1
|
Tuncay E, Olgar Y, Aryan L, Şık S, Billur D, Turan B. ZnT6-mediated Zn 2+ redistribution: impact on mitochondrial fission and autophagy in H9c2 cells. Mol Cell Biochem 2025:10.1007/s11010-025-05247-6. [PMID: 40087209 DOI: 10.1007/s11010-025-05247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Cytosolic free Zn2⁺ level ([Zn2⁺]Cyt) is tightly regulated by Zn2⁺ transporters, under both physiological and pathological conditions. At the cellular level, dysregulated free Zn2⁺ levels have been linked to metabolic and cardiovascular diseases, primarily through their association with various Zn2⁺ transporters. However, the role and localization of ZnT6 in cardiomyocytes remain unclear. Previous studies have shown a significant increase in ZnT6 expression in insulin-resistant cardiomyocytes, suggesting a potential link between ZnT6 dysregulation and cardiac cell dysfunction. Therefore, here, we investigated the impact of ZnT6 overexpression (ZnT6-OE) on cellular Zn2⁺ distribution, mitochondrial dynamics, and autophagy-induced apoptosis in H9c2 cardiomyocytes. Using confocal imaging, biochemical assays, and electron microscopy, we demonstrated the mitochondrial localization of ZnT6 and its role in H9c2 cells. Our findings showed that ZnT6 overexpression led to a significant increase in mitochondrial free Zn2⁺ level ([Zn2⁺]Mit) with a significant reduction in [Zn2⁺]Cyt, which seems to be associated with enhanced numbers of mitochondria and mitochondrial fission process. Specifically, the ZnT6-OE cells exhibited increased dynamin-related protein 1 (DRP1) translocation to mitochondria which is an indication of excessive fission activity. We also determined severe mitochondrial dysfunction in ZnT6-OE cells, such as depolarization in mitochondrial membrane potential, production of excessive reactive oxygen species (ROS), reduced ATP levels, and autophagosome accumulation. Furthermore, these impairments were accompanied by elevated apoptotic markers, indicating autophagy-induced apoptosis. Our findings highlight ZnT6 as a critical regulator of mitochondrial dynamics and function in cardiomyocytes, contributing to disruption Zn2⁺ homeostasis by its overexpression, triggering excessive DRP1-mediated mitochondrial fission and leading to mitochondrial dysfunction, oxidative stress, and apoptotic cell death, suggesting an important impact of ZnT6 dysregulation on cardiomyocyte pathophysiology in metabolic disorders.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
- Department of Interdisciplinary Neuroscience, Faculty of Medicine, Ankara, Turkey.
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Leila Aryan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- Institute of Health Science, Ankara University, Ankara, Turkey
| | - Suatnur Şık
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- Institute of Health Science, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
2
|
Dolgin V, Chabosseau P, Bistritzer J, Noyman I, Staretz‐Chacham O, Wormser O, Hadar N, Eskin‐Schwartz M, Kanengisser‐Pines B, Narkis G, Abramsky R, Shany E, Rutter GA, Marks K, Birk OS. Severe neonatal hypotonia due to SLC30A5 variant affecting function of ZnT5 zinc transporter. JIMD Rep 2025; 66:e12465. [PMID: 39790720 PMCID: PMC11712426 DOI: 10.1002/jmd2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn2+ transporters: the 14-member ZIP/SLC39 family, facilitating Zn2+ influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn2+ in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/SLC30A5 zinc transporter, and suggested association of two homozygous frameshift SLC30A5 variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy. We set out to decipher the molecular basis of a severe hypotonia syndrome. Combining homozygosity mapping and exome sequencing studies of consanguineous Bedouin kindred, as well as transfection experiments and zinc monitoring in HEK293 cells, we demonstrate that a bi-allelic in-frame 3bp deletion variant in SLC30A5, deleting isoleucine within the highly conserved cation efflux domain of the encoded ZnT5, results in lower cytosolic zinc concentrations, causing a syndrome of severe non-progressive neonatal axial and limb hypotonia with high-arched palate and respiratory failure. There was no evidence of hydrops fetalis, cardiomyopathy or multi-organ involvement. Affected infants required nasogastric tube or gastrostomy feeding, suffered from various degrees of respiratory compromise and failure to thrive and died in infancy. Thus, a biallelic variant in SLC30A5 (ZnT5), affecting cytosolic zinc concentrations, causes a severe hypotonia syndrome with respiratory insufficiency and failure to thrive, lethal by 1 year of age.
Collapse
Affiliation(s)
- Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | | | - Jacob Bistritzer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Iris Noyman
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Orna Staretz‐Chacham
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
- Metabolic Clinic, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | - Marina Eskin‐Schwartz
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | | | - Ginat Narkis
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | - Ramy Abramsky
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | - Eilon Shany
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Guy A. Rutter
- CRCHUM and Department of MedicineUniversité de MontréalMontréalQCCanada
- Department of Diabetes, Endocrinology and Medicine, Faculty of MedicineImperial CollegeLondonUK
- LKC School of MedicineNanyang Technological CollegeSingaporeSingapore
| | - Kyla Marks
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ohad S. Birk
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel‐HashomerRamat GanIsrael
| |
Collapse
|
3
|
Song CC, Liu T, Hogstrand C, Zhong CC, Zheng H, Sun LH, Luo Z. SENP1 mediates zinc-induced ZnT6 deSUMOylation at Lys-409 involved in the regulation of zinc metabolism in Golgi apparatus. Cell Mol Life Sci 2024; 81:422. [PMID: 39367979 PMCID: PMC11455790 DOI: 10.1007/s00018-024-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Zinc (Zn) transporters contribute to the maintenance of intracellular Zn homeostasis in vertebrate, whose activity and function are modulated by post-translational modification. However, the function of small ubiquitin-like modifier (SUMOylation) in Zn metabolism remains elusive. Here, compared with low Zn group, a high-Zn diet significantly increases hepatic Zn content and upregulates the expression of metal-response element-binding transcription factor-1 (MTF-1), Zn transporter 6 (ZnT6) and deSUMOylation enzymes (SENP1, SENP2, and SENP6), but inhibits the expression of SUMO proteins and the E1, E2, and E3 enzymes. Mechanistically, Zn triggers the activation of the MTF-1/SENP1 pathway, resulting in the reduction of ZnT6 SUMOylation at Lys 409 by small ubiquitin-like modifier 1 (SUMO1), and promoting the deSUMOylation process mediated by SENP1. SUMOylation modification of ZnT6 has no influence on its localization but reduces its protein stability. Importantly, deSUMOylation of ZnT6 is crucial for controlling Zn export from the cytosols into the Golgi apparatus. In conclusion, for the first time, we elucidate a novel mechanism by which SUMO1-catalyzed SUMOylation and SENP1-mediated deSUMOylation of ZnT6 orchestrate the regulation of Zn metabolism within the Golgi apparatus.
Collapse
Affiliation(s)
- Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Tao Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Bui HB, Inaba K. Structures, Mechanisms, and Physiological Functions of Zinc Transporters in Different Biological Kingdoms. Int J Mol Sci 2024; 25:3045. [PMID: 38474291 PMCID: PMC10932157 DOI: 10.3390/ijms25053045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Zinc transporters take up/release zinc ions (Zn2+) across biological membranes and maintain intracellular and intra-organellar Zn2+ homeostasis. Since this process requires a series of conformational changes in the transporters, detailed information about the structures of different reaction intermediates is required for a comprehensive understanding of their Zn2+ transport mechanisms. Recently, various Zn2+ transport systems have been identified in bacteria, yeasts, plants, and humans. Based on structural analyses of human ZnT7, human ZnT8, and bacterial YiiP, we propose updated models explaining their mechanisms of action to ensure efficient Zn2+ transport. We place particular focus on the mechanistic roles of the histidine-rich loop shared by several zinc transporters, which facilitates Zn2+ recruitment to the transmembrane Zn2+-binding site. This review provides an extensive overview of the structures, mechanisms, and physiological functions of zinc transporters in different biological kingdoms.
Collapse
Affiliation(s)
- Han Ba Bui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Kambe T, Wagatsuma T. Metalation and activation of Zn 2+ enzymes via early secretory pathway-resident ZNT proteins. BIOPHYSICS REVIEWS 2023; 4:041302. [PMID: 38510844 PMCID: PMC10903440 DOI: 10.1063/5.0176048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 03/22/2024]
Abstract
Zinc (Zn2+), an essential trace element, binds to various proteins, including enzymes, transcription factors, channels, and signaling molecules and their receptors, to regulate their activities in a wide range of physiological functions. Zn2+ proteome analyses have indicated that approximately 10% of the proteins encoded by the human genome have potential Zn2+ binding sites. Zn2+ binding to the functional site of a protein (for enzymes, the active site) is termed Zn2+ metalation. In eukaryotic cells, approximately one-third of proteins are targeted to the endoplasmic reticulum; therefore, a considerable number of proteins mature by Zn2+ metalation in the early secretory pathway compartments. Failure to capture Zn2+ in these compartments results in not only the inactivation of enzymes (apo-Zn2+ enzymes), but also their elimination via degradation. This process deserves attention because many Zn2+ enzymes that mature during the secretory process are associated with disease pathogenesis. However, how Zn2+ is mobilized via Zn2+ transporters, particularly ZNTs, and incorporated in enzymes has not been fully elucidated from the cellular perspective and much less from the biophysical perspective. This review focuses on Zn2+ enzymes that are activated by Zn2+ metalation via Zn2+ transporters during the secretory process. Further, we describe the importance of Zn2+ metalation from the physiopathological perspective, helping to reveal the importance of understanding Zn2+ enzymes from a biophysical perspective.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Rege J, Bandulik S, Nanba K, Kosmann C, Blinder AR, Plain A, Vats P, Kumar-Sinha C, Lerario AM, Else T, Yamazaki Y, Satoh F, Sasano H, Giordano TJ, Williams TA, Reincke M, Turcu AF, Udager AM, Warth R, Rainey WE. Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2023; 55:1623-1631. [PMID: 37709865 PMCID: PMC12051258 DOI: 10.1038/s41588-023-01498-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Primary aldosteronism (PA) is the most common form of endocrine hypertension and is characterized by inappropriately elevated aldosterone production via a renin-independent mechanism. Driver somatic mutations for aldosterone excess have been found in approximately 90% of aldosterone-producing adenomas (APAs). Other causes of lateralized adrenal PA include aldosterone-producing nodules (APNs). Using next-generation sequencing, we identified recurrent in-frame deletions in SLC30A1 in four APAs and one APN (p.L51_A57del, n = 3; p.L49_L55del, n = 2). SLC30A1 encodes the ubiquitous zinc efflux transporter ZnT1 (zinc transporter 1). The identified SLC30A1 variants are situated close to the zinc-binding site (His43 and Asp47) in transmembrane domain II and probably cause abnormal ion transport. Cases of PA with SLC30A1 mutations showed male dominance and demonstrated increased aldosterone and 18-oxocortisol concentrations. Functional studies of the SLC30A151_57del variant in a doxycycline-inducible adrenal cell system revealed pathological Na+ influx. An aberrant Na+ current led to depolarization of the resting membrane potential and, thus, to the opening of voltage-gated calcium (Ca2+) channels. This resulted in an increase in cytosolic Ca2+ activity, which stimulated CYP11B2 mRNA expression and aldosterone production. Collectively, these data implicate zinc transporter alterations as a dominant driver of aldosterone excess in PA.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Kazutaka Nanba
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Carla Kosmann
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Amy R Blinder
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Allein Plain
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Pankaj Vats
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Chandan Kumar-Sinha
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Antonio M Lerario
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Adina F Turcu
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - William E Rainey
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Amagai Y, Yamada M, Kowada T, Watanabe T, Du Y, Liu R, Naramoto S, Watanabe S, Kyozuka J, Anelli T, Tempio T, Sitia R, Mizukami S, Inaba K. Zinc homeostasis governed by Golgi-resident ZnT family members regulates ERp44-mediated proteostasis at the ER-Golgi interface. Nat Commun 2023; 14:2683. [PMID: 37160917 PMCID: PMC10170084 DOI: 10.1038/s41467-023-38397-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Many secretory enzymes acquire essential zinc ions (Zn2+) in the Golgi complex. ERp44, a chaperone operating in the early secretory pathway, also binds Zn2+ to regulate its client binding and release for the control of protein traffic and homeostasis. Notably, three membrane transporter complexes, ZnT4, ZnT5/ZnT6 and ZnT7, import Zn2+ into the Golgi lumen in exchange with protons. To identify their specific roles, we here perform quantitative Zn2+ imaging using super-resolution microscopy and Zn2+-probes targeted in specific Golgi subregions. Systematic ZnT-knockdowns reveal that ZnT4, ZnT5/ZnT6 and ZnT7 regulate labile Zn2+ concentration at the distal, medial, and proximal Golgi, respectively, consistent with their localization. Time-course imaging of cells undergoing synchronized secretory protein traffic and functional assays demonstrates that ZnT-mediated Zn2+ fluxes tune the localization, trafficking, and client-retrieval activity of ERp44. Altogether, this study provides deep mechanistic insights into how ZnTs control Zn2+ homeostasis and ERp44-mediated proteostasis along the early secretory pathway.
Collapse
Affiliation(s)
- Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Momo Yamada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Tomomi Watanabe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Rong Liu
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Satoshi Naramoto
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Junko Kyozuka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, Vita-Salute University, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Tiziana Tempio
- Division of Genetics and Cell Biology, Vita-Salute University, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute University, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan.
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int J Mol Sci 2023; 24:ijms24098290. [PMID: 37175995 PMCID: PMC10179575 DOI: 10.3390/ijms24098290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
| | - Ornella Fiorillo Moreno
- Clínica Iberoamerica, Barranquilla 080001, Colombia
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Eloina Zarate Peñata
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Lisandro Pacheco Lugo
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Antonio Acosta Hoyos
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Roberto Navarro Quiroz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, 08028 Barcelona, Spain
| | | | - Gustavo Aroca Martinez
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
- School of Medicine, Universidad del Norte, Barranquilla 080001, Colombia
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
9
|
Kelleher SL. The ins and outs of mammary gland calcium and zinc transport: A brief review. JDS COMMUNICATIONS 2023; 4:240-244. [PMID: 37360130 PMCID: PMC10285217 DOI: 10.3168/jdsc.2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 06/28/2023]
Abstract
Milk is an excellent source of all macrominerals and trace elements, which are essential for proper function of a wide variety of vital processes. The concentrations of minerals in milk are influenced by numerous factors, including stage of lactation, time of day, nutritional and health status of the mother, as well as maternal genotype and environmental exposures. Additionally, tight regulation of mineral transport within the secretory mammary epithelial cell itself is critical for the production and secretion of milk. In this brief review, we focus on the current understanding of how the essential divalent cations calcium (Ca) and zinc (Zn) are transported in the mammary gland (MG) with a focus on molecular regulation and the consequence of genotype. A deeper grasp of mechanisms and factors affecting Ca and Zn transport in the MG is important to understanding milk production, mineral output, and MG health to inform intervention design and novel diagnostic and therapeutic strategies in production animals and humans.
Collapse
|
10
|
Wagatsuma T, Suzuki E, Shiotsu M, Sogo A, Nishito Y, Ando H, Hashimoto H, Petris MJ, Kinoshita M, Kambe T. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Commun Biol 2023; 6:403. [PMID: 37072620 PMCID: PMC10113262 DOI: 10.1038/s42003-023-04640-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023] Open
Abstract
Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.
Collapse
Affiliation(s)
- Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eisuke Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Sogo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Michael J Petris
- Departments of Ophthalmology, University of Missouri, Columbia, MO, 65211, USA
- Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
11
|
Escobar A, Styrpejko DJ, Ali S, Cuajungco MP. Transmembrane 163 (TMEM163) protein interacts with specific mammalian SLC30 zinc efflux transporter family members. Biochem Biophys Rep 2022; 32:101362. [PMID: 36204728 PMCID: PMC9530847 DOI: 10.1016/j.bbrep.2022.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that TMEM163 is a zinc efflux transporter that likely belongs to the mammalian solute carrier 30 (Slc30/ZnT) subfamily of the cation diffusion facilitator (CDF) protein superfamily. We hypothesized that human TMEM163 forms functional heterodimers with certain ZNT proteins based on their overlapping subcellular localization with TMEM163 and previous reports that some ZNT monomers interact with each other. In this study, we heterologously expressed individual constructs with a unique peptide tag containing TMEM163, ZNT1, ZNT2, ZNT3, and ZNT4 (negative control) or co-expressed TMEM163 with each ZNT in cultured cells for co-immunoprecipitation (co-IP) experiments. We also co-expressed TMEM163 with two different peptide tags as a positive co-IP control. Western blot analyses revealed that TMEM163 dimerizes with itself but that it also heterodimerizes with ZNT1, ZNT2, ZNT3, and ZNT4 proteins. Confocal microscopy revealed that TMEM163 and ZNT proteins partially co-localize in cells, suggesting that they exist as homodimers and heterodimers in their respective subcellular sites. Functional zinc flux assays using Fluozin-3 and Newport Green dyes show that TMEM163/ZNT heterodimers exhibit similar efflux function as TMEM163 homodimers. Cell surface biotinylation revealed that the plasma membrane localization of TMEM163 is not markedly influenced by ZNT co-expression. Overall, our results show that the interaction between TMEM163 and distinct ZNT proteins is physiologically relevant and that their heterodimerization may serve to increase the functional diversity of zinc effluxers within specific tissues or cell types. TMEM163 protein heterodimerizes with ZNT1, ZNT2, ZNT3 and ZNT4 zinc efflux transporters. Partial co-localization of TMEM163 and ZNT proteins in cells suggests distinct roles as homodimers and heterodimers. Zinc efflux activity of TMEM163 or ZNT protein homodimers did not differ from their TMEM163/ZNT heterodimer counterparts. TMEM163/ZNT heterodimerization attests to the role of TMEM163 as a bona fide SLC30 protein family member.
Collapse
Affiliation(s)
| | | | - Saima Ali
- Department of Biological Science, USA
| | - Math P. Cuajungco
- Department of Biological Science, USA,Center for Applied Biotechnology Studies, California State University Fullerton, CA, 92831, USA,Corresponding author. Department of Biological Science, California State University Fullerton, 800 North State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
12
|
Wan Y, Zhang B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022; 12:biom12070900. [PMID: 35883455 PMCID: PMC9313088 DOI: 10.3390/biom12070900] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc is an essential trace element for living organisms, and zinc homeostasis is essential for the maintenance of the normal physiological functions of cells and organisms. The intestine is the main location for zinc absorption and excretion, while zinc and zinc homeostasis is also of great significance to the structure and function of the intestinal mucosal barrier. Zinc excess or deficiency and zinc homeostatic imbalance are all associated with many intestinal diseases, such as IBD (inflammatory bowel disease), IBS (irritable bowel syndrome), and CRC (colorectal cancer). In this review, we describe the role of zinc and zinc homeostasis in the intestinal mucosal barrier and the relevance of zinc homeostasis to gastrointestinal diseases.
Collapse
|
13
|
Ueda S, Manabe Y, Kubo N, Morino N, Yuasa H, Shiotsu M, Tsuji T, Sugawara T, Kambe T. Early secretory pathway-resident Zn transporter proteins contribute to cellular sphingolipid metabolism through activation of sphingomyelin phosphodiesterase 1. Am J Physiol Cell Physiol 2022; 322:C948-C959. [PMID: 35294847 DOI: 10.1152/ajpcell.00020.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingomyelin phosphodiesterase 1 (SMPD1) converts sphingomyelin into ceramide and phosphocholine; hence, loss of SMPD1 function causes abnormal accumulation of sphingomyelin in lysosomes, which results in the lipid-storage disorder Niemann-Pick disease (types A and B). SMPD1 activity is dependent on zinc, which is coordinated at the active site of the enzyme, and although SMPD1 has been suggested to acquire zinc at the sites where the enzyme is localized, precisely how SMPD1 acquires zinc remains to be clarified. Here, we addressed this using a gene-disruption/re-expression strategy. Our results revealed that Zn transporter 5 (ZNT5)-ZNT6 heterodimers and ZNT7 homodimers, which localize in the compartments of the early secretory pathway, play essential roles in SMPD1 activation. Both ZNT complexes contribute to cellular sphingolipid metabolism by activating SMPD1 because cells lacking the functions of the two complexes exhibited a reduced ceramide to sphingomyelin content ratio in terms of their dominant molecular species and an increase in the sphingomyelin content in terms of three minor species. Moreover, mutant cells contained multilamellar body-like structures, indicative of membrane stacking and accumulation, in the cytoplasm. These findings provide novel insights into the molecular mechanism underlying the activation of SMPD1, a key enzyme in sphingolipid metabolism.
Collapse
Affiliation(s)
- Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoya Kubo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hana Yuasa
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
15
|
Lieberwirth JK, Joset P, Heinze A, Hentschel J, Stein A, Iannaccone A, Steindl K, Kuechler A, Abou Jamra R. Bi-allelic loss of function variants in SLC30A5 as cause of perinatal lethal cardiomyopathy. Eur J Hum Genet 2021; 29:808-815. [PMID: 33547425 PMCID: PMC8110774 DOI: 10.1038/s41431-020-00803-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Perinatal mortality is a heavy burden for both affected parents and physicians. However, the underlying genetic causes have not been sufficiently investigated and most cases remain without diagnosis. This impedes appropriate counseling or therapy. We describe four affected children of two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. In the four patients, we found the following homozygous loss of function (LoF) variants in SLC30A5 NM_022902.4:c.832_836del p.(Ile278Phefs*33) and NM_022902.4:c.1981_1982del p.(His661Tyrfs*10). Knockout of SLC30A5 has previously been shown a cardiac phenotype in mouse models and no homozygous LoF variants in SLC30A5 are currently described in gnomAD. Taken together, we present SLC30A5 as a new gene for a severe and perinatally lethal form of cardiomyopathy.
Collapse
Affiliation(s)
- Johann Kaspar Lieberwirth
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Pascal Joset
- grid.7400.30000 0004 1937 0650Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Anja Heinze
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Julia Hentschel
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Anja Stein
- grid.5718.b0000 0001 2187 5445Department of Pediatrics I, Division of Neonatology, University Medical Center Essen, University Duisburg—Essen, Essen, Germany
| | - Antonella Iannaccone
- grid.5718.b0000 0001 2187 5445Department of Gynecology and Obstetrics, University Medical Center Essen, University Duisburg—Essen, Essen, Germany
| | - Katharina Steindl
- grid.7400.30000 0004 1937 0650Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Alma Kuechler
- grid.5718.b0000 0001 2187 5445Institute of Human Genetics, University Medical Center Essen, University of Duisburg—Essen, Essen, Germany
| | - Rami Abou Jamra
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Styrpejko DJ, Cuajungco MP. Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family. Biomedicines 2021; 9:biomedicines9020220. [PMID: 33670071 PMCID: PMC7926707 DOI: 10.3390/biomedicines9020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence continues to demonstrate the vital roles that zinc and its transporters play on human health. The mammalian solute carrier 30 (SLC30) family, with ten current members, controls zinc efflux transport in cells. TMEM163, a recently reported zinc transporter, has similar characteristics in both predicted transmembrane domain structure and function to the cation diffusion facilitator (CDF) protein superfamily. This review discusses past and present data indicating that TMEM163 is a zinc binding protein that transports zinc in cells. We provide a brief background on TMEM163’s discovery, transport feature, protein interactome, and similarities, as well as differences, with known SLC30 (ZnT) protein family. We also examine recent reports that implicate TMEM163 directly or indirectly in various human diseases such as Parkinson’s disease, Mucolipidosis type IV and diabetes. Overall, the role of TMEM163 protein in zinc metabolism is beginning to be realized, and based on current evidence, we propose that it is likely a new CDF member belonging to mammalian SLC30 (ZnT) zinc efflux transporter proteins.
Collapse
Affiliation(s)
- Daniel J. Styrpejko
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Math P. Cuajungco
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831, USA
- Correspondence:
| |
Collapse
|
17
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Han Q, Guo Y, Zhang B, Nie W. Effects of Dietary Zinc on Performance, Zinc Transporters Expression, and Immune Response of Aged Laying Hens. Biol Trace Elem Res 2020; 196:231-242. [PMID: 31773485 DOI: 10.1007/s12011-019-01916-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
Abstract
This study was to investigate the effects of dietary zinc (Zn) supplementation on performance, zinc transporter gene expression, and immune function in aged laying hens. In experiment 1, twenty 31-week-old hens (young) and twenty 60-week-old hens (old) with the same genetic background were fed with the same diet for 4 weeks. In experiment 2, a basal diet supplemented with zinc sulfate (ZnS) and zinc glycine chelate (ZnG) at 30, 60, 90, and 120 mg Zn/kg to constitute nine experimental diets. Eight hundred and ten 60-week-old layers were distributed in a completely randomized experimental design with 9 treatments, 6 replicates of 15 birds each, and birds were fed for 10 weeks. In experiment 1, results showed that zinc and metallothionein (MT) concentration in the shell gland of old hens was significantly lower than young layers (P < 0.05). Zinc transporters ZnT1, 4, 5, 6, and 7 messenger RNA (mRNA) abundance in old layers were significantly lower versus the young (P < 0.05). In experiment 2, results indicated that dietary zinc supplementation did not significantly affect the laying rate, average feed intake, egg weight, feed conversion efficiency, broken egg rate, or mortality (P > 0.05). Supplemental ZnG significantly improved eggshell breaking strength than ZnS, with a higher alkaline phosphatase (ALP) activity and more abundant ZnT4 expression in shell gland versus ZnS (P < 0.05). ZnG supplementation at 90 mg Zn/kg affected the duodenal mucus by significantly increasing ZnT1, 6, 7, ZIP13, and MT-4 mRNA level (P < 0.05). Zinc level significantly increased bovine serum albumin (BSA) antibody concentration on 14 day after BSA injection (P < 0.05). Supplementation of ZnG improved eggshell quality of aged layers by upgrading zinc transporter expression in the shell gland and intestine also enhanced humoral immunity.
Collapse
Affiliation(s)
- Qiqi Han
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuming Guo
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bingkun Zhang
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Nie
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
19
|
Suzuki E, Ogawa N, Takeda TA, Nishito Y, Tanaka YK, Fujiwara T, Matsunaga M, Ueda S, Kubo N, Tsuji T, Fukunaka A, Yamazaki T, Taylor KM, Ogra Y, Kambe T. Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation. J Biol Chem 2020; 295:5669-5684. [PMID: 32179649 PMCID: PMC7186172 DOI: 10.1074/jbc.ra120.012610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.
Collapse
Affiliation(s)
- Eisuke Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Namino Ogawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taka-Aki Takeda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukina Nishito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takashi Fujiwara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayu Matsunaga
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Sachiko Ueda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Naoya Kubo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tokuji Tsuji
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ayako Fukunaka
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VIIth Avenue, Cardiff CF10 3NB, United Kingdom
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
20
|
Xu Y, Xiao G, Liu L, Lang M. Zinc transporters in Alzheimer's disease. Mol Brain 2019; 12:106. [PMID: 31818314 PMCID: PMC6902570 DOI: 10.1186/s13041-019-0528-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/26/2019] [Indexed: 01/29/2023] Open
Abstract
Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder. Due to the increase in population and longevity, incidence will triple by the middle of the twenty-first century. So far, no treatment has prevented or reversed the disease. More than 20 years of multidisciplinary studies have shown that brain zinc dyshomeostasis may play a critical role in AD progression, which provides encouraging clues for metal-targeted therapies in the treatment of AD. Unfortunately, the pilot clinical application of zinc chelator and/or ionophore strategy, such as the use of quinoline-based compounds, namely clioquinol and PBT2, has not yet been successful. The emerging findings revealed a list of key zinc transporters whose mRNA or protein levels were abnormally altered at different stages of AD brains. Furthermore, specifically modulating the expression of some of the zinc transporters in the central nervous system through genetic methods slowed down or prevented AD progression in animal models, resulting in significantly improved cognitive performance, movement, and prolonged lifespan. Although the underlying molecular mechanisms are not yet fully understood, it shed new light on the treatment or prevention of the disease. This review considers recent advances regarding AD, zinc and zinc transporters, recapitulating their relationships in extending our current understanding of the disease amelioration effects of zinc transport proteins as potential therapeutic targets to cure AD, and it may also provide new insights to identify novel therapeutic strategies for ageing and other neurodegenerative diseases, such as Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Yingshuo Xu
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China. .,College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
21
|
Abstract
Numerous zinc ectoenzymes are folded and activated in the compartments of the early secretory pathway, such as the ER and the Golgi apparatus, before reaching their final destination. During this process, zinc must be incorporated into the active site; therefore, metalation of the nascent protein is indispensable for the expression of the active enzyme. However, to date, the molecular mechanism underlying this process has been poorly investigated. This is in sharp contrast to the physiological and pathophysiological roles of zinc ectoenzymes, which have been extensively investigated over the past decades. This manuscript concisely outlines the present understanding of zinc ectoenzyme activation through metalation by zinc and compares this with copper ectoenzyme activation, in which elaborate copper metalation mechanisms are known. Moreover, based on the comparison, several hypotheses are discussed. Approximately 80 years have passed since the first zinc enzyme was identified; therefore, it is necessary to improve our understanding of zinc ectoenzymes from a biochemical perspective, which will further our understanding of their biological roles.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies , Kyoto University , Kyoto 606-8502 , Japan
| |
Collapse
|
22
|
Transmembrane 163 (TMEM163) protein effluxes zinc. Arch Biochem Biophys 2019; 677:108166. [PMID: 31697912 PMCID: PMC6864316 DOI: 10.1016/j.abb.2019.108166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 01/19/2023]
Abstract
Recent investigations of rodent Tmem163 suggest that it binds to and transports zinc as a dimer, and that alanine mutagenesis of its two species-conserved aspartate (D123A/D127A) residues proposed to bind zinc, perturbs protein function. Direct corroboration, however, is lacking whether it is an influx or efflux transporter in cells. We hypothesized that human TMEM163 is a zinc effluxer based on its predicted protein characteristics. We used cultured human cell lines that either stably or transiently expressed TMEM163, and pre-loaded the cells with zinc to determine transport activity. We found that TMEM163-expressing cells exhibited significant reduction of intracellular zinc levels as evidenced by two zinc-specific fluorescent dyes and radionuclide zinc-65. The specificity of the fluorescence signal was confirmed upon treatment with TPEN, a high-affinity zinc chelator. Multiple sequence alignment and phylogenetic analyses showed that TMEM163 is related to distinct members of the cation diffusion facilitator (CDF) protein family. To further characterize the efflux function of TMEM163, we substituted alanine in two homologous aspartate residues (D124A/D128A) and performed site-directed mutagenesis of several conserved amino acid residues identified as non-synonymous single nucleotide polymorphism (S61R, S95C, S193P, and E286K). We found a significant reduction of zinc efflux upon cellular expression of D124A/D128A or E286K protein variant when compared with wild-type, suggesting that these particular amino acids are important for normal protein function. Taken together, our findings demonstrate that TMEM163 effluxes zinc, and it should now be designated ZNT11 as a new member of the mammalian CDF family of zinc efflux transporters.
Collapse
|
23
|
Cotrim CA, Jarrott RJ, Martin JL, Drew D. A structural overview of the zinc transporters in the cation diffusion facilitator family. Acta Crystallogr D Struct Biol 2019; 75:357-367. [PMID: 30988253 PMCID: PMC6465983 DOI: 10.1107/s2059798319003814] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
The cation diffusion facilitators (CDFs) are a family of membrane-bound proteins that maintain cellular homeostasis of essential metal ions. In humans, the zinc-transporter CDF family members (ZnTs) play important roles in zinc homeostasis. They do this by facilitating zinc efflux from the cytoplasm to the extracellular space across the plasma membrane or into intracellular organelles. Several ZnTs have been implicated in human health owing to their association with type 2 diabetes and neurodegenerative diseases. Although the structure determination of CDF family members is not trivial, recent advances in membrane-protein structural biology have resulted in two structures of bacterial YiiPs and several structures of their soluble C-terminal domains. These data reveal new insights into the molecular mechanism of ZnT proteins, suggesting a unique rocking-bundle mechanism that provides alternating access to the metal-binding site.
Collapse
Affiliation(s)
- Camila A. Cotrim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Russell J. Jarrott
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Wahono NA, Ford D, Wakeling LA, Valentine RA. The presence and response to Zn of ZnT family mRNAs in human dental pulp. Metallomics 2019; 11:613-620. [PMID: 30675888 DOI: 10.1039/c8mt00343b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc (Zn) is distributed throughout the body and within cells by saturable processes mediated by the transport proteins of the ZnT (SLC30) and ZIP (SLC39) families. The two families function in opposite directions. ZnT transporters mediate cellular zinc efflux or intracellular sequestration. Zn is found in human tooth enamel and dentine at levels that have been related to environmental exposures, such as pollution, disease, and dietary intake. The mechanism by which Zn in the odontoblast is deposited in the hard tissue of the tooth, however, is unknown but is important in determining the physical properties, and hence resilience, of enamel and in the context of the use of tooth zinc level as a biomarker of exposure. We hypothesised that zinc efflux mediated by members of the ZnT family of 10 transporters is a key step in this process and is regulated by zinc availability through effects on mRNA levels. Thus, we determined the profile of ZnT transporter mRNA in a human active-secretory odontoblast-like cell model under conditions of high- and low-extracellular Zn concentration and determined if the same transporter mRNAs were present in human dental pulp. ZnT1, ZnT5 and ZnT9 mRNAs were detected by RT-PCR in both the secretory odontoblast cells and human dental pulp. ZnT2, ZnT3 and ZnT10 mRNAs were not detected, and ZnT4 mRNA was detected in secretory odontoblasts only, which may be indicative of a specialised zinc efflux function during the active secretory phase of tooth development. ZnT1 mRNA was significantly increased in response to extracellular Zn exposure (60 μM) after 24 h. The presence of Zn transporter mRNAs in secretory odontoblasts and dental pulp indicates that the corresponding transport proteins function to deposit zinc in the dental hard tissues. The responsiveness of ZnT1 in odontoblasts to zinc availability is concordant with this being a process that is regulated to maintain cellular Zn homeostasis and that is a mediator of the relationship between environmental Zn exposure and dental Zn deposition. These findings have likely relevance to human dental health through effects of Zn transporter expression level on the hard tissue properties.
Collapse
Affiliation(s)
- Nieka A Wahono
- Centre for Oral Health Research and Human Nutrition Research Centre, School of Dental Science, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4BW, UK.
| | | | | | | |
Collapse
|
25
|
Chabosseau P, Woodier J, Cheung R, Rutter GA. Sensors for measuring subcellular zinc pools. Metallomics 2019; 10:229-239. [PMID: 29431830 DOI: 10.1039/c7mt00336f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Zinc homeostasis is essential for normal cellular function, and defects in this process are associated with a number of diseases including type 2 diabetes (T2D), neurological disorders and cardiovascular disease. Thus, variants in the SLC30A8 gene, encoding the vesicular/granular zinc transporter ZnT8, are associated with altered insulin release and increased T2D risk while the zinc importer ZIP12 is implicated in pulmonary hypertension. In light of these, and findings in other diseases, recent efforts have focused on the development of refined sensors for intracellular free zinc ions that can be targeted to subcellular regions including the cytosol, endoplasmic reticulum (ER), secretory granules, Golgi apparatus, nucleus and the mitochondria. Here, we discuss recent advances in Zn2+ probe engineering and their applications to the measurement of labile subcellular zinc pools in different cell types.
Collapse
Affiliation(s)
- Pauline Chabosseau
- Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | | | | | | |
Collapse
|
26
|
Chun H, Korolnek T, Lee CJ, Coyne HJ, Winge DR, Kim BE, Petris MJ. An extracellular histidine-containing motif in the zinc transporter ZIP4 plays a role in zinc sensing and zinc-induced endocytosis in mammalian cells. J Biol Chem 2018; 294:2815-2826. [PMID: 30593504 DOI: 10.1074/jbc.ra118.005203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Indexed: 01/27/2023] Open
Abstract
Zinc is an essential trace element that serves as a cofactor for enzymes in critical biochemical processes and also plays a structural role in numerous proteins. Zinc transporter ZIP4 (ZIP4) is a zinc importer required for dietary zinc uptake in the intestine and other cell types. Studies in cultured cells have reported that zinc stimulates the endocytosis of plasma membrane-localized ZIP4 protein, resulting in reduced cellular zinc uptake. Thus, zinc-regulated trafficking of ZIP4 is a key means for regulating cellular zinc homeostasis, but the underlying mechanisms are not well understood. In this study, we used mutational analysis, immunoblotting, HEK293 cells, and immunofluorescence microscopy to identify a histidine-containing motif (398HTH) in the first extracellular loop that is required for high sensitivity to low zinc concentrations in a zinc-induced endocytic response of mouse ZIP4 (mZIP4). Moreover, using synthetic peptides with selective substitutions and truncated mZIP4 variants, we provide evidence that histidine residues in this motif coordinate a zinc ion in mZIP4 homodimers at the plasma membrane. These findings suggest that 398HTH is an important zinc-sensing motif for eliciting high-affinity zinc-stimulated endocytosis of mZIP4 and provide insight into cellular mechanisms for regulating cellular zinc homeostasis in mammalian cells.
Collapse
Affiliation(s)
- Haarin Chun
- From the Department of Animal and Avian Sciences, and
| | | | - Chul-Jin Lee
- the Unit on Structural and Chemical Biology of Membrane Proteins, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - H Jerome Coyne
- the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, and
| | - Dennis R Winge
- the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, and
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences, and .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742
| | - Michael J Petris
- the Departments of Biochemistry and .,Nutrition and Exercise Physiology, and.,Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
27
|
|
28
|
Migocka M, Małas K, Maciaszczyk-Dziubinska E, Posyniak E, Migdal I, Szczech P. Cucumber Golgi protein CsMTP5 forms a Zn-transporting heterodimer with high molecular mass protein CsMTP12. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:196-206. [PMID: 30466585 DOI: 10.1016/j.plantsci.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Heterodimeric complexes formed by members of the cation facilitator (CDF) family catalyse the import of Zn into the secretory pathway of yeast and vertebrate cells. Orthologous proteins AtMTP5 and AtMTP12 from Arabidopsis have also been shown to form a heterodimeric complex at the Golgi compartment of plant cells that possibly transport Zn. In this study we show that cucumber proteins CsMTP5 and CsMTP12 form a functional heterodimer that is involved in the loading of Zn into the ER lumen under low Zn, and not in the detoxification of yeast from Zn excess through vesicle-mediated exocytosis. Using specific antibodies, we demonstrate that CsMTP5 is localized at the Golgi compartment of cucumber cells and is markedly up-regulated upon Zn deficiency. The level of CsMTP5 transcript in cucumber is also significantly elevated in Zn-limiting conditions, whereas the expression of CsMTP12 is independent of the availability of Zn. Therefore we propose that the cucumber heterodimeric complex CsMTP5-CsMTP12 functions to deliver Zn to Zn-dependent proteins of the Golgi compartment and is regulated by zinc at the level of CsMTP5 transcription.
Collapse
Affiliation(s)
- Magdalena Migocka
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Karolina Małas
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- University of Wroclaw, Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewelina Posyniak
- University of Wroclaw, Institute of Experimental Biology, Department of Animal Developmental Biology, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Iwona Migdal
- University of Wroclaw, Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Patryk Szczech
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
29
|
Cruz KJC, de Oliveira ARS, Morais JBS, Severo JS, Mendes PMV, de Sousa Melo SR, de Sousa GS, Marreiro DDN. Zinc and Insulin Resistance: Biochemical and Molecular Aspects. Biol Trace Elem Res 2018; 186:407-412. [PMID: 29564656 DOI: 10.1007/s12011-018-1308-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Studies have shown the participation of minerals in mechanisms involved in the pathogenesis of insulin resistance. Zinc, in particular, seems to play an important role in the secretion and action of this hormone. Therefore, the aim of this review is to understand the role of zinc in increasing insulin sensitivity. We conducted a search of articles published in the PubMed and ScienceDirect database selected from March 2016 to February 2018, using the keywords "zinc," "insulin," "insulin resistance," "insulin sensitivity," and "supplementation." Following the eligibility criteria were selected 53 articles. The scientific evidences presented in this review show the importance of zinc and their carrier proteins in the synthesis and secretion of insulin, as well as in the signaling pathway of action of this hormone. Zinc deficiency is associated with glucose intolerance and insulin resistance; however, the effectiveness of the intervention with the zinc supplementation is still inconclusive.
Collapse
Affiliation(s)
- Kyria Jayanne Clímaco Cruz
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Ana Raquel Soares de Oliveira
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Jennifer Beatriz Silva Morais
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Juliana Soares Severo
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | - Priscyla Maria Vieira Mendes
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil
| | | | | | - Dilina do Nascimento Marreiro
- Department of Nutrition, Federal University of Piauí, Ministro Petrônio Portella Campus, Ininga, Teresina, Piauí, Brazil.
| |
Collapse
|
30
|
Evaluation of the roles of the cytosolic N-terminus and His-rich loop of ZNT proteins using ZNT2 and ZNT3 chimeric mutants. Sci Rep 2018; 8:14084. [PMID: 30237557 PMCID: PMC6147782 DOI: 10.1038/s41598-018-32372-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/07/2018] [Indexed: 12/01/2022] Open
Abstract
The physiological roles of Zn transporter (ZNT) proteins are being increasingly recognized, and three dimensional structures of ZNT bacterial homologs have facilitated our understanding of their biochemical characteristics at the molecular level. However, the biological role of the unique structural features of vertebrate ZNTs, which are absent in their bacterial homologues, is not completely understood. These ZNT sequences include a cytosolic His-rich loop between transmembrane helices IV and V and the cytosolic N-terminus. This study investigated the contribution of these features to zinc transport by ZNT proteins. The importance of the His residues in the cytosolic His-rich loop was investigated using ZNT2 Ala substitution and deletion mutants. The presence of His residues was not essential for zinc transport, even though they possibly participate in modulation of zinc transport activity. Furthermore, we determined the role of the N-terminus by characterizing ZNT2 and ZNT3 domain-swapped and deletion mutants. Unexpectedly, the N-terminus was also not essential for zinc transport by ZNT2 and the domain-swapped ZNT2 mutant, in which the cytosolic His-rich loop was substituted with that of ZNT3. These results provide molecular insights into understanding the roles of the cytosolic parts of ZNT2, ZNT3, and probably other members of their subgroup.
Collapse
|
31
|
Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T. Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. J Trace Elem Med Biol 2018; 49:27-34. [PMID: 29895369 PMCID: PMC6082398 DOI: 10.1016/j.jtemb.2018.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Zinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation. Zn transporters account for a transient decrease of intracellular Zn upon myogenesis induction followed by a gradual increase of Zn in myotubes. Considering the subcellular localization and function of each of the Zn transporters, our findings indicate that a fine regulation is necessary to maintain correct metal concentrations in the cytosol and subcellular compartments to avoid toxicity, maintain homeostasis, and for loading metalloproteins needed during myogenesis. This study advances our basic understanding of the complex Zn transport network during muscle differentiation.
Collapse
Affiliation(s)
- Amanda L Paskavitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Sonia Ortiz-Miranda
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
32
|
Golan Y, Kambe T, Assaraf YG. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics 2018; 9:1352-1366. [PMID: 28665435 DOI: 10.1039/c7mt00162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Breast milk is the optimal nutrient mix for infants until the age of 6 months. However, in some cases, due to genetic alterations as well as nutrient deficiencies in nursing mothers, infants may suffer from inadequate levels of micronutrients upon exclusive breastfeeding. In this respect, transient neonatal zinc deficiency (TNZD) is caused by loss-of-function mutations in the zinc transporter SLC30A2/ZnT2 gene, resulting in poor secretion of zinc into the breast milk. Consequently, infants exclusively breastfed with zinc-deficient breast milk develop severe zinc deficiency. The main initial symptoms of zinc deficiency are dermatitis, diarrhea, alopecia, and loss of appetite. Importantly, zinc supplementation of these zinc-deficient infants effectively and rapidly resolves these TNZD symptoms. In the current review, we present the major steps towards the identification of the molecular mechanisms underlying TNZD and propose novel approaches that could be implemented in order to achieve an early diagnosis of TNZD towards the prevention of TNZD morbidity. We also discuss the importance of assessing the prevalence of TNZD in the general population, while taking into consideration its autosomal dominant inheritance that was recently established, also supported by a large number of SLC30A2/ZnT2 variants recently identified in American lactating mothers. These findings indicating that TNZD is more frequent than initially thought, along with the increasing number of TNZD cases that were recently reported worldwide, prompted us here to highlight the importance of early diagnosis of SLC30A2/ZnT2 variants in order to supplement zinc-deficient infants in real-time, thus preventing TNZD morbidity and enhancing newborn health. This early genetic diagnosis of zinc deficiency could possibly prove to be a useful platform for the identification of other micronutrient deficiencies, which could be readily resolved by proper real-time supplementation of the infant's diet.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | | | | |
Collapse
|
33
|
Uebe R, Keren-Khadmy N, Zeytuni N, Katzmann E, Navon Y, Davidov G, Bitton R, Plitzko JM, Schüler D, Zarivach R. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol Microbiol 2018; 107:542-557. [PMID: 29243866 DOI: 10.1111/mmi.13899] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe3 O4 ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation.
Collapse
Affiliation(s)
- René Uebe
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Noa Keren-Khadmy
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Natalie Zeytuni
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Emanuel Katzmann
- Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Yotam Navon
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Am Klopferspitz 18, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
34
|
Kambe T, Matsunaga M, Takeda TA. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway. Int J Mol Sci 2017; 18:ijms18102179. [PMID: 29048339 PMCID: PMC5666860 DOI: 10.3390/ijms18102179] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 01/07/2023] Open
Abstract
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
35
|
McAllister BB, Dyck RH. Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Ribeiro NS, Dos Santos FM, Garcia AWA, Ferrareze PAG, Fabres LF, Schrank A, Kmetzsch L, Rott MB, Vainstein MH, Staats CC. Modulation of Zinc Homeostasis in Acanthamoeba castellanii as a Possible Antifungal Strategy against Cryptococcus gattii. Front Microbiol 2017; 8:1626. [PMID: 28883816 PMCID: PMC5573748 DOI: 10.3389/fmicb.2017.01626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptococcus gattii is a basidiomycetous yeast that can be found in the environment and is one of the agents of cryptococcosis, a life-threatening disease. During its life cycle, cryptococcal cells take hold inside environmental predators such as amoebae. Despite their evolutionary distance, macrophages and amoebae share conserved similar steps of phagocytosis and microbial killing. To evaluate whether amoebae also share other antifungal strategies developed by macrophages, we investigated nutritional immunity against cryptococcal cells. We focused on zinc homeostasis modulation in Acanthamoeba castellanii infected with C. gattii. The intracellular proliferation rate (IPR) in amoebae was determined using C. gattii R265 and mutants for the ZIP1 gene, which displays defects of growth in zinc-limiting conditions. We detected a reduced IPR in cells lacking the ZIP1 gene compared to wild-type strains, suggesting that amoebae produce a low zinc environment to engulfed cells. Furthermore, flow cytometry analysis employing the zinc probe Zinpyr-1 confirmed the reduced concentration of zinc in cryptococcal-infected amoebae. qRT-PCR analysis of zinc transporter-coding genes suggests that zinc export by members of the ZnT family would be involved in the reduced intracellular zinc concentration. These results indicate that amoebae may use nutritional immunity to reduce fungal cell proliferation by reducing zinc availability for the pathogen.
Collapse
Affiliation(s)
- Nicole S Ribeiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Francine M Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Ane W A Garcia
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Patrícia A G Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Laura F Fabres
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marilise B Rott
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marilene H Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Charley C Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
37
|
Bafaro E, Liu Y, Xu Y, Dempski RE. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther 2017; 2:17029. [PMID: 29218234 PMCID: PMC5661630 DOI: 10.1038/sigtrans.2017.29] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022] Open
Abstract
Zinc is an essential micronutrient that plays a role in the structural or enzymatic functions of many cellular proteins. Cellular zinc homeostasis involves the opposing action of two families of metal transporters: the ZnT (SLC30) family that functions to reduce cytoplasmic zinc concentrations and the ZIP (SLC39) family that functions to increase cytoplasmic zinc concentrations. Fluctuations in intracellular zinc levels mediated by these transporter families affect signaling pathways involved in normal cell development, growth, differentiation and death. Consequently, changes in zinc transporter localization and function resulting in zinc dyshomeostasis have pathophysiological effects. Zinc dyshomeostasis has been implicated in the progression of cancer. Here we review recent progress toward understanding the structural basis for zinc transport by ZnT and ZIP family proteins, as well as highlight the roles of zinc as a signaling molecule in physiological conditions and in various cancers. As zinc is emerging as an important signaling molecule in the development and progression of cancer, the ZnT and ZIP transporters that regulate cellular zinc homeostasis are promising candidates for targeted cancer therapy.
Collapse
Affiliation(s)
- Elizabeth Bafaro
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Yuting Liu
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
38
|
Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 2017; 67:283-301. [PMID: 28130681 PMCID: PMC10717645 DOI: 10.1007/s12576-017-0521-4] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
Zinc (Zn) is an essential trace mineral that regulates the expression and activation of biological molecules such as transcription factors, enzymes, adapters, channels, and growth factors, along with their receptors. Zn deficiency or excessive Zn absorption disrupts Zn homeostasis and affects growth, morphogenesis, and immune response, as well as neurosensory and endocrine functions. Zn levels must be adjusted properly to maintain the cellular processes and biological responses necessary for life. Zn transporters regulate Zn levels by controlling Zn influx and efflux between extracellular and intracellular compartments, thus, modulating the Zn concentration and distribution. Although the physiological functions of the Zn transporters remain to be clarified, there is growing evidence that Zn transporters are related to human diseases, and that Zn transporter-mediated Zn ion acts as a signaling factor, called "Zinc signal". Here we describe critical roles of Zn transporters in the body and their contribution at the molecular, biochemical, and genetic levels, and review recently reported disease-related mutations in the Zn transporter genes.
Collapse
Affiliation(s)
- Takafumi Hara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Teruhisa Takagishi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Kazuhisa Fukue
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
| |
Collapse
|
39
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
40
|
Tsuji T, Kurokawa Y, Chiche J, Pouysségur J, Sato H, Fukuzawa H, Nagao M, Kambe T. Dissecting the Process of Activation of Cancer-promoting Zinc-requiring Ectoenzymes by Zinc Metalation Mediated by ZNT Transporters. J Biol Chem 2016; 292:2159-2173. [PMID: 28028180 DOI: 10.1074/jbc.m116.763946] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/11/2016] [Indexed: 12/12/2022] Open
Abstract
Zinc-requiring ectoenzymes, including both secreted and membrane-bound enzymes, are considered to capture zinc in their active site for their activation in the early secretory pathway. This idea has been confirmed by our studies conducted using tissue-nonspecific alkaline phosphatase (TNAP), which is elaborately activated by means of a two-step mechanism by zinc transporter 5 (ZNT5)-ZNT6 heterodimers and ZNT7 homodimers, through protein stabilization followed by enzyme activation with zinc in the early secretory pathway. However, the molecular basis of the activation process in other zinc-requiring ectoenzymes remains largely unknown. In this study, we investigated this activation process by using three cancer-promoting zinc-requiring ectoenzymes, autotaxin (ATX), matrix metalloproteinase 9 (MMP9), and carbonic anhydrase IX (CAIX), and the chicken DT40 cell mutants that we generated; we specifically focused on clarifying whether the same or a similar activation mechanism operates in these ectoenzymes. ATX activation required ZNT5-ZNT6 heterodimers and ZNT7 homodimers in a manner similar to TNAP activation, although the protein stability of ATX was differently regulated from that of TNAP. MMP9 required ZNT5-ZNT6 heterodimers and ZNT7 homodimers for its activation as well as secretion; MMP9 was not secreted into the spent medium unless both zinc-transport complexes were present. Finally, CAIX activation by zinc was mediated not only by ZNT5-ZNT6 heterodimers and ZNT7 homodimers but also by ZNT4 homodimers; thus, these three zinc-transport complexes redundantly contribute to CAIX activation. Our results provide pivotal insights into the activation processes of zinc-requiring ectoenzymes, and furthermore, they offer novel insights for potential cancer therapy applications given the cancer-promoting potencies of ATX, MMP9, and CAIX.
Collapse
Affiliation(s)
- Tokuji Tsuji
- From the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yayoi Kurokawa
- From the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Johanna Chiche
- Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe Contrôle Métabolique des Morts Cellulaires, Équipe 3, 06204 Nice, France
| | - Jacques Pouysségur
- the Institute of Research on Cancer and Aging, University of Nice-Sophia Antipolis, Centre A. Lacassagne, 06189 Nice, France.,the Department of Medical Biology, Centre Scientifique de Monaco, MC 98000, Monaco, and
| | - Hiroshi Sato
- the Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hideya Fukuzawa
- From the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masaya Nagao
- From the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taiho Kambe
- From the Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan,
| |
Collapse
|
41
|
Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys 2016; 611:79-85. [DOI: 10.1016/j.abb.2016.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
|
42
|
Analysis of Zinc-Exporters Expression in Prostate Cancer. Sci Rep 2016; 6:36772. [PMID: 27833104 PMCID: PMC5105060 DOI: 10.1038/srep36772] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/20/2016] [Indexed: 01/15/2023] Open
Abstract
Maintaining optimal intracellular zinc (Zn) concentration is crucial for critical cellular functions. Depleted Zn has been associated with prostate cancer (PCa) progression. Solute carrier family 30 (SLC30A) proteins maintain cytoplasmic Zn balance by exporting Zn out to the extracellular space or by sequestering cytoplasmic Zn into intracellular compartments. In this study, we determined the involvement of Zn-exporters, SLC30A 1-10 in PCa, in the context of racial health disparity in human PCa samples obtained from European-American (EA) and African-American (AA) populations. We also analyzed the levels of Zn-exporters in a panel of PCa cells derived from EA and AA populations. We further explored the expression profile of Zn-exporters in PCa using Oncomine database. Zn-exporters were found to be differentially expressed at the mRNA level, with a significant upregulation of SLC30A1, SLC30A9 and SLC30A10, and downregulation of SLC30A5 and SLC30A6 in PCa, compared to benign prostate. Moreover, Ingenuity Pathway analysis revealed several interactions of Zn-exporters with certain tumor suppressor and promoter proteins known to be modulated in PCa. Our study provides an insight regarding Zn-exporters in PCa, which may open new avenues for future studies aimed at enhancing the levels of Zn by modulating Zn-transporters via pharmacological means.
Collapse
|
43
|
Ishida T, Takechi S. Nrf2-ARE-Dependent Alterations in Zinc Transporter mRNA Expression in HepG2 Cells. PLoS One 2016; 11:e0166100. [PMID: 27812191 PMCID: PMC5094758 DOI: 10.1371/journal.pone.0166100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Zinc transporters are solute carrier family members. To date, 10 zinc transporters (ZnTs) and 14 Zrt-, Irt-like proteins (ZIPs) have been identified. ZnTs control intracellular zinc levels by effluxing zinc from the cytoplasm into the extracellular fluid, intracellular vesicles, and organelles; ZIPs also contribute to control intracellular zinc levels with influxing zinc into the cytoplasm. Recently, changes in zinc transporter expression have been observed in some stress-induced diseases, such as Alzheimer's disease and diabetes mellitus. However, little is known regarding the mechanisms that regulate zinc transporter expression. To address this, we have investigated the effect of a well-established stress response pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) pathway, on zinc transporter mRNA levels. Exposure to 10-4 M tert-butylhydroquinone (t-BHQ), which activates Nrf2-ARE signaling, for 6 h significantly increases ZnT-1, ZnT-3, and ZnT-6 mRNAs levels, and significantly decreases ZnT-10 and ZIP-3 mRNA levels. These changes are not observed with 10-6 M t-BHQ, which does not activate Nrf2-ARE signaling. Furthermore, t-BHQ exposure does not affect metal responsive element transcription, a cis element that is activated in response to intracellular free zinc accumulation. From these results, we believe that the transcription of ZnT-1, ZnT-3, ZnT-6, ZnT-10, and ZIP-3 is influenced by the Nrf2-ARE signal transduction pathway.
Collapse
Affiliation(s)
- Takumi Ishida
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shinji Takechi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
44
|
Wu YH, Taggart J, Song PX, MacDiarmid C, Eide DJ. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome. PLoS One 2016; 11:e0163256. [PMID: 27657924 PMCID: PMC5033525 DOI: 10.1371/journal.pone.0163256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022] Open
Abstract
The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5' end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5' UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5' UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5' UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Pamela Xiyao Song
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Colin MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - David J. Eide
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
45
|
The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNAP activation. Biochem J 2016; 473:2611-21. [PMID: 27303047 DOI: 10.1042/bcj20160324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Secretory and membrane-bound zinc-requiring enzymes are thought to be activated by binding zinc in the early secretory pathway. One such enzyme, tissue-non-specific alkaline phosphatase (TNAP), is activated through a two-step mechanism, via protein stabilization and subsequent enzyme activation through metalation, by ZnT5-ZnT6 heterodimers or ZnT7 homodimers. However, little is known about the molecular basis underlying the activation process. In the present study, we found that the di-proline motif (PP-motif) in luminal loop 2 of ZnT5 and ZnT7 is important for TNAP activation. TNAP activity was significantly reduced in cells lacking ZnT5-ZnT6 heterodimers and ZnT7 homodimers [triple knockout (TKO) cells]. The decreased TNAP activity was restored by expressing hZnT5 with hZnT6 or hZnT7, but significantly less so (almost 90% less) by expressing mutants thereof in which the PP-motif was mutated to alanine (PP-AA). In TKO cells, overexpressed hTNAP was not completely activated, and it was converted less efficiently into the holo form by expressing a PP-AA mutant of hZnT5 with hZnT6, whose defects were not restored by zinc supplementation. The zinc transport activity of hZnT7 was not significantly impaired by the PP-AA mutation, indicating that the PP-motif is involved in the TNAP maturation process, although it does not control zinc transport activity. The PP-motif is highly conserved in ZnT5 and ZnT7 orthologues, and its importance for TNAP activation is conserved in the Caenorhabditis elegans hZnT5 orthologue CDF5. These results provide novel molecular insights into the TNAP activation process in the early secretory pathway.
Collapse
|
46
|
Kambe T, Takeda TA, Nishito Y. Activation of zinc-requiring ectoenzymes by ZnT transporters during the secretory process: Biochemical and molecular aspects. Arch Biochem Biophys 2016; 611:37-42. [PMID: 27046342 DOI: 10.1016/j.abb.2016.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
In humans, about 1000 enzymes are estimated to bind zinc. In most of these enzymes, zinc is present at the active site; thus, these enzymes are functional as "zinc-requiring enzymes". Of these zinc-requiring enzymes, zinc-requiring ectoenzymes (defined as secretory, membrane-bound, and organelle-resident enzymes) have received much attention because of their important physiological functions, involvement in a number of diseases, and potential applications as therapeutic targets for diseases. Zinc-requiring ectoenzymes may become active by coordinating zinc at their active site during the secretory process, which requires elaborate control of zinc mobilization from the extracellular milieu to the cytosol and then lumen in the early secretory pathway. Therefore, zinc transporters should properly maintain the process at systemic, cellular, and subcellular levels by mobilizing zinc across biological membranes. However, few studies have examined the mechanisms underlying this process. In this review, current knowledge of the activation process of zinc-requiring ectoenzymes by ZnT zinc transporters in the early secretory pathway is briefly reviewed at the molecular level, with a focus on tissue-nonspecific alkaline phosphatase. Moreover, we also discuss whether zinc-chaperone proteins function during the activation of these enzymes.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
47
|
Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 2016; 17:336. [PMID: 26959009 PMCID: PMC4813198 DOI: 10.3390/ijms17030336] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
48
|
Zhao Y, Feresin RG, Falcon-Perez JM, Salazar G. Differential Targeting of SLC30A10/ZnT10 Heterodimers to Endolysosomal Compartments Modulates EGF-Induced MEK/ERK1/2 Activity. Traffic 2016; 17:267-88. [PMID: 26728129 DOI: 10.1111/tra.12371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/14/2022]
Abstract
The solute carrier 30A (SLC30A) family of zinc exporters transports zinc into the lumen of intracellular organelles in order to prevent zinc toxicity. We reported that formation of tyrosine dimers is required for ZnT3 (zinc transporter 3) zinc transport activity and targeting to synaptic-like microvesicles (SLMVs) in PC12 cells and the formation of ZnT3/ZnT10 heterodimers. Here, we focused on ZnT10 to determine the role of heterodimerization in the sorting of ZnTs in the endolysosomal pathway. Using cell fractionation, immunoprecipitation and immunofluorescence approaches, we found that ZnT10 resides in transferrin receptor and Rab5-positive endosomes and forms covalent heterodimers and oligomers with ZnT2, ZnT3 and ZnT4. The interaction of ZnT10 with ZnT3, mediated by dityrosine bonds, was unable to target ZnT10 into SLMVs in vitro or into synaptic vesicles isolated from mouse brain in vivo. However, ZnT3/ZnT10 heterodimers regulate epidermal growth factor receptor (EGF-R) signaling by increasing the phosphorylation of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK1/2), but not EGF-R, C-Raf or Akt phosphorylation in response to EGF. Further, mutation of tyrosine 4 in ZnT10 reduced ZnT3/ZnT10 dityrosine-mediated heterodimerization and zinc transport, as well as MEK and ERK1/2 phosphorylation, which were also reduced by the zinc chelator TPEN. Phosphorylation of these kinases is likely to occur in the cytosol as no differences in phosphorylation were observed in membrane fractions of control and ZnT3/ZnT10-expressing cells. We propose that ZnT10 plays a role in signal transduction, which is mediated by homo and heterodimerization with other ZnTs.
Collapse
Affiliation(s)
- Yitong Zhao
- The Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Rafaela G Feresin
- The Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Juan M Falcon-Perez
- Exosomes Lab, Metabolomics Unit, CIC bioGUNE, CIBErehd, Derio, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Gloria Salazar
- The Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| |
Collapse
|
49
|
The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression. Biometals 2016; 29:287-98. [DOI: 10.1007/s10534-016-9915-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/05/2016] [Indexed: 01/21/2023]
|
50
|
Chandler P, Kochupurakkal BS, Alam S, Richardson AL, Soybel DI, Kelleher SL. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol Cancer 2016; 15:2. [PMID: 26728511 PMCID: PMC4700748 DOI: 10.1186/s12943-015-0486-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zinc (Zn) hyper-accumulates in breast tumors and malignant cell lines compared to normal mammary epithelium. The mechanisms responsible for Zn accumulation and the consequence of Zn dysregulation are poorly understood. METHODS Microarrays were performed to assess differences in the expression of Zn transporters and metallothioneins (MTs) in human breast tumors and breast cancer cell lines. Real-time PCR and immunoblotting were employed to profile Zn transporter expression in representative luminal (T47D), basal (MDA-MB-231), and non-malignant (MCF10A) cell lines. Zn distribution in human tumors was assessed by X-ray fluorescence imaging. Zn distribution and content in cell lines was measured using FluoZin-3 imaging, and quantification and atomic absorption spectroscopy. Functional consequences of ZnT2 over-expression in MDA-MB-231 cells including invasion, proliferation, and cell cycle were measured using Boyden chambers, MTT assays, and flow cytometry, respectively. RESULTS Gene expression profiling of human breast tumors and breast cancer cell lines identified subtype-specific dysregulation in the Zn transporting network. X-ray fluorescence imaging of breast tumor tissues revealed Zn hyper-accumulation at the margins of Luminal breast tumors while Zn was more evenly distributed within Basal tumors. While both T47D and MDA-MB-231 cells hyper-accumulated Zn relative to MCF10A cells, T47D cells accumulated 2.5-fold more Zn compared to MDA-MB-231 cells. FluoZin-3 imaging indicated that Zn was sequestered into numerous large vesicles in T47D cells, but was retained in the cytoplasm and found in fewer and larger, amorphous sub-cellular compartments in MDA-MB-231 cells. The differences in Zn localization mirrored the relative abundance of the Zn transporter ZnT2; T47D cells over-expressed ZnT2, whereas MDA-MB-231 cells did not express ZnT2 protein due to proteasomal degradation. To determine the functional relevance of the lack of ZnT2 in MDA-MB-231cells, cells were transfected to express ZnT2. ZnT2 over-expression led to Zn vesicularization, shifts in cell cycle, enhanced apoptosis, and reduced proliferation and invasion. CONCLUSIONS This comprehensive analysis of the Zn transporting network in malignant breast tumors and cell lines illustrates that distinct subtype-specific dysregulation of Zn management may underlie phenotypic characteristics of breast cancers such as grade, invasiveness, metastatic potential, and response to therapy.
Collapse
Affiliation(s)
- Paige Chandler
- The Interdisciplinary Graduate Program in Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Bose S Kochupurakkal
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samina Alam
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David I Soybel
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Shannon L Kelleher
- The Interdisciplinary Graduate Program in Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|