1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Chen G, Lv S, Pascal LE, Wang Z. Regulation of glucocorticoid receptor nuclear localization in prostate cancer cells. J Pharmacol Exp Ther 2025; 392:103577. [PMID: 40288208 DOI: 10.1016/j.jpet.2025.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Glucocorticoid receptor (GR) plays important roles in many diseases including prostate cancer. Intracellular shuttling of GR is thought to be an important mechanism regulating its localization to the nucleus required for transactivation of GR target genes. Here, using fluorescent microscopy coupled with pulse-chase and nucleocytoplasmic fractionation coupled with western blot, we provided evidence that GR can be imported and then degraded in the nucleus in the absence of ligand. We also showed that nuclear GR was stabilized by glucocorticoid hormone and that hormone withdrawal caused nuclear GR degradation, but not export. Further analysis showed that GR ubiquitination occurred predominantly in the nucleus compared with cytoplasm and was suppressed by glucocorticoids. Using small interfering RNA knockdown, we showed that loss of E3 ligase CHIP significantly inhibited GR ubiquitination and degradation in the nucleus, while enhancing the expression of GR target gene SGK1. These findings support an updated model that GR nucleocytoplasmic trafficking is a 1-way trip, involving nuclear import but not export. Future studies should focus on defining the mechanisms regulating GR ubiquitination and degradation in the nucleus, which may lead to novel approaches to modulate GR function for disease treatment. SIGNIFICANCE STATEMENT: This study suggests that glucocorticoid receptor (GR) nucleocytoplasmic trafficking is a 1-way trip, involving nuclear import but not export. This will guide future studies on defining the mechanisms regulating GR nuclear localization, which may lead to novel approaches to modulate GR function for disease treatment.
Collapse
Affiliation(s)
- Guang Chen
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shidong Lv
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Lugenbühl JF, Viho EMG, Binder EB, Daskalakis NP. Stress Molecular Signaling in Interaction With Cognition. Biol Psychiatry 2025; 97:349-358. [PMID: 39368530 PMCID: PMC11896655 DOI: 10.1016/j.biopsych.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Exposure to stressful life events is associated with a high risk of developing psychiatric disorders with a wide variety of symptoms. Cognitive symptoms in stress-related psychiatric disorders can be particularly challenging to understand, both for those experiencing them and for health care providers. To gain insights, it is important to capture stress-induced structural, epigenomic, transcriptomic, and proteomic changes in relevant brain regions such as the amygdala, hippocampus, locus coeruleus, and prefrontal cortex that result in long-lasting alterations in brain function. In this review, we will emphasize a subset of stress molecular mechanisms that alter neuroplasticity, neurogenesis, and balance between excitatory and inhibitory neurons. Then, we discuss how to identify genetic risk factors that may accelerate stress-driven or stress-induced cognitive impairment. Despite the development of new technologies such as single-cell resolution sequencing, our understanding of the molecular effects of stress in the brain remains to be deepened. A better understanding of the diversity of stress effects in different brain regions and cell types is a prerequisite to open new avenues for mechanism-informed prevention and treatment of stress-related cognitive symptoms.
Collapse
Affiliation(s)
- Justina F Lugenbühl
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Eva M G Viho
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Nikolaos P Daskalakis
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
5
|
Zgajnar N, Lagadari M, Gallo LI, Piwien-Pilipuk G, Galigniana MD. Mitochondrial-nuclear communication by FKBP51 shuttling. J Cell Biochem 2024; 125:e30386. [PMID: 36815347 DOI: 10.1002/jcb.30386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding. In addition to steroid-related events, several pleiotropic actions of FKBP51 have emerged during the last years, ranging from cell differentiation and apoptosis to metabolic and psychiatric disorders. On the other hand, mitochondria play vital cellular roles in maintaining energy homeostasis, responding to stress conditions, and affecting cell cycle regulation, calcium signaling, redox homeostasis, and so forth. This is achieved by proteins that are encoded in both the nuclear genome and mitochondrial genes. This implies active nuclear-mitochondrial communication to maintain cell homeostasis. Such communication involves factors that regulate nuclear and mitochondrial gene expression affecting the synthesis and recruitment of mitochondrial and nonmitochondrial proteins, and/or changes in the functional state of the mitochondria itself, which enable mitochondria to recover from stress. FKBP51 has emerged as a serious candidate to participate in these regulatory roles since it has been unexpectedly found in mitochondria showing antiapoptotic effects. Such localization involves the tetratricopeptide repeats domains of the immunophilin and not its intrinsic enzymatic activity of peptidylprolyl-isomerase. Importantly, FKBP51 abandons the mitochondria and accumulates in the nucleus upon cell differentiation or during the onset of stress. Nuclear FKBP51 enhances the enzymatic activity of telomerase. The mitochondrial-nuclear trafficking is reversible, and certain situations such as viral infections promote the opposite trafficking, that is, FKBP51 abandons the nucleus and accumulates in mitochondria. In this article, we review the latest findings related to the mitochondrial-nuclear communication mediated by FKBP51 and speculate about the possible implications of this phenomenon.
Collapse
Affiliation(s)
- Nadia Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
| | - Mariana Lagadari
- Instituto de Ciencia y Tecnología de Alimentos de Entre Ríos, Concordia, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFYBYNE)/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Hanaki S, Habara M, Tomiyasu H, Sato Y, Miki Y, Masaki T, Shibutani S, Shimada M. NFAT activation by FKBP52 promotes cancer cell proliferation by suppressing p53. Life Sci Alliance 2024; 7:e202302426. [PMID: 38803221 PMCID: PMC11109481 DOI: 10.26508/lsa.202302426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
FK506-binding protein 52 (FKBP52) is a member of the FKBP family of proline isomerases. FKBP52 is up-regulated in various cancers and functions as a positive regulator of steroid hormone receptors. Depletion of FKBP52 is known to inhibit cell proliferation; however, the detailed mechanism remains poorly understood. In this study, we found that FKBP52 depletion decreased MDM2 transcription, leading to stabilization of p53, and suppressed cell proliferation. We identified NFATc1 and NFATc3 as transcription factors that regulate MDM2 We also found that FKBP52 associated with NFATc3 and facilitated its nuclear translocation. In addition, calcineurin, a well-known Ca2+ phosphatase essential for activation of NFAT, plays a role in MDM2 transcription. Supporting this notion, MDM2 expression was found to be regulated by intracellular Ca2+ Taken together, these findings reveal a new role of FKBP52 in promoting cell proliferation via the NFAT-MDM2-p53 axis, and indicate that inhibition of FKBP52 could be a new therapeutic tool to activate p53 and inhibit cell proliferation.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
| | - Shusaku Shibutani
- Department of Veterinary Hygiene, Yamaguchi University, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Biology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Sirois CL, Guo Y, Li M, Wolkoff NE, Korabelnikov T, Sandoval S, Lee J, Shen M, Contractor A, Sousa AMM, Bhattacharyya A, Zhao X. CGG repeats in the human FMR1 gene regulate mRNA localization and cellular stress in developing neurons. Cell Rep 2024; 43:114330. [PMID: 38865241 PMCID: PMC11240841 DOI: 10.1016/j.celrep.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.
Collapse
Affiliation(s)
- Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoun Lee
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Zhang X, Wang QR, Wu Q, Gu J, Huang LH. Cytoplasmic FKBPs are involved in molting and metamorphosis through regulating the nuclear localization of EcR. INSECT SCIENCE 2024; 31:759-772. [PMID: 37822278 DOI: 10.1111/1744-7917.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Molting and metamorphosis are important physiological processes in insects that are tightly controlled by ecdysone receptor (EcR) through the 20-hydroxyecdysone (20E) signaling pathway. EcR is a steroid nuclear receptor (SR). Several FK506-binding proteins (FKBPs) have been identified from the mammal SR complex, and are thought to be involved in the subcellular trafficking of SR. However, their roles in insects are poorly understood. To explore whether FKBPs are involved in insect molting or metamorphosis, we injected an FKBP inhibitor (FK506) into a lepidopteran insect, Spodoptera litura, and found that molting was inhibited in 61.11% of the larvae, and that the time for larvae to pupate was significantly extended. A total of 10 FKBP genes were identified from the genome of S. litura and were clustered into 2 distinct groups, according to their subcellular localization, with FKBP13 and FKBP14 belonging to the endoplasmic reticulum (ER) group and with the other members belonging to the cytoplasmic (Cy) group. All the CyFKBPs were significantly upregulated in the prepupal or pupal stages, with the opposite being observed for the ER group members. FK506 completely blocked the transfer of EcR to the nucleus under 20E induction, and significantly downregulated the transcriptional expression of many 20E signaling genes. A similar phenomenon was observed after RNA interference of 2 CyFKBPs (FKBP45 and FKBP12b), but not for FKBP13. Taken together, our data indicate that the cytoplasmic FKBPs, especially FKBP45 and FKBP12b, mediate the nuclear localization of EcR, thereby regulating the 20E signaling and ultimately affecting molting and metamorphosis in insects.
Collapse
Affiliation(s)
- Xian Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qiao-Ran Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Gu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Li-Hua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Bayan Atawna
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
10
|
Noddings CM, Johnson JL, Agard DA. Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the glucocorticoid receptor. Nat Struct Mol Biol 2023; 30:1867-1877. [PMID: 37945740 PMCID: PMC10716051 DOI: 10.1038/s41594-023-01128-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Hsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins, including the glucocorticoid receptor (GR). Previously, we revealed that Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding, aided by co-chaperones. In vivo, the co-chaperones FKBP51 and FKBP52 antagonistically regulate GR activity, but a molecular understanding is lacking. Here we present a 3.01 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP52 complex, revealing how FKBP52 integrates into the GR chaperone cycle and directly binds to the active client, potentiating GR activity in vitro and in vivo. We also present a 3.23 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP51 complex, revealing how FKBP51 competes with FKBP52 for GR:Hsp90 binding and demonstrating how FKBP51 can act as a potent antagonist to FKBP52. Altogether, we demonstrate how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation.
Collapse
Affiliation(s)
- Chari M Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Mazaira GI, Erlejman AG, Zgajnar NR, Piwien-Pilipuk G, Galigniana MD. The transportosome system as a model for the retrotransport of soluble proteins. Mol Cell Endocrinol 2023; 577:112047. [PMID: 37604241 DOI: 10.1016/j.mce.2023.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Química Biológica de la, Facultad de Ciencias Exactas y Naturales, CONICET, Buenos Aires, 1428, Argentina
| | - Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina
| | | | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, 1428, Argentina; Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, 1428, Argentina.
| |
Collapse
|
12
|
Melatonin-mediated FKBP4 downregulation protects against stress-induced neuronal mitochondria dysfunctions by blocking nuclear translocation of GR. Cell Death Dis 2023; 14:146. [PMID: 36810730 PMCID: PMC9943853 DOI: 10.1038/s41419-023-05676-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
The physiological crosstalk between glucocorticoid and melatonin maintains neuronal homeostasis in regulating circadian rhythms. However, the stress-inducing level of glucocorticoid triggers mitochondrial dysfunction including defective mitophagy by increasing the activity of glucocorticoid receptors (GRs), leading to neuronal cell death. Melatonin then suppresses glucocorticoid-induced stress-responsive neurodegeneration; however, the regulatory mechanism of melatonin, i.e., associated proteins involved in GR activity, has not been elucidated. Therefore, we investigated how melatonin regulates chaperone proteins related to GR trafficking into the nucleus to suppress glucocorticoid action. In this study, the effects of glucocorticoid on suppressing NIX-mediated mitophagy, followed by mitochondrial dysfunction, neuronal cell apoptosis, and cognitive deficits were reversed by melatonin treatment by inhibiting the nuclear translocation of GRs in both SH-SY5Y cells and mouse hippocampal tissue. Moreover, melatonin selectively suppressed the expression of FKBP prolyl isomerase 4 (FKBP4), which is a co-chaperone protein that works with dynein, to reduce the nuclear translocation of GRs among the chaperone proteins and nuclear trafficking proteins. In both cells and hippocampal tissue, melatonin upregulated melatonin receptor 1 (MT1) bound to Gαq, which triggered the phosphorylation of ERK1. The activated ERK then enhanced DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of FKBP52 promoter, reducing GR-mediated mitochondrial dysfunction and cell apoptosis, the effects of which were reversed by knocking down DNMT1. Taken together, melatonin has a protective effect against glucocorticoid-induced defective mitophagy and neurodegeneration by enhancing DNMT1-mediated FKBP4 downregulation that reduced the nuclear translocation of GRs.
Collapse
|
13
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
14
|
Noddings CM, Johnson JL, Agard DA. Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the Glucocorticoid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523504. [PMID: 36711821 PMCID: PMC9882067 DOI: 10.1101/2023.01.10.523504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins, including the glucocorticoid receptor (GR)1-3. Previously, we revealed that GR ligand binding activity is inhibited by Hsp70 and restored by Hsp90, aided by co-chaperones4. We then presented cryo-EM structures mechanistically detailing how Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding5,6. In vivo, GR-chaperone complexes are found associated with numerous Hsp90 co-chaperones, but the most enigmatic have been the immunophilins FKBP51 and FKBP52, which further regulate the activity of GR and other steroid receptors7-9. A molecular understanding of how FKBP51 and FKBP52 integrate with the GR chaperone cycle to differentially regulate GR activation in vivo is lacking due to difficulties reconstituting these interactions. Here, we present a 3.01 Å cryo-EM structure of the GR:Hsp90:FKBP52 complex, revealing , for the first time, that FKBP52 directly binds to the folded, ligand-bound GR using three novel interfaces, each of which we demonstrate are critical for FKBP52-dependent potentiation of GR activity in vivo. In addition, we present a 3.23 Å cryo-EM structure of the GR:Hsp90:FKBP51 complex, which, surprisingly, largely mimics the GR:Hsp90:FKBP52 structure. In both structures, FKBP51 and FKBP52 directly engage the folded GR and unexpectedly facilitate release of p23 through an allosteric mechanism. We also reveal that FKBP52, but not FKBP51, potentiates GR ligand binding in vitro, in a manner dependent on FKBP52-specific interactions. Altogether, we reveal how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation and how FKBP51 and FKBP52 compete for GR:Hsp90 binding, leading to functional antagonism.
Collapse
Affiliation(s)
- Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
16
|
Alqudah A, AbuDalo R, Qnais E, Wedyan M, Oqal M, McClements L. The emerging importance of immunophilins in fibrosis development. Mol Cell Biochem 2022; 478:1281-1291. [PMID: 36302992 PMCID: PMC10164022 DOI: 10.1007/s11010-022-04591-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
AbstractImmunophilins are a family of proteins encompassing FK506-binding proteins (FKBPs) and cyclophilins (Cyps). FKBPs and Cyps exert peptidyl-prolyl cis-trans isomerase (PPIase) activity, which facilitates diverse protein folding assembly, or disassembly. In addition, they bind to immunosuppressant medications where FKBPs bind to tacrolimus (FK506) and rapamycin, whereas cyclophilins bind to cyclosporin. Some large immunophilins have domains other than PPIase referred to as tetratricopeptide (TPR) domain, which is involved in heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp 70) chaperone interaction. The TPR domain confers immunophilins’ pleotropic actions to mediate various physiological and biochemical processes. So far, immunophilins have been implicated to play an important role in pathophysiology of inflammation, cancer and neurodegenerative disorders. However, their importance in the development of fibrosis has not yet been elucidated. In this review we focus on the pivotal functional and mechanistic roles of different immunophilins in fibrosis establishment affecting various organs. The vast majority of the studies reported that cyclophilin A, FKBP12 and FKBP10 likely induce organ fibrosis through the calcineurin or TGF-β pathways. FKBP51 demonstrated a role in myelofibrosis development through calcineurin-dependant pathway, STAT5 or NF-κB pathways. Inhibition of these specific immunophilins has been shown to decrease the extent of fibrosis suggesting that immunophilins could be a novel promising therapeutic target to prevent or reverse fibrosis.
Collapse
|
17
|
Chambraud B, Byrne C, Meduri G, Baulieu EE, Giustiniani J. FKBP52 in Neuronal Signaling and Neurodegenerative Diseases: A Microtubule Story. Int J Mol Sci 2022; 23:ijms23031738. [PMID: 35163662 PMCID: PMC8836061 DOI: 10.3390/ijms23031738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The FK506-binding protein 52 (FKBP52) belongs to a large family of ubiquitously expressed and highly conserved proteins (FKBPs) that share an FKBP domain and possess Peptidyl-Prolyl Isomerase (PPIase) activity. PPIase activity catalyzes the isomerization of Peptidyl-Prolyl bonds and therefore influences target protein folding and function. FKBP52 is particularly abundant in the nervous system and is partially associated with the microtubule network in different cell types suggesting its implication in microtubule function. Various studies have focused on FKBP52, highlighting its importance in several neuronal microtubule-dependent signaling pathways and its possible implication in neurodegenerative diseases such as tauopathies (i.e., Alzheimer disease) and alpha-synucleinopathies (i.e., Parkinson disease). This review summarizes our current understanding of FKBP52 actions in the microtubule environment, its implication in neuronal signaling and function, its interactions with other members of the FKBPs family and its involvement in neurodegenerative disease.
Collapse
Affiliation(s)
- Béatrice Chambraud
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
| | - Cillian Byrne
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Laboratoire des Biomolécules, LBM7203, CNRS, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France
| | - Geri Meduri
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
| | - Etienne Emile Baulieu
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| | - Julien Giustiniani
- INSERM U1195, Université Paris-Saclay, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France;
- Institut Professeur Baulieu, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; (C.B.); (G.M.)
- Correspondence: (E.E.B.); (J.G.); Tel.: +33-1-49-59-18-72 (J.G.); Fax: +33-1-49-59-92-03 (J.G.)
| |
Collapse
|
18
|
Noddings CM, Wang RYR, Johnson JL, Agard DA. Structure of Hsp90-p23-GR reveals the Hsp90 client-remodelling mechanism. Nature 2022; 601:465-469. [PMID: 34937936 PMCID: PMC8994517 DOI: 10.1038/s41586-021-04236-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/13/2021] [Indexed: 01/11/2023]
Abstract
Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins1-3. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity4-9. GR ligand binding was previously shown to nr inhibited by Hsp70 and restored by Hsp90, aided by the co-chaperone p2310. However, a molecular understanding of the chaperone-mediated remodelling that occurs between the inactive Hsp70-Hsp90 'client-loading complex' and an activated Hsp90-p23 'client-maturation complex' is lacking for any client, including GR. Here we present a cryo-electron microscopy (cryo-EM) structure of the human GR-maturation complex (GR-Hsp90-p23), revealing that the GR ligand-binding domain is restored to a folded, ligand-bound conformation, while being simultaneously threaded through the Hsp90 lumen. In addition, p23 directly stabilizes native GR using a C-terminal helix, resulting in enhanced ligand binding. This structure of a client bound to Hsp90 in a native conformation contrasts sharply with the unfolded kinase-Hsp90 structure11. Thus, aided by direct co-chaperone-client interactions, Hsp90 can directly dictate client-specific folding outcomes. Together with the GR-loading complex structure12, we present the molecular mechanism of chaperone-mediated GR remodelling, establishing the first, to our knowledge, complete chaperone cycle for any Hsp90 client.
Collapse
Affiliation(s)
- Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ray Yu-Ruei Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA,Correspondence to David A. Agard ()
| |
Collapse
|
19
|
Rotoli D, Díaz-Flores L, Gutiérrez R, Morales M, Ávila J, Martín-Vasallo P. AmotL2, IQGAP1, and FKBP51 Scaffold Proteins in Glioblastoma Stem Cell Niches. J Histochem Cytochem 2022; 70:9-16. [PMID: 34165350 PMCID: PMC8721575 DOI: 10.1369/00221554211025480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glioma stem cells (GSCs) live in a continuous process of stemness reprogramming to achieve specific cell commitment within the so-called GSC niches, specifically located in periarteriolar regions. In this review, we analyze the expression levels, cellular and subcellular location, and role of three scaffold proteins (IQGAP1, FKBP51, and AmotL2) in GSC niches. Scaffold proteins contribute to cell differentiation, migration, and angiogenesis in glioblastoma. It could be of diagnostic interest for establishing stages, for therapeutic targets, and for improving glioblastoma prognosis, which is still at the experimental level.
Collapse
Affiliation(s)
- Deborah Rotoli
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Istituto per l’Endocrinologia e l’Oncologia Gaetano Salvatore, Naples, Italy
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences and Department of Anatomy, Pathology, Histology and Radiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Julio Ávila
- Department of Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain,Instituto de Tecnología Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Pablo Martín-Vasallo, UD Bioquímica y Biología Molecular, Universidad de La Laguna, Av/Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain. E-mail:
| |
Collapse
|
20
|
Poletti F, González-Fernández R, García MDP, Rotoli D, Ávila J, Mobasheri A, Martín-Vasallo P. Molecular-Morphological Relationships of the Scaffold Protein FKBP51 and Inflammatory Processes in Knee Osteoarthritis. Cells 2021; 10:2196. [PMID: 34571845 PMCID: PMC8468871 DOI: 10.3390/cells10092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most prevalent chronic conditions affecting the adult population. OA is no longer thought to come from a purely biomechanical origin but rather one that has been increasingly recognized to include a persistent low-grade inflammatory component. Intra-articular corticosteroid injections (IACSI) have become a widely used method for treating pain in patients with OA as an effective symptomatic treatment. However, as the disease progresses, IACSI become ineffective. FKBP51 is a regulatory protein of the glucocorticoid receptor function and have been shown to be dysregulated in several pathological scenario's including chronic inflammation. Despite of these facts, to our knowledge, there are no previous studies of the expression and possible role of FKBP51 in OA. We investigated by double and triple immunofluorescence confocal microscopy the cellular and subcellular expression of FKBP51 and its relations with inflammation factors in osteoarthritic knee joint tissues: specifically, in the tibial plateau knee cartilage, Hoffa's fat pad and suprapatellar synovial tissue of the knee. Our results show co-expression of FKBP51 with TNF-α, IL-6, CD31 and CD34 in OA chondrocytes, synovial membrane cells and adipocytes in Hoffa's fat pad. FKBP51 is also abundant in nerve fibers within the fat pad. Co-expression of FKBP51 protein with these markers may be indicative of its contribution to inflammatory processes and associated chronic pain in OA.
Collapse
Affiliation(s)
- Fabián Poletti
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
- Orthopaedic Surgery and Trauma Unit, Royal Berkshire Hospital NHS Foundation Trust, Reading RG1 5AN, UK
- Unidad de Cirugía Ortopédica y Traumatología, Hospital San Juan de Dios-Tenerife, Ctra. Santa Cruz Laguna 53, 38009 Santa Cruz de Tenerife, Spain
| | - Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| | - María-del-Pino García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, 38001 Santa Cruz de Tenerife, Spain;
| | - Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-National Research Council, 80131 Naples, Italy
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000 Liège, Belgium
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| |
Collapse
|
21
|
FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-κB signaling. Cell Death Dis 2021; 12:602. [PMID: 34112753 PMCID: PMC8192522 DOI: 10.1038/s41419-021-03857-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
FKBP4 belongs to the family of immunophilins, which serve as a regulator for steroid receptor activity. Thus, FKBP4 has been recognized to play a critical role in several hormone-dependent cancers, including breast and prostate cancer. However, there is still no research to address the role of FKBP4 on lung adenocarcinoma (LUAD) progression. We found that FKBP4 expression was elevated in LUAD samples and predicted significantly shorter overall survival based on TCGA and our cohort of LUAD patients. Furthermore, FKBP4 robustly increased the proliferation, metastasis, and invasion of LUAD in vitro and vivo. Mechanistic studies revealed the interaction between FKBP4 and IKK kinase complex. We found that FKBP4 potentiated IKK kinase activity by interacting with Hsp90 and IKK subunits and promoting Hsp90/IKK association. Also, FKBP4 promotes the binding of IKKγ to IKKβ, which supported the facilitation role in IKK complex assembly. We further identified that FKBP4 TPR domains are essential for FKBP4/IKK interaction since its association with Hsp90 is required. In addition, FKBP4 PPIase domains are involved in FKBP4/IKKγ interaction. Interestingly, the association between FKBP4 and Hsp70/RelA favors the transport of RelA toward the nucleus. Collectively, FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to potentiate the transcriptional activity and nuclear translocation of NF-κB, thereby promoting LUAD progression. Our findings suggest that FKBP4 may function as a prognostic biomarker of LUAD and provide a newly mechanistic insight into modulating IKK/NF-κB signaling.
Collapse
|
22
|
Mazaira GI, Echeverría PC, Ciucci SM, Monte M, Gallo LI, Erlejman AG, Galigniana MD. Differential regulation of the glucocorticoid receptor nucleocytoplasmic shuttling by TPR-domain proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119000. [PMID: 33675851 DOI: 10.1016/j.bbamcr.2021.119000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
A dimer of the heat-shock protein of 90-kDa (Hsp90) represents the critical core of the chaperone complex associated to the glucocorticoid receptor (GR) oligomer. The C-terminal end of the Hsp90 dimer shapes a functional acceptor site for co-chaperones carrying tetratricopeptide repeat (TPR) domains, where they bind in a mutually exclusive and competitive manner. They impact on the biological properties of the GR•Hsp90 complex and are major players of the GR transport machinery. Recently, we showed that the overexpression of a chimeric TPR peptide influences the subcellular distribution of GR. In this study, the functional role of endogenous proteins carrying TPR or TPR-like sequences on GR subcellular distribution was characterized. It is demonstrated that, contrarily to the positive influence of FKBP52 on GR nuclear accumulation, FKBP51 and 14-3-3 impaired this property. While SGT1α showed no significant effect, the overexpression of the Ser/Thr phosphatase PP5 resulted in a nearly equal nuclear-cytoplasmic redistribution of GR rather than its typical cytoplasmic localization in the absence of steroid. This observation led to analyse the influence of the phosphorylation status of GR, which resulted not linked to its nucleo-cytoplasmic shuttling mechanism. Nonetheless, it was evidenced that both PP5 and FKBP52 are related to the anchorage of the GR to nucleoskeleton structures. The influence of these TPR domain proteins on the steroid-dependent transcriptional activity of GR was also characterized. It is postulated that the pleiotropic actions of the GR in different cell types may be the consequence of the relative abundance of different TPR-domain interacting co-chaperones.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Pablo C Echeverría
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires 1428, Argentina
| | - Sol M Ciucci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Martin Monte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)-CONICET, Buenos Aires 1428, Argentina
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina; Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires 1428, Argentina.
| |
Collapse
|
23
|
Daneri-Becerra C, Valeiras B, Gallo LI, Lagadari M, Galigniana MD. Cyclophilin A is a mitochondrial factor that forms complexes with p23 - correlative evidence for an anti-apoptotic action. J Cell Sci 2021; 134:jcs.253401. [PMID: 33361281 DOI: 10.1242/jcs.253401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Cyclophilin A (CyPA, also known as PPIA) is an abundant and ubiquitously expressed protein belonging to the immunophilin family, which has intrinsic peptidyl-prolyl-(cis/trans)-isomerase enzymatic activity. CyPA mediates immunosuppressive action of the cyclic undecapeptide cyclosporine A and is also involved in multiple cellular processes, such as protein folding, intracellular trafficking, signal transduction and transcriptional regulation. CyPA is abundantly expressed in cancer cells, and, owing to its chaperone nature, its expression is induced upon the onset of stress. In this study, we demonstrated that a significant pool of this immunophilin is primarily an intramitochondrial factor that migrates to the nucleus when cells are stimulated with stressors. CyPA shows anti-apoptotic action per se and the capability of forming ternary complexes with cytochrome c and the small acidic co-chaperone p23, the latter interaction being independent of the usual association of p23 with the heat-shock protein of 90 kDa, Hsp90. These CyPA•p23 complexes enhance the anti-apoptotic response of the cell, suggesting that both proteins form a functional unit, the high level of expression of which plays a significant role in cell survival.
Collapse
Affiliation(s)
- Cristina Daneri-Becerra
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Brenda Valeiras
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias CONICET/Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Mariana Lagadari
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina .,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
24
|
Galigniana MD. Molecular Pharmacology of the Youngest Member of the Nuclear Receptor Family: The Mineralocorticoid Receptor. NUCLEAR RECEPTORS 2021:1-21. [DOI: 10.1007/978-3-030-78315-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Daneri-Becerra C, Patiño-Gaillez MG, Galigniana MD. Proof that the high molecular weight immunophilin FKBP52 mediates the in vivo neuroregenerative effect of the macrolide FK506. Biochem Pharmacol 2020; 182:114204. [PMID: 32828804 DOI: 10.1016/j.bcp.2020.114204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
The immunosuppressant drug FK506 (or tacrolimus) is a macrolide that binds selectively to immunophilins belonging to the FK506-binding protein (FKBP) subfamily, which are abundantly expressed proteins in neurons of the peripheral and central nervous systems. Interestingly, it has been reported that FK506 increases neurite outgrowth in cell cultures, implying a potential impact in putative treatments of neurodegenerative disorders and injuries of the nervous system. Nonetheless, the mechanism of action of this compound is poorly understood and remains to be elucidated, with the only certainty that its neurotrophic effect is independent of its primary immunosuppressant activity. In this study it is demonstrated that FK506 shows efficient neurotrophic action in vitro and profound effects on the recovery of locomotor activity, behavioural features, and erectile function of mice that underwent surgical spinal cord injury. The recovery of the locomotor activity was studied in knock-out mice for either immunophilin, FKBP51 or FKBP52. The experimental evidence demonstrates that the neurotrophic actions of FK506 are the consequence of its binding to FKBP52, whereas FK506 interaction with the close-related partner immunophilin FKBP51 antagonises the function of FKBP52. Importantly, our study also demonstrates that other immunophilins do not replace FKBP52. It is concluded that the final biological response is the resulting outcome of the drug binding to both immunophilins, FKBP51 and FKBP52, the latter being the one that commands the dominant neurotrophic action in vivo.
Collapse
Affiliation(s)
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
27
|
Mazaira GI, Echeverria PC, Galigniana MD. Nucleocytoplasmic shuttling of the glucocorticoid receptor is influenced by tetratricopeptide repeat-containing proteins. J Cell Sci 2020; 133:jcs238873. [PMID: 32467326 DOI: 10.1242/jcs.238873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/07/2020] [Indexed: 08/31/2023] Open
Abstract
It has been demonstrated that tetratricopeptide-repeat (TPR) domain proteins regulate the subcellular localization of glucocorticoid receptor (GR). This study analyses the influence of the TPR domain of high molecular weight immunophilins in the retrograde transport and nuclear retention of GR. Overexpression of the TPR peptide prevented efficient nuclear accumulation of the GR by disrupting the formation of complexes with the dynein-associated immunophilin FKBP52 (also known as FKBP4), the adaptor transporter importin-β1 (KPNB1), the nuclear pore-associated glycoprotein Nup62 and nuclear matrix-associated structures. We also show that nuclear import of GR was impaired, whereas GR nuclear export was enhanced. Interestingly, the CRM1 (exportin-1) inhibitor leptomycin-B abolished the effects of TPR peptide overexpression, although the drug did not inhibit GR nuclear export itself. This indicates the existence of a TPR-domain-dependent mechanism for the export of nuclear proteins. The expression balance of those TPR domain proteins bound to the GR-Hsp90 complex may determine the subcellular localization and nucleocytoplasmic properties of the receptor, and thereby its pleiotropic biological properties in different tissues and cell types.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Pablo C Echeverria
- Département de Biologie Cellulaire, Université de Genève, Sciences III, Genève 1211, Switzerland
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires 1428, Argentina
| |
Collapse
|
28
|
Demetriou C, Chanudet E, Joseph A, Topf M, Thomas AC, Bitner-Glindzicz M, Regan L, Stanier P, Moore GE. Exome sequencing identifies variants in FKBP4 that are associated with recurrent fetal loss in humans. Hum Mol Genet 2020; 28:3466-3474. [PMID: 31504499 DOI: 10.1093/hmg/ddz203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is defined as two or more consecutive miscarriages and affects an estimated 1.5% of couples trying to conceive. RPL has been attributed to genetic, endocrine, immune and thrombophilic disorders, but many cases remain unexplained. We investigated a Bangladeshi family where the proband experienced 29 consecutive pregnancy losses with no successful pregnancies from three different marriages. Whole exome sequencing identified rare genetic variants in several candidate genes. These were further investigated in Asian and white European RPL cohorts, and in Bangladeshi controls. FKBP4, encoding the immunophilin FK506-binding protein 4, was identified as a plausible candidate, with three further novel variants identified in Asian patients. None were found in European patients or controls. In silico structural studies predicted damaging effects of the variants in the structure-function properties of the FKBP52 protein. These were located within domains reported to be involved in Hsp90 binding and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Profound effects on PPIase activity were demonstrated in transiently transfected HEK293 cells comparing wild-type and mutant FKBP4 constructs. Mice lacking FKBP4 have been previously reported as infertile through implantation failure. This study therefore strongly implicates FKBP4 as associated with fetal losses in humans, particularly in the Asian population.
Collapse
Affiliation(s)
- Charalambos Demetriou
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Estelle Chanudet
- Centre for Translational Omics-GOSgene, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Anna C Thomas
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maria Bitner-Glindzicz
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lesley Regan
- Department of Obstetrics and Gynaecology, St. Mary's Campus, Imperial College London, London, UK
| | - Philip Stanier
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Gudrun E Moore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
29
|
Zhang L, Hu XZ, Yu T, Chen Z, Dohl J, Li X, Benedek DM, Fullerton CS, Wynn G, Barrett JE, Li M, Russell DW, Ursano RJ. Genetic association of FKBP5 with PTSD in US service members deployed to Iraq and Afghanistan. J Psychiatr Res 2020; 122:48-53. [PMID: 31927265 DOI: 10.1016/j.jpsychires.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder with a prevalence of more than 7% in the US population and 12% in the military. An interaction of childhood trauma with FKBP5 (a glucocorticoid-regulated immunophilin) has been reported to be associated with PTSD in the general population. However, there are few reports on the association of FKBP5 with PTSD, particularly in important high-risk population such as the military. Here, we examined the association between four single-nucleotide polymorphisms (SNPs; rs3800373, rs9296158, rs1360780, rs9470080) covering the FKBP5 gene and probable PTSD in US service members deployed to Iraq and Afghanistan, a high-risk military population (n = 3890) (Hines et al., 2014). We found that probable PTSD subjects were significantly more likely to carry the A-allele of rs3800373, G-allele of rs9296158, C-allele of rs1360780, and C-allele of rs9470080. Furthermore, the four SNPs were in one block of strong pairwise linkage disequilibrium (r = 0.91-0.96). Within the block there were two major haplotypes of CATT and AGCC (rs3800373-rs9296158-rs1360780-rs9470080) that account for 99% of haplotype diversity. The distribution of the AGCC haplotype was significantly higher in probable PTSD subjects compared to non-PTSD (p<.05). The diplotype-based analysis indicated that the AGCC carriers tended to be probable PTSD. In this study, we demonstrated the association between FKBP5 and probable PTSD in US service members deployed to Iraq and Afghanistan, indicating that FKBP5 might be a risk factor for PTSD.
Collapse
Affiliation(s)
- Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Xian-Zhang Hu
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ze Chen
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Jacob Dohl
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Xiaoxia Li
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - David M Benedek
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Carol S Fullerton
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Gary Wynn
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA, 19102-1192, USA
| | - Mian Li
- Department of Neurology, Washington DC VA Medical Center, Washington, DC, 20422, USA
| | - Dale W Russell
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
30
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
31
|
De Leo SA, Zgajnar NR, Mazaira GI, Erlejman AG, Galigniana MD. Role of the Hsp90-Immunophilin Heterocomplex in Cancer Biology. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666190102120801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of new factors that may function as cancer markers and become eventual pharmacologic targets is a challenge that may influence the management of tumor development and management. Recent discoveries connecting Hsp90-binding immunophilins with the regulation of signalling events that can modulate cancer progression transform this family of proteins in potential unconventional factors that may impact on the screening and diagnosis of malignant diseases. Immunophilins are molecular chaperones that group a family of intracellular receptors for immunosuppressive compounds. A subfamily of the immunophilin family is characterized by showing structural tetratricopeptide repeats, protein domains that are able to interact with the C-terminal end of the molecular chaperone Hsp90, and via the proper Hsp90-immunophilin complex, the biological properties of a number of client-proteins involved in cancer biology are modulated. Recent discoveries have demonstrated that two of the most studied members of this Hsp90- binding subfamily of immunophilins, FKBP51 and FKBP52, participate in several cellular processes such as apoptosis, carcinogenesis progression, and chemoresistance. While the expression levels of some members of the immunophilin family are affected in both cancer cell lines and human cancer tissues compared to normal samples, novel regulatory mechanisms have emerged during the last few years for several client-factors of immunophilins that are major players in cancer development and progression, among them steroid receptors, the transctiption factor NF-κB and the catalytic subunit of telomerase, hTERT. In this review, recent findings related to the biological properties of both iconic Hsp90-binding immunophilins, FKBP51 and FKBP52, are reviewed within the context of their interactions with those chaperoned client-factors. The potential roles of both immunophilins as potential cancer biomarkers and non-conventional pharmacologic targets for cancer treatment are discussed.
Collapse
Affiliation(s)
- Sonia A. De Leo
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Gisela I. Mazaira
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra G. Erlejman
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Ugo MB, Arzt E. SUMO conjugation as regulator of the glucocorticoid receptor-FKBP51 cellular response to stress. Steroids 2020; 153:108520. [PMID: 31604074 DOI: 10.1016/j.steroids.2019.108520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/19/2023]
Abstract
In order to adequately respond to stressful stimuli, glucocorticoids (GCs) target almost every tissue of the body. By exerting a negative feedback loop in the hypothalamic-pituitary-adrenal (HPA) axis GCs inhibit their own synthesis and restore homeostasis. GCs actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associatedto different diseases including mood disorders and can lead to severe complication. Therefore, understanding the molecular complexity of GR modulation is mandatory for the development of new and effective drugs for treating GR-associated disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity and has a crucial role in psychiatric diseases. Both GR and FKBP51 activity are regulated by SUMOylation, a posttranslational (PTM). In this review, we focus on the impact of SUMO-conjugation as a regulator of this pathway.
Collapse
Affiliation(s)
- Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina.
| | - Maia L Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Romina P Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Maria B Ugo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)- CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
33
|
Nucleus–cytoplasm cross‐talk in the aging brain. J Neurosci Res 2019; 98:247-261. [DOI: 10.1002/jnr.24446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
34
|
Rotoli D, Morales M, Maeso MDC, Ávila J, Pérez-Rodríguez ND, Mobasheri A, van Noorden CJF, Martín-Vasallo P. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem 2019; 67:481-494. [PMID: 30794467 DOI: 10.1369/0022155419833334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GB) is the most frequently occurring and aggressive primary brain tumor. Glioma stem cells (GSCs) and astrocytoma cells are the predominant malignant cells occurring in GB besides a highly heterogeneous population of migrating, neovascularizing and infiltrating myeloid cells that forms a complex tumor microenvironment (TME). Cross talk between the TME cells is pivotal in the biology of this tumor and, consequently, adaptor proteins at critical junctions of signaling pathways may be crucial. Scaffold proteins (scaffolins or scaffoldins) integrate external and internal stimuli to regulate various signaling pathways, interacting simultaneously with multiple proteins involved. We investigated by double and triple immunofluorescence the localization of IQGAP1, AmotL2, and FKBP51, three closely related scaffoldins, in malignant cells and TME of human GB tumors. We found that IQGAP1 is preferentially expressed in astrocytoma cells, AmotL2 in GSCs, and FKBP51 in white blood cells in human GB tumors. As GSCs are specially the target for novel therapies, we will investigate in further studies whether AmotL2 inhibition is effective in the treatment of GB.
Collapse
Affiliation(s)
- Deborah Rotoli
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale Gaetano Salvatore, Naples, Italy.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain
| | - Manuel Morales
- Oncología Médica.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain.,Oncología Médica, Hospiten Rambla, Santa Cruz, Spain
| | - María-Del-C Maeso
- Servicio de Anatomía Patológica.,Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz, Spain
| | - Julio Ávila
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pablo Martín-Vasallo
- UD of Biochemistry and Molecular Biology.,Instituto de Tecnologías Biomédicas de Canarias.,Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
35
|
Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019; 9:biom9020052. [PMID: 30717249 PMCID: PMC6406450 DOI: 10.3390/biom9020052] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects.
Collapse
Affiliation(s)
- Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Sonia A De Leo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | - Cecilia M Lotufo
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| |
Collapse
|
36
|
Galigniana MD. HSP90-Based Heterocomplex as Essential Regulator for Cancer Disease. HEAT SHOCK PROTEINS 2019:19-45. [DOI: 10.1007/978-3-030-23158-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
37
|
Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D, Blair LJ. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int J Mol Sci 2018; 20:ijms20010079. [PMID: 30585227 PMCID: PMC6337637 DOI: 10.3390/ijms20010079] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/30/2023] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis directly controls the stress response. Dysregulation of this neuroendocrine system is a common feature among psychiatric disorders. Steroid hormone receptors, like glucocorticoid receptor (GR), function as transcription factors of a diverse set of genes upon activation. This activity is regulated by molecular chaperone heterocomplexes. Much is known about the structure and function of these GR/heterocomplexes. There is strong evidence suggesting altered regulation of steroid receptor hormones by chaperones, particularly the 51 kDa FK506-binding protein (FKBP51), may work with environmental factors to increase susceptibility to various psychiatric illnesses including post-traumatic stress disorder (PTSD), major depressive disorder (MDD), and anxiety. This review highlights the regulation of steroid receptor dynamics by the 90kDa heat shock protein (Hsp90)/cochaperone heterocomplexes with an in depth look at how the structural regulation and imbalances in cochaperones can cause functional effects on GR activity. Links between the stress response and circadian systems and the development of novel chaperone-targeting therapeutics are also discussed.
Collapse
Affiliation(s)
- Jeremy D Baker
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Ilayda Ozsan
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Santiago Rodriguez Ospina
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Danielle Gulick
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| | - Laura J Blair
- USF Health Byrd Institute, Morsani College of Medicine, Department of Molecular Medicine, University of South Florida, 4001 East Fowler Ave, Tampa, FL 33613, USA.
| |
Collapse
|
38
|
Haas JG, Weber J, Gonzalez O, Zimmer R, Griffiths SJ. Antiviral activity of the mineralocorticoid receptor NR3C2 against Herpes simplex virus Type 1 (HSV-1) infection. Sci Rep 2018; 8:15876. [PMID: 30367157 PMCID: PMC6203759 DOI: 10.1038/s41598-018-34241-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Analysis of a genome-scale RNA interference screen of host factors affecting herpes simplex virus type 1 (HSV-1) revealed that the mineralocorticoid receptor (MR) inhibits HSV-1 replication. As a ligand-activated transcription factor the MR regulates sodium transport and blood pressure in the kidney in response to aldosterone, but roles have recently been elucidated for the MR in other cellular processes. Here, we show that the MR and other members of the mineralocorticoid signalling pathway including HSP90 and FKBP4, possess anti-viral activity against HSV-1 independent of their effect on sodium transport, as shown by sodium channel inhibitors. Expression of the MR is upregulated upon infection in an interferon (IFN) and viral transcriptional activator VP16-dependent fashion. Furthermore, the MR and VP16, together with the cellular co-activator Oct-1, transactivate the hormone response element (HRE) present in the MR promoter and those of its transcriptional targets. As the MR induces IFN expression, our data suggests the MR is involved in a positive feedback loop that controls HSV-1 infection.
Collapse
Affiliation(s)
- Jürgen G Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Julia Weber
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Orland Gonzalez
- Institute for Informatics, Ludwig-Maximilians Universität München, 80333, München, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians Universität München, 80333, München, Germany
| | - Samantha J Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
39
|
Chen JT, Wei L, Chen TL, Huang CJ, Chen RM. Regulation of cytochrome P450 gene expression by ketamine: a review. Expert Opin Drug Metab Toxicol 2018; 14:709-720. [PMID: 29888644 DOI: 10.1080/17425255.2018.1487397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although used as an anesthetic drug for decades, ketamine appears to have garnered renewed interest due to its potential therapeutic uses in pain therapy, neurology, and psychiatry. Ketamine undergoes extensive oxidative metabolism by cytochrome P450 (CYP) enzymes. Considerable efforts have been expended to elucidate the ketamine-induced regulation of CYP gene expression. The safety profile of chronic ketamine administration is still unclear. Understanding how ketamine regulates CYP gene expression is clinically meaningful. Areas covered: In this article, the authors provide a brief review of clinical applications of ketamine and its metabolism by CYP enzymes. We discuss the effects of ketamine on the regulation of CYP gene expression, exploring aspects of cytoskeletal remodeling, mitochondrial functions, and calcium homeostasis. Expert opinion: Ketamine may inhibit CYP gene expression through inhibiting calcium signaling, decreasing ATP levels, producing excessive reactive oxygen species, and subsequently perturbing cytoskeletal dynamics. Further research is still needed to avoid possible ketamine-drug interactions during long-term use in the clinic.
Collapse
Affiliation(s)
- Jui-Tai Chen
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Li Wei
- c Department of Neurosurgery, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ta-Liang Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan
| | - Chun-Jen Huang
- a Department of Anesthesiology, School of Medicine, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,b Department of Anesthesiology, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Ruei-Ming Chen
- d Anesthesiology and Health Policy Research Center , Taipei Medical University Hospital , Taipei City , Taiwan.,e Graduate Institute of Medical Sciences, College of Medicine , Taipei Medical University , Taipei City , Taiwan.,f Cellular Physiology and Molecular Image Research Center, Wan-Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| |
Collapse
|
40
|
Radli M, Rüdiger SGD. Dancing with the Diva: Hsp90-Client Interactions. J Mol Biol 2018; 430:3029-3040. [PMID: 29782836 DOI: 10.1016/j.jmb.2018.05.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
The molecular chaperone Hsp90 is involved in the folding, maturation, and degradation of a large number structurally and sequentially unrelated clients, often connected to serious diseases. Elucidating the principles of how Hsp90 recognizes this large variety of substrates is essential for comprehending the mechanism of this chaperone machinery, as well as it is a prerequisite for the design of client specific drugs targeting Hsp90. Here, we discuss the recent progress in understanding the substrate recognition principles of Hsp90 and its implications for the role of Hsp90 in the lifecycle of proteins. Hsp90 acts downstream of the chaperone Hsp70, which exposes its substrate to a short and highly hydrophobic cleft. The subsequently acting Hsp90 has an extended client-binding interface that enables a large number of low-affinity contacts. Structural studies show interaction modes of Hsp90 with the intrinsically disordered Alzheimer's disease-causing protein Tau, the kinase Cdk4 in a partially unfolded state and the folded ligand-binding domain of a steroid receptor. Comparing the features shared by these different proteins provides a picture of the substrate-binding principles of Hsp90.
Collapse
Affiliation(s)
- Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Bonham LW, Karch CM, Fan CC, Tan C, Geier EG, Wang Y, Wen N, Broce IJ, Li Y, Barkovich MJ, Ferrari R, Hardy J, Momeni P, Höglinger G, Müller U, Hess CP, Sugrue LP, Dillon WP, Schellenberg GD, Miller BL, Andreassen OA, Dale AM, Barkovich AJ, Yokoyama JS, Desikan RS. CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry 2018; 8:73. [PMID: 29636460 PMCID: PMC5893558 DOI: 10.1038/s41398-017-0049-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke W. Bonham
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Celeste M. Karch
- 0000 0001 2355 7002grid.4367.6Department of Psychiatry, Washington University, St. Louis, MO USA
| | - Chun C. Fan
- 0000 0001 2107 4242grid.266100.3Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA USA
| | - Chin Tan
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Ethan G. Geier
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Yunpeng Wang
- 0000 0004 0389 8485grid.55325.34NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Natalie Wen
- 0000 0001 2355 7002grid.4367.6Department of Psychiatry, Washington University, St. Louis, MO USA
| | - Iris J. Broce
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Yi Li
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Matthew J. Barkovich
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Raffaele Ferrari
- 0000000121901201grid.83440.3bDepartment of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - John Hardy
- 0000000121901201grid.83440.3bDepartment of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Parastoo Momeni
- 0000 0001 2179 3554grid.416992.1Department of Internal Medicine, Laboratory of Neurogenetics, Texas Tech University Health Science Center, Lubbock, TX USA
| | - Günter Höglinger
- 0000 0004 0438 0426grid.424247.3Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,0000000123222966grid.6936.aDepartment of Neurology, Technical University of Munich; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Ulrich Müller
- 0000 0001 2165 8627grid.8664.cInstitut for Humangenetik, Justus-Liebig-Universität, Giessen, Germany
| | - Christopher P. Hess
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Leo P. Sugrue
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - William P. Dillon
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Gerard D. Schellenberg
- 0000 0004 1936 8972grid.25879.31Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA
| | - Bruce L. Miller
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- 0000 0001 2107 4242grid.266100.3Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Neurosciences and Radiology, University of California, San Diego, La Jolla, CA USA
| | - A. James Barkovich
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | - Jennifer S. Yokoyama
- 0000 0001 2297 6811grid.266102.1Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA USA
| | - Rahul S. Desikan
- 0000 0001 2297 6811grid.266102.1Department of Radiology and Biomedical Imaging, Neuroradiology Section, University of California, San Francisco, San Francisco, CA USA
| | | | | | | |
Collapse
|
42
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
43
|
Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90. Biochem Soc Trans 2017; 46:51-65. [PMID: 29273620 DOI: 10.1042/bst20170335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
The ability to permit gene expression is managed by a set of relatively well known regulatory mechanisms. Nonetheless, this property can also be acquired during a life span as a consequence of environmental stimuli. Interestingly, some acquired information can be passed to the next generation of individuals without modifying gene information, but instead by the manner in which cells read and process such information. Molecular chaperones are classically related to the proper preservation of protein folding and anti-aggregation properties, but one of them, heat-shock protein 90 (Hsp90), is a refined sensor of protein function facilitating the biological activity of properly folded client proteins that already have a preserved tertiary structure. Interestingly, Hsp90 can also function as a critical switch able to regulate biological responses due to its association with key client proteins such as histone deacetylases or DNA methylases. Thus, a growing amount of evidence has connected the action of Hsp90 to post-translational modifications of soluble nuclear factors, DNA, and histones, which epigenetically affect gene expression upon the onset of an unfriendly environment. This response is commanded by the activation of the transcription factor heat-shock factor 1 (HSF1). Even though numerous stresses of diverse nature are known to trigger the stress response by activation of HSF1, it is still unknown whether there are different types of molecular sensors for each type of stimulus. In the present review, we will discuss various aspects of the regulatory action of HSF1 and Hsp90 on transcriptional regulation, and how this regulation may affect genetic assimilation mechanisms and the health of individuals.
Collapse
|
44
|
Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017; 18:ijms18122614. [PMID: 29206196 PMCID: PMC5751217 DOI: 10.3390/ijms18122614] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Nils C Gassen
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
45
|
Breitkopf SB, Taveira MDO, Yuan M, Wulf GM, Asara JM. Serial-omics of P53-/-, Brca1-/- Mouse Breast Tumor and Normal Mammary Gland. Sci Rep 2017; 7:14503. [PMID: 29109428 PMCID: PMC5674068 DOI: 10.1038/s41598-017-15132-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/20/2017] [Indexed: 12/28/2022] Open
Abstract
This study demonstrates a liquid-liquid extraction for the sequential tandem mass spectrometry (LC-MS/MS) analysis of non-polar lipids, polar metabolites, proteins and phosphorylation sites from a single piece of tissue. Extraction of 10 mg BRCA-/-, p53-/- breast tumor tissue or normal mammary gland tissue with methyl-tert-butyl ether (MTBE) results in three phases: an upper non-polar phase containing 1,382 lipids, a lower polar phase with 805 metabolites and a precipitated protein pellet with 4,792 proteins with 1,072 phosphorylation sites. Comparative analysis revealed an activated AKT-mTOR pathway in tumors. Tumors also showed a reduction of phosphorylation sites involved in transcription and RNA splicing and decreased abundance of enzymes in lipid synthesis. Analysis of polar metabolites revealed a reduction in glycolysis, pentose phosphate pathway, polyamines and nucleotides, but an increase in TCA and urea cycle intermediates. Analysis of lipids revealed a shift from high triglycerides in mammary gland to high phospholipid levels in tumors. The data were integrated into a model showing breast tumors exhibit features on the proteomic, lipidomic and metabolomic level that are distinct from normal breast tissue. Our integrative technique lends itself to samples such as tumor biopsies, dried blood spots and fluids including urine and CSF to develop biomarkers of disease.
Collapse
Affiliation(s)
- Susanne B Breitkopf
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, MA, USA
- Harvard Medical School, Department of Medicine, Boston, MA, USA
| | - Mateus De Oliveira Taveira
- Harvard Medical School, Department of Medicine, Boston, MA, USA
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Min Yuan
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, MA, USA
| | - Gerburg M Wulf
- Harvard Medical School, Department of Medicine, Boston, MA, USA
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John M Asara
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, MA, USA.
- Harvard Medical School, Department of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
47
|
Skagia A, Zografou C, Venieraki A, Fasseas C, Katinakis P, Dimou M. Functional analysis of the cyclophilin PpiB role in bacterial cell division. Genes Cells 2017; 22:810-824. [DOI: 10.1111/gtc.12514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Chrysoula Zografou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Costas Fasseas
- Laboratory of Electron Microscopy; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| |
Collapse
|
48
|
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46:15-31. [PMID: 28502781 PMCID: PMC5523465 DOI: 10.1016/j.yfrne.2017.05.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University, Graduate Division of Biological Sciences, Neuroscience Graduate Program, United States
| | - Sydney A Rowson
- Emory University, Graduate Division of Biological Sciences, Molecular and Systems Pharmacology Graduate Studies Program, United States
| | - Gretchen N Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, United States.
| |
Collapse
|
49
|
Rotoli D, Morales M, Ávila J, Maeso MDC, García MDP, Mobasheri A, Martín-Vasallo P. Commitment of Scaffold Proteins in the Onco-Biology of Human Colorectal Cancer and Liver Metastases after Oxaliplatin-Based Chemotherapy. Int J Mol Sci 2017; 18:ijms18040891. [PMID: 28441737 PMCID: PMC5412470 DOI: 10.3390/ijms18040891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins play pivotal roles in the regulation of signaling pathways, integrating external and internal stimuli to various cellular outputs. We report the pattern of cellular and subcellular expression of scaffoldins angiomotin-like 2 (AmotL2), FK506 binding protein 5 (FKBP51) and IQ motif containing GTPase-activating protein 1 (IQGAP1) in colorectal cancer (CRC) and metastases in liver resected after oxaliplatin-based chemotherapy (CT). Positive immunostaining for the three scaffoldins was found in most cells in healthy colon, tumor, healthy liver and metastasized liver. The patterns of expression of AmotL2, FKBP51 and IQGAP1 show the greatest variability in immune system cells and neurons and glia cells and the least in blood vessel cells. The simultaneous subcellular localization in tumor cells and other cell types within the tumor suggest an involvement of these three scaffoldins in cancer biology, including a role in Epithelial Mesenchymal Transition. The display in differential localization and quantitative expression of AmotL2, FKBP51, and IQGAP1 could be used as biomarkers for more accurate tumor staging and as potential targets for anti-cancer therapeutics by blocking or slowing down their interconnecting functions. Tough further research needs to be done in order to improve these assessments.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
- CNR-National Research Council, Institute of Endocrinology and Experimental Oncology (IEOS), Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Service of Medical Oncology, Hospiten® Hospitals, 38001 Santa Cruz de Tenerife, Spain.
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | | | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, 21589 Jeddah, Saudi Arabia.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| |
Collapse
|
50
|
He Q, Zhang Y, Zhang X, Xu D, Dong W, Li S, Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:10-18. [PMID: 27979731 DOI: 10.1016/j.ibmb.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The bHLH-PAS transcription factor, Methoprene-tolerant (Met)1, functions as a juvenile hormone (JH) receptor and transduces JH signals by directly binding to E-box like motifs in the regulatory regions of JH response genes. Nuclear localization of Met is crucial for its transcriptional activity. Our previous studies have shown that the chaperone protein Hsp83 facilitates JH-induced Met nuclear import in Drosophila melanogaster. However, the exact molecular mechanisms of Met nuclear transport are not fully elucidated. Using DNA affinity chromatography, we have previously detected binding of the nucleoporin Nup358, in the presence of JH, to the JH response region (JHRR) sequences isolated from the Krüppel-homolog 1 (Kr-h1) promoter. Here, we have demonstrated that Nup358 regulates JH-Hsp83-induced Met nuclear localization. RNAi-mediated knockdown of Nup358 expression in Drosophila fat body perturbs Met nuclear transport during the 3 h after initiation of wandering, when the JH titer is high. The accompanying reduced expression of the transport receptor importin β in Nup358 RNAi flies could be one of the reasons accounting for Met mislocalization. Furthermore, a tetratricopeptide repeat (TPR) domain at the N-terminal end of Nup358 interacts with Hsp83 and is indispensable for Met nuclear localization. Overexpression of the TPR domain in Drosophila fat body prevents Met nuclear localization resulting in a decrease in JHRR-driven reporter activity and Kr-h1 expression. These data show that Nup358 facilitates JH-induced Met nuclear transport in a manner dependent on importin β and Hsp83.
Collapse
Affiliation(s)
- Qianyu He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuanxi Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing 163316, China
| | - Xu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - DanDan Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wentao Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Sheng Li
- The Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|