1
|
Geissel F, Lang L, Husemann B, Morgan B, Deponte M. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nat Commun 2024; 15:1733. [PMID: 38409212 PMCID: PMC10897161 DOI: 10.1038/s41467-024-45808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.
Collapse
Affiliation(s)
- Fabian Geissel
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
2
|
Li TT, Zhao DY, Liang QL, Elsheikha HM, Wang M, Sun LX, Zhang ZW, Chen XQ, Zhu XQ, Wang JL. The antioxidant protein glutaredoxin 1 is essential for oxidative stress response and pathogenicity of Toxoplasma gondii. FASEB J 2023; 37:e22932. [PMID: 37115746 DOI: 10.1096/fj.202201275r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.
Collapse
Affiliation(s)
- Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Sichuan Province, Chengdu, People's Republic of China
| | - Dan-Yu Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Qin-Li Liang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, UK
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Sichuan Province, Chengdu, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, People's Republic of China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, Lanzhou, People's Republic of China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Yashica KA, Samanta S, Balaji R, Jawalagatti V, Silamparasan M, Anandu S, Rialch A, Gupta SC, Tewari AK. Molecular characterization and serodiagnostic evaluation of the Echinococcus ortleppi recombinant glutaredoxin 1 protein for cystic echinococcosis in buffalo (Bubalus bubalis). Vet Parasitol 2023; 319:109941. [PMID: 37156090 DOI: 10.1016/j.vetpar.2023.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Cystic echinococcosis (CE), caused by the metacestode of Echinococcus granulosus sensu lato (s.l.), adversely affects the physiology of the vital organs in which they grow. Condemnation of meat causes substantial economic loss to the livestock industry. Conventionally the infection is detected by necropsy as serological diagnosis of the infection in livestock is ambiguous. Identification of specific diagnostic antigens would be a substitute for the cyst fluid antigens which lack adequate diagnostic sensitivity and specificity. BLAST analysis supported by the negligible pairwise nucleotide distance of the 389 nt COX1, 489 nt NAD1, and 425 nt ITS1 with the related sequences of E. ortleppi ascertained the association of E. ortleppi with CE in buffaloes. Given the extensive distribution of glutaredoxin 1 in every developmental stage of Echinococcus granulosus s.l that makes it an ideal serodiagnostic antigen for CE, we expressed the 14 kDa E. ortleppi glutaredoxin 1 (rEoGrx1) protein in E. coli BL21 (DE3) and tested a total of 225 sera samples, including 126 sera samples from the necropsy-positive buffalo, by the rEoGrx1 IgG-ELISA. The ELISA could detect a total of 82/126 sera samples as positive. The diagnostic sensitivity and specificity of the rEoGrx1 IgG-ELISA were 65.1 % and 51.5 %, respectively. The protein showed serological cross-reaction against Fasciola gigantica, Toxoplasma gondii, and Sarcocystis sp. The in silico bioinformatics analysis of the E. ortleppi, F. gigantica, and T. gondii glutaredoxin sequences revealed fully conserved amino acids at positions 11 and 21, the substitution of conserved amino acids at positions 14 and 6, and semi-conserved substitutions at positions 3 and 4, respectively. The findings partly explain the molecular basis of the serological cross-reactivity of the protein.
Collapse
Affiliation(s)
- K A Yashica
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - S Samanta
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - R Balaji
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - V Jawalagatti
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - M Silamparasan
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - S Anandu
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - A Rialch
- ICAR, Indian Veterinary Research Institute, Regional Station, Palampur 176061, Himachal Pradesh, India
| | - S C Gupta
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Anup Kumar Tewari
- Division of Parasitology, ICAR, Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India; ICAR, Indian Veterinary Research Institute, Regional Station, Palampur 176061, Himachal Pradesh, India.
| |
Collapse
|
4
|
Wagner MP, Chitnis CE. Lipid peroxidation and its repair in malaria parasites. Trends Parasitol 2023; 39:200-211. [PMID: 36642689 DOI: 10.1016/j.pt.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
During its life cycle, the human malaria parasite Plasmodium falciparum is subjected to elevated levels of oxidative stress that cause damage to membrane lipids, a process referred to as lipid peroxidation. Control and repair of lipid peroxidation is critical for survival of P. falciparum. Here, we present an introduction into lipid peroxidation and review the current knowledge about the control and repair of the damage caused by lipid peroxidation in P. falciparum blood stages. We also review the recent identification of host peroxiredoxin 6 (PRDX6), as a key lipid-peroxidation-repair enzyme in P. falciparum blood stages. Such critical host factors provide novel targets for development of drugs against malaria.
Collapse
Affiliation(s)
- Matthias Paulus Wagner
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Chetan E Chitnis
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France.
| |
Collapse
|
5
|
Alves FDM, Bellei JCB, Barbosa CDS, Duarte CL, da Fonseca AL, Pinto ACDS, Raimundo FO, Carpinter BA, Lemos ASDO, Coimbra ES, Taranto AG, Rocha VN, de Pilla Varotti F, Ribeiro Viana GH, Scopel KKG. Rational-Based Discovery of Novel β-Carboline Derivatives as Potential Antimalarials: From In Silico Identification of Novel Targets to Inhibition of Experimental Cerebral Malaria. Pathogens 2022; 11:pathogens11121529. [PMID: 36558863 PMCID: PMC9781199 DOI: 10.3390/pathogens11121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is an infectious disease widespread in underdeveloped tropical regions. The most severe form of infection is caused by Plasmodium falciparum, which can lead to development of cerebral malaria (CM) and is responsible for deaths and significant neurocognitive sequelae throughout life. In this context and considering the emergence and spread of drug-resistant P. falciparum isolates, the search for new antimalarial candidates becomes urgent. β-carbolines alkaloids are good candidates since a wide range of biological activity for these compounds has been reported. Herein, we designed 20 chemical entities and performed an in silico virtual screening against a pool of P. falciparum molecular targets, the Brazilian Malaria Molecular Targets (BRAMMT). Seven structures showed potential to interact with PfFNR, PfPK7, PfGrx1, and PfATP6, being synthesized and evaluated for in vitro antiplasmodial activity. Among them, compounds 3−6 and 10 inhibited the growth of the W2 strain at µM concentrations, with low cytotoxicity against the human cell line. In silico physicochemical and pharmacokinetic properties were found to be favorable for oral administration. The compound 10 provided the best results against CM, with important values of parasite growth inhibition on the 5th day post-infection for both curative (67.9%) and suppressive (82%) assays. Furthermore, this compound was able to elongate mice survival and protect them against the development of the experimental model of CM (>65%). Compound 10 also induced reduction of the NO level, possibly by interaction with iNOS. Therefore, this alkaloid showed promising activity for the treatment of malaria and was able to prevent the development of experimental cerebral malaria (ECM), probably by reducing NO synthesis.
Collapse
Affiliation(s)
- Fernanda de Moura Alves
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Jessica Correa Bezerra Bellei
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Camila de Souza Barbosa
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Caíque Lopes Duarte
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Amanda Luisa da Fonseca
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Ana Claudia de Souza Pinto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Felipe Oliveira Raimundo
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Bárbara Albuquerque Carpinter
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Elaine Soares Coimbra
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Alex Gutterres Taranto
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
| | - Vinícius Novaes Rocha
- Research Center of Pathology and Veterinary Histology, Departament of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Fernando de Pilla Varotti
- Research Center on Biological Chemistry (NQBio), Federal University of São João Del Rei, Divinópolis 35501-296, Brazil
- Correspondence: (F.d.P.V.); (K.K.G.S.)
| | | | - Kézia K. G. Scopel
- Research Center Parasitology, Departament of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
- Correspondence: (F.d.P.V.); (K.K.G.S.)
| |
Collapse
|
6
|
OPDAylation of Thiols of the Redox Regulatory Network In Vitro. Antioxidants (Basel) 2022; 11:antiox11050855. [PMID: 35624719 PMCID: PMC9137622 DOI: 10.3390/antiox11050855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
cis-(+)-12-Oxophytodienoic acid (OPDA) is a reactive oxylipin produced by catalytic oxygenation of polyunsaturated α-linolenic acid (18:3 (ω − 3)) in the chloroplast. Apart from its function as precursor for jasmonic acid synthesis, OPDA serves as a signaling molecule and regulator on its own, namely by tuning enzyme activities and altering expression of OPDA-responsive genes. A possible reaction mechanism is the covalent binding of OPDA to thiols via the addition to the C=C double bond of its α,β-unsaturated carbonyl group in the cyclopentenone ring. The reactivity allows for covalent modification of accessible cysteinyl thiols in proteins. This work investigated the reaction of OPDA with selected chloroplast and cytosolic thioredoxins (TRX) and glutaredoxins (GRX) of Arabidopsis thaliana. OPDA reacted with TRX and GRX as detected by decreased m-PEG maleimide binding, consumption of OPDA, reduced ability for insulin reduction and inability to activate glyceraldehyde-3-phosphate dehydrogenase and regenerate glutathione peroxidase (GPXL8), and with lower efficiency, peroxiredoxin IIB (PRXIIB). OPDAylation of certain protein thiols occurs quickly and efficiently in vitro and is a potent post-translational modification in a stressful environment.
Collapse
|
7
|
Tiwari S, Sharma N, Sharma GP, Mishra N. Redox interactome in malaria parasite Plasmodium falciparum. Parasitol Res 2021; 120:423-434. [PMID: 33459846 DOI: 10.1007/s00436-021-07051-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
The malaria-causing parasite Plasmodium falciparum is a severe threat to human health across the globe. This parasite alone causes the highest morbidity and mortality than any other species of Plasmodium. The parasites dynamically multiply in the erythrocytes of the vertebrate hosts, a large number of reactive oxygen species that damage biological macromolecules are produced in the cell during parasite growth. To relieve this intense oxidative stress, the parasite employs an NADPH-dependent thioredoxin and glutathione system that acts as an antioxidant and maintains redox status in the parasite. The mutual interaction of both redox proteins is involved in various biological functions and the survival of the erythrocytic stage of the parasite. Since the Plasmodium species is deficient in catalase and classical glutathione peroxidase, so their redox balance relies on a complex set of five peroxiredoxins, differentially positioned in the cytosol, mitochondria, apicoplast, and nucleus with partly overlapping substrate preferences. Moreover, Plasmodium falciparum possesses a set of members belonging to the thioredoxin superfamily, such as three thioredoxins, two thioredoxin-like proteins, one dithiol, three monocysteine glutaredoxins, and one redox-active plasmoredoxin with largely redundant functions. This review paper aims to discuss and encapsulate the biological function and current knowledge of the functional redox network of Plasmodium falciparum.
Collapse
Affiliation(s)
- Savitri Tiwari
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Nivedita Sharma
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | | | - Neelima Mishra
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
8
|
Kumar A, Chauhan N, Singh S. Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach. Front Cell Infect Microbiol 2019; 9:15. [PMID: 30778378 PMCID: PMC6369582 DOI: 10.3389/fcimb.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Leishmania parasites possess an exceptional oxidant and chemical defense mechanism, involving a very unique small molecular weight thiol, trypanothione (T[SH]2), that helps the parasite to manage its survival inside the host macrophage. The reduced state of T[SH]2 is maintained by NADPH-dependent trypanothione reductase (TryR) by recycling trypanothione disulfide (TS2). Along with its most important role as central reductant, T[SH]2 have also been assumed to regulate the activation of iron-sulfur cluster proteins (Fe/S). Fe/S clusters are versatile cofactors of various proteins and execute a much broader range of essential biological processes viz., TCA cycle, redox homeostasis, etc. Although, several Fe/S cluster proteins and their roles have been identified in Leishmania, some of the components of how T[SH]2 is involved in the regulation of Fe/S proteins remains to be explored. In pursuit of this aim, a systems biology approach was undertaken to get an insight into the overall picture to unravel how T[SH]2 synthesis and reduction is linked with the regulation of Fe/S cluster proteins and controls the redox homeostasis at a larger scale. In the current study, we constructed an in silico kinetic model of T[SH]2 metabolism. T[SH]2 reduction reaction was introduced with a perturbation in the form of its inhibition to predict the overall behavior of the model. The main control of reaction fluxes were exerted by TryR reaction rate that affected almost all the important reactions in the model. It was observed that the model was more sensitive to the perturbation introduced in TryR reaction, 5 to 6-fold. Furthermore, due to inhibition, the T[SH]2 synthesis rate was observed to be gradually decreased by 8 to 14-fold. This has also caused an elevated level of free radicals which apparently affected the activation of Fe/S cluster proteins. The present kinetic model has demonstrated the importance of T[SH]2 in leishmanial cellular redox metabolism. Hence, we suggest that, by designing highly potent and specific inhibitors of TryR enzyme, inhibition of T[SH]2 reduction and overall inhibition of most of the downstream pathways including Fe/S protein activation reactions, can be accomplished.
Collapse
|
9
|
Eberle RJ, Kawai LA, de Moraes FR, Olivier D, do Amaral MS, Tasic L, Arni RK, Coronado MA. Inhibition of thioredoxin A1 from Corynebacterium pseudotuberculosis by polyanions and flavonoids. Int J Biol Macromol 2018; 117:1066-1073. [DOI: 10.1016/j.ijbiomac.2018.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022]
|
10
|
Eberle RJ, Kawai LA, de Moraes FR, Tasic L, Arni RK, Coronado MA. Biochemical and biophysical characterization of a mycoredoxin protein glutaredoxin A1 from Corynebacterium pseudotuberculosis. Int J Biol Macromol 2018; 107:1999-2007. [DOI: 10.1016/j.ijbiomac.2017.10.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 11/29/2022]
|
11
|
Gupta A, Sripa B, Tripathi T. Purification and characterization of two-domain glutaredoxin in the parasitic helminth Fasciola gigantica. Parasitol Int 2017; 66:432-435. [DOI: 10.1016/j.parint.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/28/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
12
|
The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules 2017; 22:molecules22020259. [PMID: 28208651 PMCID: PMC6155587 DOI: 10.3390/molecules22020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.
Collapse
|
13
|
Song X, Yan M, Hu D, Wang Y, Wang N, Gu X, Peng X, Yang G. Molecular characterization and serodiagnostic potential of a novel dithiol glutaredoxin 1 from Echinococcus granulosus. Parasit Vectors 2016; 9:456. [PMID: 27535033 PMCID: PMC4989415 DOI: 10.1186/s13071-016-1741-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Background The larval stage of Echinococcus granulosus is the etiological agent of cystic echinococcosis (CE), which causes serious morbidity and mortality in many areas. There is no reliable method to monitor sheep CE. Here, we characterize E. granulosus glutaredoxin 1 (Eg-Grx1) and report an improved immunodiagnostic method for CE. Methods We cloned and expressed recombinant Eg-Grx1 and generated antibodies. We analyzed the location of the protein in different parasite stages by fluorescence immunohistochemistry, detected the immunogenicity of recombinant Eg-Grx1, and developed an indirect ELISA (iELISA) for CE serodiagnosis. Results Eg-Grx1 is a classic dithiol Grx with several GSH-binding motifs. Native Eg-Grx1 protein was distributed in the tegument of protoscoleces, the whole germinal layer, and the parenchymatous tissue of adult worms. Recombinant Eg-Grx1 exhibited good immunoreactivity to CE-infected sheep serum. An iELISA using this antigen showed specificity of 64.3 % (9/14) and sensitivity of 1:3200, and the diagnostic accordance rate was 97.9 % (47/48) compared with the results of necropsy. Conclusion We characterized a novel Grx (Eg-Grx1) from a parasitic helminth and present a comprehensive analysis of the sequence and structure of this protein. The recombinant Eg-Grx1 protein showed good potential serodiagnostic performance, and we established an iELISA method, which may contribute to the surveillance of sheep CE in epidemic areas.
Collapse
Affiliation(s)
- Xingju Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dandan Hu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
14
|
Yogavel M, Tripathi T, Gupta A, Banday MM, Rahlfs S, Becker K, Belrhali H, Sharma A. Atomic resolution crystal structure of glutaredoxin 1 from Plasmodium falciparum and comparison with other glutaredoxins. ACTA ACUST UNITED AC 2013; 70:91-100. [PMID: 24419382 DOI: 10.1107/s1399004713025285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/11/2013] [Indexed: 12/30/2022]
Abstract
Glutaredoxins (Grxs) are redox proteins that use glutathione ((γ)Glu-Cys-Gly; GSH) as a cofactor. Plasmodium falciparum has one classic dithiol (CXXC) glutaredoxin (glutaredoxin 1; PfGrx1) and three monothiol (CXXS) Grx-like proteins (GLPs), which have five residue insertions prior to the active-site Cys. Here, the crystal structure of PfGrx1 has been determined by the sulfur single-wavelength anomalous diffraction (S-SAD) method utilizing intrinsic protein and solvent S atoms. Several residues were modelled with alternate conformations, and an alternate position was refined for the active-site Cys29 owing to radiation damage. The GSH-binding site is occupied by water polygons and buffer molecules. Structural comparison of PfGrx1 with other Grxs and Grx-like proteins revealed that the GSH-binding motifs (CXXC/CXXS, TVP, CDD, Lys26 and Gln/Arg63) are structurally conserved. Both the monothiol and dithiol Grxs possess three conserved water molecules; two of these were located in the GSH-binding site. PfGrx1 has several polar and charged amino-acid substitutions that provide structurally important additional hydrogen bonds and salt bridges missing in other Grxs.
Collapse
Affiliation(s)
- Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110 067, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Shillong 792 022, India
| | - Ankita Gupta
- Department of Biochemistry, North-Eastern Hill University, Shillong 792 022, India
| | - Mudassir Meraj Banday
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110 067, India
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Hassan Belrhali
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, BP 181, 38042 Grenoble, France
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110 067, India
| |
Collapse
|
15
|
Comini MA, Krauth-Siegel RL, Bellanda M. Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes. Antioxid Redox Signal 2013; 19:708-22. [PMID: 22978520 PMCID: PMC3739957 DOI: 10.1089/ars.2012.4932] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Glutaredoxins are ubiquitous small thiol proteins of the thioredoxin-fold superfamily. Two major groups are distinguished based on their active sites: the dithiol (2-C-Grxs) and the monothiol (1-C-Grxs) glutaredoxins with a CXXC and a CXXS active site motif, respectively. Glutaredoxins are involved in cellular redox and/or iron sulfur metabolism. Usually their functions are closely linked to the glutathione system. Trypanosomatids, the causative agents of several tropical diseases, rely on trypanothione as principal low molecular mass thiol, and their glutaredoxins readily react with the unique bis(glutathionyl) spermidine conjugate. RECENT ADVANCES Two 2-C-Grxs and three 1-C-Grxs have been identified in pathogenic trypanosomatids. The 2-C-Grxs catalyze the reduction of glutathione disulfide by trypanothione and display reductase activity towards protein disulfides, as well as protein-glutathione mixed disulfides. In vitro, all three 1-C-Grxs as well as the cytosolic 2-C-Grx of Trypanosoma brucei can complex an iron-sulfur cluster. Recently the structure of the 1-C-Grx1 has been solved by NMR spectroscopy. The structure is very similar to those of other 1-C-Grxs, with some differences in the loop containing the conserved cis-Pro and the surface charge distribution. CRITICAL ISSUES Although four of the five trypanosomal glutaredoxins proved to coordinate an iron-sulfur cluster in vitro, the physiological role of the mitochondrial and cytosolic proteins, respectively, has only started to be unraveled. FUTURE DIRECTIONS The use of trypanothione by the glutaredoxins has established a novel role for this parasite-specific dithiol. Future work should reveal if these differences can be exploited for the development of novel antiparasitic drugs.
Collapse
Affiliation(s)
- Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | | | | |
Collapse
|
16
|
Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta Gen Subj 2013; 1830:3199-216. [DOI: 10.1016/j.bbagen.2013.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/21/2022]
|
17
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
18
|
An S, Zhang Y, Wang T, Luo M, Li C. Molecular characterization of glutaredoxin 2 from Ostrinia furnacalis. Integr Zool 2012; 8 Suppl 1:30-8. [PMID: 23621469 DOI: 10.1111/j.1749-4877.2012.00301.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutaredoxins (GRXs) play very important roles in maintaining intracellular redox homeostasis. In the present study, the full-length cDNA sequence encoding GRX2, named OfurGRX2 (GenBank accession no. GU393246), was obtained from Ostrinia furnacalis, using reverse transcription polymerase chain reaction and rapid amplification of cDNA ends. Sequence analysis revealed that the open reading frame of OfurGRX2 consists of 351 nucleotides encoding 116 amino acid residues with a predicted molecular weight of 12.6 kDa. Homolog research revealed that OfurGRX2 shares a common active site, CPYC/CPFC, with other insect counterparts. Expression profiles revealed that OfurGRX2 is a ubiquitous gene expressed in insect heads, fat bodies, epidermises, mid guts and muscles. The OfurGRX2 transcript peaked in 36-h larvae of 4th instars, and then suddenly declined in the molting stage. Hormone treatment experiments revealed that 20-hydroxyecodyson (20e) significantly induces the expression of the OfurGRX2 transcript, whereas juvenile hormone (JH) counteracts 20e effects. Adverse stress factors (including starvation, ultraviolet light, mechanical injury, Escherichia coli exposure, and high and low temperatures) dramatically induced OfurGRXGRX2 transcript expression, which confirmed for the first time that GRX2 play important roles in insecta during exposure to adverse environments.
Collapse
Affiliation(s)
- Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
SIGNIFICANCE Parasitic diseases affect hundreds of millions of people worldwide and represent major health problems. Treatment is becoming extremely difficult due to the emergence of drug resistance, the absence of effective vaccines, and the spread of insecticide-resistant vectors. Thus, identification of affordable and readily available drugs against resistant parasites is of global demand. RECENT ADVANCES Susceptibility of many parasites to oxidative stress is a well-known phenomenon. Therefore, generation of reactive oxygen species (ROS) or inhibition of endogenous antioxidant enzymes would be a novel therapeutic approach to develop antiparasitic drugs. This article highlights the unique metabolic pathways along with redox enzymes of unicellular (Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani, Entamoeba histolytica, and Trichomonas vaginalis) and multicellular parasites (Schistosoma mansoni), which could be utilized to promote ROS-mediated toxicity. CRITICAL ISSUES Enzymes involved in various vital redox reactions could be potential targets for drug development. FUTURE DIRECTIONS The identification of redox-active antiparasitic drugs along with their mode of action will help researchers around the world in designing novel drugs in the future.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
21
|
Abstract
SIGNIFICANCE Parasitic infections continue to be a major problem for global human health. Vaccines are practically not available and chemotherapy is highly unsatisfactory. One approach toward a novel antiparasitic drug development is to unravel pathways that may be suited as future targets. Parasitic organisms show a remarkable diversity with respect to the nature and functions of their main low-molecular-mass antioxidants and many of them developed pathways that do not have a counterpart in their mammalian hosts. RECENT ADVANCES Work of the last years disclosed the individual antioxidants employed by parasites and their distinct pathways. Entamoeba, Trichomonas, and Giardia directly use cysteine as main low-molecular-mass thiol but have divergent cysteine metabolisms. Malarial parasites rely exclusively on cysteine uptake and generate glutathione (GSH) as main free thiol as do metazoan parasites. Trypanosomes and Leishmania have a unique trypanothione-based thiol metabolism but employ individual mechanisms for their cysteine supply. In addition, some trypanosomatids synthesize ovothiol A and/or ascorbate. Various essential parasite enzymes such as trypanothione synthetase and trypanothione reductase in Trypanosomatids and the Schistosoma thioredoxin GSH reductase are currently intensively explored as drug target molecules. CRITICAL ISSUES Essentiality is a prerequisite but not a sufficient property of an enzyme to become a suited drug target. The availability of an appropriate in vivo screening system and many other factors are equally important. FUTURE DIRECTIONS The current organism-wide RNA-interference and proteome analyses are supposed to reveal many more interesting candidates for future drug development approaches directed against the parasite antioxidant defense systems.
Collapse
|
22
|
Abstract
SIGNIFICANCE Cysteine residues of proteins participate in the catalysis of biochemical reactions, are crucial for redox reactions, and influence protein structure by the formation of disulfide bonds. Covalent posttranslational modifications (PTMs) of cysteine residues are important mediators of redox regulation and signaling by coupling protein activity to the cellular redox state, and moreover influence stability, function, and localization of proteins. A diverse group of protozoan and metazoan parasites are a major cause of diseases in humans, such as malaria, African trypanosomiasis, leishmaniasis, toxoplasmosis, filariasis, and schistosomiasis. RECENT ADVANCES Human parasites undergo dramatic morphological and metabolic changes while they pass complex life cycles and adapt to changing environments in host and vector. These processes are in part regulated by PTMs of parasitic proteins. In human parasites, posttranslational cysteine modifications are involved in crucial cellular events such as signal transduction (S-glutathionylation and S-nitrosylation), redox regulation of proteins (S-glutathionylation and S-nitrosylation), protein trafficking and subcellular localization (palmitoylation and prenylation), as well as invasion into and egress from host cells (palmitoylation). This review focuses on the occurrence and mechanisms of these cysteine modifications in parasites. CRITICAL ISSUES Studies on cysteine modifications in human parasites are so far largely based on in vitro experiments. FUTURE DIRECTIONS The in vivo regulation of cysteine modifications and their role in parasite development will be of great interest in order to understand redox signaling in parasites.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | |
Collapse
|
23
|
Abstract
Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG.
Collapse
Affiliation(s)
- Eva-Maria Patzewitz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
24
|
Kehr S, Jortzik E, Delahunty C, Yates JR, Rahlfs S, Becker K. Protein S-glutathionylation in malaria parasites. Antioxid Redox Signal 2011; 15:2855-65. [PMID: 21595565 PMCID: PMC4932784 DOI: 10.1089/ars.2011.4029] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Protein S-glutathionylation is a widely distributed post-translational modification of thiol groups with glutathione that can function as a redox-sensitive switch to mediate redox regulation and signal transduction. The malaria parasite Plasmodium falciparum is exposed to intense oxidative stress and possesses the enzymatic system required to regulate protein S-glutathionylation, but despite its potential importance, protein S-glutathionylation has not yet been studied in malaria parasites. In this work we applied a method based on enzymatic deglutathionylation, affinity purification of biotin-maleimide-tagged proteins, and proteomic analyses to characterize the Plasmodium glutathionylome. RESULTS We identified 493 targets of protein S-glutathionylation in Plasmodium. Functional profiles revealed that the targets are components of central metabolic pathways, such as nitrogen compound metabolism and protein metabolism. Fifteen identified proteins with important functions in metabolic pathways (thioredoxin reductase, thioredoxin, thioredoxin peroxidase 1, glutathione reductase, glutathione S-transferase, plasmoredoxin, mitochondrial dihydrolipoamide dehydrogenase, glutamate dehydrogenase 1, glyoxalase I and II, ornithine δ-aminotransferase, lactate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], pyruvate kinase [PK], and phosphoglycerate mutase) were further analyzed to study their ability to form mixed disulfides with glutathione. We demonstrate that P. falciparum GAPDH, PK, and ornithine δ-aminotransferase are reversibly inhibited by S-glutathionylation. Further, we provide evidence that not only P. falciparum glutaredoxin 1, but also thioredoxin 1 and plasmoredoxin are able to efficiently catalyze protein deglutathionylation. INNOVATION We used an affinity-purification based proteomic approach to characterize the Plasmodium glutathionylome. CONCLUSION Our results indicate a wide regulative use of S-glutathionylation in the malaria parasite and contribute to our understanding of redox-regulatory processes in this pathogen.
Collapse
Affiliation(s)
- Sebastian Kehr
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity. Biochem J 2011; 433:303-11. [PMID: 21029046 DOI: 10.1042/bj20101286] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved β1-α2 loop, Phe⁶⁹ and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys⁶⁷) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.
Collapse
|
26
|
Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K. Compartmentation of redox metabolism in malaria parasites. PLoS Pathog 2010; 6:e1001242. [PMID: 21203490 PMCID: PMC3009606 DOI: 10.1371/journal.ppat.1001242] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/23/2010] [Indexed: 01/06/2023] Open
Abstract
Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention. The unicellular parasite Plasmodium falciparum is the causative agent of tropical malaria, which represents a global health burden. In order to survive in its human host and the malaria vector Anopheles, malaria parasites depend on adequate antioxidant defense and efficient redox regulation. Furthermore, as shown by glucose-6 phosphate dehydrogenase deficiency, a genetic variation protecting from malaria, redox equilibrium plays a vital role in parasite pathogenicity. Using a green fluorescent protein reporter gene, we systematically studied the subcellular compartmentation of redox networks in Plasmodium falciparum. Based on our results and data from literature, we provide the first thorough map of redox compartmentation. Most interestingly, for the two major antioxidant redox-enzymes – glutathione reductase (GR) and thioredoxin reductase (TrxR) – Plasmodium falciparum makes use of alternative translation initiation to translate protein isoforms with differing subcellular localization from one gene. Dual localization of proteins due to alternative translation initiation might occur frequently in Apicomplexa and identification of further genes that have evolved alternative translation initiation is likely to offer new therapeutic strategies against this devastating disease.
Collapse
Affiliation(s)
- Sebastian Kehr
- Interdisciplinary Research Centre, Justus Liebig University, Giessen, Germany
| | - Nicole Sturm
- Interdisciplinary Research Centre, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Interdisciplinary Research Centre, Justus Liebig University, Giessen, Germany
| | - Jude M. Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Katja Becker
- Interdisciplinary Research Centre, Justus Liebig University, Giessen, Germany
- * E-mail:
| |
Collapse
|
27
|
Jortzik E, Fritz-Wolf K, Sturm N, Hipp M, Rahlfs S, Becker K. Redox regulation of Plasmodium falciparum ornithine δ-aminotransferase. J Mol Biol 2010; 402:445-59. [PMID: 20673832 DOI: 10.1016/j.jmb.2010.07.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 11/16/2022]
Abstract
Ornithine δ-aminotransferase (OAT) of the malaria parasite Plasmodium falciparum catalyzes the reversible conversion of ornithine into glutamate-5-semialdehyde and glutamate and is-in contrast to its human counterpart-activated by thioredoxin (Trx) by a factor of 10. Trx, glutaredoxin, and plasmoredoxin are redox-active proteins that play a crucial role in the maintenance and control of redox reactions, and were shown to interact with P. falciparum OAT. OAT, which is involved in ornithine homeostasis and proline biosynthesis, is essential for mitotic cell division in rapidly growing cells, thus representing a potential target for chemotherapeutic intervention. Here we report the three-dimensional crystal structure of P. falciparum OAT at 2.3 Å resolution. The overall structure is very similar to that of the human OAT. However, in plasmodial OAT, the loop involved in substrate binding contains two cysteine residues, which are lacking in human OAT. Site-directed mutagenesis of these cysteines and functional analysis demonstrated that Cys154 and Cys163 mediate the interaction with Trx. Interestingly, the Cys154→Ser mutant has a strongly reduced specific activity, most likely due to impaired binding of ornithine. Cys154 and Cys163 are highly conserved in Plasmodium but do not exist in other organisms, suggesting that redox regulation of OAT by Trx is specific for malaria parasites. Plasmodium might require a tight Trx-mediated control of OAT activity for coordinating ornithine homeostasis, polyamine synthesis, proline synthesis, and mitotic cell division.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Wang Y, He YX, Yu J, Zhou CZ. Cloning, overproduction, purification, crystallization and preliminary X-ray diffraction analysis of yeast glutaredoxin Grx5. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:651-3. [PMID: 19478456 DOI: 10.1107/s1744309109018417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/15/2009] [Indexed: 11/10/2022]
Abstract
Grx5 from the yeast Saccharomyces cerevisiae is a monothiol glutaredoxin that is involved in iron-sulfur cluster biogenesis. Here, yeast Grx5 was cloned and overproduced in Escherichia coli. The purified protein was crystallized using the hanging-drop vapour-diffusion method. Diffraction data for Grx5 were collected to 1.67 A resolution. The crystal of Grx5 belonged to space group R3, with unit-cell parameters a = b = 85.12, c = 48.95 A, alpha = beta = 90.00, gamma = 120.00 degrees .
Collapse
Affiliation(s)
- Yi Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Sturm N, Jortzik E, Mailu BM, Koncarevic S, Deponte M, Forchhammer K, Rahlfs S, Becker K. Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog 2009; 5:e1000383. [PMID: 19360125 PMCID: PMC2660430 DOI: 10.1371/journal.ppat.1000383] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/16/2009] [Indexed: 11/24/2022] Open
Abstract
The malarial parasite Plasmodium falciparum possesses a functional thioredoxin and glutathione system comprising the dithiol-containing redox proteins thioredoxin (Trx) and glutaredoxin (Grx), as well as plasmoredoxin (Plrx), which is exclusively found in Plasmodium species. All three proteins belong to the thioredoxin superfamily and share a conserved Cys-X-X-Cys motif at the active site. Only a few of their target proteins, which are likely to be involved in redox reactions, are currently known. The aim of the present study was to extend our knowledge of the Trx-, Grx-, and Plrx-interactome in Plasmodium. Based on the reaction mechanism, we generated active site mutants of Trx and Grx lacking the resolving cysteine residue. These mutants were bound to affinity columns to trap target proteins from P. falciparum cell extracts after formation of intermolecular disulfide bonds. Covalently linked proteins were eluted with dithiothreitol and analyzed by mass spectrometry. For Trx and Grx, we were able to isolate 17 putatively redox-regulated proteins each. Furthermore, the approach was successfully established for Plrx, leading to the identification of 21 potential target proteins. In addition to confirming known interaction partners, we captured potential target proteins involved in various processes including protein biosynthesis, energy metabolism, and signal transduction. The identification of three enzymes involved in S-adenosylmethionine (SAM) metabolism furthermore suggests that redox control is required to balance the metabolic fluxes of SAM between methyl-group transfer reactions and polyamine synthesis. To substantiate our data, the binding of the redoxins to S-adenosyl-L-homocysteine hydrolase and ornithine aminotransferase (OAT) were verified using BIAcore surface plasmon resonance. In enzymatic assays, Trx was furthermore shown to enhance the activity of OAT. Our approach led to the discovery of several putatively redox-regulated proteins, thereby contributing to our understanding of the redox interactome in malarial parasites. Protection from oxidative stress and efficient redox regulation are essential for malarial parasites which have to grow and multiply rapidly in various environments. As shown by glucose-6 phosphate dehydrogenase deficiency, a genetic variation protecting from malaria, the parasite–host cell unit is very susceptible to disturbances in redox equilibrium. This is the major reason why redox active proteins of Plasmodium currently belong to the most attractive antimalarial drug targets. The dithiol-containing redox proteins thioredoxin (Trx) and glutaredoxin (Grx), as well as plasmoredoxin (Plrx), which is exclusively found in Plasmodium species, represent central players in the redox network of malarial parasites. To extend our knowledge of interacting partners and the functions of these proteins, we carried out pull-down assays with immobilized active site mutants of Trx, Grx, and Plrx and whole cell parasite lysate. After elution of bound proteins and mass spectrometric identification, about 20 interacting partners were identified for each of the redox proteins. Data was supported using BIAcore surface plasmon resonance. The identified interacting proteins, which are likely to be redox-regulated, are involved in important cellular processes including protein biosynthesis, energy metabolism, polyamine synthesis, and signal transduction. Our results contribute to our understanding of the redox interactome in malarial parasites.
Collapse
Affiliation(s)
- Nicole Sturm
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Boniface M. Mailu
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Sasa Koncarevic
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
- Proteome Sciences R&D GmbH & Co. KG, Frankfurt am Main, Germany
| | - Marcel Deponte
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
- Institute for Physiological Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Karl Forchhammer
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
- * E-mail:
| |
Collapse
|
30
|
Sotirchos IM, Hudson AL, Ellis J, Davey MW. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity. Free Radic Biol Med 2009; 46:579-85. [PMID: 19111609 DOI: 10.1016/j.freeradbiomed.2008.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 12/20/2022]
Abstract
The dependency of parasites on the cellular redox systems has led to their investigation as novel drug targets. Defence against oxidative damage is through the thioredoxin and glutathione systems. The classic thioredoxin is identified by the active site Cys-Gly-Pro-Cys (CGPC). Here we describe the identification of a unique thioredoxin in the parasitic nematode, Haemonchus contortus. This thioredoxin-related protein, termed HcTrx5, has an arginine in its active site (Cys-Arg-Ser-Cys; CRSC) that is not found in any other organism. Recombinant HcTrx5 was able to reduce the disulfide bond in insulin, and be regenerated by mammalian thioredoxin reductase with a K(m) 2.19+/-1.5 microM, similar to the classic thioredoxins. However, it was also able to reduce insulin when glutathione and glutathione reductase replaced the thioredoxin reductase. When coupled with H. contortus peroxiredoxin, HcTrx5 was active using either the thioredoxin reductase or the glutathione and glutathione reductase. HcTrx5 is expressed through the life cycle, with highest expression in the adult stage. The unique activity of this thioredoxin makes it a potential drug target for the control of this parasite.
Collapse
Affiliation(s)
- Irene M Sotirchos
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway NSW, Australia
| | | | | | | |
Collapse
|
31
|
Eckers E, Bien M, Stroobant V, Herrmann JM, Deponte M. Biochemical Characterization of Dithiol Glutaredoxin 8 from Saccharomyces cerevisiae: The Catalytic Redox Mechanism Redux. Biochemistry 2009; 48:1410-23. [DOI: 10.1021/bi801859b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Elisabeth Eckers
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Melanie Bien
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Vincent Stroobant
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Johannes M. Herrmann
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Marcel Deponte
- Butenandt Institute for Physiological Chemistry, Ludwig-Maximilians University, D-81377 Munich, Germany, Cell Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université Catholique de Louvain, B-1200 Brussels, Belgium
| |
Collapse
|
32
|
Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta Gen Subj 2008; 1780:1217-35. [DOI: 10.1016/j.bbagen.2007.12.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/29/2007] [Accepted: 12/07/2007] [Indexed: 12/21/2022]
|
33
|
Mesecke N, Spang A, Deponte M, Herrmann JM. A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol Biol Cell 2008; 19:2673-80. [PMID: 18400945 PMCID: PMC2397307 DOI: 10.1091/mbc.e07-09-0896] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 03/25/2008] [Accepted: 04/02/2008] [Indexed: 01/16/2023] Open
Abstract
Glutaredoxins represent a ubiquitous family of proteins that catalyze the reduction of disulfide bonds in their substrate proteins by use of reduced glutathione. In an attempt to identify the full complement of glutaredoxins in baker's yeast, we found three so-far uncharacterized glutaredoxin-like proteins that we named Grx6, Grx7, and Grx8. Grx6 and Grx7 represent closely related monothiol glutaredoxins that are synthesized with N-terminal signal sequences. Both proteins are located in the cis-Golgi, thereby representing the first glutaredoxins found in a compartment of the secretory pathway. In contrast to formerly described monothiol glutaredoxins, Grx6 and Grx7, showed a high glutaredoxin activity in vitro. Grx6 and Grx7 overlap in their activity and deletion mutants lacking both proteins show growth defects and a strongly increased sensitivity toward oxidizing agents such as hydrogen peroxide or diamide. Our observations suggest that Grx6 and Grx7 do not play a general role in the oxidative folding of proteins in the early secretory pathway but rather counteract the oxidation of specific thiol groups in substrate proteins.
Collapse
Affiliation(s)
- Nikola Mesecke
- *Institute of Physiological Chemistry, University of Munich, 81377 Munich, Germany
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Anne Spang
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; and
| | - Marcel Deponte
- *Institute of Physiological Chemistry, University of Munich, 81377 Munich, Germany
| | | |
Collapse
|
34
|
Tripathi T, Rahlfs S, Becker K, Bhakuni V. Structural and stability characteristics of a monothiol glutaredoxin: Glutaredoxin-like protein 1 from Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:946-52. [DOI: 10.1016/j.bbapap.2008.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/26/2008] [Accepted: 03/28/2008] [Indexed: 01/16/2023]
|
35
|
Mesecke N, Mittler S, Eckers E, Herrmann JM, Deponte M. Two Novel Monothiol Glutaredoxins from Saccharomyces cerevisiae Provide Further Insight into Iron-Sulfur Cluster Binding, Oligomerization, and Enzymatic Activity of Glutaredoxins. Biochemistry 2008; 47:1452-63. [DOI: 10.1021/bi7017865] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikola Mesecke
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität D-81377, München, and the Institut für Zellbiologie, Technische Universität Kaiserslautern D-67663, Kaiserslautern, Germany
| | - Sarah Mittler
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität D-81377, München, and the Institut für Zellbiologie, Technische Universität Kaiserslautern D-67663, Kaiserslautern, Germany
| | - Elisabeth Eckers
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität D-81377, München, and the Institut für Zellbiologie, Technische Universität Kaiserslautern D-67663, Kaiserslautern, Germany
| | - Johannes M. Herrmann
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität D-81377, München, and the Institut für Zellbiologie, Technische Universität Kaiserslautern D-67663, Kaiserslautern, Germany
| | - Marcel Deponte
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität D-81377, München, and the Institut für Zellbiologie, Technische Universität Kaiserslautern D-67663, Kaiserslautern, Germany
| |
Collapse
|
36
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Cloning, functional analysis, and mitochondrial localization of Trypanosoma brucei monothiol glutaredoxin-1. Biol Chem 2008; 389:21-32. [DOI: 10.1515/bc.2007.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAfrican trypanosomes encode three monothiol glutaredoxins (1-C-Grx1 to 3). 1-C-Grx1 has a putative CAYS active site and Cys181 as single additional cysteine. The recombinant protein forms non-covalent homodimers. As observed for other monothiol glutaredoxins,Trypanosoma brucei1-C-Grx1 was not active in the glutaredoxin assay with hydroxyethyl disulfide and glutathione nor catalyzed the reduction of insulin disulfide. In addition, it lacked peroxidase activity and did not catalyze protein (de)glutathionylation. Upon oxidation, 1-C-Grx1 forms an intramolecular disulfide bridge and, to a minor degree, covalent dimers. Both disulfide forms are reduced by the parasite trypanothione/tryparedoxin system. 1-C-Grx1 shows mitochondrial localization. The total cellular concentration is at least 5 μm. Thus, 1-C-Grx1 is an abundant protein especially in the rudimentary organelle of the mammalian form of the parasite. Expression of 1-C-Grx1 in Grx5-deficient yeast cells with its authentic presequence targeted the protein to the mitochondria and partially restored the growth phenotype and aconitase activity of the mutant, and conferred resistance against hydroperoxides and diamide. The parasite Grx2 and 3 failed to substitute for Grx5. This is surprising because even bacterial and plant 1-Cys-glutaredoxins efficiently revert the defects, and may be due to the lack of two basic residues conserved in all but the trypanosomatid proteins.
Collapse
|
38
|
Kawazu SI, Komaki-Yasuda K, Oku H, Kano S. Peroxiredoxins in malaria parasites: parasitologic aspects. Parasitol Int 2007; 57:1-7. [PMID: 17890140 DOI: 10.1016/j.parint.2007.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 11/30/2022]
Abstract
Malaria is one of the most debilitating and life threatening diseases in tropical regions of the world. Over 500 million clinical cases occur, and 2-3 million people die of the disease each year. Because Plasmodium lacks genuine glutathione peroxidase and catalase, the two major antioxidant enzymes in the eukaryotic cell, malaria parasites are likely to utilize members of the peroxiredoxin (Prx) family as the principal enzymes to reduce peroxides, which increase in the parasite cell due to metabolism and parasitism during parasite development. In addition to its function of protecting macromolecules from H(2)O(2), Prx has also been reported to regulate H(2)O(2) as second messenger in transmission of redox signals, which mediate cell proliferation, differentiation, and apoptosis. In the malaria parasite, several lines of experimental data have suggested that the parasite uses Prxs as multifunctional molecules to adapt themselves to asexual and sexual development. In this review, we summarize the accumulated knowledge on the Prx family with respect to their functions in mammalian cells and their possible function(s) in malaria parasites.
Collapse
Affiliation(s)
- Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | | | | | | |
Collapse
|
39
|
Melchers J, Dirdjaja N, Ruppert T, Krauth-Siegel RL. Glutathionylation of Trypanosomal Thiol Redox Proteins. J Biol Chem 2007; 282:8678-94. [PMID: 17242409 DOI: 10.1074/jbc.m608140200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.
Collapse
|
40
|
Garcerá A, Barreto L, Piedrafita L, Tamarit J, Herrero E. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J 2006; 398:187-96. [PMID: 16709151 PMCID: PMC1550300 DOI: 10.1042/bj20060034] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Saccharomyces cerevisiae genome encodes three proteins that display similarities with human GSTOs (Omega class glutathione S-transferases) hGSTO1-1 and hGSTO2-2. The three yeast proteins have been named Gto1, Gto2 and Gto3, and their purified recombinant forms are active as thiol transferases (glutaredoxins) against HED (beta-hydroxyethyl disulphide), as dehydroascorbate reductases and as dimethylarsinic acid reductases, while they are not active against the standard GST substrate CDNB (1-chloro-2,4-dinitrobenzene). Their glutaredoxin activity is also detectable in yeast cell extracts. The enzyme activity characteristics of the Gto proteins contrast with those of another yeast GST, Gtt1. The latter is active against CDNB and also displays glutathione peroxidase activity against organic hydroperoxides such as cumene hydroperoxide, but is not active as a thiol transferase. Analysis of point mutants derived from wild-type Gto2 indicates that, among the three cysteine residues of the molecule, only the residue at position 46 is required for the glutaredoxin activity. This indicates that the thiol transferase acts through a monothiol mechanism. Replacing the active site of the yeast monothiol glutaredoxin Grx5 with the proposed Gto2 active site containing Cys46 allows Grx5 to retain some activity against HED. Therefore the residues adjacent to the respective active cysteine residues in Gto2 and Grx5 are important determinants for the thiol transferase activity against small disulphide-containing molecules.
Collapse
Affiliation(s)
- Ana Garcerá
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Lina Barreto
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Lidia Piedrafita
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008-Lleida, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Herrero E, Ros J, Tamarit J, Bellí G. Glutaredoxins in fungi. PHOTOSYNTHESIS RESEARCH 2006; 89:127-40. [PMID: 16915356 DOI: 10.1007/s11120-006-9079-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/09/2006] [Indexed: 05/11/2023]
Abstract
Glutaredoxins (GRXs) can be subdivided into two subfamilies: dithiol GRXs with the CPY/FC active site motif, and monothiol GRXs with the CGFS motif. Both subfamilies share a thioredoxin-fold structure. Some monothiol GRXs exist with a single-Grx domain while others have a thioredoxin-like domain (Trx) and one or more Grx domains in tandem. Most fungi have both dithiol and monothiol GRXs with different subcellular locations. GRX-like molecules also exist in fungi that differ by one residue from one of the canonical active site motifs. Additionally, Omega-class glutathione transferases (GSTs) are active as GRXs. Among fungi, the GRXs more extensively studied are those from Saccharomyces cerevisiae. This organism contains two dithiol GRXs (ScGrx1 and ScGrx2) with partially overlapping functions in defence against oxidative stress. In this function, they cooperate with GSTs Gtt1 and Gtt2. While ScGrx1 is cytosolic, two pools exist for ScGrx2, a major one at the cytosol and a minor one at mitochondria. On the other hand, S. cerevisiae cells have two monothiol GRXs with the Trx-Grx structure (ScGrx3 and ScGrx4) that locate at the nucleus and probably regulate the activity of transcription factors such as Aft1, and one monothiol GRX with the Grx structure (ScGrx5) that localizes at the mitochondrial matrix, where it participates in the synthesis of iron-sulphur clusters. The function of yeast Grx5 seems to be conserved along the evolutionary scale.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008, Lleida, Spain.
| | | | | | | |
Collapse
|
42
|
Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD. AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 2006; 281:26280-8. [PMID: 16829529 DOI: 10.1074/jbc.m601354200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases and members of the thioredoxin (Trx) fold protein family. In bacterial, yeast, and mammalian cells, Grxs appear to be involved in maintaining cellular redox homeostasis. However, in plants, the physiological roles of Grxs have not been fully characterized. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified but not well characterized. Here we demonstrate that a plant protein, AtGRXcp, is a chloroplast-localized monothiol Grx with high similarity to yeast Grx5. In yeast expression assays, AtGRXcp localized to the mitochondria and suppressed the sensitivity of yeast grx5 cells to H2O2 and protein oxidation. AtGRXcp expression can also suppress iron accumulation and partially rescue the lysine auxotrophy of yeast grx5 cells. Analysis of the conserved monothiol motif suggests that the cysteine residue affects AtGRXcp expression and stability. In planta, AtGRXcp expression was elevated in young cotyledons, green tissues, and vascular bundles. Analysis of atgrxcp plants demonstrated defects in early seedling growth under oxidative stresses. In addition, atgrxcp lines displayed increased protein carbonylation within chloroplasts. Thus, this work describes the initial functional characterization of a plant monothiol Grx and suggests a conserved biological function in protecting cells against protein oxidative damage.
Collapse
Affiliation(s)
- Ning-Hui Cheng
- Plant Physiology Group, United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
43
|
Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K. Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 2006; 8:1227-39. [PMID: 16910770 DOI: 10.1089/ars.2006.8.1227] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The intraerythrocytic protozoan parasite Plasmodium falciparum is responsible for more than 500 million clinical cases of tropical malaria annually. Although exposed to high fluxes of reactive oxygen species, Plasmodium lacks the antioxidant enzymes catalase and glutathione peroxidase. Thus, the parasite depends on the antioxidant capacity of its host cell and its own peroxidases. These are fuelled by the thioredoxin system and are considered to represent the major defense line against peroxides. Five peroxidases that act in different compartments have been described in P. falciparum. They include two typical 2-Cys peroxiredoxins (Prx), a 1-Cys Prx, the so-called antioxidant protein (AOP), which is a further Prx acting on the basis of a 1-Cys mechanism, and a glutathione peroxidase-like thioredoxin peroxidase. Because of their central function in redox regulation and antioxidant defense, some of these proteins might represent highly interesting targets for structure-based drug development. In this article we summarize the present knowledge on the thioredoxin and peroxiredoxin metabolism in malaria parasitized red blood cells. We furthermore report novel data on the biochemical and kinetic characterization of different thioredoxins, of AOP, and of the classic 1-Cys peroxiredoxin of P. falciparum.
Collapse
Affiliation(s)
- Christine Nickel
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | | | |
Collapse
|
44
|
Fladvad M, Bellanda M, Fernandes AP, Mammi S, Vlamis-Gardikas A, Holmgren A, Sunnerhagen M. Molecular Mapping of Functionalities in the Solution Structure of Reduced Grx4, a Monothiol Glutaredoxin from Escherichia coli. J Biol Chem 2005; 280:24553-61. [PMID: 15840565 DOI: 10.1074/jbc.m500679200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous glutaredoxin protein family is present in both prokaryotes and eukaryotes, and is closely related to the thioredoxins, which reduce their substrates using a dithiol mechanism as part of the cellular defense against oxidative stress. Recently identified monothiol glutaredoxins, which must use a different functional mechanism, appear to be essential in both Escherichia coli and yeast and are well conserved in higher order genomes. We have employed high resolution NMR to determine the three-dimensional solution structure of a monothiol glutaredoxin, the reduced E. coli Grx4. The Grx4 structure comprises a glutaredoxin-like alpha-beta fold, founded on a limited set of strictly conserved and structurally critical residues. A tight hydrophobic core, together with a stringent set of secondary structure elements, is thus likely to be present in all monothiol glutaredoxins. A set of exposed and conserved residues form a surface region, implied in glutathione binding from a known structure of E. coli Grx3. The absence of glutaredoxin activity in E. coli Grx4 can be understood based on small but significant differences in the glutathione binding region, and through the lack of a conserved second GSH binding site. MALDI experiments suggest that disulfide formation on glutathionylation is accompanied by significant structural changes, in contrast with dithiol thioredoxins and glutaredoxins, where differences between oxidized and reduced forms are subtle and local. Structural and functional implications are discussed with particular emphasis on identifying common monothiol glutaredoxin properties in substrate specificity and ligand binding events, linking the thioredoxin and glutaredoxin systems.
Collapse
Affiliation(s)
- Malin Fladvad
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Chung WH, Kim KD, Roe JH. Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2005; 330:604-10. [PMID: 15796926 DOI: 10.1016/j.bbrc.2005.02.183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Indexed: 11/26/2022]
Abstract
The fission yeast Schizosaccharomyces pombe contains two dithiol glutaredoxins (Grx1 and Grx2) and genes for three putative monothiol glutaredoxins (grx3, 4, and 5). We investigated the expression, sub-cellular localization, and functions of the three monothiol glutaredoxins. Fluorescence microscopy revealed that Grx3 is targeted to nuclear rim and endoplasmic reticulum, Grx4 primarily to the nucleus, and Grx5 to mitochondria. Null mutation of grx3 did not significantly affect growth and resistance against various oxidants, whereas grx5 mutation caused slow growth and sensitivity toward oxidants such as hydrogen peroxide, paraquat, and diamide. The grx2grx5 double mutation, deficient in all mitochondrial glutaredoxins, caused further retardation in growth and severe sensitivity toward all the oxidants tested. The grx4 mutation was not viable, suggesting a critical role of Grx4 for the physiology of S. pombe. Overproduction of Grx3 and Grx5, but not the truncated form of Grx5 without mitochondrial target sequence, severely retarded growth as Grx2 did, supporting the idea that Grx2, 3, and 5 are targeted to organellar compartments. Our results propose a distinct role for each glutaredoxin to maintain thiol redox balance, and hence the growth and stress resistance, of the fission yeast.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
46
|
Deponte M, Becker K. Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx. Mol Biochem Parasitol 2005; 140:87-96. [PMID: 15694490 DOI: 10.1016/j.molbiopara.2004.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
TgPrx2 represents a recently discovered cytosolic 1-Cys peroxiredoxin (Prx) from the intracellular parasite Toxoplasma gondii. Over-expression of the respective gene confers protection against H(2)O(2), suggesting that the protein possesses peroxidase activity. According to the current nomenclature eukaryotic typical and atypical 2-Cys Prx contain a second conserved resolving cysteine residue whereas 1-Cys Prx work on the basis of a monothiol mechanism. Only a few 1-Cys peroxiredoxins have been biochemically characterized to date. Here we describe the mechanistic characterization of TgPrx2 in vitro, including site directed mutagenesis studies, gel filtration chromatography, and molecular modeling. TgPrx2 has general antioxidant properties as indicated by its ability to protect glutamine synthetase against a dithiothreitol Fe(3+)-catalyzed oxidation system. However, TgPrx2 does not reduce H(2)O(2) nor tert-butyl hydroperoxide at the expense of glutaredoxin, thioredoxin or glutathione. Cys(47) was identified as the active site cysteine residue. Most interestingly, Cys(47) was found to form an intermolecular disulfide with Cys(209) from the C-terminal domain of a second subunit which acts as the resolving cysteine. This is a mechanism analogous to typical peroxiredoxins. In contrast to the latter, however, dimeric TgPrx2 does not oligomerize to decamers but is able to form tetramers and hexamers which are non-covalently associated. To our knowledge, TgPrx2 is the first eukaryotic 'so called' 1-Cys peroxiredoxin shown to act on the basis of a 2-Cys mechanism. Our data indicate that mechanistic studies are essential for classifying peroxiredoxins.
Collapse
Affiliation(s)
- Marcel Deponte
- Interdisciplinary Research Center, Justus Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | |
Collapse
|
47
|
Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:443-459. [PMID: 15804578 DOI: 10.1016/j.ibmb.2005.01.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 05/24/2023]
Abstract
Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
Collapse
Affiliation(s)
- A J Nappi
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
48
|
Xu C, Zheng P, Shen S, Xu Y, Wei L, Gao H, Wang S, Zhu C, Tang Y, Wu J, Zhang Q, Shi Y. NMR structure and regulated expression in APL cell of human SH3BGRL3. FEBS Lett 2005; 579:2788-94. [PMID: 15907482 DOI: 10.1016/j.febslet.2005.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/04/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
SH3 domain binding glutamic acid-rich protein like 3 (SH3BGRL3) is the new member of thioredoxin (TRX) super family, whose posttranslational modified form was identified as tumor necrosis factor alpha (TNF-alpha) inhibitory protein, TIP-B1. In this paper, we determined its solution structure by multi-dimensional nuclear magnetic resonance spectroscopy. The overall structure of human SH3BGRL3 conformed to a TRX-like fold. To understand its function in vivo, the upregulated expression in acute promyelocytic leukemia cell line NB4 at both mRNA and protein level was elucidated. Immunofluorescence and immunohistochemistry staining with monoclonal antibody against SH3BGRL3 demonstrated that it was a cytoplasmic protein in both NB4 cell and human tissues. These results, as a whole, indicate that SH3BGRL3 may function as a regulator in all-trans retinoic acid-induced pathway.
Collapse
Affiliation(s)
- Chao Xu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fernandes AP, Fladvad M, Berndt C, Andrésen C, Lillig CH, Neubauer P, Sunnerhagen M, Holmgren A, Vlamis-Gardikas A. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem 2005; 280:24544-52. [PMID: 15833738 DOI: 10.1074/jbc.m500678200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.
Collapse
Affiliation(s)
- Aristi Potamitou Fernandes
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.
Collapse
Affiliation(s)
- Sylke Müller
- School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, UK.
| |
Collapse
|