14555217 DOI: 10.1016/s0006-2952(03)00493-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TWEAK and APRIL are both members of the tumor necrosis factor family, which are involved in respectively angiogenesis and immune regulation. While TWEAK is processed at the cell surface, APRIL is processed inside the cell by a furin-convertase and is solely able to perform its function as a soluble factor. Recently, TWE-PRIL has been identified, which is an endogenous hybrid transcript between TWEAK and APRIL. TWE-PRIL is a transmembrane protein that consists of a TWEAK intracellular, transmembrane and stalk region combined with APRIL as its receptor-binding domain. As such TWE-PRIL is expressed at the cell surface. Although TWE-PRIL, like APRIL, can stimulate T and B cell lines, distinct biological functions that may result from its membrane anchoring cannot be excluded. Understanding the function of this newly identified protein will contribute to the elucidation of the complexity of the tumor necrosis factor family.
Collapse
Affiliation(s)
- Geertruida M Kolfschoten
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2a, 2333 ZA Leiden, The Netherlands
| | | | | | | |
Collapse
|
46
|
Kato M, Khan S, Gonzalez N, O'Neill BP, McDonald KJ, Cooper BJ, Angel NZ, Hart DNJ. Hodgkin's lymphoma cell lines express a fusion protein encoded by intergenically spliced mRNA for the multilectin receptor DEC-205 (CD205) and a novel C-type lectin receptor DCL-1. J Biol Chem 2003; 278:34035-41. [PMID: 12824192 DOI: 10.1074/jbc.m303112200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends (RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines (L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Antigens, CD/chemistry
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Line
- Chromosomes/metabolism
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Enzyme-Linked Immunosorbent Assay
- Exons
- HL-60 Cells
- Hodgkin Disease/metabolism
- Humans
- Jurkat Cells
- Lectins/metabolism
- Lectins, C-Type/chemistry
- Minor Histocompatibility Antigens
- Models, Genetic
- Molecular Sequence Data
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/metabolism
- Precipitin Tests
- Protein Structure, Tertiary
- RNA Splicing
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Masato Kato
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fujiwara N, Matsuo T, Ohtsuki H. Protein expression, genomic structure, and polymorphisms of oculomedin. Ophthalmic Genet 2003; 24:141-51. [PMID: 12868032 DOI: 10.1076/opge.24.3.141.15604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To elucidate protein expression, genomic structure, and genomic polymorphisms of a novel gene, 'oculomedin', that has been cloned as a mechanical stretch-response gene from human trabecular cells in culture. METHODS Polyclonal antibody was prepared by immunizing rabbits with a chemically synthesized 15-mer peptide of oculomedin. Protein expression was revealed by Western blot analysis after polyacrylamide gel electrophoresis of extracts of mechanically stretched trabecular cells and control trabecular cells in culture as well as retinal tissue. Protein localization was studied immunohistochemically in the human eye section. Genomic structure was determined by searching the GenBank database. Genomic polymorphisms of the coding region in 163 glaucoma patients and 50 normal subjects were detected by PCR amplification and direct sequencing. RESULTS Western blot analysis showed that oculomedin protein was expressed only in stretched trabecular cells, not in control trabecular cells in culture. Immunohistochemically, oculomedin protein was localized to the trabecular meshwork, Schlemm's canal endothelium, retinal photoreceptor cells, and corneal and conjunctival epithelium. The oculomedin gene (OCLM) consists of two exons which are located inside an intron of a different gene of unknown function (C1orf27) on chromosome 1q25, near and telomeric to myocilin (MYOC). Two types of heterozygous nucleotide substitutions resulting in amino acid changes were found in two of 75 patients with primary open-angle glaucoma, but not at all in patients with other types of glaucoma or in normal subjects. CONCLUSIONS Oculomedin may play a role in the function of the trabecular meshwork and also in the development of primary open-angle glaucoma.
Collapse
Affiliation(s)
- Nagako Fujiwara
- Department of Ophthalmology, Okayama University Graduate School of Medicine and Dentistry, Okayama City, Japan
| | | | | |
Collapse
|
48
|
Romani A, Guerra E, Trerotola M, Alberti S. Detection and analysis of spliced chimeric mRNAs in sequence databanks. Nucleic Acids Res 2003; 31:e17. [PMID: 12582262 PMCID: PMC150249 DOI: 10.1093/nar/gng017] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have developed a databank screening procedure, the In Silico Trans-splicing Retrieval System (ISTReS), to identify heterologous, spliced mRNAs with potential origin from chromosomal translocations, mRNA trans-splicing and multi-locus transcription. A parsing algorithm to screen cDNA versus genome Blast outputs was implemented. Key filtering criteria were Blast scores of > or =300, match lengths of > or =95% of the query sequences, junction of the two partners at exon-exon borders and concordant 'sense/sense' reading orientation. ISTReS was validated by the successful identification of bona fide chromosomal translocation-derived fusion transcripts in the HGI and RefSeq databanks. The performance of ISTReS was verified against recently identified chimeric antisense transcripts, where it revealed essentially no independent proof of antisense transcription and absence of exon-exon borders at the chimeric join, consistent with an artefactual origin. Analysis of the UNIGENE database revealed 21 742 chimeric sequences overall that correspond to approximately 1% of the database transcripts. Novel FOP-Rho GAP and methionyl tRNA synthetase-advillin chimeric mRNAs with the canonical features of heterologous-genes spliced-transcripts were identified among 246 chimeras from the RefSeq databank. This suggests a frequency of canonically-spliced chimeras of approximately 1% of all the hybrid sequences in current databanks. These findings demonstrate the efficiency of ISTReS and the overall feasibility of sequence/structure-based strategies to search for chimeric mRNAs candidate to derive from the splicing of heterologous transcripts.
Collapse
Affiliation(s)
- Antonello Romani
- Department of Experimental Medicine, Section of Molecular Pathology and Immunology, University of Parma, Italy
| | | | | | | |
Collapse
|
49
|
Molecular and Biological Properties of P2Y Receptors. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
50
|
Pradet-Balade B, Medema J, López-Fraga M, Lozano J, Kolfschoten G, Picard A, Martínez-A. C, Garcia-Sanz J, Hahne M. An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J 2002; 21:5711-20. [PMID: 12411489 PMCID: PMC131062 DOI: 10.1093/emboj/cdf565] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TWEAK and APRIL are two recently identified tumour necrosis factor (TNF) ligand family members, implicated in angiogenesis and immune regulation, respectively. TWEAK is a transmembrane protein expressed on the cell surface, whereas APRIL acts solely as a secreted factor. In this report, using RACE, RT-PCR, cDNA library screening and an RNase protection assay, we characterize a hybrid transcript between TWEAK and APRIL mRNAs. The encoded TWE-PRIL protein is composed of TWEAK cytoplasmic and transmembrane domains fused to the APRIL C-terminal domain. TWE-PRIL mRNA is expressed and translated in human primary T cells and monocytes, and endogenous TWE-PRIL protein was detected in primary human T lymphocytes and monocytic cell lines. TWE-PRIL is membrane anchored and presents the APRIL receptor-binding domain at the cell surface. It is a biologically active ligand, as it stimulates cycling in T- and B-lymphoma cell lines. Much like membrane-bound and secreted TNF-alpha, the different cellular localizations of TWE-PRIL and APRIL suggest that they exert distinct biological roles.
Collapse
Affiliation(s)
| | - J.P. Medema
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, E-28049 Madrid, Spain,
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2a, 2333ZA, Leiden, The Netherlands and Observatoire de Banyuls, UMR 7628/CNRS, Laboratoire Arago, F-66650 Banyuls-sur-mer, France Corresponding authors e-mail: or J.P.Medema and M.López-Fraga contributed equally to this work J.A.Garcia-Sanz and M.Hahne should be regarded as senior co-authors
| | | | - J.C. Lozano
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, E-28049 Madrid, Spain,
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2a, 2333ZA, Leiden, The Netherlands and Observatoire de Banyuls, UMR 7628/CNRS, Laboratoire Arago, F-66650 Banyuls-sur-mer, France Corresponding authors e-mail: or J.P.Medema and M.López-Fraga contributed equally to this work J.A.Garcia-Sanz and M.Hahne should be regarded as senior co-authors
| | - G.M. Kolfschoten
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, E-28049 Madrid, Spain,
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2a, 2333ZA, Leiden, The Netherlands and Observatoire de Banyuls, UMR 7628/CNRS, Laboratoire Arago, F-66650 Banyuls-sur-mer, France Corresponding authors e-mail: or J.P.Medema and M.López-Fraga contributed equally to this work J.A.Garcia-Sanz and M.Hahne should be regarded as senior co-authors
| | - A. Picard
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, E-28049 Madrid, Spain,
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2a, 2333ZA, Leiden, The Netherlands and Observatoire de Banyuls, UMR 7628/CNRS, Laboratoire Arago, F-66650 Banyuls-sur-mer, France Corresponding authors e-mail: or J.P.Medema and M.López-Fraga contributed equally to this work J.A.Garcia-Sanz and M.Hahne should be regarded as senior co-authors
| | | | - J.A. Garcia-Sanz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, E-28049 Madrid, Spain,
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2a, 2333ZA, Leiden, The Netherlands and Observatoire de Banyuls, UMR 7628/CNRS, Laboratoire Arago, F-66650 Banyuls-sur-mer, France Corresponding authors e-mail: or J.P.Medema and M.López-Fraga contributed equally to this work J.A.Garcia-Sanz and M.Hahne should be regarded as senior co-authors
| | - M. Hahne
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, E-28049 Madrid, Spain,
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2a, 2333ZA, Leiden, The Netherlands and Observatoire de Banyuls, UMR 7628/CNRS, Laboratoire Arago, F-66650 Banyuls-sur-mer, France Corresponding authors e-mail: or J.P.Medema and M.López-Fraga contributed equally to this work J.A.Garcia-Sanz and M.Hahne should be regarded as senior co-authors
| |
Collapse
|