1
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
2
|
Wang H, Han J, Dmitrii G, Ning K, Zhang X. KLF transcription factors in bone diseases. J Cell Mol Med 2024; 28:e18278. [PMID: 38546623 PMCID: PMC10977429 DOI: 10.1111/jcmm.18278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2025] Open
Abstract
Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Juanjuan Han
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
- Department of Sport RehabilitationShanghai University of SportShanghaiChina
| | - Gorbachev Dmitrii
- Head of General Hygiene DepartmentSamara State Medical UniversitySamaraRussia
| | - Ke Ning
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Xin‐an Zhang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Pan X, Zhang W, Wang L, Guo H, Zheng M, Wu H, Weng Q, He Q, Ding L, Yang B. KLF12 transcriptionally regulates PD-L1 expression in non-small cell lung cancer. Mol Oncol 2023; 17:2659-2674. [PMID: 37606530 DOI: 10.1002/1878-0261.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Recent studies have pointed to the role of Krüpple-like factor 12 (KLF12) in cancer-associated processes, including cancer proliferation, apoptosis, and metastasis. However, the role of KLF12 in tumor immunity remains obscure. Here, we found that KLF12 expression was significantly higher in non-small cell lung cancer (NSCLC) cells with higher programmed death-ligand 1 (PD-L1) expression. Additionally, a positive correlation between KLF12 and PD-L1 was observed in clinical patient tumor tissues. By chromatin immunoprecipitation (ChIP) analysis, KLF12 was identified to bind to the CACCC motif of the PD-L1 promoter. Overexpression of KLF12 promoted PD-L1 transcription, whereas silencing of KLF12 inhibited PD-L1 transcription. Furthermore, signal transducer and activator of transcription 1 (STAT1)- and STAT3-triggered PD-L1 transcription was abolished in the absence of KLF12, and KLF12 knockdown weakened the binding of STAT1 and STAT3 to the PD-L1 promoter. Mechanistically, KLF12 physically interacted with P300, a histone acetyltransferase. In addition, KLF12 silencing reduced P300 binding to the PD-L1 promoter, which subsequently caused decreased acetylation of histone H3. PD-L1 transcription driven by KLF12 overexpression was eliminated by EP300 silencing. In immunocompetent mice, KLF12 knockout inhibited tumor growth and promoted infiltration of CD8+ T cells. However, this phenomenon was not observed in immunodeficient mice. Overall, this study reveals KLF12-mediated transcriptional regulation of PD-L1 in NSCLC; targeting KLF12 may be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang CX, Lin YL, Lu FF, Yu LN, Liu Y, Zhou JD, Kong N, Li D, Yan GJ, Sun HX, Cao GY. Krüppel-like factor 12 regulates aging ovarian granulosa cell apoptosis by repressing SPHK1 transcription and sphingosine-1-phosphate (S1P) production. J Biol Chem 2023; 299:105126. [PMID: 37543362 PMCID: PMC10463260 DOI: 10.1016/j.jbc.2023.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.
Collapse
Affiliation(s)
- Chun-Xue Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yu-Ling Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Fei-Fei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Li-Na Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ji-Dong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Hai-Xiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Guang-Yi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Li Y, Li S, Shi X, Xin Z, Yang Y, Zhao B, Li Y, Lv L, Ren P, Wu H. KLF12 promotes the proliferation of breast cancer cells by reducing the transcription of p21 in a p53-dependent and p53-independent manner. Cell Death Dis 2023; 14:313. [PMID: 37156774 PMCID: PMC10167366 DOI: 10.1038/s41419-023-05824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is the most common cancer affecting women worldwide. Many genes are involved in the development of breast cancer, including the Kruppel Like Factor 12 (KLF12) gene, which has been implicated in the development and progression of several cancers. However, the comprehensive regulatory network of KLF12 in breast cancer has not yet been fully elucidated. This study examined the role of KLF12 in breast cancer and its associated molecular mechanisms. KLF12 was found to promote the proliferation of breast cancer and inhibit apoptosis in response to genotoxic stress. Subsequent mechanistic studies showed that KLF12 inhibits the activity of the p53/p21 axis, specifically by interacting with p53 and affecting its protein stability via influencing the acetylation and ubiquitination of lysine370/372/373 at the C-terminus of p53. Furthermore, KLF12 disrupted the interaction between p53 and p300, thereby reducing the acetylation of p53 and stability. Meanwhile, KLF12 also inhibited the transcription of p21 independently of p53. These results suggest that KLF12 might have an important role in breast cancer and serve as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Zhiqiang Xin
- The Second Hospital of Dalian Medical University, 116000, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Yvlin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Ping Ren
- The Second Hospital of Dalian Medical University, 116000, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
| |
Collapse
|
7
|
Mei J, Sheng X, Yan Y, Cai X, Zhang C, Tian J, Zhang M, Zhou J, Shan H, Huang C. Decreased Krüppel-like factor 4 in adenomyosis impairs decidualization by repressing autophagy in human endometrial stromal cells. BMC Mol Cell Biol 2022; 23:24. [PMID: 35761172 PMCID: PMC9238063 DOI: 10.1186/s12860-022-00425-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Poor decidualization and abnormal autophagy conditions in the endometria of adenomyosis patients have been reported previously. However, the specific regulatory mechanism of decidualization in adenomyosis and its relationship with autophagy levels have not been clarified. Methods Endometrial tissues from adenomyosis patients and uteri from an adenomyosis mouse model were collected for the detection of different expression patterns of KLF4 and autophagy markers (LC3-B/LC3-A and Beclin-1) compared with control groups. Human endometrial stromal cells (hESCs) isolated from adenomyosis and control endometrial tissues were employed to elucidate the biological functions of KLF4 in autophagy and decidualization. Gene expression regulation was examined by quantitative real-time PCR (qRT-PCR), western blotting and luciferase reporter assays. In addition, DNA promoter-protein interactions were examined by chromatin immunoprecipitation (ChIP)/PCR assay and avidin–biotin conjugate DNA precipitation (ABCD) assay. Results KLF4 expression was decreased in endometrial tissues from adenomyosis patients compared with those from fertile controls, especially in stromal compartments. The opposite results were observed for autophagy marker (LC3-B/LC3-A and Beclin-1) expression. At the same time, KLF4 reversed the poor decidualization of hESCs from adenomyosis patients. In addition, KLF4 could induce hESC decidualization by promoting the autophagy level. Mechanistically, KLF4 bound to a conserved site in the autophagy-related 5 (ATG5) promoter region and promoted ATG5 expression. Similar expression patterns of KLF4 and autophagy markers were detected in adenomyotic mice. Conclusions KLF4 overexpression increases the autophagy level of hESCs by transcriptionally promoting ATG5 expression, and abnormally decreased KLF4 in adenomyosis impairs hESC decidualization by repressing autophagy. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00425-6.
Collapse
|
8
|
Le NQK, Do DT, Nguyen TTD, Le QA. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features. Gene 2021; 787:145643. [PMID: 33848577 DOI: 10.1016/j.gene.2021.145643] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Krüppel-like factors (KLF) refer to a group of conserved zinc finger-containing transcription factors that are involved in various physiological and biological processes, including cell proliferation, differentiation, development, and apoptosis. Some bioinformatics methods such as sequence similarity searches, multiple sequence alignment, phylogenetic reconstruction, and gene synteny analysis have also been proposed to broaden our knowledge of KLF proteins. In this study, we proposed a novel computational approach by using machine learning on features calculated from primary sequences. To detail, our XGBoost-based model is efficient in identifying KLF proteins, with accuracy of 96.4% and MCC of 0.704. It also holds a promising performance when testing our model on an independent dataset. Therefore, our model could serve as an useful tool to identify new KLF proteins and provide necessary information for biologists and researchers in KLF proteins. Our machine learning source codes as well as datasets are freely available at https://github.com/khanhlee/KLF-XGB.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Duyen Thi Do
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 106, Taiwan
| | | | - Quynh Anh Le
- Faculty of Applied Sciences, Ton Duc Thang University, No. 19 Nguyen Huu Tho Street, Tan Hung Ward, District 7, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
Han B, Yuan Y, Shi L, Li Y, Liu L, Sun D. Identification of single nucleotide polymorphisms of PIK3R1 and DUSP1 genes and their genetic associations with milk production traits in dairy cows. J Anim Sci Biotechnol 2019; 10:81. [PMID: 31709048 PMCID: PMC6833155 DOI: 10.1186/s40104-019-0392-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
Background Previously, phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) and dual specificity phosphatase 1 (DUSP1) were identified as promising candidate genes for milk production traits due to their being differentially expressed between the dry period and the peak of lactation in livers of dairy cows. Hence, in this study, the single nucleotide polymorphisms (SNPs) of PIK3R1 and DUSP1 genes were identified and their genetic associations with milk yield, fat yield, fat percentage, protein yield, and protein percentage, were investigated using 1067 Chinese Holstein cows from 40 sire families. Results By re-sequencing the entire coding region and 2000 bp of the 5′ and 3′ flanking regions of the two genes, one SNP in the 5′ untranslated region (UTR), three in the 3′ UTR, and two in the 3′ flanking region of PIK3R1 were identified, and one in the 5′ flanking region, one in the 3′ UTR, and two in the 3′ flanking region of DUSP1 were found. Subsequent single-locus association analyses showed that five SNPs in PIK3R1, rs42590258, rs210389799, rs208819656, rs41255622, rs133655926, and rs211408208, and four SNPs in DUSP1, rs207593520, rs208460068, rs209154772, and rs210000760, were significantly associated with milk, fat and protein yields in the first or second lactation (P values ≤ 0.0001 and 0.0461). In addition, by the Haploview 4.2 software, the six and four SNPs in PIK3R1 and DUSP1 respectively formed one haplotype block, and the haplotype-based association analyses showed significant associations between their haplotype combinations and the milk traits in both two lactations (P values ≤ 0.0001 and 0.0364). One SNP, rs207593520(T/G), was predicted to alter the transcription factor binding sites (TFBSs) in the 5′ flanking region of DUSP1. Further, the dual-luciferase assay showed that the transcription activity of allele T in rs207593520 was significantly higher than that of allele G, suggesting the activation of transcriptional activity of DUSP1 gene by allele T of rs207593520. Thus, the rs207593520 SNP was highlighted as a potential causal mutation that should be further verified. Conclusions We demonstrated novel and significant genetic effects of the PIK3R1 and DUSP1 genes on milk production traits in dairy cows, and our findings provide information for use in dairy cattle breeding.
Collapse
Affiliation(s)
- Bo Han
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yuwei Yuan
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Lijun Shi
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Yanhua Li
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China.,Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Dongxiao Sun
- 1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
10
|
Lam VC, Folkersen L, Aguilar OA, Lanier LL. KLF12 Regulates Mouse NK Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2019; 203:981-989. [PMID: 31300511 DOI: 10.4049/jimmunol.1900396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
NK cells are innate lymphocytes that play an integral role in tumor rejection and viral clearance. Unlike their other lymphocyte counterparts, NK cells have the unique ability to recognize and lyse target cells without prior exposure. However, there are no known NK cell-specific genes that are exclusively expressed by all NK cells. Therefore, identification of NK cell-specific genes would allow a better understanding of why NK cells are unique cytotoxic lymphocytes. From the Immunological Genome (ImmGen) Consortium studies, we identified kruppel-like factor 12 (Klf12), encoding a novel transcription factor, preferentially expressed in C57BL/6 mouse NK cells. KLF12 was dispensable for NK cell development, IFN-γ production, degranulation, and proliferation in Klf12 knockout mice. RNA-sequencing analysis revealed increased expression of Btg3, an antiproliferative gene, in KLF12-deficient NK cells compared with wild-type NK cells. Interestingly, competitive mixed bone marrow chimeric mice exhibited reduced development of KLF12-deficient NK cells, altered IFN-γ production and degranulation, and impairment of NK cell proliferation in vitro and in vivo in response to mouse CMV infection. KLF12-deficient NK cells from bone marrow chimeric mice also expressed higher levels of the IL-21R, which resulted in increased IL-21R signaling and correlated with greater inhibition of NK cell proliferation. Furthermore, IL-21 induced Btg3 expression, which correlated with arrested NK cell maturation and proliferation. In summary, we found that KLF12 regulates mouse NK cell proliferation potentially by regulating expression of Btg3 via IL-21.
Collapse
Affiliation(s)
- Viola C Lam
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143
| | - Lasse Folkersen
- Sankt Hans Hospital, Capital Region Hospitals, DK 2000 Copenhagen, Denmark; and
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143; .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
| |
Collapse
|
11
|
Wang S, Xiao S, Cheng X, Chen S, Zhu X, Lin F, Chen S. Recovery of Muscovy duck-origin goose parvovirus from an infectious clone containing an E-box motif (CACATG) deletion within the left terminal region. Mol Cell Probes 2019; 46:101410. [PMID: 31128205 DOI: 10.1016/j.mcp.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Muscovy duck-origin goose parvovirus (MDGPV) is a causative agent of MDGPV-associated Derzsy's disease. To evalute the role of the cis-acting element E-box (CACATG) deletion on MDGPV eplication, an infectious plasmid clone p-PTΔE287, having one E-box deletion at nucleotide (nt) 287 of the left inverted terminal repeat sequence (L-ITR), was constructed by overlap extension PCR deleting the 287CACATG292 motif from the plasmid pMDGPVPT containing the full-length genome of the virulent MDGPV strain PT. The p-PTΔE287 plasmid was transfected into 9-day-old non-immune Muscovy duck embryos via the yolk sac, resulting in successful rescue of the deletion mutant virus r-PTΔE287. Compared with its parental virus PT, the virulence and the replication ability of r-PTΔE287 were reduced. In addition, we examined the ability of r-PTΔE287 to manipulate cell cycle progression. The results showed that r-PTΔE287 replication results in G0/G1 phase accumulation of infected duck embryo liver mesenchymal stem cells (BMSCs) and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Taken together, introducing 287CACATG292 element deletion into MDGPV PT genomic DNA that induced rescued mutant virus (r-PTΔE287) cell cycle arrest function at the G0/G1 phase, which might inhibit MDGPV replication and virus progeny production. This study laid the foundation for further understanding of the relationship between E-box deletion in the L-ITR and MDGPV virulence.
Collapse
Affiliation(s)
- Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| |
Collapse
|
12
|
Farris SP, Riley BP, Williams RW, Mulligan MK, Miles MF, Lopez MF, Hitzemann R, Iancu OD, Colville A, Walter NAR, Darakjian P, Oberbeck DL, Daunais JB, Zheng CL, Searles RP, McWeeney SK, Grant KA, Mayfield RD. Cross-species molecular dissection across alcohol behavioral domains. Alcohol 2018; 72:19-31. [PMID: 30213503 PMCID: PMC6309876 DOI: 10.1016/j.alcohol.2017.11.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 9-12, 2017. Psychiatric diseases, including alcohol-use disorders (AUDs), are influenced through complex interactions of genes, neurobiological pathways, and environmental influences. A better understanding of the common neurobiological mechanisms underlying an AUD necessitates an integrative approach, involving a systematic assessment of diverse species and phenotype measures. As part of the World Congress on Stress and Alcoholism, this symposium provided a detailed account of current strategies to identify mechanisms underlying the development and progression of AUDs. Dr. Sean Farris discussed the integration and organization of transcriptome and postmortem human brain data to identify brain regional- and cell type-specific differences related to excessive alcohol consumption that are conserved across species. Dr. Brien Riley presented the results of a genome-wide association study of DSM-IV alcohol dependence; although replication of genetic associations with alcohol phenotypes in humans remains challenging, model organism studies show that COL6A3, KLF12, and RYR3 affect behavioral responses to ethanol, and provide substantial evidence for their role in human alcohol-related traits. Dr. Rob Williams expanded upon the systematic characterization of extensive genetic-genomic resources for quantifying and clarifying phenotypes across species that are relevant to precision medicine in human disease. The symposium concluded with Dr. Robert Hitzemann's description of transcriptome studies in a mouse model selectively bred for high alcohol ("binge-like") consumption and a non-human primate model of long-term alcohol consumption. Together, the different components of this session provided an overview of systems-based approaches that are pioneering the experimental prioritization and validation of novel genes and gene networks linked with a range of behavioral phenotypes associated with stress and AUDs.
Collapse
Affiliation(s)
- Sean P Farris
- University of Texas at Austin, Austin, TX, United States
| | - Brien P Riley
- Virginia Commonwealth University, Richmond, VA, United States
| | - Robert W Williams
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Megan K Mulligan
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Michael F Miles
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marcelo F Lopez
- University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert Hitzemann
- Oregon Health and Science University, Portland, OR, United States
| | - Ovidiu D Iancu
- Oregon Health and Science University, Portland, OR, United States
| | | | | | | | | | - James B Daunais
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - Robert P Searles
- Oregon Health and Science University, Portland, OR, United States
| | | | - Kathleen A Grant
- Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
13
|
Huang C, Sun H, Wang Z, Liu Y, Cheng X, Liu J, Jiang R, Zhang X, Zhen X, Zhou J, Chen L, Ding L, Yan G, Jiang Y. Increased Krüppel-like factor 12 impairs embryo attachment via downregulation of leukemia inhibitory factor in women with recurrent implantation failure. Cell Death Discov 2018; 4:23. [PMID: 30109142 PMCID: PMC6079092 DOI: 10.1038/s41420-018-0088-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent implantation failure (RIF) caused by various etiological factors remains a challenge for fertility clinicians using assisted reproductive technology (ART) worldwide. Dysregulation of leukemia inhibitory factor (LIF) in the endometria of women with RIF is involved in impaired endometrial receptivity and embryo adhesion. However, the mechanism through which LIF expression is regulated in women with RIF is still poorly understood. Our previous study noted that the abnormally increased endometrial Krüppel-like factor 12 (KLF12) in RIF women led to impaired decidualization and embryo implantation. Here, we further found that KLF12 inhibited embryo adhesion in vivo and in vitro by repressing LIF expression. Mechanistically, KLF12 bound to conserved sites (CAGTGGG, -6771 to -6765 and -7115 to -7109) within the LIF promoter region and repressed LIF transcription directly. Exogenous LIF significantly reversed the KLF12-mediated repression of BeWo spheroid adhesion. KLF12 expression was reduced significantly in Ishikawa cells treated with progestogen, which was due to the activation of Akt signaling. These findings may provide novel potential therapeutic regimens for patients with RIF and disrupted endometrial receptivity.
Collapse
Affiliation(s)
- Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Yang Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xi Cheng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xindong Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Linjun Chen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 China
| |
Collapse
|
14
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
16
|
Adkins AE, Hack LM, Bigdeli TB, Williamson VS, McMichael GO, Mamdani M, Edwards A, Aliev F, Chan RF, Bhandari P, Raabe RC, Alaimo JT, Blackwell GG, Moscati AA, Poland RS, Rood B, Patterson DG, Walsh D, Collaborative Study of the Genetics of Alcoholism Consortium, Whitfield JB, Zhu G, Montgomery GW, Henders AK, Martin NG, Heath AC, Madden PA, Frank J, Ridinger M, Wodarz N, Soyka M, Zill P, Ising M, Nöthen MM, Kiefer F, Rietschel M, the German Study of the Genetics of Addiction Consortium, Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR, Farrer LA, Maher BS, Prescott CA, Dick DM, Bacanu SA, Mathies LD, Davies AG, Vladimirov VI, Grotewiel M, Bowers MS, Bettinger JC, Webb BT, Miles MF, Kendler KS, Riley BP. Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-Response Behaviors in Model Organisms. Alcohol Clin Exp Res 2017; 41:911-928. [PMID: 28226201 PMCID: PMC5404949 DOI: 10.1111/acer.13362] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/16/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. METHODS We conducted a genomewide association study in 706 related AD cases and 1,748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-response behaviors. We tested 1 primate-specific gene for expression differences in case/control postmortem brain tissue. RESULTS We detected significant association in COL6A3 and suggestive association in 2 previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance (AFT). Klf12 expression correlated with locomotor activation following EtOH injection in mice. Loss of function of the RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens (NAc). CONCLUSIONS We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975. Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders.
Collapse
Affiliation(s)
- Amy E. Adkins
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Laura M. Hack
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Tim B. Bigdeli
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Vernell S. Williamson
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - G. Omari McMichael
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Mohammed Mamdani
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Alexis Edwards
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Fazil Aliev
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Robin F. Chan
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Poonam Bhandari
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Richard C. Raabe
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Joseph T. Alaimo
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - GinaMari G. Blackwell
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Arden A. Moscati
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Ryan S. Poland
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Benjamin Rood
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Diana G. Patterson
- Shaftesbury Square Hospital, 116-120 Great Victoria Street, Belfast,
BT2 7BG, United Kingdom
| | - Dermot Walsh
- Health Research Board, 67-72 Lower Mount Street, Dublin 2,
Ireland
| | | | - John B. Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Gu Zhu
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Grant W. Montgomery
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Anjali K. Henders
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute,
Royal Brisbane and Women’s Hospital, 300 Herston Road, Brisbane, QLD 4006,
Australia
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine,
4560 Clayton Ave., Suite 1000, St. Louis, MO, 63110, USA
| | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine,
4560 Clayton Ave., Suite 1000, St. Louis, MO, 63110, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University, J 5, 68159
Mannheim, Germany
| | - Monika Ridinger
- Department of Psychiatry, University Hospital Regensburg,
University of Regensburg, 93042 Regensburg, Germany
| | - Norbert Wodarz
- Department of Psychiatry, University Hospital Regensburg,
University of Regensburg, 93042 Regensburg, Germany
| | - Michael Soyka
- Privatklinik Meiringen, Willigen, 3860 Meiringen, Switzerland
- Department of Psychiatry and Psychotherapy, University of Munich,
Nussbaumstrasse 7, 80336 Munich, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University of Munich,
Nussbaumstrasse 7, 80336 Munich, Germany
| | - Marcus Ising
- Department of Molecular Psychology, Max-Planck-Institute of
Psychiatry, Kraepelinstrasse 2–10, 80804 Munich, Germany
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of
Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
- Department of Institute of Human Genetics, University of Bonn,
Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of
Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J 5,
68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University, J 5, 68159
Mannheim, Germany
| | | | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Neurobiology, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Psychiatry, VA CT Healthcare Center, 950 Campbell
Avenue, West Haven, CT, 06516, USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University
School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Ryan Koesterer
- Department of Medicine (Biomedical Genetics), Boston University
School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Laura Almasy
- Texas Biomedical Research Institute, Department of Genetics, P.O.
Box 760549, San Antonio, TX, 78245-0549, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, 333
Cedar Street, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale University School of Medicine,
333 Cedar Street, New Haven, CT, 06510, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman
School of Medicine, Treatment Research Center, 3900 Chestnut Street, Philadelphia,
PA 19104, USA
- VISN 4 MIRECC, Philadelphia VA Medical Center, 3900 Woodland
Avenue, Philadelphia, PA, 19104, USA
| | - Lindsay A. Farrer
- Department of Psychiatry, VA CT Healthcare Center, 950 Campbell
Avenue, West Haven, CT, 06516, USA
- Department of Neurology, Boston University School of Medicine, 72
East Concord Street, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University School of Medicine,
72 East Concord Street, Boston, MA, 02118, USA
- Department of Genetics and Genomics, Boston University School of
Medicine, 72 East Concord Street, Boston, MA, 02118, USA
- Department of Epidemiology and Biostatistics, Boston University
School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of
Public Health, 624 N. Broadway, 8th Floor, Baltimore, MD, 21205, USA
| | - Carol A. Prescott
- Department of Psychology, University of Southern California, SGM
501, 3620 South McClintock Ave., Los Angeles, CA, 90089-1061, USA
| | - Danielle M. Dick
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Silviu A. Bacanu
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Laura D. Mathies
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Andrew G. Davies
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Vladimir I. Vladimirov
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Lieber Institute for Brain Development, Johns Hopkins University,
855 North Wolfe Street Suite 300, Baltimore, MD, 21205, USA
- Center for Biomarker Research and Personalized Medicine, School of
Pharmacy, PO Box 980533, Virginia Commonwealth University, Richmond, VA 23298-0533,
USA
| | - Mike Grotewiel
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - M. Scott Bowers
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Jill C. Bettinger
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Bradley T. Webb
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
| | - Michael F. Miles
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Pharmacology & Toxicology, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Kenneth S. Kendler
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| | - Brien P. Riley
- Virginia Commonwealth University Alcohol Research Center, PO Box
980424, Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
- Department of Psychiatry, PO Box 980424, Virginia Commonwealth
University, Richmond, VA, 23298-0424, USA
- Department of Human & Molecular Genetics, PO Box 980424,
Virginia Commonwealth University, Richmond, VA, 23298-0424, USA
| |
Collapse
|
17
|
Huang C, Jiang Y, Zhou J, Yan Q, Jiang R, Cheng X, Xing J, Ding L, Sun J, Yan G, Sun H. Increased Krüppel-like factor 12 in recurrent implantation failure impairs endometrial decidualization by repressing Nur77 expression. Reprod Biol Endocrinol 2017; 15:25. [PMID: 28359310 PMCID: PMC5374626 DOI: 10.1186/s12958-017-0243-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Decidualization is a prerequisite for successful implantation and the establishment of pregnancy. A critical role of impaired decidualization in subfertility has been established. In human endometrial stromal cells (hESCs), Krüppel-like factor 12 (KLF12) and Nur77 are novel regulators of decidualization. We investigated whether KLF12 impaired the decidualization of hESCs in recurrent implantation failure (RIF) patients. METHODS Endometrial tissues and hESCs were collected from RIF patients (n = 34) and fertile controls (n = 30) for in vitro analysis. Primary hESCs isolated from RIF endometrial tissues were used to evaluate the biological functions of KLF12 and Nur77. In addition, their molecular mechanisms were investigated by adenovirus-mediated overexpression. Gene expression regulation was examined by real-time-quantitative PCR (qRT-PCR), immunostaining and luciferase reporter assay. Further, blastocyst-like spheroid (BLS) and blastocyst implantation models were performed to examine the roles of KLF12 and Nur77 during embryo expansion on hESCs. RESULTS hESCs from the RIF patients showed a poor decidual response, mainly characterized by decreased decidual prolactin (dPRL) secretion, impaired transformation and limited BLS expansion. In addition, KLF12 expression was increased in endometrial tissues from the RIF patients compared with those from the fertile controls, especially in stromal compartments. The opposite results were observed for Nur77 expression in these tissues. KLF12 repressed hESC decidualization by decreasing Nur77 expression. Mechanistically, KLF12 bound to a conserved site in the Nur77 promoter region. Nur77 overexpression significantly reversed the KLF12-mediated repression of dPRL expression, decidual transformation and BLS/blastocyst expansion. CONCLUSIONS KLF12 impairs endometrial decidualization by transcriptionally repressing Nur77, and Nur77 overexpression reverses the poor decidual response of hESCs in RIF patients.
Collapse
Affiliation(s)
- Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Qiang Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Xi Cheng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Jun Xing
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA USA
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
- Collaborative Innovation Platform for Reproductive Biology and Technology of Nanjing University Medical School, Nanjing, 210008 People’s Republic of China
| |
Collapse
|
18
|
Guan B, Li Q, Shen L, Rao Q, Wang Y, Zhu Y, Zhou XJ, Li XH. MicroRNA-205 directly targets Krüppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma. Int J Oncol 2016; 49:720-34. [PMID: 27278159 DOI: 10.3892/ijo.2016.3573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
We investigated microRNAs (miRs) specific to its target gene and exerting distinct biological functions for basal-like breast carcinoma (BLBC). Total RNA was extracted and subjected to miR microarray and bioinformatics analysis. Based on the comprehensive analysis, expression of miRs including its target was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot analysis and immunohistochemistry (IHC). Further functional analyses were conducted including proliferation, invasion and apoptosis. miR-205 was identified as downregulated (less than 0.5-fold) in BLBC relatively to normal control (NC). Gene ontology (GO) analysis suggested miR-205 may directly targeted Krüppel-like factor 12 (KLF12; degree=4). Luciferase assay revealed miR-205 directly targeted KLF12 through binding its 3'-untranslated region (3'-UTR; p=0.0016). qRT-PCR and western blot analysis showed miR-205 expression was low in cells (p=0.007) and tumor tissues (n=6; p=0.0074), and KLF12 RNA/protein was observed at high levels in cells (p=0.0026; p=0.0079) and tumor tissues (n=9; p=0.0083); knock-up of miR-205 increased its expression (p=0.0021) but reduced KLF12 RNA/protein levels (p=0.0038; p=0.009) in cells. Modulation of miR-205 expression by transfecting its mimics in cells, was involved in invasion (p=0.00175) and apoptosis (p=0.006). In conclusion, our results supported that miR-205 was a miR specific to BLBC which functioned as tumor suppressor gene through directly targeting and negatively regulating proto-oncogene KLF12. miR-205 dysregulation was involved in invasion and apoptosis. miR-205 and KLF12 provided a potential diagnosis biomarker and therapeutic approach for BLBC.
Collapse
Affiliation(s)
- Bing Guan
- Department of Pathology, Shanghai 6th People's Hospital Jinshan Branch, Shanghai 201599, P.R. China
| | - Qing Li
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai 201040, P.R. China
| | - Qiu Rao
- Department of Pathology, Nanjing Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yun Zhu
- Department of Pathology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Jun Zhou
- Department of Pathology, Nanjing Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Xiao-Hong Li
- Department of Pathology, Shanghai 6th People's Hospital Jinshan Branch, Shanghai 201599, P.R. China
| |
Collapse
|
19
|
Qiu GH, Xie X, Deng L, Hooi SC. Tumor Suppressor DLEC1 can Stimulate the Proliferation of Cancer Cells When AP-2ɑ2 is Down-Regulated in HCT116. HEPATITIS MONTHLY 2015; 15:e29829. [PMID: 26834787 PMCID: PMC4723729 DOI: 10.5812/hepatmon.29829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular mechanisms of tumor suppressor gene DLEC1 are largely unknown. OBJECTIVES In this study, we established DLEC1 over-expression stable clones to study the cellular function of DLEC1 in the colorectal cancer cell line, HCT116. MATERIALS AND METHODS Stable clones with DLEC1 over-expression were first established by the transfection of DLEC1 expression construct pcDNA31DLEC1 in HCT116. On G418 selection, positive stable clones were screened for DLEC1 expression level by conventional reverse transcription-polymerase chain reaction (RT-PCR), and verified by real-time RT-PCR and Western blotting. Subsequently, these stable clones were subjected to colony formation and cell cycle analyses and identification of factors involved in G1 arrest. Lastly, three stable clones, DLEC1-7 (highest DLEC1 expression), DLEC1-3 (lowest expression) and pcDNA31 vector control, were employed to analyze cell proliferation and cell cycle after AP-2α2 knockdown by siRNAs. RESULTS The DLEC1 over-expression was found to reduce the number of colonies in colony formation and to induce G1 arrest in seven clones, and apoptosis in one clone in the cell cycle analysis. Furthermore, regardless of the different cell cycle defects in all eight stable clones, the expression level of transcriptional factor AP-2α2 was found to be elevated. More interestingly, we found that when AP-2α2 was knocked down, DLEC1 over-expression neither suppressed cancer cell growth nor induced G1 arrest, yet, instead promoted cell growth and decreased cells in the G1 fraction. This promotion of cell proliferation and release of G1 cells also seemed to be proportional to DLEC1 expression levels in DLEC1 stable clones. CONCLUSIONS DLEC1 suppresses tumor cell growth the presence of AP-2α2 and stimulates cell proliferation in the down-regulation of AP-2α2 in DLEC1 over-expression stable clones of HTC116.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, PR China
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Corresponding Authors: Guo-Hua Qiu, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, PR China. Tel/Fax: +86-59786330103, E-mail: ; Shing Chuan Hooi, Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore. Tel: +65-65163222, Fax: +65-67788161, E-mail:
| | - Xiaojin Xie
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, PR China
| | - Shing Chuan Hooi
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Corresponding Authors: Guo-Hua Qiu, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, PR China. Tel/Fax: +86-59786330103, E-mail: ; Shing Chuan Hooi, Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore. Tel: +65-65163222, Fax: +65-67788161, E-mail:
| |
Collapse
|
20
|
Zhang H, Zhu X, Chen J, Jiang Y, Zhang Q, Kong C, Xing J, Ding L, Diao Z, Zhen X, Sun H, Yan G. Krüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization. Reprod Biol Endocrinol 2015; 13:80. [PMID: 26223982 PMCID: PMC4520059 DOI: 10.1186/s12958-015-0079-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/18/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Decidualization is a prerequisite for successful implantation and the establishment of pregnancy. Krüppel-like factor 12 (KLF12) is a negative regulator of endometrial decidualization in vitro. We investigated whether KLF12 was associated with impaired decidualization under conditions of repeated implantation failure (RIF). METHODS Uterine tissues were collected from a mouse model of early pregnancy and artificial decidualization for immunohistochemistry, Western blot and real-time PCR analysis. Reporter gene assays, chromatin immunoprecipitation-PCR and avidin-biotin conjugate DNA precipitation assays were performed to analyze the transcriptional regulation of forkhead box O1 (FOXO1) by KLF12. Furthermore, the protein levels of KLF12 and FOXO1 in patients with RIF were analyzed by Western blot and immunohistochemistry. RESULTS KLF12 led to defective implantation and decidualization in the mouse uterine model of early pregnancy and artificial decidualization by directly binding to the FOXO1 promoter region and inhibiting its expression in human endometrial stromal cells. Elevated KLF12 expression was accompanied by decreased FOXO1 expression in the endometria of patients with RIF. CONCLUSIONS As a novel regulator, KLF12 predominantly controls uterine endometrial differentiation during early pregnancy and leads to implantation failure.
Collapse
Affiliation(s)
- Hui Zhang
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xudong Zhu
- College of Science Isotope Laboratory, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Jing Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Qun Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Chengcai Kong
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Jun Xing
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Lijun Ding
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Zhenyu Diao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Xin Zhen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Haixiang Sun
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
21
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|
22
|
Zhang Q, Zhang H, Jiang Y, Xue B, Diao Z, Ding L, Zhen X, Sun H, Yan G, Hu Y. MicroRNA-181a is involved in the regulation of human endometrial stromal cell decidualization by inhibiting Krüppel-like factor 12. Reprod Biol Endocrinol 2015; 13:23. [PMID: 25889210 PMCID: PMC4379545 DOI: 10.1186/s12958-015-0019-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/14/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The transformation of endometrium into decidua is essential for normal implantation of the blastocyst. However, the post-transcriptional regulation and the miRNAs involved in decidualization remain poorly understood. Here, we examined microRNA-181a (miR-181a) expression in decidualized human endometrial stromal cell (hESC). In addition, we investigated the functional effect of miR-181a on hESC decidualization in vitro. METHODS Quantitative real-time PCR (qRT-PCR) was used to detect the profile of miR-181a in decidualized hESC. qRT-PCR, enzyme-linked fluorescent assay, and immunofluorescence assay were performed to investigate decidualization marker genes' expression after enhancing or inhibition of miR-181a expression in hESC. Luciferase reporter assay, western blotting, qRT-PCR, and immunofluorescence assay were carried out to identify the relationship between miR-181a and Krüppel-like factor 12 (KLF12). RESULTS miR-181a expression levels increased dramatically in hESC treated with 8-Br-cAMP and MPA. Increased miR-181a expression promoted hESC decidualization-related gene expression and morphological transformation; conversely, inhibition of miR-181a expression compromised hESC decidualization in vitro. Further analysis confirmed that miR-181a interacted with the 3' untranslated region of the transcription factor KLF12 and down-regulated KLF12 at the transcriptional and translational levels. KLF12 overexpression abolished miR-181a-induced decidualization. CONCLUSIONS Our findings suggest that miR-181a plays a functionally important role in human endometrial stromal cell decidualization in vitro by inhibiting KLF12.
Collapse
Affiliation(s)
- Qun Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Hui Zhang
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yue Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Bai Xue
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Zhenyu Diao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Lijun Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Xin Zhen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Haixiang Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Guijun Yan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Yali Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
23
|
Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from DNA motifs. Nat Methods 2015; 12:265-72, 7 p following 272. [PMID: 25240437 PMCID: PMC4344378 DOI: 10.1038/nmeth.3065] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/23/2014] [Indexed: 12/17/2022]
Abstract
The epigenome is established and maintained by the site-specific recruitment of chromatin-modifying enzymes and their cofactors. Identifying the cis elements that regulate epigenomic modification is critical for understanding the regulatory mechanisms that control gene expression patterns. We present Epigram, an analysis pipeline that predicts histone modification and DNA methylation patterns from DNA motifs. The identified cis elements represent interactions with the site-specific DNA-binding factors that establish and maintain epigenomic modifications. We cataloged the cis elements in embryonic stem cells and four derived lineages and found numerous motifs that have location preference, such as at the center of H3K27ac or at the edges of H3K4me3 and H3K9me3, which provides mechanistic insight about the shaping of the epigenome. The Epigram pipeline and predictive motifs are at http://wanglab.ucsd.edu/star/epigram/.
Collapse
Affiliation(s)
- John W. Whitaker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Zhao Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
24
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
25
|
C-Terminal Binding Protein: A Molecular Link between Metabolic Imbalance and Epigenetic Regulation in Breast Cancer. Int J Cell Biol 2013; 2013:647975. [PMID: 23762064 PMCID: PMC3671672 DOI: 10.1155/2013/647975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has given rise to significant global concerns as numerous population-based studies demonstrate an incontrovertible association between obesity and breast cancer. Mechanisms proposed to account for this linkage include exaggerated levels of carbohydrate substrates, elevated levels of circulating mitogenic hormones, and inflammatory cytokines that impinge on epithelial programming in many tissues. Moreover, recently many scientists have rediscovered the observation, first described by Otto Warburg nearly a century ago, that most cancer cells undergo a dramatic metabolic shift in energy utilization and expenditure that fuels and supports the cellular expansion associated with malignant proliferation. This shift in substrate oxidation comes at the cost of sharp changes in the levels of the high energy intermediate, nicotinamide adenine dinucleotide (NADH). In this review, we discuss a novel example of how shifts in the concentration and flux of substrates metabolized and generated during carbohydrate metabolism represent components of a signaling network that can influence epigenetic regulatory events in the nucleus. We refer to this regulatory process as "metabolic transduction" and describe how the C-terminal binding protein (CtBP) family of NADH-dependent nuclear regulators represents a primary example of how cellular metabolic status can influence epigenetic control of cellular function and fate.
Collapse
|
26
|
Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R, Struhl K. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Res 2013; 23:1195-209. [PMID: 23595228 PMCID: PMC3730095 DOI: 10.1101/gr.148080.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000–15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS.
Collapse
Affiliation(s)
- Joseph D Fleming
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Shen X, Hu Y, Jiang Y, Liu H, Zhu L, Jin X, Shan H, Zhen X, Sun L, Yan G, Sun H. Krüppel-like factor 12 negatively regulates human endometrial stromal cell decidualization. Biochem Biophys Res Commun 2013; 433:11-7. [PMID: 23458459 DOI: 10.1016/j.bbrc.2013.02.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/12/2013] [Indexed: 12/17/2022]
Abstract
Members of the KLFs family of transcription factors play roles in maternal endometrium development during embryo implantation. However, the specific role of KLF12 in endometrium development has not yet been described. In this study, we showed that KLF12 expression in human endometrial stromal cells (HESCs) was significantly decreased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). The adenovirus-mediated overexpression of KLF12 in HESCs significantly repressed the expression and secretion of decidualization biomarker genes and their products decidual prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1) induced by 8-Br-cAMP and MPA. Moreover, CHIP and luciferase reporter assays demonstrated that KLF12 bound to a CAGTGGG element within the decidual prolactin promoter and decreased decidual PRL promoter (dPRL/-2000Luc) activation in a sequence-specific manner. Taken together, these findings suggest KLF12 is a negative regulator of human endometrial stromal cell decidualization.
Collapse
Affiliation(s)
- Xiaoyue Shen
- Reproductive Medicine Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chang LK, Huang PH, Shen WT, Yang SH, Liu WJ, Lo CF. Role of Penaeus monodon Kruppel-like factor (PmKLF) in infection by white spot syndrome virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:121-129. [PMID: 21740926 DOI: 10.1016/j.dci.2011.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
Sp1-like proteins and Kruppel-like factors (KLFs) are highly related zinc-finger proteins that have crucial roles in transcription. One expressed sequence tag (EST, HPA-N-S01-EST0038) from shrimps is homologous to Sp1. This study reports the cloning and characteristics of a KLF from shrimp, Penaeus monodon (PmKLF). The full-length PmKLF cDNA is 1702 bp, encoding a polypeptide of 360 amino acids. Sequence analysis revealed that the sequence of PmKLF is similar to that of KLF11 in humans, mice and zebrafish. RT-PCR analysis indicated that PmKLF mRNA is expressed in all examined tissues. Additionally, immunofluorescence analysis revealed that GFP-KLF fusion protein is located in the nucleus as dots in an insect cell line, Sf9. Localization of PmKLF in the nucleus is also observed in the hemolymph from white spot syndrome virus (WSSV)-infected and WSSV-uninfected Litopenaeus vannamei. Knockdown of the expression of PmKLF transcript in WSSV-infected shrimp resulted in delayed cumulative mortalities, suggesting that PmKLF is important to WSSV infection. Moreover, inhibition of PmKLF expression reduced the copy number of WSSV and ie1 expression, revealing that PmKLF affects WSSV infection via interfering with ie1 expression.
Collapse
Affiliation(s)
- Li-Kwan Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
29
|
Vu TT, Gatto D, Turner V, Funnell APW, Mak KS, Norton LJ, Kaplan W, Cowley MJ, Agenès F, Kirberg J, Brink R, Pearson RCM, Crossley M. Impaired B cell development in the absence of Krüppel-like factor 3. THE JOURNAL OF IMMUNOLOGY 2011; 187:5032-42. [PMID: 22003205 DOI: 10.4049/jimmunol.1101450] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.
Collapse
Affiliation(s)
- Thi Thanh Vu
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pearson RCM, Funnell APW, Crossley M. The mammalian zinc finger transcription factor Krüppel-like factor 3 (KLF3/BKLF). IUBMB Life 2011; 63:86-93. [PMID: 21360637 DOI: 10.1002/iub.422] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/25/2010] [Indexed: 01/21/2023]
Abstract
KLF3 is a member of the Krüppel-like factor (KLF) family of transcription factors. These proteins are classified by the presence of three C-terminal C2H2 zinc fingers that allow sequence-specific binding to CACCC boxes and GC-rich motifs found in the promoters, enhancers, and other control regions of target genes. KLFs have diverse biological roles, regulating proliferation, differentiation, and apoptosis in many tissues throughout development. KLF3 is a transcriptional repressor that binds the cofactor C-terminal binding protein, which in turn recruits a large repressor complex to mediate transcriptional silencing. In addition to an understanding of the molecular mechanisms that allow KLF3 to regulate the expression of its target genes, the biological roles of this transcription factor are now being defined. In agreement with the widespread expression pattern of this transcription factor, it is becoming clear that KLF3 is an important regulator of several biological processes, including adipogenesis, erythropoiesis, and B cell development.
Collapse
Affiliation(s)
- Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
31
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
32
|
Abstract
Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Eye and Ear Institute, Room 1025, Pittsburgh, PA 15213, USA.
| |
Collapse
|
33
|
Wenke AK, Bosserhoff AK. Roles of AP-2 transcription factors in the regulation of cartilage and skeletal development. FEBS J 2009; 277:894-902. [PMID: 20050923 DOI: 10.1111/j.1742-4658.2009.07509.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During embryogenesis, most of the mammalian skeletal system is preformed as cartilaginous structures that ossify later. The different stages of cartilage and skeletal development are well described, and several molecular factors are known to influence the events of this enchondral ossification, especially transcription factors. Members of the AP-2 family of transcription factors play important roles in several cellular processes, such as apoptosis, migration and differentiation. Studies with knockout mice demonstrate that a main function of AP-2s is the suppression of terminal differentiation during embryonic development. Additionally, the specific role of these molecules as regulators during chondrogenesis has been characterized. This review gives an overview of AP-2s, and discusses the recent findings on the AP-2 family, in particular AP-2alpha, AP-2beta, and AP-2epsilon, as regulators of cartilage and skeletal development.
Collapse
|
34
|
Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet Genomics 2009; 19:770-80. [PMID: 19745787 DOI: 10.1097/fpc.0b013e328330eeca] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Human multidrug and toxin extrusion member 1, MATE1 (SLC47A1), plays an important role in the renal and biliary excretion of endogenous and exogenous organic cations including many therapeutic drugs. In this study, we characterized the transcriptional effects of five polymorphic variants and six common haplotypes in the basal promoter region of MATE1 that were identified in 272 DNA samples from ethnically diverse US populations. METHODS We measured luciferase activities of the six common promoter haplotypes of MATE1 using in-vitro and in-vivo reporter assays. RESULTS Haplotypes that contain the most common variant (mean allele frequency in four ethnic groups: 0.322), g.-66T>C, showed a significant decrease in reporter activities compared to the reference. Two transcription factors, activating protein-1 (AP-1) and activating protein-2 repressor (AP-2rep), were predicted to bind to the promoter in the region of g.-66T>C. Results from electrophoretic mobility shift assays showed that the g.-66T allele, exhibited greater binding to AP-1 than the g.-66C allele. AP-2rep inhibited the binding of AP-1 to the MATE1 basal promoter region, and the effect was considerably greater for the g.-66T>C. These data suggest that the reduced transcriptional activity of g.-66T>C results from a reduction in the binding potency of the transcriptional activator, AP-1, and an enhanced binding potency of the repressor, AP-2rep to the MATE1 basal promoter region. Consistent with the reporter assays, MATE1 mRNA expression levels were significantly lower in kidney samples from individuals who were homozygous or heterozygous for g.-66T>C in comparison with samples from individuals who were homozygous for the g.-66T allele. CONCLUSION Our study suggests that the rate of transcription of MATE1 is regulated by AP-1 and AP-2rep and that a common promoter variant, g.-66T>C may affect the expression level of MATE1 in human kidney, and ultimately result in variation in drug disposition and response.
Collapse
|
35
|
Julià A, Ballina J, Cañete JD, Balsa A, Tornero-Molina J, Naranjo A, Alperi-López M, Erra A, Pascual-Salcedo D, Barceló P, Camps J, Marsal S. Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. ACTA ACUST UNITED AC 2008; 58:2275-86. [PMID: 18668548 DOI: 10.1002/art.23623] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To identify new genes associated with susceptibility to rheumatoid arthritis (RA), using a 2-stage genome-wide association study. METHODS Following a liability-based study design, we analyzed 317,503 single-nucleotide polymorphisms (SNPs) in 400 patients with RA and 400 control subjects. We selected a group of candidate SNPs for replication in an independent group of 410 patients with RA and 394 control subjects. Using data from the 3 previous genome-wide association studies in RA, we also looked for genomic regions showing evidence of common association signals. Finally, we analyzed the presence of genome-wide epistasis using the binary test implemented in the PLINK program. RESULTS We identified several genomic regions showing evidence of genome-wide association (P < 1 x 10(-5)). In the replication analysis, we identified KLF12 SNP rs1324913 as the most strongly associated SNP (P = 0.01). In our study, we observed that this SNP showed higher significance than PTPN22 SNP rs2476601, in both the genome-wide association studies and the replication analyses. Furthermore, the integration of our data with those from previous genome-wide association studies showed that KLF12 and PTPRT are the unique loci that are commonly associated in 3 different studies (P = 0.004 and P = 0.002 for KLF12 in the Wellcome Trust Case Control Consortium study and the Brigham and Women's Rheumatoid Arthritis Sequential Study genome-wide association study, respectively). The genome-wide epistasis analysis identified several SNP pairs close to significance after multiple test correction. CONCLUSION The present genome-wide association study identified KLF12 as a new susceptibility gene for RA. The joint analysis of our results and those from previous genome-wide association studies showed genomic regions with a higher probability of being genuine susceptibility loci for RA.
Collapse
Affiliation(s)
- Antonio Julià
- Institut de Recerca, Hospital Universitari Vall d'Hebrón, [corrected] Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eaton SA, Funnell APW, Sue N, Nicholas H, Pearson RCM, Crossley M. A network of Krüppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem 2008; 283:26937-47. [PMID: 18687676 DOI: 10.1074/jbc.m804831200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the Sp/Klf (Krüppel-like factor) family regulate biological processes such as hematopoiesis, adipogenesis, and stem cell maintenance. Here we show that Bklf or Klf3 (Basic Krüppel-like factor) represses the Klf8 (Krüppel-like Factor 8) gene in vivo. Conversely, Eklf or Klf1 (Erythroid Krüppel-like factor) activates the Klf8 gene. Klf8 is driven by two promoters, both of which contain multiple CACCC sites. Klf3 can repress Klf1-mediated activation of both promoters. Chromatin immunoprecipitation experiments confirm that Klf3 occupies both Klf8 promoters in vivo. Interestingly, in Klf3 knock-out tissue Klf1 gains access, binds, and activates both Klf8 promoters. These results demonstrate direct competition between activating and repressing Klfs in vivo. Together with previous evidence that Klf1 directly activates the Klf3 gene, the results reveal an elaborate network of cross-talk within the Klf family. The recognition of cross-regulation and potential redundancy between Klf family members is critical to the interpretation of various Klf knock-out mice and the understanding of individual Klfs in particular contexts.
Collapse
Affiliation(s)
- Sally A Eaton
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 2008; 27:956-69. [PMID: 18323776 DOI: 10.1038/emboj.2008.38] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 02/13/2008] [Indexed: 12/22/2022] Open
Abstract
Endocytosis supports cell communication, growth, and pathogen infection. The species B human adenovirus serotype 3 (Ad3) is associated with epidemic conjunctivitis, and fatal respiratory and systemic disease. Here we show that Ad3 uses dynamin-independent endocytosis for rapid infectious entry into epithelial and haematopoietic cells. Unlike Ad5, which uses dynamin-dependent endocytosis, Ad3 endocytosis spatially and temporally coincided with enhanced fluid-phase uptake. It was sensitive to macropinocytosis inhibitors targeting F-actin, protein kinase C, the sodium-proton exchanger, and Rac1 but not Cdc42. Infectious Ad3 macropinocytosis required viral activation of p21-activated kinase 1 (PAK1) and the C-terminal binding protein 1 of E1A (CtBP1), recruited to macropinosomes. These macropinosomes also contained the Ad3 receptors CD46 and alpha v integrins. CtBP1 is a phosphorylation target of PAK1, and is bifunctionally involved in membrane traffic and transcriptional repression of cell cycle, cancer, and innate immunity pathways. Phosphorylation-defective S147A-CtBP1 blocked Ad3 but not Ad5 infection, providing a direct link between PAK1 and CtBP1. The data show that viruses induce macropinocytosis for infectious entry, a pathway used in antigen presentation and cell migration.
Collapse
|
38
|
Zhou M, McPherson L, Feng D, Song A, Dong C, Lyu SC, Zhou L, Shi X, Ahn YT, Wang D, Clayberger C, Krensky AM. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:5496-504. [PMID: 17442931 PMCID: PMC2664650 DOI: 10.4049/jimmunol.178.9.5496] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Krüppel-like transcription factor (KLF)13, previously shown to regulate RANTES expression in vitro, is a member of the Krüppel- like family of transcription factors that controls many growth and developmental processes. To ascertain the function of KLF13 in vivo, Klf13-deficient mice were generated by gene targeting. As expected, activated T lymphocytes from Klf13(-/-) mice show decreased RANTES expression. However, these mice also exhibit enlarged thymi and spleens. TUNEL, as well as spontaneous and activation-induced death assays, demonstrated that prolonged survival of Klf13(-/-) thymocytes was due to decreased apoptosis. Microarray analysis suggests that protection from apoptosis-inducing stimuli in Klf13(-/-) thymocytes is due in part to increased expression of BCL-X(L), a potent antiapoptotic factor. This finding was confirmed in splenocytes and total thymocytes by real-time quantitative PCR and Western blot as well as in CD4+CD8- single-positive thymocytes by real-time quantitative PCR. Furthermore, EMSA and luciferase reporter assays demonstrated that KLF13 binds to multiple sites within the Bcl-X(L) promoter and results in decreased Bcl-X(L) promoter activity, making KLF13 a negative regulator of BCL-X(L).
Collapse
Affiliation(s)
- Meixia Zhou
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Lisa McPherson
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Dongdong Feng
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - An Song
- Genentech, South San Francisco, CA 94080
| | - Chen Dong
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Shu-Chen Lyu
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Lu Zhou
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Xiaoyan Shi
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Yong-Tae Ahn
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Carol Clayberger
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Alan M. Krensky
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| |
Collapse
|
39
|
Schuierer MM, Heilmeier U, Boettcher A, Ugocsai P, Bosserhoff AK, Schmitz G, Langmann T. Induction of Raf kinase inhibitor protein contributes to macrophage differentiation. Biochem Biophys Res Commun 2006; 342:1083-7. [PMID: 16513087 DOI: 10.1016/j.bbrc.2006.02.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/15/2006] [Indexed: 11/20/2022]
Abstract
Differential gene expression analysis of human blood monocytes has identified the Raf kinase inhibitor protein (RKIP) as a continuously upregulated gene in macrophage and dendritic cell maturation. Using realtime RT-PCR and Western blot analysis we were able to confirm the initial DNA-microarray findings of RKIP induction on mRNA and protein levels. RKIP upregulation in primary cells and overexpression in THP-1 cells did not alter ERK activity but strongly reduced the amount of the NFkappaB subunit p65 in the nucleus. mRNA levels and cell surface expression of maturation markers including the integrin CD11c and the scavenger receptor CD36 were significantly increased in RKIP transfected THP-1 cells. Our data show for the first time that RKIP is upregulated during macrophage and dendritic cell differentiation on mRNA and protein levels and we conclude that RKIP contributes to the monocytic differentiation process via inhibition of the NFkappaB signaling cascade independent from the canonical Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Marion M Schuierer
- Institute of Clinical Chemistry, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J 2005; 392:1-11. [PMID: 16266294 PMCID: PMC1317658 DOI: 10.1042/bj20051234] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/10/2005] [Accepted: 08/12/2005] [Indexed: 11/17/2022]
Abstract
Sp1 is one of the best characterized transcriptional activators. The biological importance of Sp1 is underscored by the fact that several hundreds of genes are thought to be regulated by this protein. However, during the last 5 years, a more extended family of Sp1-like transcription factors has been identified and characterized by the presence of a conserved DNA-binding domain comprising three Krüppel-like zinc fingers. Each distinct family member differs in its ability to regulate transcription, and, as a consequence, to influence cellular processes. Specific activation and repression domains located within the N-terminal regions of these proteins are responsible for these differences by facilitating interactions with various co-activators and co-repressors. The present review primarily focuses on discussing the structural, biochemical and biological functions of the repressor members of this family of transcription factors. The existence of these transcriptional repressors provides a tightly regulated mechanism for silencing a large number of genes that are already known to be activated by Sp1.
Collapse
Key Words
- co-repressor
- gene regulation
- krüppel-like factor (klf)
- sp1
- transcription factor
- zinc-finger domain
- ap-2α, activator protein-2α
- bklf, basic klf
- bte, basic transcription element
- bteb, bte-binding protein
- cbp, creb (camp-response-element-binding protein)-binding protein
- ctbp, c-terminal-binding protein
- cyp1a1, cytochrome p4501a1
- egf, epidermal growth factor
- fhl, four and half lim domain family
- hdac, histone deacteylase
- klf, krüppel-like factor
- msin3, mammalian sin3
- nls, nuclear localization signal
- pah, paired amphipathic helix
- sap18 and sap30, sin3-associated polypeptides 18 and 30
- sid, sin3-interacting domain
- sv40, simian virus 40
- tgf-β, transforming growth factor-β
- tieg, tgf-β-inducible early gene
Collapse
Affiliation(s)
- Gwen Lomberk
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
| | - Raul Urrutia
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
- †Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, U.S.A
- ‡Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, U.S.A
| |
Collapse
|
41
|
Delouis C, Prochasson P, Laithier M, Brison O. Use of adenoviral E1A protein to analyze K18 promoter deregulation in colon carcinoma cells discloses a role for CtBP1 and BRCA1. BMC Mol Biol 2005; 6:8. [PMID: 15831101 PMCID: PMC1087485 DOI: 10.1186/1471-2199-6-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 04/14/2005] [Indexed: 11/21/2022] Open
Abstract
Background The promoter of the keratin 18 (K18) gene is 5- to 10-fold more active in tumorigenic (T-type) cell clones derived from the SW613-S human colon carcinoma cell line than in non-tumorigenic (NT-type) clones. We have reported previously that the mechanism responsible for this differential activity is acting on the minimal K18 promoter (TATA box and initiation site). This mechanism does not require the binding of a factor to a specific site on the DNA but involves the acetylation of a non-histone substrate. To get further insight into this mechanism, we investigated the effect of the adenovirus E1A protein on the activity of the K18 promoter, both in T and NT cells. Results Wild type adenovirus E1A protein and C-terminal deletion mutants inhibit the K18 promoter, specifically in T-type cells. The domain responsible for this inhibitory effect is located in the 12–25 region of the viral protein. E1A mutants that have lost this region but retain the PLDLS motif (the C-terminal binding site for CtBP1) stimulate the K18 promoter, specifically in NT cells. The inhibitory or stimulatory effects of the different E1A mutants are not dependent on a particular sequence of the promoter. An E1A N-terminal deletion mutant carrying point mutations in the PLDLS motif cannot stimulate the K18 promoter. CtBP1 interacts with CtIP, which is a known partner of BRCA1, itself a component of the RNA polymerase II holoenzyme. The stimulatory effect of two BRCA1 mutants, specifically in NT cells, implicates a tripartite BRCA1-CtIP-CtBP1 complex in the regulation of the K18 promoter. Conclusion Since we have shown previously that the K18 promoter is stimulated by deacetylase inhibitors, specifically in NT cells, we conclude that the activity of the promoter is repressed in NT cells by a mechanism involving the recruitment, by a BRCA1/CtIP complex, of CtBP1 and associated deacetylases to the preinitiation complex. We propose a model depicting the mechanism responsible for the differential activity of the K18 promoter between T and NT cells of the SW613-S cell line.
Collapse
Affiliation(s)
- Cécile Delouis
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Philippe Prochasson
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
- PP: Stowers Institute, 1000 E 50street, Kansas City, MO 64110, USA; OB: UMR 7147, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| | - Madeleine Laithier
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | - Olivier Brison
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
- PP: Stowers Institute, 1000 E 50street, Kansas City, MO 64110, USA; OB: UMR 7147, Institut Curie, 26 rue d'Ulm,75248 Paris cedex 05, France
| |
Collapse
|
42
|
Chinnadurai G. Modulation of oncogenic transformation by the human adenovirus E1A C-terminal region. Curr Top Microbiol Immunol 2004; 273:139-61. [PMID: 14674601 DOI: 10.1007/978-3-662-05599-1_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The E1A oncogene of human adenoviruses cooperates with other viral and cellular oncogenes in oncogenic transformation of primary and established cells. The N-terminal half of E1A proteins that form specific protein complexes with pRb family and p300/CBP transcriptional regulators is essential for the transforming activities of E1A. Although the C-terminal half of E1A is dispensable for the transforming activities, it negatively modulates the oncogenic activities of the N-terminal region. Mutants of E1A lacking the C-terminal half or a short C-terminal region exhibit a hyper-transforming phenotype in cooperative transformation assays with the activated ras oncogene. The E1A C-terminal region implicated in the oncogenesis-restraining activity interacts with a 48-kDa cellular phosphoprotein, CtBP, that functions as a transcriptional corepressor. It appears that the C-terminal region of E1A may suppress E1A-mediated oncogenic transformation by a dual mechanism of relieving repression cellular genes by CtBP, and also by antagonizing the oncogenic activities of the N-terminal half of E1A.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Gotoh M, Izutsu Y, Maéno M. Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos. Dev Genes Evol 2003; 213:363-7. [PMID: 12756566 DOI: 10.1007/s00427-003-0336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 04/09/2003] [Indexed: 11/26/2022]
Abstract
In an attempt to define the pattern of developmental expression of AP-2rep and AP-2 in Xenopus embryos, we cloned a Xenopus AP-2rep cDNA. The AP-2rep message was localized in the organizer region at the gastrula stage whereas AP-2 was expressed ventro-laterally in the animal hemisphere. Later, AP-2rep was expressed in the entire neural tissue at the neurula stage while AP-2 was predominantly expressed in the cranial neural crest areas. The endogenous expression of AP-2 in the neural crest area was diminished by ectopic injection of AP-2rep RNA, suggesting a role for AP-2rep in the differentiation of neural tissues by restricting the expression of AP-2 in the Xenopus embryo.
Collapse
Affiliation(s)
- Masanori Gotoh
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | | | | |
Collapse
|
44
|
Turner J, Nicholas H, Bishop D, Matthews JM, Crossley M. The LIM protein FHL3 binds basic Krüppel-like factor/Krüppel-like factor 3 and its co-repressor C-terminal-binding protein 2. J Biol Chem 2003; 278:12786-95. [PMID: 12556451 DOI: 10.1074/jbc.m300587200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of DNA-binding transcription factors to recruit specific cofactors is central to the mechanism by which they regulate gene expression. BKLF/KLF3, a member of the Krüppel-like factor family of zinc finger proteins, is a potent transcriptional repressor that recruits a CtBP co-repressor. We show here that BKLF also recruits the four and a half LIM domain protein FHL3. Different but closely linked regions of BKLF mediate contact with CtBP2 and FHL3. We present evidence that CtBP2 also interacts with FHL3 and demonstrate that the three proteins co-elute in gel filtration experiments. CtBP and FHL proteins have been implicated in both nuclear and cytoplasmic functions, but expression of BKLF promotes the nuclear accumulation of both FHL3 and CtBP2. FHL proteins have been shown to act predominantly as co-activators of transcription. However, we find FHL3 can repress transcription. We suggest that LIM proteins like FHL3 are important in assembling specific repression or activation complexes, depending on conditions such as cofactor availability and promoter context.
Collapse
Affiliation(s)
- Jeremy Turner
- School of Molecular and Microbial Biosciences, G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
45
|
Kirch HC, Ruschen S, Brockmann D, Esche H, Horikawa I, Barrett JC, Opalka B, Hengge UR. Tumor-specific activation of hTERT-derived promoters by tumor suppressive E1A-mutants involves recruitment of p300/CBP/HAT and suppression of HDAC-1 and defines a combined tumor targeting and suppression system. Oncogene 2002; 21:7991-8000. [PMID: 12439749 DOI: 10.1038/sj.onc.1205965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 08/08/2002] [Accepted: 08/08/2002] [Indexed: 11/09/2022]
Abstract
Adenovirus (Ad) E1A proteins are transcriptional regulators with antioncogenic but also transforming properties. We have previously shown that transformation-defective Ad5 E1A-derivatives are excellent tumor suppressors. For tumor-specific expression of the E1A-derivatives we intend to use tumor specific human telomerase reverse transcriptase (hTERT) core promoters. Here, we show that Spm2 and other E1A proteins with an intact amino terminus activated all hTERT constructs 10-20-fold in malignant tumor cells but not in primary fibroblasts, without affecting the activity of endogenous telomerase. The transcription rate in tumor cells was in the range of transcription from the SV40 promoter, which qualifies an E1A-hTERT system as a putative tumor targeting/expression system. The activation of the hTERT promoter by E1A was enhanced upon deletion of the Wilms' tumor 1 negative regulatory element and maintained high after deletion of the adjacent c-Myc-responsive E-box, demonstrating an important role of the remaining sequences that contain several Sp1-motifs. E1A-mediated hTERT activation was independent from the presence of the conserved region 3 (CR3) of E1A but dependent on E1A's binding to p300/CBP and recruitment of its histone acetyltransferase activity. Moreover, E1A-Spm2 and histone deacetylase-1 behaved as antagonists with respect to the regulation of transcription from the hTERT promoter. Overall, hTERT promoter/E1A-Spm2 systems may turn out to be excellent tools for transcriptionally targeted anticancer gene therapy.
Collapse
Affiliation(s)
- Hans-Christoph Kirch
- Department of Internal Medicine (Cancer Research), University of Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
CtBP family proteins are conserved among vertebrates and invertebrates and function as transcriptional corepressors. They repress transcription in a histone deacetylase-dependent or -independent manner. CtBPs play important roles during development and oncogenesis. In this review, their unusual properties, the mechanisms of transcriptional repression, regulation, and their biological functions are discussed.
Collapse
Affiliation(s)
- G Chinnadurai
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Affiliation(s)
- J J Bieker
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|