1
|
Noh M, Che X, Jin X, Lee DK, Kim HJ, Park DR, Lee SY, Lee H, Gardella TJ, Choi JY, Lee S. Dimeric R25CPTH(1-34) activates the parathyroid hormone-1 receptor in vitro and stimulates bone formation in osteoporotic female mice. eLife 2025; 13:RP97579. [PMID: 40153305 PMCID: PMC11952747 DOI: 10.7554/elife.97579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1-84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1-34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1-34) induced acute calcemic and phosphaturic responses comparable to PTH(1-34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1-34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.
Collapse
Affiliation(s)
- Minsoo Noh
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
- Department of Life Sciences, Korea UniversitySeoulRepublic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Doo Ri Park
- Department of Life Sciences, Multitasking Macrophage Research Center, Ewha Womans UniversitySeoulRepublic of Korea
| | - Soo Young Lee
- Department of Life Sciences, Multitasking Macrophage Research Center, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hunsang Lee
- Department of Life Sciences, Korea UniversitySeoulRepublic of Korea
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
| |
Collapse
|
2
|
Gudelska M, Dobrzyn K, Kiezun M, Rytelewska E, Zaobidna E, Kisielewska K, Kopij G, Kaminski T, Smolinska N. Role of resistin in the porcine uterus: effects on endometrial steroidogenesis. Reprod Fertil Dev 2025; 37:RD24097. [PMID: 39786988 DOI: 10.1071/rd24097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Context The adipose tissue produces adipokines - hormones essential to many biological functions, including reproduction. Aims We hypothesised that resistin, one of the adipokines, is present in the blood plasma, uterine luminal flushings (ULF) and uterus of pigs during the oestrous cycle and early pregnancy, and that resistin influences uterine steroidogenesis. Methods This study aimed to determine the expression of resistin in the porcine endometrium and myometrium during the cycle and pregnancy by quantitative real-time polymerase chain reaction and western blot (WB). The adipokine concentrations in blood plasma and ULF were defined by enzyme-linked immunosorbent assay. The impact of resistin on progesterone (P4 ) and oestradiol (E2 ) secretion and steroidogenic enzyme proteins' expression were determined by radioimmunoassay and WB, respectively. The effect of resistin on protein kinase B (Akt) protein phosphorylation was determined by WB. Key results The study's results identified the resistin gene and protein expression in the porcine endometrium and myometrium. Moreover, the expression of adipokine in the uterus, its concentrations in the blood plasma and ULF, and its impact on the endometrial P4 and E2 production, are dependent on the hormonal milieu related to the phase of the cycle and/or period of pregnancy. Furthermore, resistin enhances the phosphorylation of the Akt signaling pathway. Conclusions The current findings suggest that resistin may control the steroidogenesis process in the porcine endometrium and could be an important regulator of pig reproduction. Implications In the long-term perspective, the results obtained in this study may help improve farm animal breeding.
Collapse
Affiliation(s)
- Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Shi Y, Zhu N, Qiu Y, Tan J, Wang F, Qin L, Dai A. Resistin-like molecules: a marker, mediator and therapeutic target for multiple diseases. Cell Commun Signal 2023; 21:18. [PMID: 36691020 PMCID: PMC9869618 DOI: 10.1186/s12964-022-01032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Resistin-like molecules (RELMs) are highly cysteine-rich proteins, including RELMα, RELMβ, Resistin, and RELMγ. However, RELMs exhibit significant differences in structure, distribution, and function. The expression of RELMs is regulated by various signaling molecules, such as IL-4, IL-13, and their receptors. In addition, RELMs can mediate numerous signaling pathways, including HMGB1/RAGE, IL-4/IL-4Rα, PI3K/Akt/mTOR signaling pathways, and so on. RELMs proteins are involved in wide range of physiological and pathological processes, including inflammatory response, cell proliferation, glucose metabolism, barrier defense, etc., and participate in the progression of numerous diseases such as lung diseases, intestinal diseases, cardiovascular diseases, and cancers. Meanwhile, RELMs can serve as biomarkers, risk predictors, and therapeutic targets for these diseases. An in-depth understanding of the role of RELMs may provide novel targets or strategies for the treatment and prevention of related diseases. Video abstract.
Collapse
Affiliation(s)
- Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Yun Qiu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Junlan Tan
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| |
Collapse
|
5
|
|
6
|
Hung AC, Wang YY, Lee KT, Chiang HH, Chen YK, Du JK, Chen CM, Chen MY, Chen KJ, Hu SCS, Yuan SSF. Reduced tissue and serum resistin expression as a clinical marker for esophageal squamous cell carcinoma. Oncol Lett 2021; 22:774. [PMID: 34589153 PMCID: PMC8442229 DOI: 10.3892/ol.2021.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
Esophageal cancer is one of the most common malignancies and leading cause of cancer-associated mortality worldwide. However, the molecular mechanisms underlying esophageal cancer progression and the development of clinical tools for effective diagnosis remain unclear. Resistin, which was originally identified as an adipose tissue-secretory factor, has been associated with obesity-related diseases, including certain types of cancer. Thus, the present study aimed to investigate the expression levels of resistin in tissue and serum specimens from patients with esophageal squamous cell carcinoma (ESCC) to determine the potential biological effects of resistin on ESCC cells. The results demonstrated that both tissue and serum resistin levels were significantly lower in patients with ESCC compared with healthy controls. In addition, resistin expression was positively associated with the body mass index of patients with ESCC. In vitro studies revealed that resistin inhibited the migratory ability of ESCC cells, while having no effect on ESCC cell proliferation. Taken together, these results suggest that resistin may have the potential to be developed into a clinical marker for ESCC. However, further studies are required to investigate resistin receptor expression and determine the potential involvement of resistin-associated biological pathways, which may provide insight for future development of targeted therapies for resistin-mediated ESCC.
Collapse
Affiliation(s)
- Amos C Hung
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Yen-Yun Wang
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Kun-Tsung Lee
- Department of Oral Hygiene, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Hung-Hsing Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Yuk-Kwan Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Oral and Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Je-Kang Du
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Chun-Ming Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Michael Yuanchien Chen
- Department of Dentistry, China Medical University Hospital, Taichung 406, Taiwan, R.O.C.,School of Dentistry, China Medical University, Taichung 406, Taiwan, R.O.C
| | - Kwei-Jing Chen
- Department of Dentistry, China Medical University Hospital, Taichung 406, Taiwan, R.O.C.,School of Dentistry, China Medical University, Taichung 406, Taiwan, R.O.C
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
7
|
Deb A, Deshmukh B, Ramteke P, Bhati FK, Bhat MK. Resistin: A journey from metabolism to cancer. Transl Oncol 2021; 14:101178. [PMID: 34293684 PMCID: PMC8319804 DOI: 10.1016/j.tranon.2021.101178] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Resistin levels have been associated with several pathological disorders such as metabolic disorders, cancers etc. Resistin exists in three isoforms namely RELM-α, β and γ. High resistin level activates inflammatory pathways, promotes metabolic disorders and is associated with carcinogenesis. Increase in the resistin level impairs the therapeutic response by inducing stemness or resistance, in cancer cells. Conventional drugs which alter resistin level could have therapeutic implications in several pathological disorders.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.
Collapse
Affiliation(s)
- Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
8
|
Lv M, Liu W. Hypoxia-Induced Mitogenic Factor: A Multifunctional Protein Involved in Health and Disease. Front Cell Dev Biol 2021; 9:691774. [PMID: 34336840 PMCID: PMC8319639 DOI: 10.3389/fcell.2021.691774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-induced mitogenic factor (HIMF), also known as resistin-like molecule α (RELMα) or found in inflammatory zone 1 (FIZZ1) is a member of the RELM protein family expressed in mice. It is involved in a plethora of physiological processes, including mitogenesis, angiogenesis, inflammation, and vasoconstriction. HIMF expression can be stimulated under pathological conditions and this plays a critical role in pulmonary, cardiovascular and metabolic disorders. The present review summarizes the molecular characteristics, and the physiological and pathological roles of HIMF in normal and diseased conditions. The potential clinical significance of these findings for human is also discussed.
Collapse
Affiliation(s)
- Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Liu
- Department of Pathophysiology, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Lin Q, Johns RA. Resistin family proteins in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2020; 319:L422-L434. [PMID: 32692581 DOI: 10.1152/ajplung.00040.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The family of resistin-like molecules (RELMs) consists of four members in rodents (RELMα/FIZZ1/HIMF, RELMβ/FIZZ2, Resistin/FIZZ3, and RELMγ/FIZZ4) and two members in humans (Resistin and RELMβ), all of which exhibit inflammation-regulating, chemokine, and growth factor properties. The importance of these cytokines in many aspects of physiology and pathophysiology, especially in cardiothoracic diseases, is rapidly evolving in the literature. In this review article, we attempt to summarize the contribution of RELM signaling to the initiation and progression of lung diseases, such as pulmonary hypertension, asthma/allergic airway inflammation, chronic obstructive pulmonary disease, fibrosis, cancers, infection, and other acute lung injuries. The potential of RELMs to be used as biomarkers or risk predictors of these diseases also will be discussed. Better understanding of RELM signaling in the pathogenesis of pulmonary diseases may offer novel targets or approaches for the development of therapeutics to treat or prevent a variety of inflammation, tissue remodeling, and fibrosis-related disorders in respiratory, cardiovascular, and other systems.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Front Immunol 2020; 11:965. [PMID: 32508838 PMCID: PMC7251035 DOI: 10.3389/fimmu.2020.00965] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Host defense peptides, abundantly secreted by colonic epithelial cells and leukocytes, are proposed to be critical components of an innate immune response in the colon against enteropathogenic bacteria, including Shigella spp., Salmonella spp., Clostridium difficile, and attaching and effacing Escherichia coli and Citrobacter rodentium. These short cationic peptides are bactericidal against both Gram-positive and -negative enteric pathogens, but may also exert killing effects on intestinal luminal microbiota. Simultaneously, these peptides modulate numerous cellular responses crucial for gut defenses, including leukocyte chemotaxis and migration, wound healing, cytokine production, cell proliferation, and pathogen sensing. This review discusses recent advances in our understanding of expression, mechanisms of action and microbicidal and immunomodulatory functions of major colonic host defense peptides, namely cathelicidins, β-defensins, and members of the Regenerating islet-derived protein III (RegIII) and Resistin-like molecule (RELM) families. In a theoretical framework where these peptides work synergistically, aspects of pathogenesis of infectious colitis reviewed herein uncover roles of host defense peptides aimed to promote epithelial defenses and prevent pathogen colonization, mediated through a combination of direct antimicrobial function and fine-tuning of host immune response and inflammation. This interactive host defense peptide network may decode how the intestinal immune system functions to quickly clear infections, restore homeostasis and avoid damaging inflammation associated with pathogen persistence during infectious colitis. This information is of interest in development of host defense peptides (either alone or in combination with reduced doses of antibiotics) as antimicrobial and immunomodulatory therapeutics for controlling infectious colitis.
Collapse
Affiliation(s)
- Graham A D Blyth
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liam Connors
- Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cristina Fodor
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Richard AJ, Stephens JM. Adipocyte-Derived Hormones. HORMONAL SIGNALING IN BIOLOGY AND MEDICINE 2020:461-486. [DOI: 10.1016/b978-0-12-813814-4.00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
13
|
de Gennaro G, Palla G, Battini L, Simoncini T, Del Prato S, Bertolotto A, Bianchi C. The role of adipokines in the pathogenesis of gestational diabetes mellitus. Gynecol Endocrinol 2019; 35:737-751. [PMID: 30990092 DOI: 10.1080/09513590.2019.1597346] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex condition whose physiopathology to date has not been completely clarified. Two major metabolic disorders, insulin resistance and β-cells dysfunction, play currently major role in pathogenesis of GDM. These elements are influenced by the amount of adipose tissue present before and/or during the pregnancy. Consequently, adipokines (adiponectin (APN), leptin (LPT), adipocyte fatty acid-binding protein, resistin, visfatin, omentin, vaspin, apelin, chemerin) secreted by adipose tissue, may contribute directly and/or indirectly, through the enhancement of chronic inflammation, aggravating insulin resistance and promoting GDM onset. This review aims to outline the potential physiopathological and prognostic role in GDM of adipokines, mainly APN and LPT.
Collapse
Affiliation(s)
- G de Gennaro
- a Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - G Palla
- a Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - L Battini
- b Maternal-Infant Department, University Hospital of Pisa , Pisa , Italy
| | - T Simoncini
- a Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - S Del Prato
- a Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - A Bertolotto
- c Department of Medicine, University Hospital of Pisa , Pisa , Italy
| | - C Bianchi
- c Department of Medicine, University Hospital of Pisa , Pisa , Italy
| |
Collapse
|
14
|
Luo J, Li HP, Xu F, Wu BQ, Lin HC. Early diagnosis of necrotizing enterocolitis by plasma RELMβ and thrombocytopenia in preterm infants: A pilot study. Pediatr Neonatol 2019; 60:447-452. [PMID: 30799148 DOI: 10.1016/j.pedneo.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND As the inflammatory regulators, Resistin-like molecule β (RELMβ) and Resistin might be potential biomarkers of necrotizing enterocolitis (NEC), while thrombocytopenia is often related to the severity of NEC, clinical observation suggests that thrombocytopenia might be an early biomarker of NEC. The aim of this study was to evaluate whether RELMβ, Resistin and thrombocytopenia could be biomarkers for early diagnosis of NEC in preterm infants. METHODS From January 2016 to March 2018, twenty-nine NEC preterm infants who were diagnosed with NEC (Bell's stage ≥Ⅱ) by two independent neonatologists and twenty-nine non NEC preterm infants at neonatal intensive care unit in our hospital were enrolled in this case-control study. Preterm infants with a history of serious infections (sepsis, pneumonia), asphyxia, and congenital malformations were excluded from the study. The plasma RELMβ and Resistin were evaluated by enzyme linked immunosorbent assay (ELISA) and serum platelet levels were measured directly by ordinary light microscope at the diagnosis of NEC (Bell's stage ≥Ⅱ). RESULTS Plasma RELMβ levels in NEC group were significantly higher than control group (P < 0.05). The optimal cut-off value of RELMβ determined by receiver operating characteristic curve (ROC) was 378.3 ng/L. The overall estimates for sensitivity and specificity of high RELMβ concentrations in the detection of neonatal NEC were 71.4% and 91.7%, respectively. No significant difference was found in plasma Resistin levels between two groups (P > 0.05). If platelet level was less than 157 × 109/L, the sensitivity and specificity were 69.34% and 82.87%, respectively. Interestingly, the combination of RELMβ and thrombocytopenia increased sensitivity and specificity to 82.89% and 93.21%, respectively. CONCLUSION The combination of RELMβ and thrombocytopenia was a reliable biomarker for the early diagnosis of NEC in this study with 82.89% sensitivity and 93.21% specificity, respectively.
Collapse
Affiliation(s)
- Jun Luo
- Department of Neonatology, Bao'an Maternal and Child Health Hospital of Shenzhen, Jinan University, Guangdong, China
| | - Hong Ping Li
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, China
| | - Fen Xu
- Department of Neonatology, Bao'an Maternal and Child Health Hospital of Shenzhen, Jinan University, Guangdong, China
| | - Ben Qing Wu
- Department of Neonatology, Guangming People's Hospital of Shenzhen, China
| | - Hung Chih Lin
- Department of Neonatology, China Medical University Children's Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Asia University Hospital, Asia University, Taichung, Taiwan.
| |
Collapse
|
15
|
Emamalipour M, Seidi K, Jahanban‐Esfahlan A, Jahanban‐Esfahlan R. Implications of resistin in type 2 diabetes mellitus and coronary artery disease: Impairing insulin function and inducing pro‐inflammatory cytokines. J Cell Physiol 2019; 234:21758-21769. [DOI: 10.1002/jcp.28913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa Emamalipour
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Khaled Seidi
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Jahanban‐Esfahlan
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
16
|
|
17
|
Harris TA, Gattu S, Propheter DC, Kuang Z, Bel S, Ruhn KA, Chara AL, Edwards M, Zhang C, Jo JH, Raj P, Zouboulis CC, Kong HH, Segre JA, Hooper LV. Resistin-like Molecule α Provides Vitamin-A-Dependent Antimicrobial Protection in the Skin. Cell Host Microbe 2019; 25:777-788.e8. [PMID: 31101494 DOI: 10.1016/j.chom.2019.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/17/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Vitamin A deficiency increases susceptibility to skin infection. However, the mechanisms by which vitamin A regulates skin immunity remain unclear. Here, we show that resistin-like molecule α (RELMα), a small secreted cysteine-rich protein, is expressed by epidermal keratinocytes and sebocytes and serves as an antimicrobial protein that is required for vitamin-A-dependent resistance to skin infection. RELMα was induced by microbiota colonization of the murine skin, was bactericidal in vitro, and was protected against bacterial infection of the skin in vivo. RELMα expression required dietary vitamin A and was induced by the therapeutic vitamin A analog isotretinoin, which protected against skin infection in a RELMα-dependent manner. The RELM family member Resistin was expressed in human skin, was induced by vitamin A analogs, and killed skin bacteria, indicating a conserved function for RELM proteins in skin innate immunity. Our findings provide insight into how vitamin A promotes resistance to skin infection.
Collapse
Affiliation(s)
- Tamia A Harris
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sureka Gattu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel C Propheter
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shai Bel
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew L Chara
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marshall Edwards
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chenlu Zhang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay-Hyun Jo
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, 06847 Dessau, Germany
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Julia A Segre
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: A reappraisal. Mech Ageing Dev 2019; 178:46-63. [DOI: 10.1016/j.mad.2019.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
19
|
Pine GM, Batugedara HM, Nair MG. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 2018; 110:442-451. [PMID: 29866514 DOI: 10.1016/j.cyto.2018.05.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
The Resistin-Like Molecules (RELM) α, β, and γ and their namesake, resistin, share structural and sequence homology but exhibit significant diversity in expression and function within their mammalian host. RELM proteins are expressed in a wide range of diseases, such as: microbial infections (eg. bacterial and helminth), inflammatory diseases (eg. asthma, fibrosis) and metabolic disorders (eg. diabetes). While the expression pattern and molecular regulation of RELM proteins are well characterized, much controversy remains over their proposed functions, with evidence of host-protective and pathogenic roles. Moreover, the receptors for RELM proteins are unclear, although three receptors for resistin, decorin, adenylyl cyclase-associated protein 1 (CAP1), and Toll-like Receptor 4 (TLR4) have recently been proposed. In this review, we will first summarize the molecular regulation of the RELM gene family, including transcription regulation and tissue expression in humans and mouse disease models. Second, we will outline the function and receptor-mediated signaling associated with RELM proteins. Finally, we will discuss recent studies suggesting that, despite early misconceptions that these proteins are pathogenic, RELM proteins have a more nuanced and potentially beneficial role for the host in certain disease settings.
Collapse
Affiliation(s)
- Gabrielle M Pine
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Hashini M Batugedara
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|
20
|
Zhang JZ, Gao Y, Zheng YY, Liu F, Yang YN, Li XM, Ma X, Ma YT, Xie X. Increased serum resistin level is associated with coronary heart disease. Oncotarget 2017; 8:50148-50154. [PMID: 28404934 PMCID: PMC5564838 DOI: 10.18632/oncotarget.15707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/24/2017] [Indexed: 01/29/2023] Open
Abstract
To explore the relationship between the serum resistin level and different types of coronary heart diseases (CHD). Literature was retrieved by formal searching of PubMed, Web of Science, Google Scholar, the Cochrane Library, Wanfang Data, China Biological Medicine Database (SinoMed) and China National Knowledge Infrastructure (CNKI) and by hand searching of reference lists of related articles. RevMan5.3 statistical software was utilized for processing and analysis. A total of 22 literatures involving 2070 subjects were included. Meta-analysis showed that the level of serum resistin in the patients with stable angina (SA), unstable angina(UA) or acute myocardial infarction (AMI) were significantly higher than those of normal controls, respectively [SMD(95% CI)were 1.97(1.15, 2.79), 2.54(1.76, 3.31), and 3.62(2.62, 4.62), all P<0.00001]. Serum resistin level in patients with UA or AMI was higher than those in patients with SA, respectively [SMD=0.90, 95CI(0.28,1.52), P=0.005], [SMD=2.28, 95%CI(0.74, 3.82), P=0.004].The level of serum resistin in patients with AMI was also higher than those in patients with UA [SMD=1.22, 95%CI(0.58, 1.85), P=0.0002]. The study demonstrated that increased serum resistin level is significantly associated with the severity of CHD.
Collapse
Affiliation(s)
- Jing-Zhan Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ying Gao
- Department of Cadre Ward, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R, Weiner HL. The Host Shapes the Gut Microbiota via Fecal MicroRNA. Cell Host Microbe 2016; 19:32-43. [PMID: 26764595 DOI: 10.1016/j.chom.2015.12.005] [Citation(s) in RCA: 550] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
The host gut microbiota varies across species and individuals but is relatively stable over time within an individual. How the host selectively shapes the microbiota is largely unclear. Here, we show that fecal microRNA (miRNA)-mediated inter-species gene regulation facilitates host control of the gut microbiota. miRNAs are abundant in mouse and human fecal samples and present within extracellular vesicles. Cell-specific loss of the miRNA-processing enzyme, Dicer, identified intestinal epithelial cells (IEC) and Hopx-positive cells as predominant fecal miRNA sources. These miRNAs can enter bacteria, such as F. nucleatum and E. coli, specifically regulate bacterial gene transcripts, and affect bacterial growth. IEC-miRNA-deficient (Dicer1(ΔIEC)) mice exhibit uncontrolled gut microbiota and exacerbated colitis, and WT fecal miRNA transplantation restores fecal microbes and ameliorates colitis. These findings identify both a physiologic role by which fecal miRNA shapes the gut microbiota and a potential strategy for manipulating the microbiome.
Collapse
Affiliation(s)
- Shirong Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre Pires da Cunha
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael M Rezende
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Cialic
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lynn Bry
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Yao K, Wu Y, Chen Q, Zhang Z, Chen X, Zhang Y. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1. PLoS One 2016; 11:e0162832. [PMID: 27622275 PMCID: PMC5021326 DOI: 10.1371/journal.pone.0162832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium.
Collapse
Affiliation(s)
- Kezhen Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
23
|
Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice. Sci Rep 2016; 6:20157. [PMID: 26818807 PMCID: PMC4730188 DOI: 10.1038/srep20157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Resistin-like molecule β (RELMβ) reportedly has multiple functions including local immune responses in the gut. In this study, we investigated the possible contribution of RELMβ to non-alcoholic steatohepatitis (NASH) development. First, RELMβ knock-out (KO) mice were shown to be resistant to methionine-choline deficient (MCD) diet-induced NASH development. Since it was newly revealed that Kupffer cells in the liver express RELMβ and that RELMβ expression levels in the colon and the numbers of RELMβ-positive Kupffer cells were both increased in this model, we carried out further experiments using radiation chimeras between wild-type and RELMβ-KO mice to distinguish between the contributions of RELMβ in these two organs. These experiments revealed the requirement of RELMβ in both organs for full manifestation of NASH, while deletion of each one alone attenuated the development of NASH with reduced serum lipopolysaccharide (LPS) levels. The higher proportion of lactic acid bacteria in the gut microbiota of RELMβ-KO than in that of wild-type mice may be one of the mechanisms underlying the lower serum LPS level the former. These data suggest the contribution of increases in RELMβ in the gut and Kupffer cells to NASH development, raising the possibility of RELMβ being a novel therapeutic target for NASH.
Collapse
|
24
|
Mohammadi M, Hedayati M, Zarghami N, Ghaemmaghami S. RESISTIN EFFECT ON TELOMERASE GENE EXPRESSION IN GASTRIC CANCER CELL LINE AGS. ACTA ENDOCRINOLOGICA-BUCHAREST 2016; 12:145-149. [PMID: 31149079 DOI: 10.4183/aeb.2016.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Resistin, as an adipokine, has been shown to be increased in serum plasma of gastric cancer patients and suggested to be a major factor in gastric carcinogenesis. However, it is still not clear how Resistin influences gastric cancer progression. The aim of this study was to evaluate Resistin effect on cell proliferation and expression of telomerase gene in gastric cancer cell line (AGS). Methods In this study, the proliferating activity of AGS cells stimulated with Resistin was also evaluated by using 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) assay and trypan blue staining method. To investigate telomerase gene expression affected by Resistin, total RNA was extracted, cDNA was synthesized and expression of hTERT mRNA was carried out by real-time reverse transcription polymerase chain reaction. Results Exogenous Resistin has induced gastric cancer cells proliferation in a dose-dependent manner and could improve cell viability. Also the expression of Human Telomerase Reverse Transcriptase (hTERT) was upregulated in 24 hours, after Resistin treatment. Conclusions This study has shown Resistin induces exogenously gastric cancer cell proliferation and increases hTERT gene expression. These findings may clarify the role of Resistin in gastric carcinogenesis. Therefore blocking Resistin signaling and limiting its secretion may be valuable for the treatment of gastric cancer.
Collapse
Affiliation(s)
- M Mohammadi
- Shahid Beheshti University of Medical Sciences, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Tehran, Islamic Republic of Iran
| | - M Hedayati
- Shahid Beheshti University of Medical Sciences, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Tehran, Islamic Republic of Iran
| | - N Zarghami
- Tabriz University of Medical Sciences, Division of Molecular Medicine, Department of Clinical Biochemistry, Tabriz, Islamic Republic of Iran
| | - S Ghaemmaghami
- Tabriz University of Medical Sciences, Division of Molecular Medicine, Department of Clinical Biochemistry, Tabriz, Islamic Republic of Iran
| |
Collapse
|
25
|
Gao F, Si F, Feng S, Yi Q, Liu R. Resistin Enhances Inflammatory Cytokine Production in Coronary Artery Tissues by Activating the NF- κB Signaling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3296437. [PMID: 27800490 PMCID: PMC5075294 DOI: 10.1155/2016/3296437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 11/17/2022]
Abstract
Purpose. Kawasaki disease (KD) is a systemic vasculitis and is a leading cause of coronary artery lesions (CALs) in childhood. Our previous study has shown higher levels of serum Resistin in KD patients with coronary aneurysm. This study aimed at examining the association of Resistin with inflammatory cytokine expression in mouse model of coronary arteritis and determining the potential mechanisms. Methods. C57BL/6 mice were injected with Lactobacillus cell wall extract (LCWE) to induce coronary arteritis. The relative levels of Resistin, TNF-α, IL-1β, and MMP-9 expression and inflammatory infiltrates in the coronary arteries were determined longitudinally by quantitative RT-PCR, ELISA, and histology. The effect of TLR4 and NF-κB activation on Resistin-induced TNF-α and IL-1β expression in human coronary artery endothelium cells (HCAECs) was examined by quantitative RT-PCR. Results. Higher levels of Resistin, TNF-α, IL-1β, and MMP-9 expression were associated with the degrees of inflammatory infiltrates in the coronary artery walls of the LCWE-injected mice. Resistin enhanced TNF-α and IL-1β expression in HCAECs at 18 or 24 hours after stimulation. Pretreatment with anti-TLR4 attenuated Resistin-enhanced IL-1β, but not TNF-α, expression and pretreatment with parthenolide or QNZ demolished Resistin-enhanced TNF-α expression in HACECs. Pretreatment with parthenolide, but not QNZ, blocked Resistin-enhanced IL-1β expression in HCAECs. Conclusion. Resistin may enhance inflammation by cross-talking with TLR4/NF-κB signaling during the development of coronary arteritis in mice.
Collapse
Affiliation(s)
- Fang Gao
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
| | - Feifei Si
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
| | - Siqi Feng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- *Qijian Yi:
| | - Ruixi Liu
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, CSTC2009CA5002, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
26
|
Fan C, Meuchel LW, Su Q, Angelini DJ, Zhang A, Cheadle C, Kolosova I, Makarevich OD, Yamaji-Kegan K, Rothenberg ME, Johns RA. Resistin-Like Molecule α in Allergen-Induced Pulmonary Vascular Remodeling. Am J Respir Cell Mol Biol 2015; 53:303-13. [PMID: 25569618 DOI: 10.1165/rcmb.2014-0322oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistin-like molecule α (RELMα) has mitogenic, angiogenic, vasoconstrictive, and chemokine-like properties and is highly relevant in lung pathology. Here, we used RELMα knockout (Retnla(-/-)) mice to investigate the role of RELMα in pulmonary vascular remodeling after intermittent ovalbumin (OVA) challenge. We compared saline- and OVA-exposed wild-type (WT) mice and found that OVA induced significant increases in right ventricular systolic pressure, cardiac hypertrophy, pulmonary vascular remodeling of intra-alveolar arteries, goblet cell hyperplasia in airway epithelium, and intensive lung inflammation, especially perivascular inflammation. Genetic ablation of Retnla prevented the OVA-induced increase in pulmonary pressure and cardiac hypertrophy seen in WT mice. Histological analysis showed that Retnla(-/-) mice exhibited less vessel muscularization, less perivascular inflammation, reduced medial thickness of intra-alveolar vessels, and fewer goblet cells in upper airway epithelium (250-600 μm) than did WT animals after OVA challenge. Gene expression profiles showed that genes associated with vascular remodeling, including those related to muscle protein, contractile fibers, and actin cytoskeleton, were expressed at a lower level in OVA-challenged Retnla(-/-) mice than in similarly treated WT mice. In addition, bronchoalveolar lavage from OVA-challenged Retnla(-/-) mice had lower levels of cytokines, such as IL-1β, -1 receptor antagonist, and -16, chemokine (C-X-C motif) ligand 1, -2, -9, -10, and -13, monocyte chemoattractant protein-1, macrophage colony-stimulating factor, TIMP metallopeptidase inhibitor-1, and triggering receptor expressed on myeloid cells-1, than did that from WT mice when analyzed by cytokine array dot blots. Retnla knockout inhibited the OVA-induced T helper 17 response but not the T helper 2 response. Altogether, our results suggest that RELMα is involved in immune response-induced pulmonary vascular remodeling and the associated increase in inflammation typically observed after OVA challenge.
Collapse
Affiliation(s)
- Chunling Fan
- 1 Department of Anesthesiology and Critical Care Medicine and
| | - Lucas W Meuchel
- 1 Department of Anesthesiology and Critical Care Medicine and
| | - Qingning Su
- 2 School of Medicine, Shenzhen University, Shenzhen, China
| | | | - Ailan Zhang
- 1 Department of Anesthesiology and Critical Care Medicine and
| | - Chris Cheadle
- 3 Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Irina Kolosova
- 1 Department of Anesthesiology and Critical Care Medicine and
| | | | | | - Marc E Rothenberg
- 5 Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger A Johns
- 1 Department of Anesthesiology and Critical Care Medicine and
| |
Collapse
|
27
|
Jedrychowski MP, Liu L, Laflamme CJ, Karastergiou K, Meshulam T, Ding SY, Wu Y, Lee MJ, Gygi SP, Fried SK, Pilch PF. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes. Mol Metab 2015; 4:758-70. [PMID: 26629401 PMCID: PMC4632174 DOI: 10.1016/j.molmet.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/23/2022] Open
Abstract
Objective Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Methods Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Results Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. Conclusion These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion. Adrx is an adipocyte specific, endoplasmic reticulum oxidoreductase upstream of disulfide bond formation. Adrx over and under expression in vitro results enhanced and decreased protein secretion, respectively. Mice lacking Adrx have lower levels of circulating adiponectin and decreased fibrosis. Adrx is expressed in human adipocytes and down regulated in proportion to the level of inflammation.
Collapse
Affiliation(s)
- Mark P. Jedrychowski
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Department of Cell Biology, Harvard University School of Medicine, 240 Longwood Avenue Boston, MA 02115, USA
| | - Libin Liu
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Collette J. Laflamme
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Kalypso Karastergiou
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Tova Meshulam
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Shi-Ying Ding
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Yuanyuan Wu
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Mi-Jeong Lee
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard University School of Medicine, 240 Longwood Avenue Boston, MA 02115, USA
| | - Susan K. Fried
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Paul F. Pilch
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Corresponding author. Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA. Tel.: +1 617 638 4044.
| |
Collapse
|
28
|
Zhao B, Katagiri T, Kondo H, Hirono I. Comparative analysis of two types of CXCL8 from Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:37-47. [PMID: 25912356 DOI: 10.1016/j.dci.2015.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
A new type of CXCL8, named CXCL8_L1b, was identified in this research. Comparison of amino acid sequences of Japanese flounder CXCL8_L1b and CXCL8_L1a (BAB86884.1) showed only 41.2% identity. Transcripts of CXCL8_L1a were highly detected in spleen, kidney, gill and liver, while transcripts of CXCL8_L1b only were detected highly in spleen and kidney of apparently healthy fish. In fish challenged with E. tarda, transcripts of CXCL8_L1a were significantly increased at day 6, while no significant increase was detected in the mRNA level of CXCL8_L1b. On the other hand, fish infected by S. iniae significantly increased both transcripts of CXCL8_L1a and CXCL8_L1b at days 1 and 3. In VHSV-infected fish, only the transcripts of CXCL8_L1b were significantly induced at day 6. LPS and poly I:C stimulation of PBLs induced a high level of CXCL8_L1a transcripts, while CXCL8_L1b transcripts were significantly increased only post poly I:C treatment. To evaluate the chemotactic activity of CXCL8_L1a and CXCL8_L1b, Japanese flounder were intramuscularly injected with recombinant plasmids pCI-CXCL8_L1a and pCI-CXCL8_L1b. H & E staining showed that injections of both pCI-CXCL8_L1a and pCI-CXCL8_L1b caused strong immune responses in the form of intermuscular cell infiltration and capillary congestion. Injection of pCI-CXCL8_L1a and pCI-CXCL8_L1b significantly induced the expressions of genes related to inflammatory response such as IL-6 and CD8α on day 1 post-injection. The transcripts of IgM only significantly increased on day 7 post-injection of pCI-CXCL8_L1b.
Collapse
Affiliation(s)
- Beibei Zhao
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Takayuki Katagiri
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
29
|
Abstract
Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.
Collapse
|
30
|
Codoñer-Franch P, Alonso-Iglesias E. Resistin: insulin resistance to malignancy. Clin Chim Acta 2015; 438:46-54. [PMID: 25128719 DOI: 10.1016/j.cca.2014.07.043] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022]
Abstract
Adipose tissue is recognized as an endocrine organ that secretes bioactive substances known as adipokines. Excess adipose tissue and adipose tissue dysfunction lead to dysregulated adipokine production that can contribute to the development of obesity-related co-morbidities. Among the various adipokines, resistin, which was initially considered as a determinant of the emergence of insulin resistance in obesity, has appeared as an important link between obesity and inflammatory processes. Several experimental and clinical studies have suggested an association between increased resistin levels and severe conditions associated with obesity such as cardiovascular disease and malignancies. In this review, we present the growing body of evidence that human resistin is an inflammatory biomarker and potential mediator of obesity-associated diseases. A common pathway seems to involve the combined alteration of immune and inflammatory processes that favor metabolic disturbances, atherosclerosis and carcinogenesis. The mode of action and the signaling pathways utilized by resistin in its interactions with target cells could involve oxidative and nitrosative stress. Therefore, resistin could function as a key molecule in the complications of obesity development and could potentially be used as a diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Dr. Peset University Hospital, Valencia 46017, Spain; Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia 46010, Spain.
| | - Eulalia Alonso-Iglesias
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
31
|
Al Hannan F, Culligan KG. Human resistin and the RELM of Inflammation in diabesity. Diabetol Metab Syndr 2015; 7:54. [PMID: 26097512 PMCID: PMC4474570 DOI: 10.1186/s13098-015-0050-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
The initial discovery of resistin and resistin-like molecules (RELMs) in rodents suggested a role for these adipocytokines in molecular linkage of obesity, Type 2 Diabetes mellitus and metabolic syndrome. Since then, it became apparent that the story of resistin and RELMs was very much of mice and men. The putative role of this adipokine family evolved from that of a conveyor of insulin resistance in rodents to instigator of inflammatory processes in humans. Structural dissimilarity, variance in distribution profiles and a lack of corroborating evidence for functional similarities separate the biological functions of resistin in humans from that of rodents. Although present in gross visceral fat deposits in humans, resistin is a component of inflammation, being released from infiltrating white blood cells of the sub-clinical chronic low grade inflammatory response accompanying obesity, rather than from the adipocyte itself. This led researchers to further explore the functions of the resistin family of proteins in inflammatory-related conditions such as atherosclerosis, as well as in cancers such as endometrial and gastric cancers. Although elevated levels of resistin have been found in these conditions, whether it is causative or as a result of these conditions still remains to be determined.
Collapse
Affiliation(s)
- Fatima Al Hannan
- />Department of Biomedical Sciences, Royal College of Surgeons in Ireland – Bahrain, Building No. 2441, Road 2835, Busaiteen, Kingdom of Bahrain
| | - Kevin Gerard Culligan
- />Department of Biomedical Sciences, Royal College of Surgeons in Ireland – Bahrain, Building No. 2441, Road 2835, Busaiteen, Kingdom of Bahrain
- />Royal College of Surgeons in Ireland – Bahrain, PO Box 15503, Adliya, Kingdom of Bahrain
| |
Collapse
|
32
|
Park HH, Sohn Y, Yeo JW, Park JH, Lee HJ, Ryu J, Rhee WJ, Park TH. Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration. Biotechnol J 2014; 9:1582-93. [PMID: 25143246 PMCID: PMC4283735 DOI: 10.1002/biot.201400253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/29/2014] [Indexed: 12/19/2022]
Abstract
Recently, the recombinant 30Kc19 protein, originating from silkworm hemolymph of Bombyx mori has attracted attention due to its cell-penetrating property and potential application as a protein delivery system. However, this observation of penetration across cell membrane has raised questions concerning the interaction of the protein-lipid bilayer. Here, we report a dimerization propensity of the 30Kc19 protein in the presence of amphiphilic moieties; sodium dodecyl sulfate (SDS) or phospholipid. Native PAGE showed that the 30Kc19 monomer formed a dimer when SDS or phospholipid was present. In the glutathione-S-transferase (GST) pull-down assay, supplementation of the 30Kc19 protein to mammalian cell culture medium showed dimerization and penetration; due to phospholipids at the cell membrane, the main components of the lipid bilayer. Mutagenesis was performed, and penetration was observed by 30Kc19 C76A and not 30Kc19 C57A, which meant that the presence of cysteine at position 57 (Cys-57) is involved in dimerization of the 30Kc19 at the cell membrane during penetration. We anticipate application of the native 30Kc19 protein with high cell-penetrating efficiency for delivery of cargos to various cell types. The intracellular cargo delivery using the 30Kc19 protein is a non-virus derived (e.g. TAT) delivery method, which can open up new approaches for the delivery of therapeutics in bioindustries, such as pharma- and cosmeceuticals.
Collapse
Affiliation(s)
- Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mavi P, Niranjan R, Dutt P, Zaidi A, Shukla JS, Korfhagen T, Mishra A. Allergen-induced resistin-like molecule-α promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G499-507. [PMID: 24994859 PMCID: PMC4154121 DOI: 10.1152/ajpgi.00141.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Resistin-like molecule (Relm)-α is a secreted, cysteine-rich protein belonging to a newly defined family of proteins, including resistin, Relm-β, and Relm-γ. Although resistin was initially defined based on its insulin-resistance activity, the family members are highly induced in various inflammatory states. Earlier studies implicated Relm-α in insulin resistance, asthmatic responses, and intestinal inflammation; however, its function still remains an enigma. We now report that Relm-α is strongly induced in the esophagus in an allergen-challenged murine model of eosinophilic esophagitis (EoE). Furthermore, to understand the in vivo role of Relm-α, we generated Relm-α gene-inducible bitransgenic mice by using lung-specific CC-10 promoter (CC10-rtTA-Relm-α). We found Relm-α protein is significantly induced in the esophagus of CC10-rtTA-Relm-α bitransgenic mice exposed to doxycycline food. The most prominent effect observed by the induction of Relm-α is epithelial cell hyperplasia, basal layer thickness, accumulation of activated CD4(+) and CD4(-) T cell subsets, and eosinophilic inflammation in the esophagus. The in vitro experiments further confirm that Relm-α promotes primary epithelial cell proliferation but has no chemotactic activity for eosinophils. Taken together, our studies report for the first time that Relm-α induction in the esophagus has a major role in promoting epithelial cell hyperplasia and basal layer thickness, and the accumulation of activated CD4(+) and CD4(-) T cell subsets may be responsible for partial esophageal eosinophilia in the mouse models of EoE. Notably, the epithelial cell hyperplasia and basal layer thickness are the characteristic features commonly observed in human EoE.
Collapse
Affiliation(s)
- Parm Mavi
- 2University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Rituraj Niranjan
- 3Allergy and Immunology, Cincinnati Children's Medical Center, Cincinnati, Ohio; and
| | - Parmesh Dutt
- 1Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinohilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana;
| | - Asifa Zaidi
- 1Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinohilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana;
| | - Jai Shankar Shukla
- 1Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinohilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana;
| | - Thomas Korfhagen
- 4Perinatal Institute, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Anil Mishra
- Section of Pulmonary Diseases, Department of Medicine, Tulane Eosinohilic Disorder Center, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
34
|
Chen X, Zhang QF, He SH, Zhang Y, Zhou SG. Role of resistin in insulin resistance and obesity. Shijie Huaren Xiaohua Zazhi 2014; 22:1241-1246. [DOI: 10.11569/wcjd.v22.i9.1241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistin is an adipose-derived hormone postulated to link adiposity to insulin resistance. Rodent animal experiments and in vitro experimental studies showed that resistin can induce insulin resistance, glucose and lipid metabolism disorders, and be closely related to metabolic syndrome. However, the specific mechanisms of action of resistin in humans are not clear. There is still controversy over the relationship between resistin and obesity. This review aims to elucidate the role of resistin in insulin resistance and discuss the relationship between resistin and obesity.
Collapse
|
35
|
Tucker Zhou TB, King GD, Chen C, Abraham CR. Biochemical and functional characterization of the klotho-VS polymorphism implicated in aging and disease risk. J Biol Chem 2013; 288:36302-11. [PMID: 24217253 PMCID: PMC3868745 DOI: 10.1074/jbc.m113.490052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/06/2013] [Indexed: 12/14/2022] Open
Abstract
Klotho (KL) is an age-regulating protein named after the Greek goddess who spins the thread of life. Mice deficient in KL are normal throughout development, but rapidly degenerate and display a variety of aging-associated abnormalities that eventually lead to decreased life expectancy. While multiple genetic association studies have identified KL polymorphisms linked with changes in disease risk, there is a paucity of concrete mechanistic data to explain how these amino acid substitutions alter KL protein function. The KLVS polymorphism is suggested to lead to changes in protein trafficking although the mechanism is unclear. Our studies have sought to further investigate the functional differences in the KLVS variant that result in increased risk of many age-related diseases. Our findings suggest that the F352V and C370S substitutions lead to alterations in processing as seen by differences in shedding and half-life. Their co-expression in KLVS results in a phenotype resembling wild-type, but despite this intragenic complementation there are still changes in homodimerization and interactions with FGFR1c. Taken together, these studies suggest that KLVS leads to altered homodimerization that indirectly leads to changes in processing and FGFR1c interactions. These findings help elucidate the functional differences that result from the VS polymorphism, which will help clarify how alterations in KL function can lead to human disease and affect cognition and lifespan.
Collapse
Affiliation(s)
- Tracey B. Tucker Zhou
- From the Departments of Pharmacology and Experimental Therapeutics and
- Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Gwendalyn D. King
- From the Departments of Pharmacology and Experimental Therapeutics and
| | - CiDi Chen
- From the Departments of Pharmacology and Experimental Therapeutics and
| | - Carmela R. Abraham
- From the Departments of Pharmacology and Experimental Therapeutics and
- Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
36
|
Selenica MLB, Alvarez JA, Nash KR, Lee DC, Cao C, Lin X, Reid P, Mouton PR, Morgan D, Gordon MN. Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. J Neuroinflammation 2013; 10:86. [PMID: 23866683 PMCID: PMC3726363 DOI: 10.1186/1742-2094-10-86] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background The chemokine (C-C motif) ligand 2 (CCL2) is a monocyte chemoattractant protein that mediates macrophage recruitment and migration during peripheral and central nervous system (CNS) inflammation. Methods To determine the impact of CCL2 in inflammation in vivo and to elucidate the CCL2-induced polarization of activated brain microglia, we delivered CCL2 into the brains of wild-type mice via recombinant adeno-associated virus serotype 9 (rAAV-9) driven by the chicken β-actin promoter. We measured microglial activation using histological and chemical measurement and recruitment of monocytes using histology and flow cytometry. Results The overexpression of CCL2 in the CNS induced significant activation of brain resident microglia. CD45 and major histocompatibility complex class II immunoreactivity significantly increased at the sites of CCL2 administration. Histological characterization of the microglial phenotype revealed the elevation of “classically activated” microglial markers, such as calgranulin B and IL-1β, as well as markers associated with “alternative activation” of microglia, including YM1 and arginase 1. The protein expression profile in the hippocampus demonstrated markedly increased levels of IL-6, GM-CSF and eotaxin (CCL-11) in response to CCL2, but no changes in the levels of other cytokines, including TNF-α and IFN-γ. Moreover, real-time PCR analysis confirmed increases in mRNA levels of gene transcripts associated with neuroinflammation following CCL2 overexpression. Finally, we investigated the chemotactic properties of CCL2 in vivo by performing adoptive transfer of bone marrow–derived cells (BMDCs) isolated from donor mice that ubiquitously expressed green fluorescent protein. Flow cytometry and histological analyses indicated that BMDCs extravasated into brain parenchyma and colabeled with microglial markers. Conclusion Taken together, our results suggest that CCL2 strongly activates resident microglia in the brain. Both pro- and anti-inflammatory activation of microglia were prominent, with no bias toward the M1 or M2 phenotype in the activated cells. As expected, CCL2 overexpression actively recruited circulating monocytes into the CNS. Thus, CCL2 expression in mouse brain induces microglial activation and represents an efficient method for recruitment of peripheral macrophages.
Collapse
Affiliation(s)
- Maj-Linda B Selenica
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer Institute, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Golbidi S, Laher I. Potential mechanisms of exercise in gestational diabetes. J Nutr Metab 2013; 2013:285948. [PMID: 23691290 PMCID: PMC3649306 DOI: 10.1155/2013/285948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/31/2013] [Accepted: 02/10/2013] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance first diagnosed during pregnancy. This condition shares same array of underlying abnormalities as occurs in diabetes outside of pregnancy, for example, genetic and environmental causes. However, the role of a sedentary lifestyle and/or excess energy intake is more prominent in GDM. Physically active women are less likely to develop GDM and other pregnancy-related diseases. Weight gain in pregnancy causes increased release of adipokines from adipose tissue; many adipokines increase oxidative stress and insulin resistance. Increased intramyocellular lipids also increase cellular oxidative stress with subsequent generation of reactive oxygen species. A well-planned program of exercise is an important component of a healthy lifestyle and, in spite of old myths, is also recommended during pregnancy. This paper briefly reviews the role of adipokines in gestational diabetes and attempts to shed some light on the mechanisms by which exercise can be beneficial as an adjuvant therapy in GDM. In this regard, we discuss the mechanisms by which exercise increases insulin sensitivity, changes adipokine profile levels, and boosts antioxidant mechanisms.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
38
|
Hirai H, Satoh H, Kudoh A, Watanabe T. Interaction between resistin and adiponectin in the proliferation of rat vascular smooth muscle cells. Mol Cell Endocrinol 2013; 366:108-16. [PMID: 23267839 DOI: 10.1016/j.mce.2012.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/15/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
Abstract
We investigated the effect between resistin and adiponectin on the proliferation of vascular smooth muscle cells (VSMCs). We confirmed that resistin significantly increases the number of rat VSMCs as well as thymidine incorporation with them, whereas adiponectin diminishes resistin-induced cell proliferation. Resistin significantly increased p42/44 mitogen-activated protein kinase (MAPK) phosphorylation within rat VSMCs, whereas adiponectin inhibited resistin-induced MAPK phosphorylation. Moreover, resistin significantly increased c-fos expression, whereas adiponectin suppressed resistin-induced c-fos expression. Cell cycle progression is a tightly controlled event that is negatively regulated by cyclin-dependent kinases inhibitors (CDKIs) such as p53, p21, and p27. Resistin significantly decreased the expression of these CDKIs, whereas adiponectin restored the resistin-induced decrease in CDKIs expression. These effects were abolished in the MAPK inhibitors. In conclusion, resistin plays a role in the development of atherosclerosis, whereas adiponectin may be an important in its prevention in insulin-resistant patients.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Department of Nephrology, Fukushima Medical University, 1 Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan
| | | | | | | |
Collapse
|
39
|
Gad W, Nair MG, Van Belle K, Wahni K, De Greve H, Van Ginderachter JA, Vandenbussche G, Endo Y, Artis D, Messens J. The quiescin sulfhydryl oxidase (hQSOX1b) tunes the expression of resistin-like molecule alpha (RELM-α or mFIZZ1) in a wheat germ cell-free extract. PLoS One 2013; 8:e55621. [PMID: 23383248 PMCID: PMC3561318 DOI: 10.1371/journal.pone.0055621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although disulfide bond formation in proteins is one of the most common types of post-translational modifications, the production of recombinant disulfide-rich proteins remains a challenge. The most popular host for recombinant protein production is Escherichia coli, but disulfide-rich proteins are here often misfolded, degraded, or found in inclusion bodies. METHODOLOGY/PRINCIPAL FINDINGS We optimize an in vitro wheat germ translation system for the expression of an immunological important eukaryotic protein that has to form five disulfide bonds, resistin-like alpha (mFIZZ1). Expression in combination with human quiescin sulfhydryl oxidase (hQSOX1b), the disulfide bond-forming enzyme of the endoplasmic reticulum, results in soluble, intramolecular disulfide bonded, monomeric, and biological active protein. The mFIZZ1 protein clearly suppresses the production of the cytokines IL-5 and IL-13 in mouse splenocytes cultured under Th2 permissive conditions. CONCLUSION/SIGNIFICANCE The quiescin sulfhydryl oxidase hQSOX1b seems to function as a chaperone and oxidase during the oxidative folding. This example for mFIZZ1 should encourage the design of an appropriate thiol/disulfide oxidoreductase-tuned cell free expression system for other challenging disulfide rich proteins.
Collapse
Affiliation(s)
- Wael Gad
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Meera G. Nair
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Karolien Van Belle
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Khadija Wahni
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Guy Vandenbussche
- Centre de Biologie Structurale et de Bioinformatique, Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Yaeta Endo
- Cell Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joris Messens
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
40
|
Choosing the right antibody for resistin-like molecule (RELM/FIZZ) family members. Histochem Cell Biol 2012; 139:605-13. [PMID: 23076260 DOI: 10.1007/s00418-012-1042-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
The family of resistin-like molecules (RELM), also known as found in inflammatory zone (FIZZ), consists of four members in mouse (RELMα/FIZZ1/HIMF, RELMβ/FIZZ2, Resistin/FIZZ3, and RELMγ/FIZZ4) and two members in human (resistin and RELMβ). The importance of these proteins in many aspects of physiology and pathophysiology, especially inflammatory processes, is rapidly evolving in the literature, and many investigators are beginning to work in this field. Most published studies focus on only one isoform, do not evaluate other isoforms that might be present, and have not tested for the specificity of the antibody used. Because RELM isoforms have high sequence and structural similarity and both distinct and overlapping functions, it is important to use a specific antibody to distinguish each isoform in the study. We constructed and established HEK 293 cell lines that constitutively express each isoform. Using these cell lines, we determined the specificity of antibodies (both commercially available and laboratory-made) to each isoform by Western blot and immunofluorescence. Some of the antibodies showed specificity in Western blotting but were not applicable in immunofluorescence. Others showed cross reactivity in Western blot assays. Our results indicate that RELM antibody specificity should be taken into account when using them in research and interpreting data obtained with them.
Collapse
|
41
|
Northcott JM, Yeganeh A, Taylor CG, Zahradka P, Wigle JT. Adipokines and the cardiovascular system: mechanisms mediating health and disease. Can J Physiol Pharmacol 2012; 90:1029-59. [DOI: 10.1139/y2012-053] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.
Collapse
Affiliation(s)
- Josette M. Northcott
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Institute of Cardiovascular Sciences, and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Azadeh Yeganeh
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R3T 2N2, Canada
| | - Carla G. Taylor
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R3T 2N2, Canada
| | - Peter Zahradka
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R3T 2N2, Canada
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E OJ9, Canada
- Institute of Cardiovascular Sciences, and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
42
|
Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 2012. [PMID: 21545576 DOI: 10.1111/j.1476-5381.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Resistin, originally described as an adipocyte-specific hormone, has been suggested to be an important link between obesity, insulin resistance and diabetes. Although its expression was initially defined in adipocytes, significant levels of resistin expression in humans are mainly found in mononuclear leukocytes, macrophages, spleen and bone marrow cells. Increasing evidence indicates that resistin plays important regulatory roles apart from its role in insulin resistance and diabetes in a variety of biological processes: atherosclerosis and cardiovascular disease (CVD), non-alcoholic fatty liver disease, autoimmune disease, malignancy, asthma, inflammatory bowel disease and chronic kidney disease. As CVD accounts for a significant amount of morbidity and mortality in patients with diabetes and without diabetes, it is important to understand the role that adipokines such as resistin play in the cardiovascular system. Evidence suggests that resistin is involved in pathological processes leading to CVD including inflammation, endothelial dysfunction, thrombosis, angiogenesis and smooth muscle cell dysfunction. The modes of action and signalling pathways whereby resistin interacts with its target cells are beginning to be understood. In this review, the current knowledge about the functions and pathophysiological implications of resistin in CVD development is summarized; clinical translations, therapeutic considerations and future directions in the field of resistin research are discussed. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Md S Jamaluddin
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 2012; 165:622-32. [PMID: 21545576 DOI: 10.1111/j.1476-5381.2011.01369.x] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Resistin, originally described as an adipocyte-specific hormone, has been suggested to be an important link between obesity, insulin resistance and diabetes. Although its expression was initially defined in adipocytes, significant levels of resistin expression in humans are mainly found in mononuclear leukocytes, macrophages, spleen and bone marrow cells. Increasing evidence indicates that resistin plays important regulatory roles apart from its role in insulin resistance and diabetes in a variety of biological processes: atherosclerosis and cardiovascular disease (CVD), non-alcoholic fatty liver disease, autoimmune disease, malignancy, asthma, inflammatory bowel disease and chronic kidney disease. As CVD accounts for a significant amount of morbidity and mortality in patients with diabetes and without diabetes, it is important to understand the role that adipokines such as resistin play in the cardiovascular system. Evidence suggests that resistin is involved in pathological processes leading to CVD including inflammation, endothelial dysfunction, thrombosis, angiogenesis and smooth muscle cell dysfunction. The modes of action and signalling pathways whereby resistin interacts with its target cells are beginning to be understood. In this review, the current knowledge about the functions and pathophysiological implications of resistin in CVD development is summarized; clinical translations, therapeutic considerations and future directions in the field of resistin research are discussed. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Md S Jamaluddin
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
The role of resistin in colorectal cancer. Clin Chim Acta 2012; 413:760-4. [PMID: 22296675 DOI: 10.1016/j.cca.2012.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND To date the role of resistin in colorectal cancer (CRC) is far from being elucidated. The aim of this study was to investigate the association between serum resistin levels and CRC in relation to known risk/protective factors including anthropometric, metabolic, inflammatory parameters as well as lifestyle individual characteristics. METHODS 40 CRC patients and 40 controls were enrolled. Body weight, height, waist circumference and blood pressure were recorded. Fasting plasma glucose, lipids, C-reactive protein (CRP) and resistin levels were measured. Metabolic Syndrome (MS) was defined according to the harmonized definition. RESULTS Resistin levels were significantly higher in CRC patients than in controls (p=0.028) and gradually increased with tumor stage progression (p=0.042). A high resistin level was statistically significant determinant of CRC after adjusting for age, sex, body mass index and lifestyle parameters (p=0.029). Resistin showed a strong association with CRP levels (p ≤ 0.0001). In stepwise regression analysis CRP remained the only independent predictor of both resistin levels (p=0.001) and CRC risk (p=0.021). CONCLUSIONS These results clarify the nature of the association between resistin and CRC risk suggesting that the proinflammatory state of cancer, rather than the clinical diagnosis of CRC itself or its link with obesity and MS, may govern this association.
Collapse
|
45
|
Munitz A, Cole ET, Karo-Atar D, Finkelman FD, Rothenberg ME. Resistin-like molecule-α regulates IL-13-induced chemokine production but not allergen-induced airway responses. Am J Respir Cell Mol Biol 2012; 46:703-13. [PMID: 22246861 DOI: 10.1165/rcmb.2011-0391oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistin-like molecule α (Relm-α) is one of the most up-regulated gene products in allergen- and parasite-associated Th2 responses. Localized to alternatively activated macrophages, Relm-α was shown to exert an anti-inflammatory effect in parasite-induced Th2 responses, but its role in experimental asthma remains unexplored. Here, we analyzed the cellular source, the IL-4 receptors required to stimulate Relm-α production, and the role of Relm-α after experimental asthma induction by IL-4, IL-13, or multiple experimental regimes, including ovalbumin and Aspergillus fumigatus immunization. We demonstrate that Relm-α was secreted into the airway lumen, dependent on both the IL-13 receptor-α1 chain and likely the Type I IL-4 receptor, and differentially localized to epithelial cells and myeloid cells, depending on the specific cytokine or aeroallergen trigger. Studies performed with Retnla gene-targeted mice demonstrate that Relm-α was largely redundant in terms of inducing the infiltration of Th2 cytokines, mucus, and inflammatory cells into the lung. These results mirror the dispensable role that other alternatively activated macrophage products (such as arginase 1) have in allergen-induced experimental asthma and contrast with their role in the setting of parasitic infections. Taken together, our findings demonstrate the distinct utilization of IL-4/IL-13 receptors for the induction of Relm-α in the lungs. The differential regulation of Relm-α expression is likely determined by the relative expression levels of IL-4, IL-13, and their corresponding receptors, which are differentially expressed by divergent cells (i.e., epithelial cells and macrophages.) Finally, we identify a largely redundant functional role for Relm-α in acute experimental models of allergen-associated Th2 immune responses.
Collapse
Affiliation(s)
- Ariel Munitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
UNLABELLED Adipose tissue is a specialized endocrine and paracrine organ producing specific factors called adipokines. It is well known that adipokines balance is fundamental to prevent obesity, metabolic syndrome, and cardiovascular diseases. During the last years, new roles of adipokines have been emerging in the field of fertility and reproduction. Although the literature is still quite controversial, this review serves to resume current knowledge on this topic. Alterations in adipokine levels or in their mechanism of action are associated with fertility impairment and pregnancy diseases, as well as with obesity, metabolic syndrome, and cardiovascular diseases. Normal levels of adipokines are fundamental to maintain integrity of hypothalamus-pituitary-gonadal axis, regular ovulatory processes, successful embryo implantation, and physiologic pregnancy. More efforts are needed to understand the mechanisms and to the extent to which adipokine changes are involved in the impairment of fertility and pregnancy outcome, to find possible medical treatments. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians Learning Objectives: After completion of this educational activity, the obstetrician/gynecologist should be better able to demonstrate current knowledge in the research field of adipokines in fertility and reproduction; evaluate the central role of metabolism balance in good pregnancy outcome; and apply new perspectives of studies.
Collapse
|
47
|
Maillard V, Froment P, Ramé C, Uzbekova S, Elis S, Dupont J. Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction 2011; 141:467-79. [PMID: 21239528 DOI: 10.1530/rep-10-0419] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resistin, initially identified in adipose tissue and macrophages, was implicated in insulin resistance. Recently, its mRNA was found in hypothalamo-pituitary axis and rat testis, leading us to hypothesize that resistin may be expressed in ovary. In this study, we determined in rats and cows 1) the characterization of resistin in ovary by RT-PCR, immunoblotting, and immunohistochemistry and 2) the effects of recombinant resistin (10, 100, 333, and 667 ng/ml) ± IGF1 (76 ng/ml) on steroidogenesis, proliferation, and signaling pathways of granulosa cells (GC) measured by enzyme immunoassay, [(3)H]thymidine incorporation, and immunoblotting respectively. We observed that resistin mRNA and protein were present in several bovine and rat ovarian cells. Nevertheless, only bovine GC abundantly expressed resistin mRNA and protein. Resistin treatment decreased basal but not IGF1-induced progesterone (P<0.05; whatever the dose) and estradiol (P<0.005; for 10 and 333 ng/ml) production by bovine GC. In rats, resistin (10 ng/ml) increased basal and IGF1-induced progesterone secretion (P<0.0001), without effect on estradiol release. We found no effect of resistin on rat GC proliferation. Conversely, in cows, resistin increased basal proliferation (P<0.0001; for 100-667 ng/ml) and decreased IGF1-induced proliferation of GC (P<0.0001; for 10-333 ng/ml) associated with a decrease in cyclin D2 protein level (P<0.0001). Finally, resistin stimulated AKT and p38-MAPK phosphorylation in both species, ERK1/2-MAPK phosphorylation in rats and had the opposite effect on the AMPK pathway (P<0.05). In conclusion, our results show that resistin is expressed in rat and bovine ovaries. Furthermore, it can modulate GC functions in basal state or in response to IGF1 in vitro.
Collapse
Affiliation(s)
- Virginie Maillard
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, Institut National de la Recherche Agronomique, F-37 380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
48
|
High glucose induces enhanced expression of resistin in human U937 monocyte-like cell line by MAPK- and NF-kB-dependent mechanisms; the modulating effect of insulin. Cell Tissue Res 2010; 343:379-87. [DOI: 10.1007/s00441-010-1092-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/11/2010] [Indexed: 12/25/2022]
|
49
|
Zheng L, Weng M, He J, Yang X, Jiang G, Tong Q. Expression of resistin-like molecule beta in gastric cancer: its relationship with clinicopathological parameters and prognosis. Virchows Arch 2009. [PMID: 19967544 DOI: 10.1007/s00428-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resistin-like molecule beta (RELMbeta), an intestinal goblet cell-specific protein, is a biomarker of intestinal metaplasia in Barrett's esophagus and over-expressed in colon cancer. Since gastric adenocarcinomas can arise through a process of intestinalization, we hypothesized that RELMbeta might be aberrantly expressed in gastric cancer. This study was undertaken to examine the RELMbeta expression in gastric cancer and correlate it with clinical outcome. One hundred and thirty-six gastric cancer patients were evaluated for the RELMbeta expression by immunohistochemistry. The RELMbeta transcripts were measured by real-time quantitative PCR. In normal gastric mucosa, RELMbeta expression was absent, whereas areas of intestinal metaplasia revealed RELMbeta reactivity. Eighty-nine patients of gastric cancer (65.4%) were positive for RELMbeta expression. In a subtotal of 20 patients, RELMbeta transcripts were positively correlated with protein levels in gastric cancer tissues, but absent in normal gastric mucosa. The expression rate of RELMbeta was higher in intestinal-type carcinomas than in diffuse-type carcinomas (P < 0.001). RELMbeta positivity in gastric cancer was positively correlated with tumor differentiation (P = 0.001) and inversely correlated with tumor infiltration (P = 0.007), lymph node metastasis (P = 0.035), and heparanase expression (P < 0.001), without correlation with age, gender, tumor location and size, tumor-node metastasis stages, and Ki-67 expression. Patients showing positive RELMbeta expression had a significantly longer overall survival than those with negative expression (P = 0.001). These results provide evidences that the RELMbeta expression in gastric cancer is correlated with clinicopathological features and may be a useful prognostic factor for predicting the outcome of gastric cancer patients.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China.
| | | | | | | | | | | |
Collapse
|
50
|
Expression of resistin-like molecule beta in gastric cancer: its relationship with clinicopathological parameters and prognosis. Virchows Arch 2009; 456:53-63. [DOI: 10.1007/s00428-009-0861-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/16/2022]
|