1
|
Normoyle KP, Lillis KP, Egawa K, McNally MA, Paulchakrabarti M, Coudhury BP, Lau L, Shiu FH, Staley KJ. Displacement of extracellular chloride by immobile anionic constituents of the brain's extracellular matrix. J Physiol 2025; 603:353-378. [PMID: 39621449 PMCID: PMC11747837 DOI: 10.1113/jp285463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2024] [Indexed: 01/19/2025] Open
Abstract
GABA is the primary inhibitory neurotransmitter. Membrane currents evoked by GABAA receptor activation have uniquely small driving forces: their reversal potential (EGABA) is very close to the resting membrane potential. As a consequence, GABAA currents can flow in either direction, depending on both the membrane potential and the local intra and extracellular concentrations of the primary permeant ion, chloride (Cl). Local cytoplasmic Cl concentrations vary widely because of displacement of mobile Cl ions by relatively immobile anions. Here, we use new reporters of extracellular chloride (Cl- o) to demonstrate that Cl is displaced in the extracellular space by high and spatially heterogenous concentrations of immobile anions including sulfated glycosaminoglycans (sGAGs). Cl- o varies widely, and the mean Cl- o is only half the canonical concentration (i.e. the Cl concentration in the cerebrospinal fluid). These unexpectedly low and heterogenous Cl- o domains provide a mechanism to link the varied but highly stable distribution of sGAGs and other immobile anions in the brain's extracellular space to neuronal signal processing via the effects on the amplitude and direction of GABAA transmembrane Cl currents. KEY POINTS: Extracellular chloride concentrations in the brain were measured using a new chloride-sensitive organic fluorophore and two-photon fluorescence lifetime imaging. In vivo, the extracellular chloride concentration was spatially heterogenous and only half of the cerebrospinal fluid chloride concentration Stable displacement of extracellular chloride by immobile extracellular anions was responsible for the low extracellular chloride concentration The changes in extracellular chloride were of sufficient magnitude to alter the conductance and reversal potential of GABAA chloride currents The stability of the extracellular matrix, the impact of the component immobile anions, including sulfated glycosaminoglycans on extracellular chloride concentrations, and the consequent effect on GABAA signalling suggests a previously unappreciated mechanism for modulating GABAA signalling.
Collapse
Affiliation(s)
- Kieran P Normoyle
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kyle P Lillis
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kiyoshi Egawa
- Department of Medicine, Hokaiddo University, Sapporo, Hokaiddo, Japan
| | - Melanie A McNally
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Biswa P Coudhury
- GlycoAnalytics Core, University of California San Diego, La Jolla, CA, USA
| | - Lauren Lau
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Fu Hung Shiu
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kevin J Staley
- Department of Neurology, Division of Child Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Lützenkirchen FP, Zhu Y, Maric HM, Boeck DS, Gromova KV, Kneussel M. Neurobeachin regulates receptor downscaling at GABAergic inhibitory synapses in a protein kinase A-dependent manner. Commun Biol 2024; 7:1635. [PMID: 39668217 PMCID: PMC11638247 DOI: 10.1038/s42003-024-07294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
GABAergic synapses critically modulate neuronal excitability, and plastic changes in inhibitory synaptic strength require reversible interactions between GABAA receptors (GABAARs) and their postsynaptic anchor gephyrin. Inhibitory long-term potentiation (LTP) depends on the postsynaptic recruitment of gephyrin and GABAARs, whereas the neurotransmitter GABA can induce synaptic removal of GABAARs. However, the mechanisms and players underlying plastic adaptation of synaptic strength are incompletely understood. Here we show that neurobeachin (Nbea), a receptor trafficking protein, is a component of inhibitory synapses, interacts with gephyrin and regulates the downscaling of inhibitory synaptic transmission. We found that the recruitment of Nbea to GABAergic synapses is activity-dependent and that Nbea regulates GABAAR internalization in a protein kinase A (PKA)-dependent manner. In heterozygous neurons lacking one Nbea allele, re-expression of Nbea but not expression of a PKA binding-deficient Nbea mutant rescued the internalization of GABAARs. Our data suggest a mechanism by which Nbea mediates PKA anchoring at inhibitory postsynaptic sites to downregulate GABAergic transmission. They emphasize the importance of kinase positioning in the regulation of synaptic strength.
Collapse
Affiliation(s)
- Felix P Lützenkirchen
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yipeng Zhu
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Dominik S Boeck
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira V Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center of Neuroscience, HCNS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Automated Image Analysis Reveals Different Localization of Synaptic Gephyrin C4 Splice Variants. eNeuro 2023; 10:ENEURO.0102-22.2022. [PMID: 36543537 PMCID: PMC9831149 DOI: 10.1523/eneuro.0102-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Postsynaptic scaffolding proteins function as central organization hubs, ensuring the synaptic localization of neurotransmitter receptors, trans-synaptic adhesion proteins, and signaling molecules. Gephyrin is the major postsynaptic scaffolding protein at glycinergic and a subset of GABAergic inhibitory synapses. In contrast to cells outside the CNS, where one gephyrin isoform is predominantly expressed, neurons express different splice variants. In this study, we characterized the expression and scaffolding of neuronal gephyrin isoforms differing in the inclusion of the C4 cassettes located in the central C-domain. In hippocampal and cortical neuronal populations, gephyrin P1, lacking additional cassettes, is the most abundantly expressed isoform. In addition, alternative splicing generated isoforms carrying predominantly C4a, and minor amounts of C4c or C4d cassettes. We detected no striking difference in C4 isoform expression between different neuron types and a single neuron can likely express all C4 isoforms. To avoid the cytosolic aggregates that are commonly observed upon exogenous gephyrin expression, we used adeno-associated virus (AAV)-mediated expression to analyze the scaffolding behavior of individual C4 isoforms in murine dissociated hippocampal glutamatergic neurons. While all isoforms showed similar clustering at GABAergic synapses, a thorough quantitative analysis revealed localization differences for the C4c isoform (also known as P2). Specifically, synaptic C4c isoform clusters showed a more distal dendritic localization and reduced occurrence at P1-predominating synapses. Additionally, inhibitory currents displayed faster decay kinetics in the presence of gephyrin C4c compared with P1. Therefore, inhibitory synapse heterogeneity may be influenced, at least in part, by mechanisms relating to C4 cassette splicing.
Collapse
|
4
|
Kruse T. Function of Molybdenum Insertases. Molecules 2022; 27:molecules27175372. [PMID: 36080140 PMCID: PMC9458074 DOI: 10.3390/molecules27175372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
For most organisms molybdenum is essential for life as it is found in the active site of various vitally important molybdenum dependent enzymes (Mo-enzymes). Here, molybdenum is bound to a pterin derivative called molybdopterin (MPT), thus forming the molybdenum cofactor (Moco). Synthesis of Moco involves the consecutive action of numerous enzymatic reaction steps, whereby molybdenum insertases (Mo-insertases) catalyze the final maturation step, i.e., the metal insertion reaction yielding Moco. This final maturation step is subdivided into two partial reactions, each catalyzed by a distinctive Mo-insertase domain. Initially, MPT is adenylylated by the Mo-insertase G-domain, yielding MPT-AMP which is used as substrate by the E-domain. This domain catalyzes the insertion of molybdate into the MPT dithiolene moiety, leading to the formation of Moco-AMP. Finally, the Moco-AMP phosphoanhydride bond is cleaved by the E-domain to liberate Moco from its synthesizing enzyme. Thus formed, Moco is physiologically active and may be incorporated into the different Mo-enzymes or bind to carrier proteins instead.
Collapse
Affiliation(s)
- Tobias Kruse
- Institute of Plant Biology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Rahmati N, Normoyle KP, Glykys J, Dzhala VI, Lillis KP, Kahle KT, Raiyyani R, Jacob T, Staley KJ. Unique Actions of GABA Arising from Cytoplasmic Chloride Microdomains. J Neurosci 2021; 41:4957-4975. [PMID: 33903223 PMCID: PMC8197632 DOI: 10.1523/jneurosci.3175-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022] Open
Abstract
Developmental, cellular, and subcellular variations in the direction of neuronal Cl- currents elicited by GABAA receptor activation have been frequently reported. We found a corresponding variance in the GABAA receptor reversal potential (EGABA) for synapses originating from individual interneurons onto a single pyramidal cell. These findings suggest a similar heterogeneity in the cytoplasmic intracellular concentration of chloride ([Cl-]i) in individual dendrites. We determined [Cl-]i in the murine hippocampus and cerebral cortex of both sexes by (1) two-photon imaging of the Cl--sensitive, ratiometric fluorescent protein SuperClomeleon; (2) Fluorescence Lifetime IMaging (FLIM) of the Cl--sensitive fluorophore MEQ (6-methoxy-N-ethylquinolinium); and (3) electrophysiological measurements of EGABA by pressure application of GABA and RuBi-GABA uncaging. Fluorometric and electrophysiological estimates of local [Cl-]i were highly correlated. [Cl-]i microdomains persisted after pharmacological inhibition of cation-chloride cotransporters, but were progressively modified after inhibiting the polymerization of the anionic biopolymer actin. These methods collectively demonstrated stable [Cl-]i microdomains in individual neurons in vitro and in vivo and the role of immobile anions in its stability. Our results highlight the existence of functionally significant neuronal Cl- microdomains that modify the impact of GABAergic inputs.SIGNIFICANCE STATEMENT Microdomains of varying chloride concentrations in the neuronal cytoplasm are a predictable consequence of the inhomogeneous distribution of anionic polymers such as actin, tubulin, and nucleic acids. Here, we demonstrate the existence and stability of these microdomains, as well as the consequence for GABAergic synaptic signaling: each interneuron produces a postsynaptic GABAA response with a unique reversal potential. In individual hippocampal pyramidal cells, the range of GABAA reversal potentials evoked by stimulating different interneurons was >20 mV. Some interneurons generated postsynaptic responses in pyramidal cells that reversed at potentials beyond what would be considered purely inhibitory. Cytoplasmic chloride microdomains enable each pyramidal cell to maintain a compendium of unique postsynaptic responses to the activity of individual interneurons.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kieran P Normoyle
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Joseph Glykys
- Department of Pediatrics and Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Volodymyr I Dzhala
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kyle P Lillis
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510
| | - Rehan Raiyyani
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Theju Jacob
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kevin J Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
6
|
Kim S, Kang M, Park D, Lee AR, Betz H, Ko J, Chang I, Um JW. Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies. iScience 2021; 24:102037. [PMID: 33532714 PMCID: PMC7822942 DOI: 10.1016/j.isci.2021.102037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Mooseok Kang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ae-Ree Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Heinrich Betz
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Iksoo Chang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea.,Supercomputing Bigdata Center, DGIST, Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| |
Collapse
|
7
|
Reciprocal stabilization of glycine receptors and gephyrin scaffold proteins at inhibitory synapses. Biophys J 2021; 120:805-817. [PMID: 33539789 DOI: 10.1016/j.bpj.2021.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 02/03/2023] Open
Abstract
Postsynaptic scaffold proteins immobilize neurotransmitter receptors in the synaptic membrane opposite to presynaptic vesicle release sites, thus ensuring efficient synaptic transmission. At inhibitory synapses in the spinal cord, the main scaffold protein gephyrin assembles in dense molecule clusters that provide binding sites for glycine receptors (GlyRs). Gephyrin and GlyRs can also interact outside of synapses, where they form receptor-scaffold complexes. Although several models for the formation of postsynaptic scaffold domains in the presence of receptor-scaffold interactions have been advanced, a clear picture of the coupled dynamics of receptors and scaffold proteins at synapses is lacking. To characterize the GlyR and gephyrin dynamics at inhibitory synapses, we performed fluorescence time-lapse imaging after photoconversion to directly visualize the exchange kinetics of recombinant Dendra2-gephyrin in cultured spinal cord neurons. Immuno-immobilization of endogenous GlyRs with specific antibodies abolished their lateral diffusion in the plasma membrane, as judged by the lack of fluorescence recovery after photobleaching. Moreover, the cross-linking of GlyRs significantly reduced the exchange of Dendra2-gephyrin compared with control conditions, suggesting that the kinetics of the synaptic gephyrin pool is strongly dependent on GlyR-gephyrin interactions. We did not observe any change in the total synaptic gephyrin levels after GlyR cross-linking, however, indicating that the number of gephyrin molecules at synapses is not primarily dependent on the exchange of GlyR-gephyrin complexes. We further show that our experimental data can be quantitatively accounted for by a model of receptor-scaffold dynamics that includes a tightly interacting receptor-scaffold domain, as well as more loosely bound receptor and scaffold populations that exchange with extrasynaptic pools. The model can make predictions for single-molecule data such as typical dwell times of synaptic proteins. Taken together, our data demonstrate the reciprocal stabilization of GlyRs and gephyrin at inhibitory synapses and provide a quantitative understanding of their dynamic organization.
Collapse
|
8
|
Pizzarelli R, Griguoli M, Zacchi P, Petrini EM, Barberis A, Cattaneo A, Cherubini E. Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions. Neuroscience 2020; 439:125-136. [PMID: 31356900 PMCID: PMC7351109 DOI: 10.1016/j.neuroscience.2019.07.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023]
Abstract
To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the presynaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self-assembles to form a scaffold that anchors glycine and GABAARs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post-translational modifications which control protein-protein interaction and downstream signaling pathways. In addition, through the constant exchange of scaffolding elements and receptors in and out of synapses, gephyrin dynamically regulates synaptic strength and plasticity. The aim of the present review is to highlight recent findings on the functional role of gephyrin at GABAergic inhibitory synapses. We will discuss different approaches used to interfere with gephyrin in order to unveil its function. In addition, we will focus on the impact of gephyrin structure and distribution at the nanoscale level on the functional properties of inhibitory synapses as well as the implications of this scaffold protein in synaptic plasticity processes. Finally, we will emphasize how gephyrin genetic mutations or alterations in protein expression levels are implicated in several neuropathological disorders, including autism spectrum disorders, schizophrenia, temporal lobe epilepsy and Alzheimer's disease, all associated with severe deficits of GABAergic signaling. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrica Maria Petrini
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Andrea Barberis
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Normale Superiore, Pisa, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.
| |
Collapse
|
9
|
Lupascu CA, Morabito A, Ruggeri F, Parisi C, Pimpinella D, Pizzarelli R, Meli G, Marinelli S, Cherubini E, Cattaneo A, Migliore M. Computational Modeling of Inhibitory Transsynaptic Signaling in Hippocampal and Cortical Neurons Expressing Intrabodies Against Gephyrin. Front Cell Neurosci 2020; 14:173. [PMID: 32612513 PMCID: PMC7309579 DOI: 10.3389/fncel.2020.00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
GABAergic transmission regulates neuronal excitability, dendritic integration of synaptic signals and oscillatory activity, thought to be involved in high cognitive functions. By anchoring synaptic receptors just opposite to release sites, the scaffold protein gephyrin plays a key role in these tasks. In addition, by regulating GABAA receptor trafficking, gephyrin contributes to maintain, at the network level, an appropriate balance between Excitation (E) and Inhibition (I), crucial for information processing. An E/I imbalance leads to neuropsychiatric disorders such as epilepsy, schizophrenia and autism. In this article, we exploit a previously published computational method to fit spontaneous synaptic events, using a simplified model of the subcellular pathways involving gephyrin at inhibitory synapses. The model was used to analyze experimental data recorded under different conditions, with the main goal to gain insights on the possible consequences of gephyrin block on IPSCs. The same approach can be useful, in general, to analyze experiments designed to block a single protein. The results suggested possible ways to correlate the changes observed in the amplitude and time course of individual events recorded after different experimental protocols with the changes that may occur in the main subcellular pathways involved in gephyrin-dependent transsynaptic signaling.
Collapse
Affiliation(s)
- Carmen A Lupascu
- National Research Council, Institute of Biophysics, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | - Michele Migliore
- National Research Council, Institute of Biophysics, Palermo, Italy
| |
Collapse
|
10
|
Specht CG. Fractional occupancy of synaptic binding sites and the molecular plasticity of inhibitory synapses. Neuropharmacology 2019; 169:107493. [PMID: 30648560 DOI: 10.1016/j.neuropharm.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/01/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
The postsynaptic density (PSD) at inhibitory synapses is a complex molecular assembly that serves as a platform for the interaction of neurotransmitter receptors, scaffold and adapter proteins, cytoskeletal elements and signalling molecules. The stability of the PSD depends on a multiplicity of interactions linking individual components. At the same time the PSD retains a substantial degree of flexibility. The continuous exchange of synaptic molecules and the preferential addition or removal of certain components induce plastic changes in the synaptic structure. This property necessarily implies that interactors are in dynamic equilibrium and that not all synaptic binding sites are occupied simultaneously. This review discusses the molecular plasticity of inhibitory synapses in terms of the connectivity of their components. Whereas stable protein complexes are marked by stoichiometric relationships between subunits, the majority of synaptic interactions have fractional occupancy, which is here defined as the non-saturation of synaptic binding sites. Fractional occupancy can have several causes: reduced kinetic or thermodynamic stability of the interactions, an imbalance in the concentrations or limited spatio-temporal overlap of interacting proteins, negative cooperativity or mutually exclusive binding. The role of fractional occupancy in the regulation of synaptic structure and function is explored based on recent data about the connectivity of inhibitory receptors and scaffold proteins. I propose that the absolute quantification of interactors and their stoichiometry at identified synapses can provide new mechanistic insights into the dynamic properties of inhibitory PSDs at the molecular level. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Christian G Specht
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institute of Biology (IBENS), Paris, 75005, France.
| |
Collapse
|
11
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
12
|
Kasaragod VB, Schindelin H. Structure-Function Relationships of Glycine and GABA A Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Front Mol Neurosci 2018; 11:317. [PMID: 30258351 PMCID: PMC6143783 DOI: 10.3389/fnmol.2018.00317] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram B Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
14
|
Costa JT, Mele M, Baptista MS, Gomes JR, Ruscher K, Nobre RJ, de Almeida LP, Wieloch T, Duarte CB. Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Mol Neurobiol 2015; 53:3513-3527. [PMID: 26093381 DOI: 10.1007/s12035-015-9283-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.
Collapse
Affiliation(s)
- João T Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Márcio S Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - João R Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Rui J Nobre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, Faculty of Medicine, Polo I, Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
15
|
Choii G, Ko J. Gephyrin: a central GABAergic synapse organizer. Exp Mol Med 2015; 47:e158. [PMID: 25882190 DOI: 10.1038/emm.2015.5] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023] Open
Abstract
Gephyrin is a central element that anchors, clusters and stabilizes glycine and γ-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
Collapse
Affiliation(s)
- Gayoung Choii
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jaewon Ko
- 1] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Maric HM, Kasaragod VB, Schindelin H. Modulation of gephyrin-glycine receptor affinity by multivalency. ACS Chem Biol 2014; 9:2554-62. [PMID: 25137389 DOI: 10.1021/cb500303a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gephyrin is a major determinant for the accumulation and anchoring of glycine receptors (GlyRs) and the majority of γ-aminobutyric acid type A receptors (GABAARs) at postsynaptic sites. Here we explored the interaction of gephyrin with a dimeric form of a GlyR β-subunit receptor-derived peptide. A 2 Å crystal structure of the C-terminal domain of gephyrin (GephE) in complex with a 15-residue peptide derived from the GlyR β-subunit defined the core binding site, which we targeted with the dimeric peptide. Biophysical analyses via differential scanning calorimetry (DSC), thermofluor, and isothermal titration calorimetry (ITC) demonstrated that this dimeric ligand is capable of binding simultaneously to two receptor binding sites and that this multivalency results in a 25-fold enhanced affinity. Our study therefore suggests that the oligomeric state of gephyrin and the number of gephyrin-binding subunits in the pentameric GABAARs and GlyRs together control postsynaptic receptor clustering.
Collapse
Affiliation(s)
- Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center
for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.
2, 97080 Würzburg, Germany
| |
Collapse
|
17
|
Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nat Commun 2014; 5:5066. [PMID: 25297980 PMCID: PMC4197815 DOI: 10.1038/ncomms6066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/25/2014] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis-trans isomerase Pin1. This signalling cascade negatively regulates NL2's ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABAA receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1-/-) associated with an increase in amplitude of spontaneous GABAA-mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction.
Collapse
|
18
|
Linsalata AE, Chen X, Winters CA, Reese TS. Electron tomography on γ-aminobutyric acid-ergic synapses reveals a discontinuous postsynaptic network of filaments. J Comp Neurol 2014; 522:921-36. [PMID: 23982982 DOI: 10.1002/cne.23453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/16/2022]
Abstract
The regulation of synaptic strength at γ-aminobutyric acid (GABA)-ergic synapses is dependent on the dynamic capture, retention, and modulation of GABA A-type receptors by cytoplasmic proteins at GABAergic postsynaptic sites. How these proteins are oriented and organized in the postsynaptic cytoplasm is not yet established. To better understand these structures and gain further insight into the mechanisms by which they regulate receptor populations at postsynaptic sites, we utilized electron tomography to examine GABAergic synapses in dissociated rat hippocampal cultures. GABAergic synapses were identified and selected for tomography by using a set of criteria derived from the structure of immunogold-labeled GABAergic synapses. Tomography revealed a complex postsynaptic network composed of filaments that extend ∼ 100 nm into the cytoplasm from the postsynaptic membrane. The distribution of these postsynaptic filaments was strikingly similar to that of the immunogold label for gephyrin. Filaments were interconnected through uniform patterns of contact, forming complexes composed of 2-12 filaments each. Complexes did not link to form an integrated, continuous scaffold, suggesting that GABAergic postsynaptic specializations are less rigidly organized than glutamatergic postsynaptic densities.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | |
Collapse
|
19
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
20
|
Zacchi P, Antonelli R, Cherubini E. Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses. Front Cell Neurosci 2014; 8:103. [PMID: 24782709 PMCID: PMC3988358 DOI: 10.3389/fncel.2014.00103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/22/2014] [Indexed: 11/13/2022] Open
Abstract
Gephyrin is a multifunctional scaffold protein essential for accumulation of inhibitory glycine and GABAA receptors at post-synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. Gephyrin post-translational modifications have been shown to influence the structural remodeling of GABAergic synapses and synaptic plasticity by acting on post-synaptic scaffolding properties as well as stability. In addition, gephyrin phosphorylation and the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 provide a mechanism for the regulation of GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, which suggests its involvement at synaptic sites. In this review we summarize the current state of knowledge of the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to a better understanding of molecular mechanisms by which gephyrin regulates synaptic plasticity at GABAergic synapses.
Collapse
Affiliation(s)
- Paola Zacchi
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Roberta Antonelli
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Enrico Cherubini
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy ; European Brain Research Institute Roma, Italy
| |
Collapse
|
21
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
22
|
Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 2013; 79:308-21. [PMID: 23889935 DOI: 10.1016/j.neuron.2013.05.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 12/01/2022]
Abstract
The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the ultrastructure of inhibitory synapses and to count scaffold proteins and receptor binding sites. We observed a close correspondence between the spatial organization of gephyrin scaffolds and glycine receptors at spinal cord synapses. Endogenous gephyrin was clustered at densities of 5,000-10,000 molecules/μm(2). The stoichiometry between gephyrin molecules and receptor binding sites was approximately 1:1, consistent with a two-dimensional scaffold in which all gephyrin molecules can contribute to receptor binding. The competition of glycine and GABAA receptor complexes for synaptic binding sites highlights the potential of single-molecule imaging to quantify synaptic plasticity on the nanoscopic scale.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure ENS, 46 rue d'Ulm, Paris 75005, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sander B, Tria G, Shkumatov AV, Kim EY, Grossmann JG, Tessmer I, Svergun DI, Schindelin H. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2050-60. [DOI: 10.1107/s0907444913018714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/05/2013] [Indexed: 11/10/2022]
Abstract
Gephyrin is a trimeric protein involved in the final steps of molybdenum-cofactor (Moco) biosynthesis and in the clustering of inhibitory glycine and GABAAreceptors at postsynaptic specializations. Each protomer consists of stably folded domains (referred to as the G and E domains) located at either terminus and connected by a proteolytically sensitive linker of ∼150 residues. Both terminal domains can oligomerize in their isolated forms; however, in the context of the full-length protein only the G-domain trimer is permanently present, whereas E-domain dimerization is prevented. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) reveal a high degree of flexibility in the structure of gephyrin. The results imply an equilibrium between compact and extended conformational states in solution, with a preference for compact states. CD spectroscopy suggests that a partial compaction is achieved by interactions of the linker with the G and E domains. Taken together, the data provide a rationale for the role of the linker in the overall structure and the conformational dynamics of gephyrin.
Collapse
|
24
|
Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA, Takahashi TT, Liman ER, Ellis-Davies GCR, McGee AW, Sabatini BL, Roberts RW, Arnold DB. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 2013; 78:971-85. [PMID: 23791193 PMCID: PMC3779638 DOI: 10.1016/j.neuron.2013.04.017] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed Fibronectin intrabodies generated with mRNA display (FingRs), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and that, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices, FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo.
Collapse
Affiliation(s)
- Garrett G Gross
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Metal insertion into the molybdenum cofactor: product–substrate channelling demonstrates the functional origin of domain fusion in gephyrin. Biochem J 2013; 450:149-57. [DOI: 10.1042/bj20121078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complexity of eukaryotic multicellular organisms relies on evolutionary developments that include compartmentalization, alternative splicing, protein domain fusion and post-translational modification. Mammalian gephyrin uniquely exemplifies these processes by combining two enzymatic functions within the biosynthesis of the Moco (molybdenum cofactor) in a multidomain protein. It also undergoes extensive alternative splicing, especially in neurons, where it also functions as a scaffold protein at inhibitory synapses. Two out of three gephyrin domains are homologous to bacterial Moco-synthetic proteins (G and E domain) while being fused by a third gephyrin-specific central C domain. In the present paper, we have established the in vitro Moco synthesis using purified components and demonstrated an over 300-fold increase in Moco synthesis for gephyrin compared with the isolated G domain, which synthesizes adenylylated molybdopterin, and E domain, which catalyses the metal insertion at physiological molybdate concentrations in an ATP-dependent manner. We show that the C domain impacts the catalytic efficacy of gephyrin, suggesting an important structural role in product–substrate channelling as depicted by a structural model that is in line with a face-to-face orientation of both active sites. Our functional studies demonstrate the evolutionary advantage of domain fusion in metabolic proteins, which can lead to the development of novel functions in higher eukaryotes.
Collapse
|
26
|
Tretter V, Mukherjee J, Maric HM, Schindelin H, Sieghart W, Moss SJ. Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 2012; 6:23. [PMID: 22615685 PMCID: PMC3351755 DOI: 10.3389/fncel.2012.00023] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/23/2012] [Indexed: 11/17/2022] Open
Abstract
GABAA receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors is the 93 kDa protein gephyrin that forms oligomeric superstructures beneath the synaptic area. Gephyrin has long been known to be directly associated with glycine receptor β subunits that mediate synaptic inhibition in the spinal cord. Recently, synaptic GABAA receptors have also been shown to directly interact with gephyrin and interaction sites have been identified and mapped within the intracellular loops of the GABAA receptor α1, α2, and α3 subunits. Gephyrin-binding to GABAA receptors seems to be at least one order of magnitude weaker than to glycine receptors (GlyRs) and most probably is regulated by phosphorylation. Gephyrin not only has a structural function at synaptic sites, but also plays a crucial role in synaptic dynamics and is a platform for multiple protein-protein interactions, bringing receptors, cytoskeletal proteins and downstream signaling proteins into close spatial proximity.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna Vienna, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Herweg J, Schwarz G. Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J Biol Chem 2012; 287:12645-56. [PMID: 22351777 DOI: 10.1074/jbc.m112.341826] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multimeric scaffolding protein gephyrin forms post-synaptic clusters at inhibitory sites, thereby anchoring inhibitory glycine (GlyR) and subsets of γ-aminobutyric acid type A (GABAA) receptors. Gephyrin is composed of three domains, the conserved N-terminal G- and C-terminal E-domain, connected by the central (C-) domain. In this study we investigated the oligomerization, folding and stability, GlyR β-loop binding, and phosphorylation of three gephyrin splice variants (Geph, Geph-C3, Geph-C4) after expression and purification from insect cells (Sf9). In contrast to Escherichia coli-derived trimeric gephyrin, we found that Sf9 gephyrins form hexamers as basic oligomeric form. In the case of Geph and Geph-C4, also high-oligomeric forms (∼900 kDa) were isolated. Partial proteolysis revealed a compact folding of the Gephyrin G and C domain in one complex, whereas a much lower stability for the E domain was found. After GlyR β-loop binding, the stability of the E domain increased in Geph and Geph-C4 significantly. In contrast, the E domain in Geph-C3 is less stable and binds the GlyR β-loop with one order of magnitude lower affinity. Finally, we identified 18 novel phosphorylation sites in gephyrin, of which all except one are located within the C domain. We propose two models for the domain arrangement in hexameric gephyrin based on the oligomerization of either the E or C domains, with the latter being crucial for the regulation of gephyrin clustering.
Collapse
Affiliation(s)
- Jens Herweg
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
28
|
Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem Cell Biol 2012; 137:471-82. [PMID: 22270318 DOI: 10.1007/s00418-012-0914-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Gephyrin is a scaffolding protein required for the accumulation of inhibitory neurotransmitter receptors at neuronal postsynaptic membranes. In non-neuronal tissues, gephyrin is indispensible for the biosynthesis of molybdenum cofactor, the prosthetic group of oxidoreductases including sulfite oxidase and xanthine oxidase. However, the molecular and cellular basis of gephyrin's non-neuronal function is poorly understood; in particular, the roles of its splice variants remain enigmatic. Here, we used cDNA screening as well as Northern and immunoblot analyses to show that mammalian liver contains only a limited number of gephyrin splice variants, with the C3-containing variant being the predominant isoform. Using new and established anti-gephyrin antibodies in immunofluorescence and subcellular fractionation studies, we report that gephyrin localizes to the cytoplasm of both tissue hepatocytes and cultured immortalized cells. These findings were corroborated by RNA interference studies in which the cytosolic distribution was found to be abolished. Finally, by blue-native PAGE we show that cytoplasmic gephyrin is part of a ~600 kDa protein complex of yet unknown composition. Our data suggest that the expression pattern of non-neuronal gephyrin is simpler than indicated by previous evidence. In addition, gephyrin's presence in a cytosolic 600 kDa protein complex suggests that its metabolic and/or other non-neuronal functions are exerted in the cytoplasm and are not confined to a particular subcellular compartment.
Collapse
|
29
|
Papadopoulos T, Soykan T. The role of collybistin in gephyrin clustering at inhibitory synapses: facts and open questions. Front Cell Neurosci 2011; 5:11. [PMID: 21738498 PMCID: PMC3125517 DOI: 10.3389/fncel.2011.00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/13/2011] [Indexed: 11/13/2022] Open
Abstract
Collybistin (Cb) is a brain-specific GDP/GTP-exchange factor, which interacts with the inhibitory receptor anchoring protein gephyrin. Data from mice carrying an inactivated Cb gene indicate that Cb is required for the formation and maintenance of gephyrin and gephyrin-dependent GABA(A) receptor (GABA(A)R) clusters at inhibitory postsynapses in selected regions of the mammalian forebrain. However, important aspects of how Cb's GDP/GTP-exchange activity, structure, and regulation contribute to gephyrin and GABA(A)R clustering, as well as its role in synaptic plasticity, remain poorly understood. Here we review the current state of knowledge about Cb's function and address open questions concerning its contribution to synapse formation, maintenance, plasticity, and adaptive changes in response to altered network activity.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Department of Molecular Neurobiology, Max-Planck Institute of Experimental Medicine , Göttingen, Germany
| | | |
Collapse
|
30
|
The biological role of the glycinergic synapse in early zebrafish motility. Neurosci Res 2011; 71:1-11. [PMID: 21712054 DOI: 10.1016/j.neures.2011.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
Glycine mediates fast inhibitory neurotransmission in the spinal cord, brainstem and retina. Loss of synaptic glycinergic transmission in vertebrates leads to a severe locomotion defect characterized by an exaggerated startle response accompanied by transient muscle rigidity in response to sudden acoustic or tactile stimuli. Several molecular components of the glycinergic synapse have been characterized as an outcome of genetic and physiological analyses of synaptogenesis in mammals. Recently, the glycinergic synapse has been studied using a forward genetic approach in zebrafish. This review aims to discuss molecular components of the glycinergic synapse, such as glycine receptor subunits, gephyrin, gephyrin-binding proteins and glycine transporters, as well as recent studies relevant to the genetic analysis of the glycinergic synapse in zebrafish.
Collapse
|
31
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 PMCID: PMC3093971 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
32
|
Ogino K, Ramsden SL, Keib N, Schwarz G, Harvey RJ, Hirata H. Duplicated gephyrin genes showing distinct tissue distribution and alternative splicing patterns mediate molybdenum cofactor biosynthesis, glycine receptor clustering, and escape behavior in zebrafish. J Biol Chem 2011; 286:806-17. [PMID: 20843816 PMCID: PMC3013040 DOI: 10.1074/jbc.m110.125500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/06/2010] [Indexed: 11/06/2022] Open
Abstract
Gephyrin mediates the postsynaptic clustering of glycine receptors (GlyRs) and GABA(A) receptors at inhibitory synapses and molybdenum-dependent enzyme (molybdoenzyme) activity in non-neuronal tissues. Gephyrin knock-out mice show a phenotype resembling both defective glycinergic transmission and molybdenum cofactor (Moco) deficiency and die within 1 day of birth due to starvation and dyspnea resulting from deficits in motor and respiratory networks, respectively. To address whether gephyrin function is conserved among vertebrates and whether gephyrin deficiency affects molybdoenzyme activity and motor development, we cloned and characterized zebrafish gephyrin genes. We report here that zebrafish have two gephyrin genes, gphna and gphnb. The former is expressed in all tissues and has both C3 and C4 cassette exons, and the latter is expressed predominantly in the brain and spinal cord and harbors only C4 cassette exons. We confirmed that all of the gphna and gphnb splicing isoforms have Moco synthetic activity. Antisense morpholino knockdown of either gphna or gphnb alone did not disturb synaptic clusters of GlyRs in the spinal cord and did not affect touch-evoked escape behaviors. However, on knockdown of both gphna and gphnb, embryos showed impairments in GlyR clustering in the spinal cord and, as a consequence, demonstrated touch-evoked startle response behavior by contracting antagonistic muscles simultaneously, instead of displaying early coiling and late swimming behaviors, which are executed by side-to-side muscle contractions. These data indicate that duplicated gephyrin genes mediate Moco biosynthesis and control postsynaptic clustering of GlyRs, thereby mediating key escape behaviors in zebrafish.
Collapse
Affiliation(s)
- Kazutoyo Ogino
- From the Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | - Sarah L. Ramsden
- the Department of Pharmacology, School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Natalie Keib
- the Institute of Biochemistry and Center for Molecular Medicine, University of Cologne, Cologne 50674, Germany
| | - Günter Schwarz
- the Institute of Biochemistry and Center for Molecular Medicine, University of Cologne, Cologne 50674, Germany
| | - Robert J. Harvey
- the Department of Pharmacology, School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Hiromi Hirata
- From the Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
- the Department of Genetics, Graduate University for Advanced Studies, Mishima 411-8540, Japan, and
- the Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Kanaujia SP, Jeyakanthan J, Shinkai A, Kuramitsu S, Yokoyama S, Sekar K. Crystal structures, dynamics and functional implications of molybdenum-cofactor biosynthesis protein MogA from two thermophilic organisms. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:2-16. [PMID: 21206014 PMCID: PMC3079962 DOI: 10.1107/s1744309110035037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/31/2010] [Indexed: 11/11/2022]
Abstract
Molybdenum-cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in almost all kingdoms of life, including humans. Two proteins, MogA and MoeA, catalyze the last step of this pathway in bacteria, whereas a single two-domain protein carries out catalysis in eukaryotes. Here, three crystal structures of the Moco-biosynthesis protein MogA from the two thermophilic organisms Thermus thermophilus (TtMogA; 1.64 Å resolution, space group P2(1)) and Aquifex aeolicus (AaMogA; 1.70 Å resolution, space group P2(1) and 1.90 Å resolution, space group P1) have been determined. The functional roles and the residues involved in oligomerization of the protein molecules have been identified based on a comparative analysis of these structures with those of homologous proteins. Furthermore, functional roles have been proposed for the N- and C-terminal residues. In addition, a possible protein-protein complex of MogA and MoeA has been proposed and the residues involved in protein-protein interactions are discussed. Several invariant water molecules and those present at the subunit interfaces have been identified and their possible structural and/or functional roles are described in brief. In addition, molecular-dynamics and docking studies with several small molecules (including the substrate and the product) have been carried out in order to estimate their binding affinities towards AaMogA and TtMogA. The results obtained are further compared with those obtained for homologous eukaryotic proteins.
Collapse
Affiliation(s)
- Shankar Prasad Kanaujia
- Bioinformatics Centre, Centre of Excellence in Structural Biology and Bio-computing, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
34
|
Förstera B, Belaidi AA, Jüttner R, Bernert C, Tsokos M, Lehmann TN, Horn P, Dehnicke C, Schwarz G, Meier JC. Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 2010; 133:3778-94. [DOI: 10.1093/brain/awq298] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Abstract
A principle that arises from a body of previous work is that each presynaptic terminal recognises its postsynaptic partner and that each postsynaptic site recognises the origin of the synaptic bouton innervating it. In response, the presynaptic terminal sequesters the proteins whose interactions result in the dynamic transmitter release pattern and chemical modulation appropriate for that connection. In parallel, the postsynaptic site sequesters, inserts or captures the receptors and postsynaptic density proteins appropriate for that type of synapse. The focus of this review is the selective clustering of GABA(A) receptors (GABA(A)R) at synapses made by each class of inhibitory interneurone. This provides a system in which the mechanisms underlying transynaptic recognition can be explored. There are many synaptic proteins, often with several isoforms created by post-translational modifications. Complex cascades of interactions between these proteins, on either side of the synaptic cleft, are essential for normal function, normal transmitter release and postsynaptic responsiveness. Interactions between presynaptic and postsynaptic proteins that have binding domains in the synaptic cleft are proposed here to result in a local cleft structure that captures and stabilises only the appropriate subtype of GABA(A)Rs, allowing others to drift away from that synapse, either to be captured by another synapse, or internalised.
Collapse
Affiliation(s)
- Alex M Thomson
- The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
36
|
Abstract
Synapses between nerve cells in the mammalian brain are not only extremely numerous but also very diverse with respect to their structural and functional characteristics. This heterogeneity arises despite the fact that a set of common basic protein 'building blocks' is shared by many synapses. Among these, postsynaptic scaffolding proteins play a key role. They have the ability to assemble into membrane-tethered lattices and to adopt unique conformational states in different postsynaptic microenvironments, which may represent a key prerequisite of synapse heterogeneity. Analyses of such synaptic superstructures, rather than individual proteins and their interactions, are required to develop a mechanistic understanding of postsynaptic differentiation, synapse diversity, and dynamics.
Collapse
|
37
|
Regulation of postsynaptic gephyrin cluster size by protein phosphatase 1. Mol Cell Neurosci 2010; 44:201-9. [PMID: 20206270 DOI: 10.1016/j.mcn.2010.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 01/21/2023] Open
Abstract
The scaffolding protein gephyrin is essential for the clustering of glycine and GABA(A) receptors (GABA(A)Rs) at inhibitory synapses. Here, we provide evidence that the size of the postsynaptic gephyrin scaffold is controlled by dephosphorylation reactions. Treatment of cultured hippocampal neurons with the protein phosphatase inhibitors calyculin A and okadaic acid reduced the size of postsynaptic gephyrin clusters and increased cytoplasmic gephyrin staining. Protein phosphatase 1 (PP1) was found to colocalize with gephyrin at selected postsynaptic sites and to interact with gephyrin in transfected cells and brain extracts. Alanine or glutamate substitution of the two established serine/threonine phosphorylation sites in gephyrin failed to affect its clustering at inhibitory synapses and its ability to recruit gamma2 subunit containing GABA(A)Rs. Our data are consistent with the postsynaptic gephyrin scaffold acting as a platform for PP1, which regulates gephyrin cluster size by dephosphorylation of gephyrin- or cytoskeleton-associated proteins.
Collapse
|
38
|
Dumoulin A, Triller A, Kneussel M. Cellular transport and membrane dynamics of the glycine receptor. Front Mol Neurosci 2010; 2:28. [PMID: 20161805 PMCID: PMC2820378 DOI: 10.3389/neuro.02.028.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/19/2009] [Indexed: 01/04/2023] Open
Abstract
Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism.
Collapse
Affiliation(s)
- Andrea Dumoulin
- Biologie Cellulaire de la Synapse, Ecole Normale Superieure Paris, France
| | | | | |
Collapse
|
39
|
Antonyuk SV, Strange RW, Ellis MJ, Bessho Y, Kuramitsu S, Shinkai A, Yokoyama S, Hasnain SS. Structure of hypothetical Mo-cofactor biosynthesis protein B (ST2315) from Sulfolobus tokodaii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1200-3. [PMID: 20054111 DOI: 10.1107/s1744309109043772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/22/2009] [Indexed: 11/10/2022]
Abstract
The structure of a probable Mo-cofactor biosynthesis protein B from Sulfolobus tokodaii, belonging to space group P6(4)22 with unit-cell parameters a = b = 136.68, c = 210.52 A, was solved by molecular replacement to a resolution of 1.9 A and refined to an R factor and R(free) of 16.8% and 18.5%, respectively. The asymmetric unit contains a trimer, while the biologically significant oligomer is predicted to be a hexamer by size-exclusion chromatography. The subunit structure and fold of ST2315 are similar to those of other enzymes that are known to be involved in the molybdopterin- and molybdenum cofactor-biosynthesis pathways.
Collapse
Affiliation(s)
- Svetlana V Antonyuk
- Molecular Biophysics Group, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, England
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dresbach T, Nawrotzki R, Kremer T, Schumacher S, Quinones D, Kluska M, Kuhse J, Kirsch J. Molecular architecture of glycinergic synapses. Histochem Cell Biol 2008; 130:617-33. [DOI: 10.1007/s00418-008-0491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|
41
|
Fritschy JM, Harvey RJ, Schwarz G. Gephyrin: where do we stand, where do we go? Trends Neurosci 2008; 31:257-64. [PMID: 18403029 DOI: 10.1016/j.tins.2008.02.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/17/2008] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
Gephyrin is a multifunctional protein responsible for molybdenum cofactor synthesis and the clustering of glycine and GABA(A) receptors at inhibitory synapses. Based on the structure of its two conserved domains, G and E, gephyrin is thought to form a hexagonal lattice serving as a scaffold for accessory proteins at postsynaptic sites. However, important aspects of gephyrin gene expression, protein structure and regulation, as well as the role of gephyrin in synapse formation and plasticity, remain poorly understood. Here we review the current state of knowledge about gephyrin, highlighting new research avenues based on a different structural model and a revised nomenclature for gephyrin splice variants. Unraveling the biology of gephyrin will further our understanding of glycinergic and GABAergic synapses in health and disease.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
42
|
Smolinsky B, Eichler SA, Buchmeier S, Meier JC, Schwarz G. Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J Biol Chem 2008; 283:17370-9. [PMID: 18411266 DOI: 10.1074/jbc.m800985200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin is a multifunctional protein involved in the clustering of inhibitory neuroreceptors. In addition, gephyrin catalyzes the last step in molybdenum cofactor (Moco) biosynthesis essential for the activities of Mo-dependent enzymes such as sulfite oxidase and xanthine oxidoreductase. Functional complexity and diversity of gephyrin is believed to be regulated by alternative splicing in a tissue-specific manner. Here, we investigated eight gephyrin variants with combinations of seven alternatively spliced exons located in the N-terminal G domain, the central domain, and the C-terminal E domain. Their activity in Moco synthesis was analyzed in vivo by reconstitution of gephyrin-deficient L929 cells, which were found to be defective in the G domain of gephyrin. Individual domain functions were assayed in addition and confirmed that variants containing either an additional C5 cassette or missing the C6 cassette are inactive in Moco synthesis. In contrast, different alterations within the central domain retained the Moco synthetic activity of gephyrin. The recombinant gephyrin G domain containing the C5 cassette forms dimers in solution, binds molybdopterin, but is unable to catalyze molybdopterin (MPT) adenylylation. Determination of Moco and MPT content in different tissues showed that besides liver and kidney, brain was capable of synthesizing Moco most efficiently. Subsequent analysis of cultured neurons and glia cells demonstrated glial Moco synthesis due to the expression of gephyrins containing the cassettes C2 and C6 with and without C3.1.
Collapse
Affiliation(s)
- Birthe Smolinsky
- Institute of Biochemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
43
|
Lardi-Studler B, Smolinsky B, Petitjean CM, Koenig F, Sidler C, Meier JC, Fritschy JM, Schwarz G. Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J Cell Sci 2007; 120:1371-82. [PMID: 17374639 DOI: 10.1242/jcs.003905] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Gephyrin is a multifunctional protein contributing to molybdenum cofactor (Moco) synthesis and postsynaptic clustering of glycine and GABA(A) receptors. It contains three major functional domains (G-C-E) and forms cytosolic aggregates and postsynaptic clusters by unknown mechanisms. Here, structural determinants of gephyrin aggregation and clustering were investigated by neuronal transfection of EGFP-tagged deletion and mutant gephyrin constructs. EGFP-gephyrin formed postsynaptic clusters containing endogenous gephyrin and GABA(A)-receptors. Isolated GC- or E-domains failed to aggregate and exerted dominant-negative effects on endogenous gephyrin clustering. A construct interfering with intermolecular E-domain dimerization readily auto-aggregated but showed impaired postsynaptic clustering. Finally, two mutant constructs with substitution of vertebrate-specific E-domain sequences with homologue bacterial MoeA sequences uncovered a region crucial for gephyrin clustering. One construct failed to aggregate, but retained Moco biosynthesis capacity, demonstrating the independence of gephyrin enzymatic activity and aggregation. Reinserting two vertebrate-specific residues restored gephyrin aggregation and increased formation of postsynaptic clusters containing GABA(A) receptors at the expense of PSD-95 clusters - a marker of glutamatergic synapses. These results underscore the key role of specific E-domain regions distinct from the known dimerization interface for controlling gephyrin aggregation and postsynaptic clustering and suggest that formation of gephyrin clusters influences the homeostatic balance between inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- Barbara Lardi-Studler
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Moretto Zita M, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, Zacchi P. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J 2007; 26:1761-71. [PMID: 17347650 PMCID: PMC1847658 DOI: 10.1038/sj.emboj.7601625] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 01/31/2007] [Indexed: 12/24/2022] Open
Abstract
The microtubule binding protein gephyrin plays a prominent role in establishing and maintaining a high concentration of inhibitory glycine receptors juxtaposed to presynaptic releasing sites. Here, we show that endogenous gephyrin undergoes proline-directed phosphorylation, which is followed by the recruitment of the peptidyl-prolyl isomerase Pin1. The interaction between gephyrin and Pin1 is strictly dependent on gephyrin phosphorylation and requires serine-proline consensus sites encompassing the gephyrin proline-rich domain. Upon binding, Pin1 triggers conformational changes in the gephyrin molecule, thus enhancing its ability to bind the beta subunit of GlyRs. Consistently, a downregulation of GlyR clusters was detected in hippocampal neurons derived from Pin1 knockout mice, which was paralleled by a reduction in the amplitude of glycine-evoked currents. Our results suggest that phosphorylation-dependent prolyl isomerisation of gephyrin represents a mechanism for regulating GlyRs function.
Collapse
Affiliation(s)
- M Moretto Zita
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Ivan Marchionni
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Elisa Bottos
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Massimo Righi
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, AREA Science Park, Trieste, Italy
- Dipartimento di Biochimica Biofisica Chimica delle Macromolecole, Trieste, Italy
| | - Enrico Cherubini
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Paola Zacchi
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Basovizza SS14 Km 163.5, 34012 Trieste, Italy. Tel.: +39 403756510; Fax:+39 403756502; E-mail:
| |
Collapse
|
45
|
Saiyed T, Paarmann I, Schmitt B, Haeger S, Sola M, Schmalzing G, Weissenhorn W, Betz H. Molecular Basis of Gephyrin Clustering at Inhibitory Synapses. J Biol Chem 2007; 282:5625-32. [PMID: 17182610 DOI: 10.1074/jbc.m610290200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin is a bifunctional modular protein that, in neurons, clusters glycine receptors and gamma-aminobutyric acid, type A receptors in the postsynaptic membrane of inhibitory synapses. By x-ray crystallography and cross-linking, the N-terminal G-domain of gephyrin has been shown to form trimers and the C-terminal E-domain dimers, respectively. Gephyrin therefore has been proposed to form a hexagonal submembranous lattice onto which inhibitory receptors are anchored. Here, crystal structure-based substitutions at oligomerization interfaces revealed that both G-domain trimerization and E-domain dimerization are essential for the formation of higher order gephyrin oligomers and postsynaptic gephyrin clusters. Insertion of the alternatively spliced C5' cassette into the G-domain inhibited clustering by interfering with trimerization, and mutation of the glycine receptor beta-subunit binding region prevented the localization of the clusters at synaptic sites. Together our findings show that domain interactions mediate gephyrin scaffold formation.
Collapse
Affiliation(s)
- Taslimarif Saiyed
- Department of Neurochemistry, Max Planck Institute for Brain Research, Frankfurt, Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Paarmann I, Schmitt B, Meyer B, Karas M, Betz H. Mass Spectrometric Analysis of Glycine Receptor-associated Gephyrin Splice Variants. J Biol Chem 2006; 281:34918-25. [PMID: 17001074 DOI: 10.1074/jbc.m607764200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin is an ubiquitously expressed protein that, in the nervous system, is essential for synaptic anchoring of glycine receptors (GlyRs) and major GABAA receptor subtypes. The binding of gephyrin to the GlyR depends on an amphipathic motif within the large intracellular loop of the GlyRbeta subunit. The mouse gephyrin gene consists of 30 exons. Ten of these exons, encoding cassettes of 5-40 amino acids, are subject to alternative splicing (C1-C7, C4'-C6'). Since one of the cassettes, C5', has recently been reported to exclude GlyRs from GABAergic synapses, we investigated which cassettes are found in gephyrin associated with the GlyR. Gephyrin variants were purified from rat spinal cord, brain, and liver by binding to the glutathione S-transferase-tagged GlyRbeta loop or copurified with native GlyR from spinal cord by affinity chromatography and analyzed by mass spectrometry. In addition to C2 and C6', already known to be prominent, C4 was found to be abundant in gephyrin from all tissues examined. The nonneuronal cassette C3 was easily detected in liver but not in GlyR-associated gephyrin from spinal cord. C5 was present in brain and spinal cord polypeptides, whereas C5' was coisolated mainly from liver. Notably C5'-containing gephyrin bound to the GlyRbeta loop, inconsistent with its proposed selectivity for GABAA receptors. Our data show that GlyR-associated gephyrin, lacking C3, but enriched in C4 without C5, differs from other neuronal and nonneuronal gephyrin isoforms.
Collapse
Affiliation(s)
- Ingo Paarmann
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
47
|
Bedet C, Bruusgaard JC, Vergo S, Groth-Pedersen L, Eimer S, Triller A, Vannier C. Regulation of Gephyrin Assembly and Glycine Receptor Synaptic Stability. J Biol Chem 2006; 281:30046-56. [PMID: 16882665 DOI: 10.1074/jbc.m602155200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin is required for the formation of clusters of the glycine receptor (GlyR) in the neuronal postsynaptic membrane. It can make trimers and dimers through its N- and C-terminal G and E domains, respectively. Gephyrin oligomerization could thus create a submembrane lattice providing GlyR-binding sites. We investigated the relationships between the stability of cell surface GlyR and the ability of gephyrin splice variants to form oligomers. Using truncated and full-length gephyrins we found that the 13-amino acid sequence (cassette 5) prevents G domain trimerization. Moreover, E domain dimerization is inhibited by the gephyrin central L domain. All of the gephyrin variants bind GlyR beta subunit cytoplasmic loop with high affinity regardless of their cassette composition. Coexpression experiments in COS-7 cells demonstrated that GlyR bound to gephyrin harboring cassette 5 cannot be stabilized at the cell surface. This gephyrin variant was found to deplete synapses from both GlyR and gephyrin in transfected neurons. These data suggest that the relative expression level of cellular variants influence the overall oligomerization pattern of gephyrin and thus the turnover of synaptic GlyR.
Collapse
Affiliation(s)
- Cécile Bedet
- INSERM U789, the Laboratoire de Biologie Cellulaire de la Synapse, Ecole Normale Supérieure, F-75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Hanus C, Ehrensperger MV, Triller A. Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 2006; 26:4586-95. [PMID: 16641238 PMCID: PMC6674069 DOI: 10.1523/jneurosci.5123-05.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dendritic spines show an activity-dependent cytoskeleton-based remodeling coupled with variations in receptor number and the functional properties of excitatory synapses. In this study, we analyzed the dynamics of gephyrin containing inhibitory postsynaptic scaffolds imaging a Venus::gephyrin (VeGe) chimera in dissociated spinal cord neurons. We provide evidence that the postsynaptic scaffolds at mature synapses display a submicrometric rapid lateral motion and are continuously moving on the dendritic shaft. This dynamic behavior is calcium dependent and is controlled by the cytoskeleton. Minute rearrangement within the gephyrin scaffold as well as the scaffold lateral displacements are F-actin dependent. The lateral movements are counteracted by microtubules. Moreover, the action of the potassium channel blocker 4-aminopyridine and receptor antagonists indicate that the dynamics of postsynaptic gephyrin scaffolds are controlled by synaptic activity.
Collapse
|
49
|
Maas C, Tagnaouti N, Loebrich S, Behrend B, Lappe-Siefke C, Kneussel M. Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. ACTA ACUST UNITED AC 2006; 172:441-51. [PMID: 16449194 PMCID: PMC2063653 DOI: 10.1083/jcb.200506066] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dynamics of postsynaptic receptor scaffold formation and remodeling at inhibitory synapses remain largely unknown. Gephyrin, which is a multimeric scaffold protein, interacts with cytoskeletal elements and stabilizes glycine receptors (GlyRs) and individual subtypes of γ-aminobutyric acid A receptors at inhibitory postsynaptic sites. We report intracellular mobility of gephyrin transports packets over time. Gephyrin units enter and exit active synapses within several minutes. In addition to previous reports of GlyR–gephyrin interactions at plasma membranes, we show cosedimentation and coimmunoprecipitation of both proteins from vesicular fractions. Moreover, GlyR and gephyrin are cotransported within neuronal dendrites and further coimmunoprecipitate and colocalize with the dynein motor complex. As a result, the blockade of dynein function or dynein–gephyrin interaction, as well as the depolymerization of microtubules, interferes with retrograde gephyrin recruitment. Our data suggest a GlyR–gephyrin–dynein transport complex and support the concept that gephyrin–motor interactions contribute to the dynamic and activity-dependent rearrangement of postsynaptic GlyRs, a process thought to underlie the regulation of synaptic strength.
Collapse
Affiliation(s)
- Christoph Maas
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Gephyrin is a protein involved in both synaptic anchoring of inhibitory ligand-gated ion channels and molybdenum cofactor synthesis. Substantial progress has been made in understanding its gene and protein structures. Furthermore, numerous binding partners of gephyrin have been identified. The mechanisms by which these interactions occur are unclear at present. Alternative splicing has been proposed to contribute to gephyrin's functional diversity within single cells as well as in different cell types and tissues.
Collapse
Affiliation(s)
- I Paarmann
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt, Germany.
| | | | | | | |
Collapse
|