1
|
Gao W, Gao L, Yang F, Li Z. Circulating JNK pathway-associated phosphatase: A novel biomarker correlates with Th17 cells, acute exacerbation risk, and severity in chronic obstructive pulmonary disease patients. J Clin Lab Anal 2021; 36:e24153. [PMID: 34918391 PMCID: PMC8761399 DOI: 10.1002/jcla.24153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Background JNK pathway‐associated phosphatase (JKAP) involves in the regulation of inflammation, immunity, and lung injury. The current study aimed to investigate correlation of JKAP with Th1, Th17 cells, acute exacerbation risk, and disease severity in chronic obstructive pulmonary disease (COPD) patients. Methods Totally, 45 stable COPD (SCOPD) patients, 45 acute exacerbation COPD (AECOPD) patients, and 45 controls were enrolled. Serum was collected for JKAP, interferon‐gamma (IFN‐γ) (Th1 cytokine), and interleukin 17 (IL‐17) (Th17 cytokine) detection. Besides, peripheral blood mononuclear cell from COPD patients was collected for evaluating Th1 and Th17 cells. Results JKAP was highest in controls followed by SCOPD patients and lowest in AECOPD patients (median: 105.673 vs. 75.374 vs. 41.807 pg/ml, p < 0.001). Meanwhile, receiver operating characteristic (ROC) curves revealed that JKAP differentiated the AECOPD patients from the controls (area under curve (AUC): 0.910 (95% confidence interval (CI): 0.849–0.970)) and AECOPD patients from SCOPD patients (AUC: 0.726 (95% CI: 0.622–0.830)). Moreover, JKAP positively correlated with FEV1 (%predicted) in AECOPD patients (r = 0.347 p = 0.019). Additionally, JKAP was negatively correlated with the GOLD stage in AECOPD patients (r = −0.344, p = 0.021) and SCOPD patients (r = −0.357, p = 0.016). Whereas, JKAP was not associated with other clinical features (all p > 0.05). Besides, JKAP was negatively linked with Th17 cells (r = −0.378, p = 0.010), IFN‐γ (r = −0.358, p = 0.016), IL‐17 (r = −0.414, p = 0.005) in AECOPD patients and Th17 cells (r = −0.342, p = 0.022), IL‐17 (r = −0.299, p = 0.046) in SCOPD patients. Conclusion Downregulated JKAP correlates with Th17 cells, higher acute exacerbation risk, and severity in COPD patients, indicating its underlying potency as a biomarker for COPD.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Lianjun Gao
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Feng Yang
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Zongjun Li
- Department of Respiratory Medicine, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
2
|
Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019; 20:ijms20246157. [PMID: 31817617 PMCID: PMC6941053 DOI: 10.3390/ijms20246157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation affects conformational change, interaction, catalytic activity, and subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions, and embryonic development. However, the activation of the JNK pathway is also implicated in human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, the proper balance between activation and inactivation of the JNK pathway needs to be tightly regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in recent studies.
Collapse
|
3
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Zhou R, Chang Y, Liu J, Chen M, Wang H, Huang M, Liu S, Wang X, Zhao Q. JNK Pathway-Associated Phosphatase/DUSP22 Suppresses CD4 + T-Cell Activation and Th1/Th17-Cell Differentiation and Negatively Correlates with Clinical Activity in Inflammatory Bowel Disease. Front Immunol 2017; 8:781. [PMID: 28725226 PMCID: PMC5496234 DOI: 10.3389/fimmu.2017.00781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the role of JNK pathway-associated phosphatase (JKAP) in inflammatory bowel disease (IBD). JKAP expression was analyzed in the intestinal mucosa of 81 IBD patients and 25 healthy controls (HCs) by qPCR and immunoblotting. The correlations of JKAP with clinical activity and inflammatory cytokines were performed. JKAP expression before and after infliximab treatment was also measured. CD4+ T cells were isolated from peripheral blood in active IBD patient and HCs and transduced with lentivirus-encoding JKAP (LV-JKAP), anti-JKAP (LV-anti-JKAP), or empty vector (LV-scramble), and JKAP functions on IBD CD4+ T cells were subsequently investigated. JKAP expression was decreased in inflamed mucosa of active IBD patients and was negatively correlated with disease activity [Crohn’s disease activity index (CDAI), Mayo index, C-reactive protein, and erythrocyte sedimentation rate], interleukin-17, and tumor necrosis factor (TNF)-α levels. Anti-TNF-α treatment up-regulated JKAP expression in CD patients, and baseline JKAP expression was elevated in response patients than in failure patients. Transduction of LV-JKAP into CD4+ T cells inhibited the percentages of CD25+ and CD69+ cells and proliferation. Moreover, inhibition of JKAP promotes Th1/Th17 cell differentiation. Our data indicated that the decreased expression of JKAP in intestinal mucosa contributed to the pathogenesis of IBD, through facilitating CD4+ T-cell activation, proliferation, and Th1/Th17-cell differentiation.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hongling Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meifang Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
5
|
Expression of the chemokine receptor gene, CCR8, is associated With DUSP22 rearrangements in anaplastic large cell lymphoma. Appl Immunohistochem Mol Morphol 2016; 23:580-9. [PMID: 25390351 DOI: 10.1097/pai.0000000000000118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is one of the most common T-cell non-Hodgkin lymphomas and has 2 main subtypes: an anaplastic lymphoma kinase (ALK)-positive subtype characterized by ALK gene rearrangements and an ALK-negative subtype that is poorly understood. We recently identified recurrent rearrangements of the DUSP22 locus on 6p25.3 in both primary cutaneous and systemic ALK-negative ALCLs. This study aimed to determine the relationship between these rearrangements and expression of the chemokine receptor gene, CCR8. CCR8 has skin-homing properties and has been suggested to play a role in limiting extracutaneous spread of primary cutaneous ALCLs. However, overexpression of CCR8 has also been reported in systemic ALK-negative ALCLs. As available antibodies for CCR8 have shown lack of specificity, we examined CCR8 expression using quantitative real-time PCR in frozen tissue and RNA in situ hybridization (ISH) in paraffin tissue. Both approaches showed higher CCR8 expression in ALCLs with DUSP22 rearrangements than in nonrearranged cases (PCR: 19.5-fold increase, P=0.01; ISH: 3.3-fold increase, P=0.0008). CCR8 expression was not associated with cutaneous presentation, cutaneous biopsy site, or cutaneous involvement during the disease course. These findings suggest that CCR8 expression in ALCL is more closely related to the presence of DUSP22 rearrangements than to cutaneous involvement and that the function of CCR8 may extend beyond its skin-homing properties in this disease. This study also underscores the utility of RNA-ISH as a paraffin-based method for investigating gene expression when reliable antibodies for immunohistochemical analysis are not available.
Collapse
|
6
|
Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol 2015; 22:29-49. [PMID: 25461779 DOI: 10.1097/pap.0000000000000047] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) comprise a group of CD30-positive non-Hodgkin lymphomas that generally are of T-cell origin and share common morphologic and phenotypic characteristics. The World Health Organization recognizes 3 entities: primary cutaneous ALCL (pcALCL), anaplastic lymphoma kinase (ALK)-positive ALCL, and, provisionally, ALK-negative ALCL. Despite overlapping pathologic features, these tumors differ in clinical behavior and genetics. pcALCL presents in the skin and, while it may involve locoregional lymph nodes, rarely disseminates. Outcomes typically are excellent. ALK-positive ALCL and ALK-negative ALCL are systemic diseases. ALK-positive ALCLs consistently have chromosomal rearrangements involving the ALK gene with varied gene partners, and generally have a favorable prognosis. ALK-negative ALCLs lack ALK rearrangements and their genetic and clinical features are more variable. A subset of ALK-negative ALCLs has rearrangements in or near the DUSP22 gene and has a favorable prognosis similar to that of ALK-positive ALCL. DUSP22 rearrangements also are seen in a subset of pcALCLs. In this review, we discuss the clinical, morphologic, phenotypic, genetic, and biological features of ALCLs.
Collapse
|
7
|
Aghili L, Foo J, DeGregori J, De S. Patterns of somatically acquired amplifications and deletions in apparently normal tissues of ovarian cancer patients. Cell Rep 2014; 7:1310-9. [PMID: 24794429 DOI: 10.1016/j.celrep.2014.03.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/06/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022] Open
Abstract
Little is understood about the occurrence of somatic genomic alterations in normal tissues and their significance in the context of disease. Here, we identified potential somatic copy number alterations (pSCNAs) in apparently normal ovarian tissue and peripheral blood of 423 ovarian cancer patients. There were, on average, two to four pSCNAs per sample detectable at a tissue-level resolution, although some individuals had orders of magnitude more. Accordingly, we estimated the lower bound of the rate of pSCNAs per cell division. Older individuals and BRCA mutation carriers had more pSCNAs than others. pSCNAs significantly overlapped with Alu and G-quadruplexes, and the affected genes were enriched for signaling and regulation. Some of the amplification/deletion hotspots in pan-cancer genomes were hot spots of pSCNAs in normal tissues as well, suggesting that those regions might be inherently unstable. Prevalence of pSCNA in peripheral blood predicted survival, implying that mutations in normal tissues might have consequences for cancer patients.
Collapse
Affiliation(s)
- Leila Aghili
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Oncology Program, University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Oncology Program, University of Colorado Cancer Center, Aurora, CO 80045, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Oppong E, Flink N, Cato ACB. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol 2013; 380:119-26. [PMID: 23707629 DOI: 10.1016/j.mce.2013.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
Abstract
Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.
Collapse
Affiliation(s)
- Emmanuel Oppong
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | |
Collapse
|
9
|
Tonks NK. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. FEBS J 2013; 280:346-78. [PMID: 23176256 DOI: 10.1111/febs.12077] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signalling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase family of enzymes. I have discussed various aspects of the structure, regulation and function of the protein tyrosine phosphatase family, which I hope will illustrate the fundamental importance of these enzymes in the control of signal transduction.
Collapse
Affiliation(s)
- Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA.
| |
Collapse
|
10
|
Hypomethylation of dual specificity phosphatase 22 promoter correlates with duration of service in firefighters and is inducible by low-dose benzo[a]pyrene. J Occup Environ Med 2012; 54:774-80. [PMID: 22796920 DOI: 10.1097/jom.0b013e31825296bc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Firefighters (FFs) are chronically exposed to smoke and products of incomplete combustion, which frequently contain polycyclic aromatic hydrocarbons (PAHs). This study examined the possibility of an association between PAH-induced epigenetic alterations and occupational firefighting exposure. METHODS Promoter methylation was analyzed in four genes in blood DNA from 18 FFs and 20 non-FFs (controls). Jurkat and human normal prostate epithelial cells were treated with benzo[a]pyrene to ascertain the epigenetic effects of this type of agent. RESULTS Firefighters had a higher prevalence of dual specificity phosphatase 22-promoter hypomethylation in blood DNA (P = 0.03) and the extent of hypomethylation correlated with duration of firefighting service (P = 0.04) but not with age. Benzo[a]pyrene reduced promoter methylation and increased gene expression of the same gene in Jurkat and normal prostate epithelial cells. CONCLUSIONS Cumulative occupational exposure to combustion-derived PAHs during firefighting can cause epigenetic changes in promoters of specific genes.
Collapse
|
11
|
Palacios L, Dickinson RJ, Sacristán-Reviriego A, Didmon MP, Marín MJ, Martín H, Keyse SM, Molina M. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae. J Biol Chem 2011; 286:42037-42050. [PMID: 22006927 PMCID: PMC3234975 DOI: 10.1074/jbc.m111.286948] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MAPK phosphatases (MKPs) are negative regulators of signaling pathways with distinct MAPK substrate specificities. For example, the yeast dual specificity phosphatase Msg5 dephosphorylates the Fus3 and Slt2 MAPKs operating in the mating and cell wall integrity pathways, respectively. Like other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains. These include D-motifs, which contain basic residues that interact with acidic residues in the common docking (CD) domain of MAPKs. Here we show that Msg5 interacts not only with Fus3, Kss1, and Slt2 but also with the pseudokinase Slt2 paralog Mlp1. Using yeast two-hybrid and in vitro interaction assays, we have identified distinct regions within the N-terminal domain of Msg5 that differentially bind either the MAPKs Fus3 and Kss1 or Slt2 and Mlp1. Whereas a canonical D-site within Msg5 mediates interaction with the CD domains of Fus3 and Kss1, a novel motif (102IYT104) within Msg5 is involved in binding to Slt2 and Mlp1. Furthermore, mutation of this site prevents the phosphorylation of Msg5 by Slt2. This motif is conserved in Sdp1, another MKP that dephosphorylates Slt2, as well as in Msg5 orthologs from other yeast species. A region spanning amino acids 274–373 within Slt2 and Mlp1 mediates binding to this Msg5 motif in a CD domain-independent manner. In contrast, Slt2 uses its CD domain to bind to its upstream activator Mkk1. This binding flexibility may allow MAPK pathways to exploit additional regulatory controls in order to provide fine modulation of both pathway activity and specificity.
Collapse
Affiliation(s)
- Lorena Palacios
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Robin J Dickinson
- Cancer Research-UK Stress Response Laboratory, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Almudena Sacristán-Reviriego
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Mark P Didmon
- Cancer Research-UK Stress Response Laboratory, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - María José Marín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Stephen M Keyse
- Cancer Research-UK Stress Response Laboratory, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Seo HY, Kim HM, Cho SY. Ethyl-3,4-dephostatin Inhibits Dual-specificity phosphatase 22 (DUSP22) Activity. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.4.1379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Schwertassek U, Buckley DA, Xu CF, Lindsay AJ, McCaffrey MW, Neubert TA, Tonks NK. Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis. FEBS J 2010; 277:2463-73. [PMID: 20553486 DOI: 10.1111/j.1742-4658.2010.07661.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of the c-JUN N-terminal kinase (JNK) pathway is implicated in a number of important physiological processes, from embryonic morphogenesis to cell survival and apoptosis. JNK stimulatory phosphatase 1 (JSP1) is a member of the dual-specificity phosphatase subfamily of protein tyrosine phosphatases. In contrast to other dual-specificity phosphatases that catalyze the inactivation of mitogen-activated protein kinases, expression of JSP1 activates JNK-mediated signaling. JSP1 and its relative DUSP15 are unique among members of the protein tyrosine phosphatase family in that they contain a potential myristoylation site at the N-terminus (MGNGMXK). In this study, we investigated whether JSP1 was myristoylated and examined the functional consequences of myristoylation. Using mass spectrometry, we showed that wild-type JSP1, but not a JSP1 mutant in which Gly2 was mutated to Ala (JSP1-G2A), was myristoylated in cells. Although JSP1 maintained intrinsic phosphatase activity in the absence of myristoylation, the subcellular localization of the enzyme was altered. Compared with the wild type, the ability of nonmyristoylated JSP1 to induce JNK activation and phosphorylation of the transcription factor c-JUN was attenuated. Upon expression of wild-type JSP1, a subpopulation of cells, with the highest levels of the phosphatase, was induced to float off the dish and undergo apoptosis. In contrast, cells expressing similar levels of JSP1-G2A remained attached, further highlighting that the myristoylation mutant was functionally compromised.
Collapse
Affiliation(s)
- Ulla Schwertassek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Li JP, Fu YN, Chen YR, Tan TH. JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration. J Biol Chem 2009; 285:5472-8. [PMID: 20018849 DOI: 10.1074/jbc.m109.060186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
JNK pathway-associated phosphatase (JKAP, also named DUSP22) is expressed in various tissues, indicating that JKAP may have an important biological function. We showed that JKAP localized in the actin filament-enriched region. Expression of JKAP reduced cell migration, whereas a JKAP mutant lacking catalytic activity promoted cell motility. JKAP efficiently removed tyrosine phosphorylation of several proteins. We have identified focal adhesion kinase (FAK) as a substrate of JKAP. Overexpression of JKAP, but not JKAP mutant lacking catalytic activity, decreased FAK phosphorylation at tyrosines 397, 576, and 577 in H1299 cells. Consistent with these results, decreasing JKAP expression by RNA interference promoted cell migration and Src-induced FAK phosphorylation. Taken together, this study identified a new role for JKAP in the modulation of FAK phosphorylation and cell motility.
Collapse
Affiliation(s)
- Ju-Pi Li
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | |
Collapse
|
15
|
Abstract
DUSPs (dual-specificity phosphatases) are a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. DUSPs have been implicated as major modulators of critical signalling pathways that are dysregulated in various diseases. DUSPs can be divided into six subgroups on the basis of sequence similarity that include slingshots, PRLs (phosphatases of regenerating liver), Cdc14 phosphatases (Cdc is cell division cycle), PTENs (phosphatase and tensin homologues deleted on chromosome 10), myotubularins, MKPs (mitogen-activated protein kinase phosphatases) and atypical DUSPs. Of these subgroups, a great deal of research has focused on the characterization of the MKPs. As their name suggests, MKPs dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 with specificity distinct from that of individual MKP proteins. Atypical DUSPs are mostly of low-molecular-mass and lack the N-terminal CH2 (Cdc25 homology 2) domain common to MKPs. The discovery of most atypical DUSPs has occurred in the last 6 years, which has initiated a large amount of interest in their role and regulation. In the past, atypical DUSPs have generally been grouped together with the MKPs and characterized for their role in MAPK signalling cascades. Indeed, some have been shown to dephosphorylate MAPKs. The current literature hints at the potential of the atypical DUSPs as important signalling regulators, but is crowded with conflicting reports. The present review provides an overview of the DUSP family before focusing on atypical DUSPs, emerging as a group of proteins with vastly diverse substrate specificity and function.
Collapse
|
16
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
17
|
Hanten JA, Vasilakos JP, Riter CL, Neys L, Lipson KE, Alkan SS, Birmachu W. Comparison of human B cell activation by TLR7 and TLR9 agonists. BMC Immunol 2008; 9:39. [PMID: 18652679 PMCID: PMC2503978 DOI: 10.1186/1471-2172-9-39] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 07/24/2008] [Indexed: 01/20/2023] Open
Abstract
Background Human B cells and plasmacytoid dendritic cells (pDC) are the only cells known to express both TLR7 and TLR9. Plasmacytoid dendritic cells are the primary IFN-α producing cells in response to TLR7 and TLR9 agonists. The direct effects of TLR7 stimulation on human B cells is less understood. The objective of this study was to compare the effects of TLR7 and TLR9 stimulation on human B cell function. Results Gene expression and protein production of cytokines, chemokines, various B cell activation markers, and immunoglobulins were evaluated. Purified human CD19+ B cells (99.9%, containing both naïve and memory populations) from peripheral blood were stimulated with a TLR7-selective agonist (852A), TLR7/8 agonist (3M-003), or TLR9 selective agonist CpG ODN (CpG2006). TLR7 and TLR9 agonists similarly modulated the expression of cytokine and chemokine genes (IL-6, MIP1 alpha, MIP1 beta, TNF alpha and LTA), co-stimulatory molecules (CD80, CD40 and CD58), Fc receptors (CD23, CD32), anti-apoptotic genes (BCL2L1), certain transcription factors (MYC, TCFL5), and genes critical for B cell proliferation and differentiation (CD72, IL21R). Both agonists also induced protein expression of the above cytokines and chemokines. Additionally, TLR7 and TLR9 agonists induced the production of IgM and IgG. A TLR8-selective agonist was comparatively ineffective at stimulating purified human B cells. Conclusion These results demonstrate that despite their molecular differences, the TLR7 and TLR9 agonists induce similar genes and proteins in purified human B cells.
Collapse
Affiliation(s)
- John A Hanten
- Department of Pharmacology, 3M Pharmaceuticals, St Paul, MN 55144, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Caunt CJ, Armstrong SP, Rivers CA, Norman MR, McArdle CA. Spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem 2008; 283:26612-23. [PMID: 18650424 PMCID: PMC2546534 DOI: 10.1074/jbc.m801500200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although many stimuli activate extracellular signal-regulated kinases 1 and
2 (ERK1/2), the kinetics and compartmentalization of ERK1/2 signals are
stimulus-dependent and dictate physiological consequences. ERKs can be
inactivated by dual specificity phosphatases (DUSPs), notably the MAPK
phosphatases (MKPs) and atypical DUSPs, that can both dephosphorylate and
scaffold ERK1/2. Using a cell imaging model (based on knockdown of endogenous
ERKs and add-back of wild-type or mutated ERK2-GFP reporters), we explored
possible effects of DUSPs on responses to transient or sustained ERK2
activators (epidermal growth factor and phorbol 12,13-dibutyrate,
respectively). For both stimuli, a D319N mutation (which impairs DUSP binding)
increased ERK2 activity and reduced nuclear accumulation. These stimuli also
increased mRNA levels for eight DUSPs. In a short inhibitory RNA screen, 12 of
16 DUSPs influenced ERK2 responses. These effects were evident among nuclear
inducible MKP, cytoplasmic ERK MKP, JNK/p38 MKP, and atypical DUSP subtypes
and, with the exception of the nuclear inducible MKPs, were paralleled by
corresponding changes in Egr-1 luciferase activation. Simultaneous removal of
all JNK/p38 MKPs or nuclear inducible MKPs revealed them as positive and
negative regulators of ERK2 signaling, respectively. The effects of JNK/p38
MKP short inhibitory RNAs were not dependent on protein neosynthesis but were
reversed in the presence of JNK and p38 kinase inhibitors, indicating
DUSP-mediated cross-talk between MAPK pathways. Overall, our data reveal that
a large number of DUSPs influence ERK2 signaling. Together with the known
tissue-specific expression of DUSPs and the importance of ERK1/2 in cell
regulation, our data support the potential value of DUSPs as targets for drug
therapy.
Collapse
Affiliation(s)
- Christopher J Caunt
- Laboratory for Integrated Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Romá-Mateo C, Ríos P, Tabernero L, Attwood TK, Pulido R. A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol 2007; 374:899-909. [PMID: 17976645 DOI: 10.1016/j.jmb.2007.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/28/2007] [Accepted: 10/02/2007] [Indexed: 01/30/2023]
Abstract
Members of the superfamily of protein tyrosine phosphatases (PTPs) share the presence of an evolutionarily conserved PTP catalytic domain. Among them, the dual-specificity phosphatases (DSPs) constitute a diverse group of enzymes in terms of substrate specificity, including nonprotein substrates. In recent years, an increasing number of novel DSPs, whose functions and biological substrates are not well defined, have been discovered in a variety of organisms. In this study, we define the structural and functional properties of evolutionarily related atypical DSPs from different phyla. Sets of conserved motifs were defined that (i) uniquely segregated mammalian atypical DSPs from closely related enzymes and (ii) exclusively characterised a novel family of atypical DSPs present in plants, fungi, and kinetoplastids [plant and fungi atypical (PFA)-DSPs]; despite having different sequence "fingerprints," the PTP tertiary structure of PFA-DSPs is conserved. Analysis of the catalytic properties of PFA-DSPs suggests the existence of a unique substrate specificity for these enzymes. Our findings predict characteristic functional motifs for the diverse members of the DSP families of PTPs and provide insights into the functional properties of DSPs of unknown function.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Centro de Investigación Príncipe Felipe, Avenida Autopista del Saler, 16-3, 46013 Valencia, Spain
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.
Collapse
Affiliation(s)
- M Raman
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
21
|
Sekine Y, Ikeda O, Hayakawa Y, Tsuji S, Imoto S, Aoki N, Sugiyama K, Matsuda T. DUSP22/LMW-DSP2 regulates estrogen receptor-alpha-mediated signaling through dephosphorylation of Ser-118. Oncogene 2007; 26:6038-49. [PMID: 17384676 DOI: 10.1038/sj.onc.1210426] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the previous study, we demonstrated the involvement of dual specificity phosphatase 22 (DUSP22/LMW-DSP2) in regulating the leukemia inhibitory factor/interleukin-6/signal transducer and activator of transcription 3-mediated signaling pathway. In this study, we show beta-estradiol (E2)-induced DUSP22 mRNA expression in estrogen receptor alpha (ERalpha)-positive breast cancer cells, whereas E2-induced phosphorylation and activation of ERalpha was suppressed by overexpression of DUSP22 but not catalytically inactive mutants. Furthermore, small-interfering RNA-mediated reduction of DUSP22 expression enhanced ERalpha-mediated transcription and endogenous gene expression. In fact, DUSP22 associated with ERalpha in vivo and both endogenous proteins interacted in ERalpha-positive breast cancer T47D cells. These results strongly suggest that DUSP22 acts as a negative regulator of the ERalpha-mediated signaling pathway.
Collapse
Affiliation(s)
- Y Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yokota T, Nara Y, Kashima A, Matsubara K, Misawa S, Kato R, Sugio S. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution. Proteins 2007; 66:272-8. [PMID: 17068812 DOI: 10.1002/prot.21152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1.
Collapse
Affiliation(s)
- Takehiro Yokota
- ZOEGENE Corporation, 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Sekine Y, Tsuji S, Ikeda O, Sato N, Aoki N, Aoyama K, Sugiyama K, Matsuda T. Regulation of STAT3-mediated signaling by LMW-DSP2. Oncogene 2006; 25:5801-6. [PMID: 16636663 DOI: 10.1038/sj.onc.1209578] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), which mediates biological actions in many physiological processes, is activated by cytokines and growth factors, and has been reported to be constitutively activated in numerous cancer cells. In this study, we examined whether low molecular weight-dual specificity phosphatase two (LMW-DSP2) is involved in the regulation of the interleukin 6 (IL-6)/leukemia inhibitory factor (LIF)/STAT3-mediated signaling pathway. IL-6/LIF-induced LMW-DSP2 expression in murine testicular or hepatoma cell lines, while LMW-DSP2 overexpression in 293T cells suppressed IL-6-induced phosphorylation and activation of STAT3. Furthermore, LMW-DSP2 suppressed the expression of IL-6-induced endogenous genes. In contrast, small-interfering RNA-mediated reduction of LMW-DSP2 expression enhanced IL-6-induced STAT3-dependent transcription. In fact, LMW-DSP2 interacted with STAT3 in vivo and endogenous LMW-DSP2 bound to STAT3 in murine testicular GC-1 cells. These results strongly suggest that LMW-DSP2 acts as a negative regulator of the IL-6/LIF/STAT3-mediated signaling pathway.
Collapse
Affiliation(s)
- Y Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Takagaki K, Satoh T, Tanuma N, Masuda K, Takekawa M, Shima H, Kikuchi K. Characterization of a novel low-molecular-mass dual-specificity phosphatase-3 (LDP-3) that enhances activation of JNK and p38. Biochem J 2005; 383:447-55. [PMID: 15281913 PMCID: PMC1133737 DOI: 10.1042/bj20040498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated a mouse cDNA for a novel dual-specificity phosphatase designated LDP-3 (low-molecular-mass dual-specificity phosphatase 3). The 450 bp open reading frame encodes a protein of 150 amino acids with a predicted molecular mass of 16 kDa. Northern blot and reverse transcription-PCR analyses show that LDP-3 transcripts are expressed in almost all mouse tissues examined. In vitro analyses using several substrates and inhibitors indicate that LDP-3 possesses intrinsic dual-specificity phosphatase activity. When expressed in mammalian cells, LDP-3 protein is localized mainly to the apical submembrane area. Forced expression of LDP-3 does not alter activation of ERK (extracellular-signal-regulated kinase), but rather enhances activation of JNK (c-Jun N-terminal kinase) and p38 and their respective upstream kinases MKK4 (mitogen-activated protein kinase kinase 4) and MKK6 in cells treated with 0.4 M sorbitol. By screening with a variety of stimuli, we found that LDP-3 specifically enhances the osmotic stress-induced activation of JNK and p38.
Collapse
Affiliation(s)
- Kentaro Takagaki
- *Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Takeshi Satoh
- *Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Nobuhiro Tanuma
- *Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Kouhei Masuda
- *Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Mutsuhiro Takekawa
- †Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- ‡PRESTO, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Shima
- *Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
- To whom correspondence should be addressed (email )
| | - Kunimi Kikuchi
- *Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
25
|
Wu Q, Li Y, Gu S, Li N, Zheng D, Li D, Zheng Z, Ji C, Xie Y, Mao Y. Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Int J Biochem Cell Biol 2005; 36:1542-53. [PMID: 15147733 DOI: 10.1016/j.biocel.2003.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/29/2022]
Abstract
Most of dual-specificity protein phosphatases (DSPs) play an important role in the regulation of mitogenic signal transduction and controlling the cell cycle in response to extracellular stimuli. In this study, a novel human dual-specificity protein phosphatases gene named dual-specificity phosphatase 23 (DUSP23) was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. Its cDNA was 726 bp in length, encoding a 150-amino acid polypeptide which contained a dual-specificity phosphatase catalytic (DSPc) domain but not a CDC25 homology (CH2) domain. Reverse transcription-PCR (RT-PCR) revealed that the DUSP23 was expressed in most fetal tissues and two adult tissues: testis and colon. Transient transfection experiment suggested that DUSP23 was localized in the cytoplasm of HEK293 cells. DUSP23 showed distinctive phosphatase activity toward p-nitrophenyl phosphate (pNPP), as well as oligopeptides containing phospho-tyrosine and phospho-threonine residues. Furthermore, DUSP23 could dephosphorylate p44ERK1 but not p38 and p54SAPKbeta in vitro. All the results indicated that DUSP23 was a novel protein phosphatase with dual substrate specificity.
Collapse
Affiliation(s)
- Qihan Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal 2004; 16:769-79. [PMID: 15115656 DOI: 10.1016/j.cellsig.2003.12.008] [Citation(s) in RCA: 346] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/16/2003] [Indexed: 11/25/2022]
Abstract
MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (DS-MKPs). Recent studies reveal that substrate specificity and enzymatic activity of MKPs are tightly controlled not only by the conserved C-terminal phosphatase domain but also by an N-terminal (NT) kinase-binding domain. Notably, MKPs that consist of a kinase-binding domain and a phosphatase domain exhibit little phosphatase activity in the absence of their physiological substrates. MKP binding to a specific MAPK results in enzymatic activation of the phosphatase in a substrate-induced activation mechanism. This direct coupling of inactivation of an MAPK to activation of an MKP provides a tightly controlled regulation that enables these two key enzymes to keep each other in check, thus guaranteeing the fidelity of signal transduction. This review discusses the recent understanding of structure and regulation of the large family of dual specificity MKPs, which can be divided into four subgroups according to their functional domains and mechanism of substrate recognition and enzymatic regulation. Moreover, detailed comparison of the structural basis between this unique substrate-induced activation mechanism and the common auto-inhibition mechanism is provided.
Collapse
Affiliation(s)
- Amjad Farooq
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1677, New York, NY 10029, USA.
| | | |
Collapse
|
27
|
Alonso A, Narisawa S, Bogetz J, Tautz L, Hadzic R, Huynh H, Williams S, Gjörloff-Wingren A, Bremer MCD, Holsinger LJ, Millan JL, Mustelin T. VHY, a Novel Myristoylated Testis-restricted Dual Specificity Protein Phosphatase Related to VHX. J Biol Chem 2004; 279:32586-91. [PMID: 15138252 DOI: 10.1074/jbc.m403442200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human DUSP15 gene encodes an uncharacterized 235-amino acid member of the subfamily of small dual specificity protein phosphatases related to the Vaccinia virus VH1 phosphatase. Similar to VHR-related MKPX (VHX) (DUSP22), the predicted protein has an N-terminal myristoylation recognition sequence, and we show here that both are indeed modified by the attachment of a myristate to Gly-2. In recognition of this relatedness to VHX, we refer to the DUSP15-encoded protein as VH1-related member Y (VHY). We report that VHY is expressed at high levels in the testis and barely detectable levels in the brain, spinal cord, and thyroid. A VHY-specific antiserum detected a protein with an apparent molecular mass of 26 kDa, and histochemical analysis showed that VHY was readily detectable in pachytene spermatocytes (midstage of meiotic division I) and round spermatids and weakly in Leydig cells (somatic cells outside of the seminiferous tubules). When expressed in 293T or NIH-3T3 cells, VHY was concentrated at the plasma membrane with some staining of vesicular structures in the Golgi region. Mutation of the myristoylation site Gly-2 abrogated membrane location. Finally, we demonstrate that VHY is an active phosphatase in vitro. We conclude that VHY is a new member of a subgroup of myristoylated VH1-like small dual specificity phosphatases.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Southern
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Dual-Specificity Phosphatases
- Embryo, Mammalian/metabolism
- Fibroblasts/metabolism
- Glutathione Transferase/metabolism
- Glycine/chemistry
- Golgi Apparatus/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- JNK Mitogen-Activated Protein Kinases
- MAP Kinase Kinase 4
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinase Phosphatases
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Myristic Acids/chemistry
- NIH 3T3 Cells
- Nitrophenols/chemistry
- Organophosphorus Compounds/chemistry
- Phosphoprotein Phosphatases/chemistry
- Phosphoric Monoester Hydrolases/metabolism
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/metabolism
- Sequence Homology, Amino Acid
- Spermatids/metabolism
- Testis/metabolism
- Transfection
- Vaccinia virus/metabolism
Collapse
Affiliation(s)
- Andres Alonso
- Program of Signal Transduction, Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumar R, Musiyenko A, Cioffi E, Oldenburg A, Adams B, Bitko V, Krishna SS, Barik S. A zinc-binding dual-specificity YVH1 phosphatase in the malaria parasite, Plasmodium falciparum, and its interaction with the nuclear protein, pescadillo. Mol Biochem Parasitol 2004; 133:297-310. [PMID: 14698441 DOI: 10.1016/j.molbiopara.2003.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biochemical evidence revealed protein tyrosine kinase and phosphatase activities in the human malarial parasite Plasmodium falciparum, a member of the Apicomplexa. A novel cDNA sequence of a dual-specificity phosphatase was identified in both sexual and asexual stages of P. falciparum, and named PfYVH1, since the predicted primary structure of the 278-amino acid polypeptide showed significant similarity to the human and yeast YVH1 phosphatases. The N-terminal half of PfYVH1 contained a conserved tyrosine phosphatase catalytic domain within a dual-specificity phosphatase domain. The C-terminal region, consisting of one histidine and eight cysteines, represented a zinc-binding domain with a potentially unconventional architecture. Recombinant PfYVH1 contained 2mol of zinc per mol protein and dephosphorylated both phosphoserine and phosphotyrosine residues. Mutation of specific Cys residues in the putative zinc finger region abolished zinc binding and drastically reduced phosphatase activity, suggesting an allosteric role of zinc in catalysis. PfYVH1 was expressed in essentially all erythrocytic stages of the parasite, and shuttled between the nucleus and the cytoplasm in a stage-specific manner. A Plasmodium ortholog of the nuclear pescadillo protein (PfPES) was also characterized and shown to interact with PfYVH1, thus implicating PfYVH1 in the regulation of parasitic development. PfYVH1 represents the first dual-specificity zinc-finger phosphatase characterized in the protozoan kingdom.
Collapse
Affiliation(s)
- Rajinder Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Boulevard, Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Masuda K, Shima H, Katagiri C, Kikuchi K. Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446. J Biol Chem 2003; 278:32448-56. [PMID: 12794087 DOI: 10.1074/jbc.m213254200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNK >> p38 > ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK.
Collapse
Affiliation(s)
- Kouhei Masuda
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
30
|
Wu Q, Gu S, Dai J, Dai J, Wang L, Li Y, Zeng L, Xu J, Ye X, Zhao W, Ji C, Xie Y, Mao Y. Molecular cloning and characterization of a novel dual-specificity phosphatase18 gene from human fetal brain. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:296-304. [PMID: 12591617 DOI: 10.1016/s0167-4781(02)00629-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dual-specificity protein phosphatases (DSPs), a new family of protein tyrosine phosphatases (PTPs), are characterized by the ability to dephosphorylate both phospho-tyrosyl and phospho-seryl/threonyl residues. It has been known that most of the enzymes play important roles in the regulation of mitogenic signal transduction and control the cell cycle in response to extracellular stimuli. In this study, a novel human DSP gene named Dual-specificity Phosphatase18 (DUSP18) was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. DUSP18 is localized at Chromosome 22 q12.1. Its cDNA is 2450 base pairs in length, encoding a 188-amino acid polypeptide in which a DSP motif but not a CH2 domain is included. RT-PCR revealed that the DUSP18 was widely expressed in different tissues. GST-DUSP18 fusion protein showed distinctive phosphatase activity toward p-nitrophenyl phosphate (pNPP), as well as oligopeptides containing pThr and pTyr, indicating that DUSP18 is a protein phosphatase with dual substrate specificity. The optimal condition for the reaction was pH 6.0 and 55 degrees C. Addition of Mn(2+) ions was able to enhance the enzyme activity while the activity was strongly inhibited by iodoaretic acid. Mutations in selected sites showed the importance of Asp-73, Cys-104, Arg-110 and Ser-111 in phosphatase activity of DUSP18.
Collapse
Affiliation(s)
- Qihan Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheng H, Gao Q, Jiang M, Ma Y, Ni X, Guo L, Jin W, Cao G, Ji C, Ying K, Xu W, Gu S, Ma Y, Xie Y, Mao Y. Molecular cloning and characterization of a novel human protein phosphatase, LMW-DSP3. Int J Biochem Cell Biol 2003; 35:226-34. [PMID: 12479873 DOI: 10.1016/s1357-2725(02)00127-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reversible phosphorylation is recognized to be a major mechanism for the control of intracellular events in eukaryotic cells. From a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel dual specificity protein phosphatase, which showed 88% identity with previously reported mouse LMW-DSP3 at the amino acid level. The deduced protein had a single dual-specificity phosphatase catalytic domain, and lacked a cdc25 homology domain. LMW-DSP3 was expressed in the heart, lung, liver, and pancreas, and the expression level in the pancreas was highest. The LMW-DSP3 gene was located in human chromosome 2q32, and consisted of five exons spanning 21kb of human genomic DNA. LMW-DSP3 fused to GST showed phosphatase activity towards p-nitrophenyl phosphate which was optimal at pH 7.0 and 40 degrees C, and the activity was enhanced by Ca(2+) and Mn(2+). The phosphatase activity of LMW-DSP3 was inhibited by orthovanate. LMW-DSP3 showed phosphatase activity toward oligopeptides containing pSer/Thr and pTyr, indicating that LMW-DSP3 is a protein phosphatase with dual substrate specificity.
Collapse
Affiliation(s)
- Haipeng Cheng
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan University, 200433, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hood KL, Tobin JF, Yoon C. Identification and characterization of two novel low-molecular-weight dual specificity phosphatases. Biochem Biophys Res Commun 2002; 298:545-51. [PMID: 12408986 DOI: 10.1016/s0006-291x(02)02488-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned and characterized two novel human low molecular weight dual specificity phosphatases (LMW-DSPs). Both genes are expressed exclusively in the testis, but are not altered in any of several disease states examined. Transfection into COS cells indicates that both proteins are expressed in the nucleus and the cytoplasm. Both proteins are able to dephosphorylate the phosphotyrosine analog pNPP in vitro and can be inhibited by sodium orthovanadate. In vitro experiments also demonstrate that both DSPs can dephosphorylate single and diphosphorylated synthetic MAPK peptides, with preference for the phosphotyrosine and diphosphorylated forms over phosphothreonine. However, when co-transfected with MAPKs into COS cells, the novel DSPs exhibited no detectable in vivo activity against MAPKs under our conditions. Our data suggest that these novel LMW-DSPs might belong to a new subclass of testis-specific proteins that act independently of the MAPK signal transduction cascade and do not depend on N-terminal docking regions for substrate binding.
Collapse
Affiliation(s)
- Kristin L Hood
- Metabolic and Respiratory Diseases, Wyeth Research, T4007, 87 Cambridge Park Drive, Cambridge, MA 02140, USA
| | | | | |
Collapse
|
33
|
Chen AJ, Zhou G, Juan T, Colicos SM, Cannon JP, Cabriera-Hansen M, Meyer CF, Jurecic R, Copeland NG, Gilbert DJ, Jenkins NA, Fletcher F, Tan TH, Belmont JW. The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 2002; 277:36592-601. [PMID: 12138158 DOI: 10.1074/jbc.m200453200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of dual specificity phosphatases (DSPs) in the mitogen-activated protein kinase (MAPK) signaling has been mostly limited to the inactivation of MAPKs by the direct dephosphorylation of the TXY motif within their activation loop. We report the cloning and characterization of a murine DSP, called JNK pathway-associated phosphatase (JKAP), which lacks the regulatory region present in most other MAP kinase phosphatases (MKPs) and is preferentially expressed in murine Lin(-)Sca-1(+) stem cells. Overexpression of JKAP in human embryonic kidney 293T cells specifically activated c-Jun N-terminal kinase (JNK) but not p38 and extracellular signal-regulated kinase 2. Overexpression of a mutant JKAP, JKAP-C88S, blocked tumor necrosis factor-alpha-induced JNK activation. Targeted gene disruption in murine embryonic stem cells abolished JNK activation by tumor necrosis factor-alpha and transforming growth factor-beta, but not by ultraviolet-C irradiation, indicating that JKAP is necessary for optimal JNK activation. JKAP associated with JNK and MKK7, but not SEK1, in vivo. However, JKAP did not interact with JNK in vitro, suggesting that JKAP exerts its effect on JNK in an indirect manner. Taken together, these studies identify a positive regulator for the JNK pathway and suggest a novel role for DSP in mitogen-activated protein kinase regulation.
Collapse
Affiliation(s)
- Alice J Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|