1
|
Guner S, Akhayeva T, Nichols CD, Gurdal H. The Ca2+/CaM, Src kinase and/or PI3K-dependent EGFR transactivation via 5-HT2A and 5-HT1B receptor subtypes mediates 5-HT-induced vasoconstriction. Biochem Pharmacol 2022; 206:115317. [DOI: 10.1016/j.bcp.2022.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022]
|
2
|
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that can exert diverse biological effects in various diseased states of the kidney by activating at least six cognate G protein-coupled receptors and its complex network of heterotrimeric G proteins. In many models of acute and chronic kidney injury, pathological elevations in LPA promotes abnormal changes in renal tubular epithelial cell architecture by activating apoptotic signaling, recruits immune cells to the site of injury, and stimulates profibrotic signaling by increasing gene transcription. In renal cancers, LPA can promote vascular cell proliferation and tumor cell invasion. In this review, a summary will be provided to describe the involvement of LPA, its synthetic enzymes, and its associated receptors in normal and diseased kidneys. Further elucidation of the LPA system may open new doors in developing a lipid-receptor therapeutic platform for kidney diseases.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
3
|
Yang Y, Huang H, Xu Z, Duan JK. Serotonin and Its Receptor as a New Antioxidant Therapeutic Target for Diabetic Kidney Disease. J Diabetes Res 2017; 2017:7680576. [PMID: 28929122 PMCID: PMC5591914 DOI: 10.1155/2017/7680576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a widespread chronic microvascular complication of diabetes mellitus (DM), affects almost 30-50% of patients, and represents a leading cause of death of DM. Serotonin or 5-hydroxytryptamine (5-HT) is a multifunctional bioamine that has crucial roles in many physiological pathways. Recently, emerging evidence from experimental and clinical studies has demonstrated that 5-HT is involved in the pathogenesis of diabetic vascular complications. The 5-HT receptor (5-HTR) antagonists exert renoprotective effects by suppressing oxidative stress, suggesting that 5-HTR can be used as a potential target for treating DKD. In this review, therefore, we summarize the published information available for the involvement of 5-HT and 5-HTR antagonists in the pathogenesis of various diabetic complications with a particular focus of DKD. We conclude that 5-HTR is a potential therapeutic target for treating DKD, as it has been successfully applied in animal models and has currently being investigated in randomized and controlled clinical trials.
Collapse
Affiliation(s)
- Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hui Huang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Zheng Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Department of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Jun-kai Duan
- Department of Cardiovascular Disorders, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Liu M, Idkowiak-Baldys J, Roddy PL, Baldys A, Raymond J, Clarke CJ, Hannun YA. Sustained activation of protein kinase C induces delayed phosphorylation and regulates the fate of epidermal growth factor receptor. PLoS One 2013; 8:e80721. [PMID: 24244711 PMCID: PMC3823608 DOI: 10.1371/journal.pone.0080721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/04/2013] [Indexed: 01/11/2023] Open
Abstract
It is well established that acute activation of members of the protein kinase C (PKC) family induced by activation of cellular receptors can transduce extracellular stimuli to intracellular signaling. However, the functions of sustained activation of PKC are not well studied. We have previously shown that sustained activation of classical PKC isoforms over 15-60 min induced the formation of the pericentrion, a subset of recycling endosomes that are sequestered perinuclearly in a PKC- and phospholipase D (PLD)-dependent manner. In this study, we investigated the role of this process in the phosphorylation of EGFR on threonine 654 (Thr-654) and in the regulation of intracellular trafficking and fate of epidermal growth factor receptor (EGFR). Sustained stimulation of the angiotensin II receptor induced translocation of the EGFR to the pericentrion, which in turn prevents full access of EGF to the EGFR. These effects required PKC and PLD activities, and direct stimulation of PKC with phorbol esters was sufficient to reproduce these effects. Furthermore, activation of PKC induced delayed phosphorylation of EGFR on Thr-654 that coincided with the formation of the pericentrion and which was dependent on PLD and endocytosis of EGFR. Thus, Thr-654 phosphorylation required the formation of the pericentrion. On the other hand, using a T654A mutant of EGFR, we find that the phosphorylation on Thr-654 was not required for translocation of EGFR to the pericentrion but was required for protection of EGFR from degradation in response to EGF. Taken together, these results demonstrate a novel role for the pericentrion in the regulation of EGFR phosphorylation, which in turn is important for the fates of EGFR.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jolanta Idkowiak-Baldys
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick L. Roddy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aleksander Baldys
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - John Raymond
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Clarke
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yusuf A. Hannun
- Department of Medicine and The Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
van Baal J, de Widt J, Divecha N, van Blitterswijk WJ. Diacylglycerol kinase θ counteracts protein kinase C-mediated inactivation of the EGF receptor. Int J Biochem Cell Biol 2012; 44:1791-9. [PMID: 22732145 DOI: 10.1016/j.biocel.2012.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC) signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed by increased phosphorylation of Tyr845 and Tyr1068 residues of the EGFR. Diacylglycerol is a physiological activator of PKC that can be removed by diacylglycerol kinase (DGK) activity. We found, in A431 and HEK293 cells, that the DGKθ isozyme translocated from the cytosol to the plasma membrane, where it co-localized with the EGFR and subsequently moved into EGFR-containing intracellular vesicles. This translocation was dependent on both activation of EGFR and PKC signaling. Furthermore, DGKθ physically interacted with the EGFR and became tyrosine-phosphorylated upon EGFR stimulation. Overexpression of DGKθ attenuated the bradykinin-stimulated, PKC-mediated EGFR phosphorylation at Thr654, and enhanced the phosphorylation at Tyr845 and Tyr1068. SiRNA-induced DGKθ downregulation enhanced this PKC-mediated Thr654 phosphorylation. Our data indicate that DGKθ translocation and activity is regulated by the concerted activity of EGFR and PKC and that DGKθ attenuates PKC-mediated Thr654 phosphorylation that is linked to desensitisation of EGFR signaling.
Collapse
Affiliation(s)
- Jürgen van Baal
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
6
|
Blaes N, Pécher C, Mehrenberger M, Cellier E, Praddaude F, Chevalier J, Tack I, Couture R, Girolami JP. Bradykinin inhibits high glucose- and growth factor-induced collagen synthesis in mesangial cells through the B2-kinin receptor. Am J Physiol Renal Physiol 2012; 303:F293-303. [PMID: 22573379 DOI: 10.1152/ajprenal.00437.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesangial matrix expansion is an early lesion leading to glomeruloclerosis and chronic renal diseases. A beneficial effect is achieved with angiotensin I-converting enzyme inhibitors (ACEI), which also favor bradykinin (BK) B2 receptor (B2R) activation. To define the underlying mechanism, we hypothesized that B2R activation could be a negative regulator of collagen synthesis in mesangial cells (MC). We investigated the effect of BK on collagen synthesis and signaling in MC. Inflammation was evaluated by intercellular adhesion molecule-1 (ICAM-1) expression. BK inhibited collagen I and IV synthesis stimulated by high glucose, epithelial growth factor (EGF), and transforming growth factor-β (TGF-β) but did not alter ICAM-1. Inhibition of collagen synthesis was B2R but not B1R mediated. PKC or phosphatidylinositol 3-kinase (PI3K) inhibitors mimicked the BK effect. B2R activation inhibited TGF-β- and EGF-induced Erk1/2, Smad2/3, Akt S473, and EGFR phosphorylation. A phosphatase inhibitor prevented BK effects. The in vivo impact of B2R on mesangial matrix expansion was assessed in streptozotocin-diabetic rodents. Deletion of B2R increased mesangial matrix expansion and albuminuria in diabetic mice. In diabetic rats, matrix expansion and albuminuria were prevented by ACEI but not by ACEI and B2R antagonist cotreatment. Consistently, the lowered BK content of diabetic glomeruli was restored by ACEI. In conclusion, deficient B2R activation aggravated mesangial matrix expansion in diabetic rodents whereas B2R activation reduced MC collagen synthesis by a mechanism targeting Erk1/2 and Akt, common pathways activated by EGF and TGF-β. Taken together, the data support the hypothesis of an antifibrosing effect of B2R activation.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, Toulouse Cedex. France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Seitz PK, Bremer NM, McGinnis AG, Cunningham KA, Watson CS. Quantitative changes in intracellular calcium and extracellular-regulated kinase activation measured in parallel in CHO cells stably expressing serotonin (5-HT) 5-HT2A or 5-HT2C receptors. BMC Neurosci 2012; 13:25. [PMID: 22397586 PMCID: PMC3380724 DOI: 10.1186/1471-2202-13-25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/07/2012] [Indexed: 01/14/2023] Open
Abstract
Background The serotonin (5-HT) 2A and 2C receptors (5-HT2AR and 5-HT2CR) are involved in a wide range of physiological and behavioral processes in the mammalian central and peripheral nervous systems. These receptors share a high degree of homology, have overlapping pharmacological profiles, and utilize many of the same and richly diverse second messenger signaling systems. We have developed quantitative assays for cells stably expressing these two receptors involving minimal cell sample manipulations that dramatically improve parallel assessments of two signaling responses: intracellular calcium (Cai++) changes and activation (phosphorylation) of downstream kinases. Such profiles are needed to begin to understand the simultaneous contributions from the multiplicity of signaling cascades likely to be initiated by serotonergic ligands. Results We optimized the Cai++ assay for stable cell lines expressing either 5-HT2AR or 5-HT2CR (including dye use and measurement parameters; cell density and serum requirements). We adapted a quantitative 96-well plate immunoassay for pERK in the same cell lines. Similar cell density optima and time courses were observed for 5-HT2AR- and 5-HT2CR-expressing cells in generating both types of signaling. Both cell lines also require serum-free preincubation for maximal agonist responses in the pERK assay. However, 5-HT2AR-expressing cells showed significant release of Cai++ in response to 5-HT stimulation even when preincubated in serum-replete medium, while the response was completely eliminated by serum in 5-HT2CR-expressing cells. Response to another serotonergic ligand (DOI) was eliminated by serum-replete preincubation in both cells lines. Conclusions These data expand our knowledge of differences in ligand-stimulated signaling cascades between 5-HT2AR and 5-HT2CR. Our parallel assays can be applied to other cell and receptor systems for monitoring and dissecting concurrent signaling responses.
Collapse
Affiliation(s)
- Patricia K Seitz
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
8
|
Osada-Oka M, Kita H, Yagi S, Sato T, Izumi Y, Iwao H. Angiotensin AT1 receptor blockers suppress oxidized low-density lipoprotein-derived formation of foam cells. Eur J Pharmacol 2012; 679:9-15. [DOI: 10.1016/j.ejphar.2011.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/19/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
9
|
Wu X, Kihara T, Hongo H, Akaike A, Niidome T, Sugimoto H. Angiotensin receptor type 1 antagonists protect against neuronal injury induced by oxygen-glucose depletion. Br J Pharmacol 2010; 161:33-50. [PMID: 20718738 DOI: 10.1111/j.1476-5381.2010.00840.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Several clinical trials and in vivo animal experiments have suggested that blockade of angiotensin receptor type 1 (AT(1)) improves ischaemic outcomes. However, the mechanism(s) underlying these effects has not been elucidated. Here, we have investigated the protective effects of pretreatment with AT(1) receptor antagonists, losartan or telmisartan, against ischaemic insult to neurons in vitro. EXPERIMENTAL APPROACH Primary rat neuron-astrocyte co-cultures and astrocyte-defined medium (ADM)-cultured pure astrocyte cultures were prepared. Ischaemic injury was modelled by oxygen-glucose depletion (OGD) and lactate dehydrogenase release after OGD was measured with or without AT(1) receptor antagonists or agonists (L162313), AT(2) receptor antagonist (PD123319) or agonist (CGP-42112A) pretreatment, for 48 h. Activity of glutamate transporter 1 (GLT-1) was evaluated by [(3)H]-glutamate uptake assays, after AT(1) receptor agonists or antagonists. Immunoblot and real-time PCR were used for analysis of protein and mRNA levels of GLT-1. KEY RESULTS AT(1) receptor agonists augmented OGD-induced cellular damage, which was attenuated by AT(1) receptor antagonists. AT(1) receptor antagonists also suppressed OGD-induced extracellular glutamate release, reactive oxygen species production and nitric oxide generation. GLT-1 expression and glutamate uptake activity were significantly enhanced by AT(1) receptor antagonists and impaired by AT(1) receptor agonists. AT(1) receptor stimulation suppressed both ADM-induced GLT-1 protein expression and mRNA levels. AT(1)b receptor knock-down with siRNA enhanced GLT-1 expression. In postnatal (P1-P21) rat brains, protein levels of GLT-1 and AT(1) receptors were inversely correlated. CONCLUSIONS AND IMPLICATIONS Suppression of AT(1) receptor stimulation induced GLT-1 up-regulation, which ameliorated effects of ischaemic injury.
Collapse
Affiliation(s)
- X Wu
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Miller FJ, Chu X, Stanic B, Tian X, Sharma RV, Davisson RL, Lamb FS. A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxid Redox Signal 2010; 12:583-93. [PMID: 19737091 PMCID: PMC2861543 DOI: 10.1089/ars.2009.2857] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Internalization of activated receptors to a compartment enriched with NAPDH oxidase and associated signaling molecules is expected to facilitate regulation of redox-mediated signal transduction. The aim of this study was to test the hypothesis that endocytosis is necessary for generation of reactive oxygen species (ROS) by Nox1 and for redox-dependent signaling in smooth muscle cells (SMCs). Within minutes of treatment with tumor necrosis factor (TNF)-alpha or thrombin, SMCs increased cellular levels of ROS that was inhibited by shRNA to Nox1. Treatment of SMC with TNF-alpha induced a dynamin-dependent endosomal generation of ROS, whereas thrombin-mediated ROS production did not occur within endosomes and was not prevented by dominant-negative dynamin (dn-dynamin), but instead required transactivation of the epidermal growth factor receptor (EGFR). Activation of the phosphatidylinositol 3-kinase (PI3K)-Akt-activating transcription factor-1 (ATF-1) pathway by TNF-alpha and thrombin were both Nox1- and dynamin-dependent. In conclusion, we show that formation of specific ligand-receptor complexes results in spatially distinct mechanisms of Nox1 activation and generation of ROS. These findings provide novel insights into the role of compartmentalization for integrating redox-dependent cell signaling.
Collapse
|
11
|
|
12
|
Eisinger DA, Ammer H. Down-regulation of c-Cbl by morphine accounts for persistent ERK1/2 signaling in delta-opioid receptor-expressing HEK293 cells. J Biol Chem 2009; 284:34819-28. [PMID: 19828455 DOI: 10.1074/jbc.m109.042937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Opioids display ligand-specific differences in the time course of ERK1/2 signaling. Whereas full agonists, like etorphine, induce only transient activation of ERK1/2, the partial agonist morphine mediates persistent stimulation of mitogenic signaling. Here we report that in stably delta-opioid receptor (DOR)-expressing HEK293 (HEK/DOR) cells, the transient nature of etorphine-induced ERK1/2 signaling is due to desensitization of epidermal growth factor (EGF) receptor-mediated activation of the Ras/Raf-1/ERK1/2 cascade. Desensitization of ERK1/2 activity by etorphine is associated with down-regulation of EGF receptors, an effect mediated by the ubiquitin ligase c-Cbl. In contrast, chronic morphine treatment failed to desensitize EGF receptors, resulting in unimpeded ERK1/2 signaling. The failure of morphine to desensitize ERK1/2 signaling is mediated by persistent activation of c-Src, which induces degradation of c-Cbl. The role of c-Src in opioid-specific ERK1/2 signaling is further demonstrated by pretreatment of the cells with PP2 and SKI-I as well as overexpression of a dominant negative c-Src mutant (c-Src(dn)) or a c-Src-resistant c-Cbl mutant (CblY3F), both of which facilitate desensitization of ERK1/2 signaling by morphine. Conversely, overexpression of c-Src as well as down-regulation of c-Cbl by small interfering RNA results in persistent etorphine-induced stimulation of ERK1/2 activity. Subcellular fractionation experiments finally attributed the ability of morphine to persistently activate c-Src to its redistribution from Triton X-100-insensitive membrane rafts to DOR and EGF receptor containing high density membrane compartments implicated in ERK1/2 signaling. These results demonstrate that agonist-specific differences in the temporal and spatial pattern of c-Src activation determine the kinetics of DOR-mediated regulation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, 80539 Muenchen, Germany.
| | | |
Collapse
|
13
|
Kamanna VS, Bassa BV, Ganji SH. Low density lipoproteins transactivate EGF receptor: role in mesangial cell proliferation. Life Sci 2008; 83:595-601. [PMID: 18805430 DOI: 10.1016/j.lfs.2008.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/18/2008] [Accepted: 08/15/2008] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia and the glomerular accumulation of atherogenic lipoproteins (low density lipoprotein, LDL; and its oxidatively-modified variants, ox-LDL) are commonly associated with the development of glomerular mesangial proliferative diseases. However, cellular signaling mechanisms by which atherogenic lipoproteins stimulate mesangial cell proliferation are poorly defined. In this study, we examined the effect of atherogenic lipoproteins on the activation of mesangial cell epidermal growth factor (EGF) receptor, mitogen activated protein kinase (MAP kinase), Ras, and mesangial cell proliferation. Stimulation of mesangial cells with LDL, and with greater activity, ox-LDL, markedly induced the transactivation of EGF receptor within 5 min of stimulation; the effect persisted up to at least 60 min LDL, and with a greater degree, ox-LDL, increased the activation of Ras, MAP kinase, and mesangial cell proliferation. Inhibition of EGF receptor kinase activity and/or MAP kinase activation blocked both LDL- and ox-LDL-induced mesangial cell proliferation. We suggest that the accumulation of LDL and more potently its oxidized forms within the glomerulus, through the transactivation of EGF receptor, stimulate down-stream Ras-MAP kinase signaling cascade leading to mesangial cell proliferation. Regulation of glomerular accumulation of atherogenic lipoproteins and/or EGF receptor signaling may provide protective environment against mesangial hypercellularity seen in glomerular diseases.
Collapse
Affiliation(s)
- Vaijinath S Kamanna
- Medical Research Service (151), Department of Veterans Affairs Healthcare System, 5901 East Seventh Street, Long Beach, California 90822, United States.
| | | | | |
Collapse
|
14
|
Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Mol Biotechnol 2008; 39:239-64. [DOI: 10.1007/s12033-008-9031-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 01/14/2023]
|
15
|
Buléon M, Mehrenberger M, Pécher C, Praddaude F, Couture R, Tack I, Girolami JP. Bradykinine et néphroprotection. Med Sci (Paris) 2007; 23:1141-7. [DOI: 10.1051/medsci/200723121141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Kassel KM, Schulte NA, Parker SM, Lanik AD, Toews ML. Lysophosphatidic acid decreases epidermal growth factor receptor binding in airway epithelial cells. J Pharmacol Exp Ther 2007; 323:109-18. [PMID: 17640953 DOI: 10.1124/jpet.107.120584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We showed previously that treatment of human airway smooth muscle cells and lung fibroblasts with lysophosphatidic acid (LPA) increases the binding of epidermal growth factor (EGF) to EGF receptors (EGFRs). The purpose of this study was to determine whether LPA also regulates EGFR binding in airway epithelial cells. Airway epithelial cells were incubated in the absence or presence of 10 microM LPA for increasing times, and binding of 125I-EGF to intact cells on ice was measured. Exposure to LPA for only 15 min caused a 30 to 70% decrease in EGFR binding in a dose-dependent manner, depending on the cell line. This decrease in binding was sustained to at least 18 h in BEAS-2B and primary human bronchial epithelial cells. In contrast, the LPA-induced decrease in binding reversed rapidly in two lung cancer epithelial cell lines, H292 and A549, returning to control levels within 3 h. LPA increased phosphorylation of the EGFR in BEAS-2B cells, and this phosphorylation was inhibited by both 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478; EGFR tyrosine kinase inhibitor) and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (GM6001; matrix metalloproteinase inhibitor) but not by CRM197 (heparin-binding EGF inhibitor). AG-1478 and GM6001 also inhibited the LPA-induced decrease in EGFR binding but only by 50%, suggesting only partial involvement of EGFR transactivation in the decrease in EGFR binding. In summary, LPA stimulates a decrease in EGFR binding in airway epithelial cells that is sustained in normal cells but that rapidly reverses in cancer cells. LPA-induced transactivation of EGFRs occurs and contributes to the decrease in EGFR binding, but additional pathway(s) may also be involved.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
17
|
Bassa BV, Noh JW, Ganji SH, Shin MK, Roh DD, Kamanna VS. Lysophosphatidylcholine stimulates EGF receptor activation and mesangial cell proliferation: regulatory role of Src and PKC. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1364-71. [PMID: 17950662 DOI: 10.1016/j.bbalip.2007.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 09/06/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
Lysophosphatidylcholine (LPC), a major component of oxidized-low density lipoproteins (ox-LDL), modulates various pathobiological processes involved in vascular and glomerular diseases. Although several studies have shown increased plasma concentrations of ox-LDL as well as LPC in patients with renal disease, the role of LPC in mesangial cell proliferation and associated signaling mechanisms are not clearly understood. In this study, we have shown that LPC induced the phosphorylation of epidermal growth factor receptor (EGFR), as well as the p42/44 MAP kinases. LPC activated Src-kinase and protein kinase C (PKC), and both Src kinase inhibitor PP-2 and PKC inhibitor inhibited the activation of EGFR by LPC. LPC (5-25 microM) stimulated human mesangial cell proliferation by 4-5 fold. Preincubation of mesangial cells with the Src inhibitor (PP-2), or PKC inhibitor (bisindolylmaleimide GF109203-X), or EGF receptor kinase inhibitor (AG1478), or MEK inhibitor (PD98059) significantly inhibited LPC-mediated mesangial cell proliferation. The data suggest that LPC, by activating Src and PKC signaling pathways, stimulates EGF receptor transactivation and down-stream MAP kinase signaling resulting in mesangial hypercellularity, which is a characteristic feature of diverse renal diseases.
Collapse
Affiliation(s)
- Babu V Bassa
- Medical Research Service, Department of Veterans Affairs Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF. From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. ACTA ACUST UNITED AC 2007; 55:17-54. [PMID: 17433836 DOI: 10.1016/j.brainresrev.2007.02.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/21/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the integration of signals. This will lead to the unified execution of information handling and trophism for optimal brain function and survival.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chung KY, Walker JW. Interaction and inhibitory cross-talk between endothelin and ErbB receptors in the adult heart. Mol Pharmacol 2007; 71:1494-502. [PMID: 17332141 DOI: 10.1124/mol.106.027599] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endothelin-1 (ET-1) regulates contractility and growth of the mammalian heart by binding endothelin receptor type A (ET(A)) and endothelin receptor type B (ET(B)) G-protein-coupled receptors. To identify growth signaling pathways associated with ET-1 receptors in adult myocardium, a combined immunoprecipitation/proteomic analysis was performed. Signaling proteins believed to function downstream of ET(A) such as Galpha(q), phospholipase C-beta1, protein kinase C (PKC) epsilon, and PKCdelta were identified in immunoprecipitates of ET(A) by matrix-assisted laser desorption ionization/time of flight mass spectrometry. Also prominent were the growth factor receptor tyrosine kinases erbB2 and erbB4 and their downstream growth signaling effectors phosphoinositide-3 kinase (PI3 kinase), Akt, Raf-1, mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (Erk). Western blot analysis confirmed coimmunoprecipitation of erbB2/4, PI3 kinase, and Akt with ET(A), and confocal microscopy revealed their colocalization in cardiac transverse tubules (T-tubules). The erbB4 receptor ligand neuregulin-1beta (NRG1beta) promoted erbB2/4 tryosine phosphorylation and Akt serine phosphorylation in ventricular myocytes, whereas treatment with ET-1 did not. This observation argues against ET-1 growth signaling occurring via erbB2/4 transactivation in adult myocardium. ET-1 did, however, stimulate Erk1/2 phosphorylation and substantially blunted several NRG1beta-mediated actions, including erbB2/4 phosphorylation, serine phosphorylation of Akt, and negative inotropy. This inhibitory cross-talk between ET(A) and erbB2/4-Akt pathways was mimicked by a phorbol ester and blocked by pharmacological inhibition of PKC or MEK/Erk. The proteomic analysis and subsequent investigation of receptor cross-talk indicate that growth signaling between ET(A) and erbB pathways is fundamentally different in adult versus neonatal cardiac myocytes. The results may be relevant to cardiomyopathies associated with 1) prolonged exposure to ET-1; 2) degeneration of T-tubules; and 3) therapies targeted at erbB2 inhibition.
Collapse
Affiliation(s)
- Ka Young Chung
- Molecular and Cellular Pharmacology Program and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
20
|
Zhao A, Urban JF, Morimoto M, Elfrey JE, Madden KB, Finkelman FD, Shea-Donohue T. Contribution of 5-HT2A receptor in nematode infection-induced murine intestinal smooth muscle hypercontractility. Gastroenterology 2006; 131:568-78. [PMID: 16890609 DOI: 10.1053/j.gastro.2006.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 05/04/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Enteric nematode infection induces a smooth muscle hypercontractility that depends on interleukin (IL)-4 and IL-13 activation of the signal transducer and activator of transcription (STAT) 6. Serotonin (5-HT) is involved in the physiologic regulation of gut function. The present study investigated the contribution of 5-HT and its receptors in nematode-induced intestinal smooth muscle hypercontractility. METHODS Mice were infected with Nippostrongylus brasiliensis (N brasiliensis) or Heligmosomoides polygyrus (H polygyrus) or injected intravenously with IL-13. Segments of jejunum were suspended in organ baths, and smooth muscle responses to 5-HT were determined in the presence or absence of specific 5-HT antagonists. IL-4, IL-13, and 5-HT receptor messenger RNA expressions were determined by real-time quantitative polymerase chain reaction. RESULTS 5-HT evoked a modest contraction of smooth muscle in wild-type (WT) mice that was unaltered by the 5-HT2A antagonist ketanserin. N brasiliensis infection induced a smooth muscle hypercontractility to 5-HT that was abolished by 5-HT(2A) antagonists but not by other 5-HT antagonists. Infection-induced up-regulation of 5-HT2A expression was correlated with the smooth muscle hypercontractility to 5-HT. The infection-induced up-regulation of 5-HT2A in WT mice was observed also in IL-4(-/-) mice but was not seen in IL-13(-/-) or STAT6(-/-) mice. In addition, smooth muscle responses to 5-HT and 5-HT2A expression in WT mice were also enhanced by IL-13 or H polygyrus infection. CONCLUSIONS These data show that 5-HT2A is one of the molecules downstream from STAT6 activation that mediates changes in smooth muscle function. 5-HT2A represents a novel therapeutic target for modulating immune-mediated effects on intestinal motility.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Gene Expression
- Ketanserin/pharmacology
- Mice
- Mice, Inbred BALB C
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Hypertonia/etiology
- Muscle Hypertonia/pathology
- Muscle Hypertonia/physiopathology
- Muscle, Smooth/drug effects
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Nematode Infections/complications
- Nematode Infections/metabolism
- Nematode Infections/pathology
- Nippostrongylus/isolation & purification
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin 5-HT2 Receptor Antagonists
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- Aiping Zhao
- Department of Medicine and the Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Göőz M, Göőz P, Luttrell LM, Raymond JR. 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-alpha-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells. J Biol Chem 2006; 281:21004-21012. [PMID: 16737974 DOI: 10.1074/jbc.m512096200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we present multiple lines of evidence to support a critical role for heparin-bound EGF (epidermal growth factor)-like growth factor (HB-EGF) and tumor necrosis factor-alpha-converting enzyme (TACE) (ADAM17) in the transactivation of EGF receptor (EGFR), ERK phosphorylation, and cellular proliferation induced by the 5-HT(2A) receptor in renal mesangial cells. 5-hydroxy-tryptamine (5-HT) resulted in rapid activation of TACE, HB-EGF shedding, EGFR activation, ERK phosphorylation, and longer term increases in DNA content in mesangial cells. ERK phosphorylation was attenuated by 1) neutralizing EGFR antibodies and the EGFR kinase inhibitor, AG1478, 2) neutralizing HB-EGF, but not amphiregulin, antibodies, heparin, or CM197, and 3) pharmacological inhibitors of matrix-degrading metalloproteinases or TACE small interfering RNA. Exogenously administered HB-EGF stimulated ERK phosphorylation. Additionally, TACE was co-immunoprecipitated with HB-EGF. Small interfering RNA against TACE also blocked 5-HT-induced increases in ERK phosphorylation, HB-EGF shedding, and DNA content. In aggregate, this work supports a pathway map that can be depicted as follows: 5-HT --> 5-HT(2A) receptor --> TACE --> HB-EGF shedding --> EGFR --> ERK --> increased DNA content. To our knowledge, this is the first time that TACE has been implicated in 5-HT-induced EGFR transactivation or in proliferation induced by a G protein-coupled receptor in native cells in culture.
Collapse
Affiliation(s)
- Monika Göőz
- Nephrology, Rheumatology and Endocrinology Divisions, Department of Medicine of the Medical University of South Carolina and the Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425.
| | - Pal Göőz
- Nephrology, Rheumatology and Endocrinology Divisions, Department of Medicine of the Medical University of South Carolina and the Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| | - Louis M Luttrell
- Nephrology, Rheumatology and Endocrinology Divisions, Department of Medicine of the Medical University of South Carolina and the Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| | - John R Raymond
- Nephrology, Rheumatology and Endocrinology Divisions, Department of Medicine of the Medical University of South Carolina and the Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
22
|
Shah BH, Shah FB, Catt KJ. Role of metalloproteinase-dependent EGF receptor activation in α1-adrenoceptor-stimulated MAP kinase phosphorylation in GT1-7 neurons. J Neurochem 2006; 96:520-32. [PMID: 16336626 DOI: 10.1111/j.1471-4159.2005.03585.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adrenoceptors (ARs) are involved in the regulation of gonadotropin-releasing hormone (GnRH) release from native and immortalized hypothalamic (GT1-7) neurons. However, the AR-mediated signaling mechanisms and their functional significance in these cells are not known. Stimulation of GT1-7 cells with the alpha1-AR agonist, phenylephrine (Phe), causes phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinases that is mediated by protein kinase C (PKC)-dependent transactivation of the epidermal growth factor receptor (EGF-R). Phe stimulation causes shedding of the soluble ligand, heparin-binding EGF (HB-EGF), as a consequence of matrix metalloproteinase (MMP) activation. Phe-induced phosphorylation of the EGF-R, and subsequently of Shc and ERK1/2, was attenuated by inhibition of MMP or HB-EGF with the selective inhibitor, CRM197, or by a neutralizing antibody. In contrast, phosphorylation of the EGF-R, Shc and ERK1/2 by EGF and HB-EGF was independent of PKC and MMP activity. Moreover, inhibition of Src attenuated ERK1/2 responses by Phe, but not by HB-EGF and EGF, indicating that Src acts upstream of the EGF-R. Consistent with a potential role of reactive oxygen species (ROS), Phe-induced phosphorylation of EGF-R was attenuated by the antioxidant, N-acetylcysteine. These data suggest that activation of the alpha1-AR causes phosphorylation of ERK1/2 through activation of PKC, ROS and Src, and shedding of HB-EGF, which binds to and activates the EGF-R.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
23
|
Olivares-Reyes JA, Shah BH, Hernández-Aranda J, García-Caballero A, Farshori MP, García-Sáinz JA, Catt KJ. Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors. Mol Pharmacol 2005; 68:356-64. [PMID: 15905421 DOI: 10.1124/mol.104.010637] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In rat hepatic C9 cells, angiotensin II (Ang II)-induced activation of angiotensin type 1 (AT(1)) receptors (AT(1)-Rs) stimulates extracellular signal-regulated kinase (ERK) 1/2 phosphorylation via transactivation of the endogenous epidermal growth factor (EGF) receptor (EGF-R) by a protein kinase C (PKC) delta/Src/Pyk2-dependent pathway. This leads to phosphorylation of the EGF-R as well as its subsequent internalization. On the other hand, EGF-induced activation of the EGF-R in C9 cells was found to cause phosphorylation of the AT(1)-R. This was prevented by selective inhibition of the intrinsic tyrosine kinase activity of the EGF-R by AG1478 [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline] and was reduced by inhibition of PKC and phosphoinositide 3-kinase. EGF-induced AT(1)-R phosphorylation was associated with a decrease in membrane-associated AT(1)-Rs and a reduced inositol phosphate response to Ang II. Agonist activation of endogenous AT(1)-Rs and EGF-Rs induced the formation of a multireceptor complex containing both the AT(1)-R and the transactivated EGF-R. The dependence of these responses on caveolin was indicated by the finding that cholesterol depletion of C9 cells abolished Ang II-induced inositol phosphate production, activation of Akt/PKB and ERK1/2, and AT(1)-R internalization. Confocal microscopy demonstrated that caveolin-1 was endogenously phosphorylated and was distributed on the plasma membrane in patches that undergo redistribution during Ang II stimulation. Agonist-induced phosphorylation and association of caveolin 1 with the AT(1)-R was observed, consistent with a scaffolding role of caveolin during transactivation of the EGF-R by Ang II. The EGF-induced AT(1)-R/caveolin association was abolished by AG1478, suggesting that activation of the EGF-R promotes the association of caveolin and the AT(1)-R.
Collapse
Affiliation(s)
- J Alberto Olivares-Reyes
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A. P. 14-740 México, 07000 D. F., México.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Activation of G protein-coupled receptors (GPCRs) may result in phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2). The signaling pathway involves ectodomain shedding, generating epidermal growth factor (EGF)-like ligands, which in turn stimulate the mitogen-activated protein kinase (MAPK) via EGF receptors. The present study investigates into the control of MAPKs by opioidergic GPCRs in human embryonic kidney cells (HEK 293). Experiments were conducted with cells expressing opioid receptors, G protein-coupled receptor kinases, and ERKs. The outcome of our studies let us suggest that EGF-like ligands released by opioid receptor stimulation utilize different EGF receptors to phosphorylate ERKs, while EGF utilizes type 1 receptors. Differences between multiple opioid receptors are apparent with respect to the activation of ERKs. EGF rapidly triggers internalization of the fluorescent EGF receptor type 1, but we failed to observe any sequestration of this receptor type upon exposure of cells to an opioid, since opioids most likely trigger stimulation of a different EGF receptor type. In conclusion, G protein-coupled opioid receptors control the MAPK cascade in a similar fashion as described for non-opioid GPCRs, although distinct differences exist between mu-, delta- and kappa-receptors. EGF-induced ERK activation is mediated by EGF receptor type 1 while opioid receptor activation seems to brings about stimulation via EGF receptor type.
Collapse
Affiliation(s)
- Rüdiger Schulz
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Königinstr. 16, D-80539 München, Germany.
| | | | | |
Collapse
|
25
|
Wang C, Buck DC, Yang R, Macey TA, Neve KA. Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem 2005; 93:899-909. [PMID: 15857393 DOI: 10.1111/j.1471-4159.2005.03055.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.
Collapse
Affiliation(s)
- Chunhe Wang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, 97239, USA
| | | | | | | | | |
Collapse
|
26
|
Hassan S, Dobner PR, Carraway RE. Involvement of MAP-kinase, PI3-kinase and EGF-receptor in the stimulatory effect of Neurotensin on DNA synthesis in PC3 cells. ACTA ACUST UNITED AC 2004; 120:155-66. [PMID: 15177934 DOI: 10.1016/j.regpep.2004.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The mechanism by which neurotensin (NT) promotes the growth of prostate cancer epithelial cells is not yet defined. Here, androgen-independent PC3 cells, which express high levels of the type 1 NT-receptor (NTR1), are used to examine the involvement of epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (ERK, SAPK/JNK and p38), PI3 kinase and PKC in the mitogenic effect of NT. NT dose dependently (0.1-30 nM) enhanced phosphorylation of EGFR, ERK and Akt, reaching maximal levels within 3 min as measured by Western blotting. These effects were associated with an accumulation of EGF-like substance(s) in the medium (assayed by EGFR binding) and a 2-fold increase in DNA synthesis (assayed by [3H]thymidine incorporation). The DNA synthesis enhancement by NT was non-additive with that of EGF. The NT-induced stimulation of EGFR/ERK/Akt phosphorylation and DNA synthesis was inhibited by EGFR-tyrosine kinase inhibitors (AG1478, PD153035), metallo-endopeptidase inhibitor phosphoramidon and by heparin, but not by neutralizing anti-EGF antibody. Thus, transactivation of EGFR by NT involved heparin-binding EGF (HB-EGF or amphiregulin) rather than EGF. The effects of NT on EGFR/ERK/Akt activation and DNA synthesis were attenuated by PLC-inhibitor (U73122), PKC-inhibitors (bisindolylmaleimide, staurosporine, rottlerin), MEK inhibitor (U0126) and PI3 kinase inhibitors (wortmannin, LY 294002). We conclude that NT stimulated mitogenesis in PC3 cells by a PKC-dependent ligand-mediated transactivation of EGFR, which led to stimulation of the Raf-MEK-ERK pathway in a PI3 kinase-dependent manner.
Collapse
Affiliation(s)
- Sazzad Hassan
- Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester 01655-0127, USA
| | | | | |
Collapse
|
27
|
Mitchell D, Rodgers K, Hanly J, McMahon B, Brady HR, Martin F, Godson C. Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:937-46. [PMID: 14982847 PMCID: PMC1614708 DOI: 10.1016/s0002-9440(10)63181-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipoxins (LX) are endogenously produced eicosanoids with a spectrum of bioactions that suggest anti-inflammatory, pro-resolution roles for these agents. Mesangial cell (MC) proliferation plays a pivotal role in the pathophysiology of glomerular inflammation and is coupled to sclerosis and tubulointerstitial fibrosis. We have previously reported that LXA4 acts through a specific G-protein-coupled-receptor (GPCR) to modulate MC proliferation in response to the proinflammatory mediators LTD4 and platelet-derived growth factor (PDGF). Further investigations revealed that these effects were mediated by modulation of receptor tyrosine kinase activity. Here we have explored the underlying mechanisms and report inhibition of growth factor (PDGF; epithelial growth factor) activation of Akt/PKB by LXA4. LXA4 (10 nmol/L) modulates PDGF-induced (10 ng/ml, 24 hours) decrements in the levels of cyclin kinase inhibitors p21Cip1 and p27Kip1. PDGF-induced increases in CDK2-cyclin E complex formation are also inhibited by LXA4. The potential of LXA4 as an anti-inflammatory therapeutic is compromised by its degradation; this has been circumvented by synthesis of stable analogs. We report that 15-(R/S)-methyl-LXA4 and 16-phenoxy-LXA4 mimic the native compound with respect to modulation of cell proliferation and PDGF-induced changes in cell cycle proteins. In vivo, MC proliferation in response to PDGF is associated with TGFbeta1 production and the subsequent development of renal fibrosis. Here we demonstrate that prolonged (24 to 48 hours) exposure to PDGF is associated with autocrine TGFbeta1 production, which is significantly reduced by LXA4. In aggregate these data demonstrate that LX inhibit PDGF stimulated proliferation via modulation of the PI-3-kinase pathway preventing mitogen-elicited G1-S phase progression and suggest the therapeutic potential of LX as anti-fibrotic agents.
Collapse
Affiliation(s)
- Derick Mitchell
- Center for Molecular Inflammation and Vascular Research, Department of Medicine and Therapeutics, Mater Misericordiae Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
28
|
Shah BH, Farshori MP, Catt KJ. Neuropeptide-induced Transactivation of a Neuronal Epidermal Growth Factor Receptor Is Mediated by Metalloprotease-dependent Formation of Heparin-binding Epidermal Growth Factor. J Biol Chem 2004; 279:414-20. [PMID: 14573593 DOI: 10.1074/jbc.m309083200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
29
|
Mukhin YV, Garnovskaya MN, Ullian ME, Raymond JR. ERK Is Regulated by Sodium-Proton Exchanger in Rat Aortic Vascular Smooth Muscle Cells. J Biol Chem 2004; 279:1845-52. [PMID: 14600156 DOI: 10.1074/jbc.m304907200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purposes of this study were to test 1) the relationship between two widely studied mitogenic effector pathways, and 2) the hypothesis that sodium-proton exchanger type 1 (NHE-1) is a regulator of extracellular signal-regulated protein kinase (ERK) activation in rat aortic smooth muscle (RASM) cells. Angiotensin II (Ang II) and 5-hydroxytryptamine (5-HT) stimulated both ERK and NHE-1 activities, with activation of NHE-1 preceding that of ERK. The concentration-response curves for 5-HT and Ang II were superimposable for both processes. Inhibition of NHE-1 with pharmacological agents or by isotonic replacement of sodium in the perfusate with choline or tetramethylammonium greatly attenuated ERK activation by 5-HT or Ang II. Similar maneuvers significantly attenuated 5-HT- or Ang II-mediated activation of MEK and Ras but not transphosphorylation of the epidermal growth factor (EGF) receptor. EGF receptor blockade attenuated ERK activation, but not NHE-1 activation by 5-HT and Ang II, suggesting that the EGF receptor and NHE-1 work in parallel to stimulate ERK activity in RASM cells, converging distal to the EGF receptor but at or above the level of Ras in the Ras-MEK-ERK pathway. Receptor-independent activation of NHE-1 by acute acid loading of RASM cells resulted in the rapid phosphorylation of ERK, which could be blocked by pharmacological inhibitors of NHE-1 or by isotonic replacement of sodium, closely linking the proton transport function of NHE-1 to ERK activation. These studies identify NHE as a new regulator of ERK activity in RASM cells.
Collapse
Affiliation(s)
- Yurii V Mukhin
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Department of Medicine (Nephrology Division), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
30
|
Belcheva MM, Tan Y, Heaton VM, Clark AL, Coscia CJ. Mu opioid transactivation and down-regulation of the epidermal growth factor receptor in astrocytes: implications for mitogen-activated protein kinase signaling. Mol Pharmacol 2003; 64:1391-401. [PMID: 14645669 DOI: 10.1124/mol.64.6.1391] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astroglia are a principal target of long-term mu antiproliferative actions. The mitogen-activated protein (MAP) kinase known as extracellular signal-regulated kinase (ERK), is a key mediator of cell proliferation. In studies on the mechanism of short- and long-term mu opioid regulation of the ERK signaling pathway, we show that the mu opioid agonist [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), acting via the endogenous mu opioid receptor (MOR), induced sequential epidermal growth factor receptor (EGF) receptor (EGFR) Tyr phosphorylation, Ser phosphorylation, and down-regulation in immortalized rat cortical astrocytes. The short-term action of DAMGO resulted in the stimulation of ERK phosphorylation. 4(3-Chlorophenylamino)-6,7-dimethoxyquinazoline (Tyrphostin AG1478), a selective inhibitor of EGFR Tyr kinase activity, blocked EGFR and ERK activation by short-term DAMGO administration, implicating EGFR transactivation in its stimulation of ERK activity. Inhibitors of matrix metalloproteinases attenuated MOR-mediated ERK phosphorylation, suggesting that shedding of EGF-like ligands from the plasma membrane may be involved in the EGFR transactivation process. Prolonged DAMGO exposure induced EGFR internalization/down-regulation, did not activate ERK, and inhibited exogenous EGF-stimulated ERK phosphorylation. MOR-mediated EGFR down-regulation seems to be MAP kinase-dependent, because it was inhibited by the ERK kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126), and tyrphostin AG1478. The kappa opioid agonist (5alpha,7alpha,8beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl) benzeneacetamide (U69,593) induced Tyr and Ser phosphorylation of EGFR and activation of ERK. However, long-term application of U69,593 neither down-regulated EGFR nor inhibited EGF-induced ERK activation. Instead, it engendered a sustained activation of ERK. Collectively, our data suggest that long-term application of DAMGO initiates heterologous down-regulation of EGFR via a mechanism involving ERK in astrocytes.
Collapse
Affiliation(s)
- Mariana M Belcheva
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
31
|
Xiao D, Qu X, Weber HC. Activation of extracellular signal-regulated kinase mediates bombesin-induced mitogenic responses in prostate cancer cells. Cell Signal 2003; 15:945-53. [PMID: 12873708 DOI: 10.1016/s0898-6568(03)00059-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bombesin and its mammalian homologue gastrin-releasing peptide have been shown to be highly expressed and secreted by neuroendocrine cells in prostate cancer, and are thought to be related to the carcinogenesis and progression of this disease. We found, in this study, bombesin specifically induced mitogen-activated protein (MAP) kinase activation as shown by increased extracellular regulated kinase (ERK) phosphorylation and epidermal growth factor (EGF) receptor transactivation in prostate cancer cells, which express functional gastrin-releasing peptide receptor. The transactivation of EGF receptor was required for bombesin-induced ERK phosphorylation. Furthermore, non-receptor tyrosine kinase Src and cellular Ca2+ were shown to be involved in bombesin-induced EGF receptor transactivation and ERK phosphorylation. Inhibition of either EGF receptor transactivation or ERK activation blocked bombesin-induced DNA synthesis in these cells. Taken together, these data suggest bombesin may act as a mitogen in prostate cancer by activating MAP kinase pathway via EGFR transactivation.
Collapse
Affiliation(s)
- Dongmei Xiao
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, 650 Albany Street, EBRC, Room 515, Boston, MA 02118, USA
| | | | | |
Collapse
|
32
|
Kim J, Ahn S, Guo R, Daaka Y. Regulation of epidermal growth factor receptor internalization by G protein-coupled receptors. Biochemistry 2003; 42:2887-94. [PMID: 12627954 DOI: 10.1021/bi026942t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Surgery, Duke University Medical Center, Durham North Carolina 27710, USA
| | | | | | | |
Collapse
|
33
|
Abstract
G-protein-coupled receptors generate signals that promote gene transcription through the 'transactivation' of receptor tyrosine kinases (RTKs) and activation of the mitogen-activated protein kinase (MAPK) cascade -- a process that involves RTK autophosphorylation and endocytosis. Pioneering work now suggests that D4-dopamine-receptor-mediated transactivation of the platelet-derived growth factor beta receptor has immediate effects on synaptic neurotransmission via Ca(2+)-dependent inactivation of NMDA receptors. The demonstration of a physiological role for RTK transactivation in the CNS provides novel opportunities for understanding how aberrant dopamine signalling might contribute to cognitive and attention deficits associated with schizophrenia and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Stephen S G Ferguson
- Cell Biology Research Group, Robarts Research Institute, Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Drive, PO Box 5015, London, Ontario, Canada N6A 5K8.
| |
Collapse
|
34
|
Yunta M, Rodríguez-Barbero A, Arévalo MA, López-Novoa JM, Lazo PA. Induction of DNA synthesis by ligation of the CD53 tetraspanin antigen in primary cultures of mesangial cells. Kidney Int 2003; 63:534-42. [PMID: 12631118 DOI: 10.1046/j.1523-1755.2003.00758.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The interaction of mesangial cells with the extracellular matrix plays a major role in kidney biology. Tetraspanin proteins modulate cell interaction with the extracellular matrix. Tetraspanins form supramolecular structures on the cell membrane that send signals after engagement by unknown ligands, modulate different signaling processes, and regulate cell adhesion and motility. METHODS CD53 was determined by immunohistochemistry, and on the cell surface of cultured rat mesangial cells by flow cytometry. Mesangial cell cultures were stimulated with MRC OX-44 antibody. DNA synthesis was measured by thymidine incorporation. Extracellular signal-regulated kinase (ERK) activation was determined by Western blot. RESULTS CD53 was present in mesangial cells in vivo and in culture. Ligation of CD53 antigen with a monoclonal antibody triggered the induction of DNA synthesis, which was not sensitive to inhibitors of signaling pathways that use phosphatidylinositol 3-kinase (PI3K) and protein kinase C, or to calcium channel inhibitors, such as thapsigargin and verapamil. The DNA synthesis was inhibited by PD98059, a specific inhibitor of MEK that prevents ERK1/ERK2 activation. In addition, ERK1 and ERK2 activation by phosphorylation occurred following CD53 antigen ligation. The DNA synthesis was due to de novo synthesis and not to DNA repair as a consequence of the initiation of apoptosis, determined by flow cytometry, and lack of proteolytic activation of PARP by caspase 3. CD53 antigen ligation also induced an increase in mitochondrial activity. CONCLUSIONS To our knowledge this is the first identification of a tetraspanin protein in mesangial cells. CD53 antigen delivers a signal that initiates DNA synthesis. This signal is mediated by ERK1/ERK2 activation, but it is not sufficient to complete the cell cycle.
Collapse
Affiliation(s)
- Mónica Yunta
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior deInvestigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
35
|
Shah BH, Soh JW, Catt KJ. Dependence of gonadotropin-releasing hormone-induced neuronal MAPK signaling on epidermal growth factor receptor transactivation. J Biol Chem 2003; 278:2866-75. [PMID: 12446705 DOI: 10.1074/jbc.m208783200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
36
|
Chen J, Hoffman BB, Isseroff RR. Beta-adrenergic receptor activation inhibits keratinocyte migration via a cyclic adenosine monophosphate-independent mechanism. J Invest Dermatol 2002; 119:1261-8. [PMID: 12485426 DOI: 10.1046/j.1523-1747.2002.19611.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is increasing evidence that G-protein-coupled receptors cross-talk with growth factor receptor-mediated signal transduction in a variety of cell types. We have investigated mechanisms by which the activation of beta-adrenergic receptors, classically GTP-binding proteins coupled receptors, influence the migration of cultured human keratinocytes. We found that iso-proterenol, a beta-adrenergic receptor-selective agonist, inhibited cell migration stimulated by either epidermal growth factor, or extracellular Ca2+ in a concentration-dependent manner. This was prevented by pretreatment of the cells with the beta-adrenergic receptor-selective antagonist timolol. Interestingly, isoproterenol, at a concentration of 1 nm, did not measurably increase intracellular cyclic adenosine monophosphate concentrations yet inhibited cell migration by 50%. To test further if isoproterenol's actions were mediated via activation of adenylyl cyclase, two inhibitors of its activity, 2'5'-dideoxyadenosine and SQ22536, were used. Both compounds significantly diminished iso-proterenol-induced increases in intracellular cyclic adenosine monophosphate concentrations but did not attenuate isoproterenol-induced inhibition of cell migration. Also, forskolin (1 microm) markedly increased intracellular cyclic adenosine monophosphate concentrations but did not significantly inhibit cell migration. As mitogen-activated protein kinases are known to signal growth factor-stimulated cell migration, we examined whether beta-adrenergic receptor-mediated inhibition of keratinocyte migration might occur via inactivation of mitogen-activated protein kinases. We found that isoproterenol inhibited phosphorylation of extracellular signal-regulated kinase mitogen-activated protein kinase in a concentration-dependent manner but had no effect on the phosphorylation of the stress mitogen-activated protein kinases c-jun N-terminal kinase and stress-activated protein kinase-2. Neither forskolin nor a membrane permeable cyclic adenosine monophosphate analog inhibited phosphorylation of any of these mitogen-activated protein kinases. These findings suggest that beta-adrenergic receptor-induced inhibition of keratinocyte migration is mediated through inhibition of the extracellular signal-regulated kinase mitogen-activated protein kinase signaling in a cyclic adenosine monophosphate-independent manner.
Collapse
Affiliation(s)
- Jin Chen
- Department of Medicine, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, CA 95616, USA
| | | | | |
Collapse
|
37
|
McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C. Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 2002; 16:1817-9. [PMID: 12223454 DOI: 10.1096/fj.02-0416fje] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lipoxygenase-derived leukotrienes (LTs) are important proinflammatory lipid mediators. Lipoxins (LXs), more recently described lipoxygenase products, modulate many proinflammatory actions of LTs and have impressive proresolution properties. Mesangial cell (MC) proliferation is a central event in the pathogenesis of glomerulonephritis. LTD4-induced proliferation of mesangial cells is modulated by LXA4. Here, we demonstrate that LXA4 inhibits PDGF- and LTD4-stimulated proliferation through modulation of platelet-derived growth factor receptor beta (PDGFRbeta) activation. Specifically, we demonstrate that LTD4 transactivates the PDGFRbeta, a process associated with c-src recruitment and ras activation. We demonstrate expression of cysLT1 and cysLT2 receptors in MCs. LTD4-induced c-src activation was insensitive to pertussis toxin and the cysLT1 receptor antagonist Zafirlukast but was blocked by the nonselective antagonist Pobilukast. We show that LXA4 inhibits LTD4-stimulated activation of the PDGFRbeta and that LXA4 modulates PDGF-BB-stimulated tyrosine phosphorylation of the PDGFRb and subsequent mitogenic events. Furthermore, expression of recombinant LXA4 receptor (ALXR) in CHOK1 cells was associated with an attenuation of serum-stimulated proliferation. These data demonstrate that LXA4 receptor (ALXR) activation is accompanied by antimitogenic effects coupled with inactivation of growth factor receptors, highlighting the complex cross-talk between G protein-coupled receptors and receptor tyrosine kinases in an inflammatory milieu. These data elaborate on the profile of cell signaling events that underpin the anti-inflammatory and proresolution bioactions of LX.
Collapse
Affiliation(s)
- Blaithin McMahon
- Centre for Molecular Inflammation and Vascular Research, Department of Medicine and Therapeutics, Mater Misericordiae Hospital, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
38
|
Luttrell LM. Activation and targeting of mitogen-activated protein kinases by G-protein-coupled receptors. Can J Physiol Pharmacol 2002; 80:375-82. [PMID: 12056542 DOI: 10.1139/y02-045] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past decade, it has become apparent that many G-protein-coupled receptors (GPCRs) generate signals that control cellular differentiation and growth, including stimulation of Ras family GTPases and activation of mitogen-activated protein (MAP) kinase pathways. The mechanisms that GPCRs use to control the activity of MAP kinases vary between receptor and cell type but fall broadly into one of three categories: signals initiated by classical G protein effectors, e.g., protein kinase (PK)A and PKC, signals initiated by cross-talk between GPCRs and classical receptor tyrosine kinases, e.g., "transactivation" of epidermal growth factor (EGF) receptors, and signals initiated by direct interaction between beta-arrestins and components of the MAP kinase cascade, e.g., beta-arrestin "scaffolds". While each of these pathways results in increased cellular MAP kinase activity, emerging data suggest that they are not functionally redundant. MAP kinase activation occurring via PKC-dependent pathways and EGF receptor transactivation leads to nuclear translocation of the kinase and stimulates cell proliferation, while MAP kinase activation via beta-arrestin scaffolds primarily increases cytosolic kinase activity. By controlling the spatial and temporal distribution of MAP kinase activity within the cell, the consequences of GPCR-stimulated MAP kinase activation may be determined by the mechanism by which they are activated.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Shah BH, Alberto Olivares-Reyes J, Yesilkaya A, Catt KJ. Independence of angiotensin II-induced MAP kinase activation from angiotensin type 1 receptor internalization in clone 9 hepatocytes. Mol Endocrinol 2002; 16:610-20. [PMID: 11875120 DOI: 10.1210/mend.16.3.0781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The agonist-induced internalization of several G protein-coupled receptors is an obligatory requirement for their activation of MAPKs. Studies on the relationship between endocytosis of the angiotensin II (Ang II) type 1 receptor (AT1-R) and Ang II-induced ERK1/2 activation were performed in clone 9 (C9) rat hepatic cells treated with inhibitors of endocytosis [sucrose, phenylarsine oxide (PAO), and concanavalin A]. Although Ang II-induced endocytosis of the AT1-R was prevented by sucrose and PAO, and was partially inhibited by concanavalin A, there was no impairment of Ang II-induced ERK activation. However, the specific epidermal growth factor receptor (EGF-R) kinase inhibitor, AG1478, abolished Ang II-induced activation of ERK1/2. Sucrose and PAO also inhibited EGFinduced internalization of the EGF-R in C9 cells, and the inability of these agents to impair EGF-induced ERK activation suggested that the latter is also independent of receptor endocytosis. In COS-7 cells transiently expressing the rat AT1A-R, Ang II also caused ERK activation through EGF-R transactivation. Furthermore, a mutant AT1A-R with truncated carboxyl terminus and impaired internalization retained full ability to activate ERK1/2 in response to Ang II stimulation. These findings demonstrate that Ang II-induced ERK1/2 activation in C9 hepatocytes is independent of both AT1-R and EGF-R endocytosis and is mediated by transactivation of the EGF-R.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The extracellular domains of several integral membrane proteins are released from the cell surface by a group of enzymes known as "sheddases" through a process called "ectodomain shedding". Because many transmembrane growth and differentiation factors, including members of the epidermal growth factor (EGF) family that play a crucial role in development, require ectodomain shedding for proper action in vivo, proteolysis is now viewed as a regulatory mechanism in the developing embryos. Two recent reports by Zhao et al. provide evidence for the role of cell surface proteolysis by an ADAM (a disintegrin and metalloprotease) in the development of murine lung. Inhibition of tumor necrosis factor-alpha converting enzyme (TACE, ADAM17) by the hydroxamic acid-based metalloprotease inhibitor (TAPI), or a targeted mutation in Zn(2+)-binding domain of TACE, disrupts two essential epithelial functions in lung development: branching morphogenesis and cytodifferentiation. Evidence for the role of ADAMs as sheddases in development and growth factor signaling is discussed.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|