1
|
Hong S, Piao J, Hu J, Liu X, Xu J, Mao H, Piao J, Piao MG. Advances in cell-penetrating peptide-based nose-to-brain drug delivery systems. Int J Pharm 2025; 678:125598. [PMID: 40300721 DOI: 10.1016/j.ijpharm.2025.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
The incidence of brain disorders has gained worldwide attention and the presence of the blood-brain barrier prevents numerous drugs from reaching the targeted brain. The specific physiology of the nasal cavity and the brain provides the feasibility of direct nose-brain delivery, a system that bypasses the blood-brain barrier in a non-invasive manner for brain-targeted drug delivery via intracellular and extracellular mechanisms. The use of CPPs provides further feasibility for naso-brain drug delivery studies, and liposomes, nanopolymer particles, and gels modified with CPPs have demonstrated significant brain-targeting capabilities after nasal delivery. In this paper, the physiology of the nasal cavity and brain, the pathways of naso-brain delivery and the influencing factors are discussed in detail. At the same time, the introduction, classification, mechanism of action and application of CPPs in the nasal-brain delivery system are discussed in detail to provide a theoretical basis for the in-depth study of the application of CPPs in the nasal-brain delivery system.
Collapse
Affiliation(s)
- Shuai Hong
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jinyou Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Junsheng Hu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Xinyu Liu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jing Xu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Heying Mao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China.
| | - Ming Guan Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002 Jilin, China.
| |
Collapse
|
2
|
Moreno-Vargas LM, Prada-Gracia D. Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:59. [PMID: 39795918 PMCID: PMC11720145 DOI: 10.3390/ijms26010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake. Clinical trials have highlighted the potential of CPPs in diagnosing and treating various diseases, including cancer, central nervous system disorders, eye disorders, and diabetes. This review provides a comprehensive overview of CPP classifications, potential applications, transduction mechanisms, and the most relevant algorithms to improve the accuracy and reliability of predictions in CPP development.
Collapse
|
3
|
Oliver-Cervelló L, López-Gómez P, Martin-Gómez H, Marion M, Ginebra MP, Mas-Moruno C. Functionalization of Alginate Hydrogels with a Multifunctional Peptide Supports Mesenchymal Stem Cell Adhesion and Reduces Bacterial Colonization. Chemistry 2024; 30:e202400855. [PMID: 39031737 DOI: 10.1002/chem.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Hydrogels with cell adhesive moieties stand out as promising materials to enhance tissue healing and regeneration. Nonetheless, bacterial infections of the implants represent an unmet major concern. In the present work, we developed an alginate hydrogel modified with a multifunctional peptide containing the RGD cell adhesive motif in combination with an antibacterial peptide derived from the 1-11 region of lactoferrin (LF). The RGD-LF branched peptide was successfully anchored to the alginate backbone by carbodiimide chemistry, as demonstrated by 1H NMR and fluorescence measurements. The functionalized hydrogel presented desirable physicochemical properties (porosity, swelling and rheological behavior) to develop biomaterials for tissue engineering. The viability of mesenchymal stem cells (MSCs) on the peptide-functionalized hydrogels was excellent, with values higher than 85 % at day 1, and higher than 95 % after 14 days in culture. Moreover, the biological characterization demonstrated the ability of the hydrogels to significantly enhance ALP activity of MSCs as well as to decrease bacterial colonization of both Gram-positive and Gram-negative models. Such results prove the potential of the functionalized hydrogels as novel biomaterials for tissue engineering, simultaneously displaying cell adhesive activity and the capacity to prevent bacterial contamination, a dual bioactivity commonly not found for these types of hydrogels.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Patricia López-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Mahalia Marion
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
4
|
Mashhadi Kholerdi A, Moradian F, Mehralitabar H. In vitro study of the expression of autophagy genes ATG101, mTOR and AMPK in breast cancer with treatment of lactoferrin and in silico study of their communication networks and protein interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:19-27. [PMID: 38782098 DOI: 10.1016/j.pbiomolbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Autophagy is a new window of science that has been noticed due to the importance of specific therapies in cancer. In this study, the effect of lactoferrin (Lf) on the expression level of ATG101, mTOR and AMPK genes in breast cancer cell line MCF7, as well as the interaction between lactoferrin protein and their protein were investigated. The expression level of the genes was measured using a real-time PCR method. PDB, UniProt, KEGG, and STRING databases and ClusPro webserver and PyMol software were used in silico study. The results showed that the expression level of the ATG101 gene in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.05, 0.13, 0.54 and 0.77, respectively. The expression level of the mTOR gene in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.07, 0.05, 0.13, and 0.49 times respectively. The level of the AMPK gene expression in treatment with concentrations of 100, 400, 600, and 800 μg/ml Lf decreased by 0.05, 0.01, 0.06, and 0.03, respectively. Virtualization of the interaction of Lf protein with ATG101, mTOR and AMPK proteins by Pymol software showed that the N lobe region of Lf interacted with the HORMA domain of ATG101 protein, the fat domain of mTOR protein, and the CTD domain of AMPK protein. Although Lf was not able to increase the expression of autophagy-inducing genes, it may be able to induce autophagy through protein interaction by activating or inhibiting proteins related to autophagy regulation.
Collapse
Affiliation(s)
- Atefeh Mashhadi Kholerdi
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran
| | - Fatemeh Moradian
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran.
| | | |
Collapse
|
5
|
Romanowska A, Rachubik P, Piwkowska A, Wysocka M. Polymers of functionalized diaminopropionic acid are efficient mediators of active exogenous enzyme delivery into cells. Sci Rep 2024; 14:13185. [PMID: 38851838 PMCID: PMC11162485 DOI: 10.1038/s41598-024-64187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Delivery of active protein especially enzyme is one of the major therapeutic challenge. Replacing or substituted invalid/improper acting protein offer fast and effective treatment of disease. Herein, we describe the synthesis and properties of biotinylated peptidomimetics consisting of oxoacid-modified 2,3, L-diaminopropionic acid residues with guanidine groups on its side chains. Electrophoretic analysis showed that the obtained compounds interact with FITC-labeled streptavidin or a streptavidin-β-galactosidase hybrid in an efficient manner. Complexes formed by the abovementioned molecules are able to cross the cell membranes of cancer or healthy cells and show promising compatibility with live cells. Analysis of β-galactosidase activity inside the cells revealed surprisingly high levels of active enzyme in complex-treated cells compared to controls. This observation was confirmed by immunochemical studies in which the presence of β-galactosidase was detected in the membrane and vesicles of the cells.
Collapse
Affiliation(s)
- A Romanowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdańsk, Poland
| | - P Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, University of Gdansk, 80-308, Gdańsk, Poland
| | - A Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, University of Gdansk, 80-308, Gdańsk, Poland
| | - M Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309, Gdańsk, Poland.
| |
Collapse
|
6
|
Egberink RO, van Asbeck AH, Boswinkel M, Muradjan G, Dieker J, Brock R. Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery. Bioconjug Chem 2023; 34:1822-1834. [PMID: 37733627 PMCID: PMC10587869 DOI: 10.1021/acs.bioconjchem.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The formation of noncovalent complexes by mixing of positively charged polymers with negatively charged oligonucleotides (ONs) is a widely explored concept in nanomedicine to achieve cellular delivery of ONs. Uptake of ON complexes occurs through endocytosis, which then requires release of ON from endosomes. As one type of polymer, cell-penetrating peptides (CPPs) are being used which are peptides of about 8-30 amino acids in length. However, only a few CPPs yield effective cytosolic ON delivery and activity. Several strategies have been devised to increase cellular uptake and enhance endosomal release, among which an increase of osmotic pressure through the so-called proton sponge effect, disruption of membrane integrity through membrane activity, and disulfide-mediated polymerization. Here, we address the relevance of these concepts for mRNA delivery by incorporating structural features into the human lactoferrin-derived CPP, which shows uptake but not delivery. The incorporation of histidines was explored to address osmotic pressure and structural motifs of the delivery-active CPP PepFect14 (PF14) to address membrane disturbance, and finally, the impact of polymerization was explored. Whereas oligomerization increased the stability of polyplexes against heparin-induced decomplexation, neither this approach nor the incorporation of histidine residues to promote a proton-sponge effect yielded activity. Also, the replacement of arginine residues with lysine or ornithine residues, as in PF14, was without effect, even though all polyplexes showed cellular uptake. Ultimately, sufficient activity could only be achieved by transferring amphipathic sequence motifs from PF14 into the hLF context with some benefit of oligomerization demonstrating overarching principles of delivery for CPPs, lipid nanoparticles, and other types of delivery polymers.
Collapse
Affiliation(s)
- Rik Oude Egberink
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alexander H. van Asbeck
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Grigor Muradjan
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jürgen Dieker
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Roland Brock
- Department
of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department
of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| |
Collapse
|
7
|
Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem 2023; 18:e202300236. [PMID: 37389978 DOI: 10.1002/cmdc.202300236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.
Collapse
Affiliation(s)
- Alessandro Gori
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Giulia Lodigiani
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Stella G Colombarolli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| | - Greta Bergamaschi
- SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milano, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy, L.go F. Vito 1, 00168, Roma, Italy
| |
Collapse
|
8
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Zhang H, Zhang Y, Zhang C, Yu H, Ma Y, Li Z, Shi N. Recent Advances of Cell-Penetrating Peptides and Their Application as Vectors for Delivery of Peptide and Protein-Based Cargo Molecules. Pharmaceutics 2023; 15:2093. [PMID: 37631307 PMCID: PMC10459450 DOI: 10.3390/pharmaceutics15082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides and proteins, two important classes of biomacromolecules, play important roles in the biopharmaceuticals field. As compared with traditional drugs based on small molecules, peptide- and protein-based drugs offer several advantages, although most cannot traverse the cell membrane, a natural barrier that prevents biomacromolecules from directly entering cells. However, drug delivery via cell-penetrating peptides (CPPs) is increasingly replacing traditional approaches that mediate biomacromolecular cellular uptake, due to CPPs' superior safety and efficiency as drug delivery vehicles. In this review, we describe the discovery of CPPs, recent developments in CPP design, and recent advances in CPP applications for enhanced cellular delivery of peptide- and protein-based drugs. First, we discuss the discovery of natural CPPs in snake, bee, and spider venom. Second, we describe several synthetic types of CPPs, such as cyclic CPPs, glycosylated CPPs, and D-form CPPs. Finally, we summarize and discuss cell membrane permeability characteristics and therapeutic applications of different CPPs when used as vehicles to deliver peptides and proteins to cells, as assessed using various preclinical disease models. Ultimately, this review provides an overview of recent advances in CPP development with relevance to applications related to the therapeutic delivery of biomacromolecular drugs to alleviate diverse diseases.
Collapse
Affiliation(s)
- Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Yanfei Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Chuang Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Yinghui Ma
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Nianqiu Shi
- School of Pharmacy, Jilin Medical University, Jilin 132013, China; (H.Z.); (Y.Z.); (C.Z.); (H.Y.); (Y.M.)
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133002, China
| |
Collapse
|
10
|
Maeng J, Lee K. Protein transduction domain of translationally controlled tumor protein: characterization and application in drug delivery. Drug Deliv 2022; 29:3009-3021. [PMID: 36104954 PMCID: PMC9481085 DOI: 10.1080/10717544.2022.2122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our research group reported in 2011 the discovery of a novel cell-penetrating moiety in the N-terminus of the human translationally controlled tumor protein (TCTP). This moiety was responsible for the previously noted membrane translocating ability of purified full-length TCTP. The hydrophobic nature of TCTP-derived protein transduction domain (TCTP-PTD) endowed it with unique characteristics compared to other well-known cationic PTDs, such as TAT-PTD. TCTP-PTD internalizes partly through lipid-raft/caveolae-dependent endocytosis and partly by macropinocytosis. After cell entry, caveosome-laden TCTP-PTD appears to move to the cytoplasm and cytoskeleton except for the nucleus possibly through the movement to endoplasmic reticulum (ER). TCTP-PTD efficiently facilitates delivery of various types of cargos, such as peptides, proteins, and nucleic acids in vitro and in vivo. It is noteworthy that TCTP-PTD and its variants promote intranasal delivery of antidiabetics including, insulin and exendin-4 and of antigens for immunization in vivo, suggesting its potential for drug delivery. In this review, we attempted to describe recent advances in the understanding regarding the identification of TCTP-PTD, the characteristics of its cellular uptake, and the usefulness as a vehicle for delivery into cells of a variety of drugs and macromolecules. Our investigative efforts are continuing further to delineate the details of the functions and the regulatory mechanisms of TCTP-PTD-mediated cellular penetration and posttranslational modification of TCTP in physiologic and pathological processes. This is a review of what we currently know regarding TCTP-PTD and its use as a vehicle for the transduction of drugs and other molecules.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Meng F, Liu Y, Nie T, Tang C, Lyu F, Bie X, Lu Y, Zhao M, Lu Z. Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Resistance of Gram-Negative Bacteria to Hydrophobic Antibiotics. Appl Environ Microbiol 2022; 88:e0037122. [PMID: 35499329 PMCID: PMC9128514 DOI: 10.1128/aem.00371-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/08/2022] [Indexed: 01/10/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is one of the major factors contributing to the development of antibiotic resistance, resulting in a lack of effectiveness of several hydrophobic antibiotics. Plantaricin A (PlnA) intensifies the potency of antibiotics by increasing the permeability of the bacterial outer membrane. Moreover, it has been proven to bind to the lipopolysaccharide of Escherichia coli via electrostatic and hydrophobic interactions and to interfere with the integrity of the bacterial outer membrane. Based on this mechanism, we designed a series of PlnA1 analogs by changing the structure, hydrophobicity, and charge to enhance their membrane-permeabilizing ability. Subsequent analyses revealed that among the PlnA1 analogs, OP4 demonstrated the highest penetrating ability, weaker cytotoxicity, and a higher therapeutic index. In addition, it decelerated the development of antibiotic resistance when the E. coli cells were continuously exposed to sublethal concentrations of erythromycin and ciprofloxacin for 30 generations. Further in vivo studies in mice with sepsis showed that OP4 heightens the potency of erythromycin against E. coli and relieves inflammation. In summary, our results showed that the PlnA1 analogs investigated in the present study, especially OP4, reduce the intrinsic antibiotic resistance of Gram-negative pathogens and expand the antibiotic sensitivity spectrum of hydrophobic antibiotics in Gram-negative bacteria. IMPORTANCE Antibiotic resistance is a global health concern due to indiscriminate use of antibiotics, resistance transfer, and intrinsic resistance of certain Gram-negative bacteria. The asymmetric bacterial outer membrane prevents the entry of hydrophobic antibiotics and renders them ineffective. Consequently, these antibiotics could be employed to treat infections caused by Gram-negative bacteria, after increasing their outer membrane permeability. As PlnA reportedly penetrates outer membranes, we designed a series of PlnA1 analogs and proved that OP4, one of these antimicrobial peptides, effectively augmented the permeability of the bacterial outer membrane. Furthermore, OP4 effectively improved the potency of erythromycin and alleviated inflammatory responses caused by Escherichia coli infection. Likewise, OP4 curtailed antibiotic resistance development in E. coli, thereby prolonging exposure to sublethal antibiotic concentrations. Thus, the combined use of hydrophobic antibiotics and OP4 could be used to treat infections caused by Gram-negative bacteria by decreasing their intrinsic antibiotic resistance.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yanan Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
- Department of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Ting Nie
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chao Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Fengxia Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, People’s Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
12
|
Luna Velez MV, Paulino da Silva Filho O, Verhaegh GW, van Hooij O, El Boujnouni N, Brock R, Schalken JA. Delivery of antisense oligonucleotides for splice-correction of androgen receptor pre-mRNA in castration-resistant prostate cancer models using cell-penetrating peptides. Prostate 2022; 82:657-665. [PMID: 35098567 PMCID: PMC9303360 DOI: 10.1002/pros.24309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 07/19/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) are a promising approach for delivering antisense oligonucleotides (AONs) as they form nanosized complexes through noncovalent interactions that show efficient cellular uptake. Previously, we have designed an AON system to correct splicing of the androgen receptor (AR) pre-mRNA, thereby preventing the generation of the splice variant AR-V7 mRNA. AON-mediated knockdown of AR-V7 resulted in inhibition of androgen-independent cell proliferation. In this study, we evaluated the CPP-mediated delivery of this AON into castration-resistant prostate cancer cell line models 22Rv1, DuCaP (dura mater cancer of the prostate), and VCaP (vertebral cancer of the prostate). METHODS Nanoparticles (polyplexes) of AONs and CPPs were formed through rapid mixing. The impact of the peptide carrier, the formulation parameters, and cell incubation conditions on cellular uptake of fluorescently labeled AONs were assessed through flow cytometry. The cytotoxic activity of these formulations was measured using the CellTiter-Glo cell viability assay. The effectivity of CPP-mediated delivery of the splice-correcting AON-intronic splicing enhancer (ISE) targeting the ISE in the castration-resistant prostate cancer (CRPC)-derived 22Rv1, DuCaP, and VCaP cells was determined by measuring levels of AR-V7 mRNA normalized to those of the human heterochromatin protein 1 binding protein 3 (HP1BP3). Western blot analysis was used to confirm AR-V7 downregulation at a protein level. The cellular distribution of fluorescently labeled AON delivered by a CPP or a transfection reagent was determined through confocal laser scanning microscopy. RESULTS The amphipathic and stearylated CPP PepFect 14 (PF14) showed higher uptake efficiency than arginine-rich CPPs. Through adjustment of formulation parameters, concentration and incubation time, an optimal balance between carrier-associated toxicity and delivery efficiency was found with a formulation consisting of an amino/phosphate ratio of 3, 0.35 μM AON concentration and 30 min incubation time of the cells with polyplexes. Cellular delivery of AON-ISE directed against AR pre-mRNA achieved significant downregulation of AR-V7 by 50%, 37%, and 59% for 22Rv1, DuCaP, and VCaP cells, respectively, and reduced androgen-independent cell proliferation of DuCaP and VCaP cells. CONCLUSIONS This proof-of-principle study constitutes the basis for further development of CPP-mediated delivery of AONs for targeted therapy in prostate cancer.
Collapse
Affiliation(s)
- Maria V. Luna Velez
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
- CAPES FoundationMinistry of Education of BrazilBrasíliaBrazil
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Onno van Hooij
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Najoua El Boujnouni
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical SciencesArabian Gulf UniversityKingdom of Bahrain
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
13
|
Fluid-Phase Endocytosis and Lysosomal Degradation of Bovine Lactoferrin in Lung Cells. Pharmaceutics 2022; 14:pharmaceutics14040855. [PMID: 35456688 PMCID: PMC9032238 DOI: 10.3390/pharmaceutics14040855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
The iron-binding protein lactoferrin and the cell-penetrating peptides derived from its sequence utilise endocytosis to enter different cell types. The full-length protein has been extensively investigated as a potential therapeutic against a range of pathogenic bacteria, fungi, and viruses, including SARS-CoV-2. As a respiratory antiviral agent, several activity mechanisms have been demonstrated for lactoferrin, at the extracellular and plasma membrane levels, but as a protein that enters cells it may also have intracellular antiviral activity. Characterisation of lactoferrin’s binding, endocytic traffic to lysosomes, or recycling endosomes for exocytosis is lacking, especially in lung cell models. Here, we use confocal microscopy, flow cytometry, and degradation assays to evaluate binding, internalisation, endocytic trafficking, and the intracellular fate of bovine lactoferrin in human lung A549 cells. In comparative studies with endocytic probes transferrin and dextran, we show that lactoferrin binds to negative charges on the cell surface and actively enters cells via fluid-phase endocytosis, in a receptor-independent manner. Once inside the cell, we show that it is trafficked to lysosomes where it undergoes degradation within two hours. These findings provide opportunities for investigating both lactoferrin and derived cell-penetrating peptides activities of targeting intracellular pathogens.
Collapse
|
14
|
Seisel Q, Lakumpa I, Josse E, Vivès E, Varilh J, Taulan-Cadars M, Boisguérin P. Highway to Cell: Selection of the Best Cell-Penetrating Peptide to Internalize the CFTR-Stabilizing iCAL36 Peptide. Pharmaceutics 2022; 14:pharmaceutics14040808. [PMID: 35456644 PMCID: PMC9032934 DOI: 10.3390/pharmaceutics14040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Therapeutic peptides have regained interest as they can address unmet medical needs and can be an excellent complement to pharmaceutic small molecules and other macromolecular therapeutics. Over the past decades, correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel causing cystic fibrosis (CF) when mutated, were developed to reduce the symptoms of the patients. In this context, we have previously designed a CFTR-stabilizing iCAL36 peptide able to further increase the CFTR amount in epithelial cells, thereby resulting in a higher CFTR activity. In the present study, optimization of the peptidyl inhibitor was performed by coupling five different cell-penetrating peptides (CPP), which are Tat, dTat, TatRI (retro-inverso), MPG, and Penetratin. Screening of the internalization properties of these CPP-iCAL36 peptides under different conditions (with or without serum or endocytosis inhibitors, etc.) was performed to select TatRI as the optimal CPP for iCAL36 delivery. More importantly, using this TatRI-iCAL36 peptide, we were able to reveal for the first time an additive increase in the CFTR amount in the presence of VX-445/VX-809 compared to VX-445/VX-809 treatment alone. This finding is a significant contribution to the development of CFTR-stabilizing peptides in addition to currently used treatments (small-molecule correctors or potentiators) for CF patients.
Collapse
Affiliation(s)
- Quentin Seisel
- CRBM, University of Montpellier, CNRS UMR 5237, 34000 Montpellier, France
| | - Israpong Lakumpa
- CRBM, University of Montpellier, CNRS UMR 5237, 34000 Montpellier, France
| | - Emilie Josse
- PhyMedExp, Bâtiment Crastes de Paulet, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34000 Montpellier, France
| | - Eric Vivès
- PhyMedExp, Bâtiment Crastes de Paulet, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34000 Montpellier, France
| | - Jessica Varilh
- PhyMedExp, Institut Universitaire de Recherche Clinique, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34000 Montpellier, France
| | - Magali Taulan-Cadars
- PhyMedExp, Institut Universitaire de Recherche Clinique, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34000 Montpellier, France
| | - Prisca Boisguérin
- PhyMedExp, Bâtiment Crastes de Paulet, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34000 Montpellier, France
| |
Collapse
|
15
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
16
|
Pan S, Weng H, Hu G, Wang S, Zhao T, Yao X, Liao L, Zhu X, Ge Y. Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities (Review). Int J Oncol 2021; 59:85. [PMID: 34533200 DOI: 10.3892/ijo.2021.5265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Lactoferrin (Lf) is secreted by ectodermal tissue and has a structure similar to that of transferrin. Although Lf seems to be multifunctional, its main function is related to the natural defense system of mammals. The present review aims to highlight the major actions of Lf, including the regulation of cell growth, the inhibition of toxic compound formation, the removal of harmful free radicals and its important role in immune response regulation. Moreover, Lf has antibacterial, antiviral, antioxidant, anticancer and anti‑inflammatory activities. In addition, the use of Lf for functionalization of drug nanocarriers, with emphasis on tumor‑targeted drug delivery, is illustrated. Such effects serve as an important theoretical basis for its future development and application. In neurodegenerative diseases and the brains of elderly people, Lf expression is markedly upregulated. Lf may exert an anti‑inflammatory effect by inhibiting the formation of hydroxyl free radicals. Through its antioxidant properties, Lf can prevent DNA damage, thereby preventing tumor formation in the central nervous system. In addition, Lf specifically activates the p53 tumor suppressor gene.
Collapse
Affiliation(s)
- Sian Pan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Huiting Weng
- Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha, Hunan 430011, P.R. China
| | - Guohong Hu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shiwen Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Tian Zhao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Xueping Yao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Libin Liao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Xiaopeng Zhu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Yanshan Ge
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, The Third Affiliated Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
17
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
18
|
Zeiders SM, Chmielewski J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria. Chem Biol Drug Des 2021; 98:762-778. [PMID: 34315189 DOI: 10.1111/cbdd.13930] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell-penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic-cell-penetrating peptide strategy in combatting sensitive and drug-resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad-spectrum drugs. Through the addition and conjugation of cell-penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
19
|
Collado Camps E, van Lith SAM, Frielink C, Lankhof J, Dijkgraaf I, Gotthardt M, Brock R. CPPs to the Test: Effects on Binding, Uptake and Biodistribution of a Tumor Targeting Nanobody. Pharmaceuticals (Basel) 2021; 14:602. [PMID: 34201507 PMCID: PMC8308549 DOI: 10.3390/ph14070602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Nanobodies are well-established targeting ligands for molecular imaging and therapy. Their short circulation time enables early imaging and reduces systemic radiation exposure. However, shorter circulation time leads to lower tracer accumulation in the target tissue. Cell-penetrating peptides (CPPs) improve cellular uptake of various cargoes, including nanobodies. CPPs could enhance tissue retention without compromising rapid clearance. However, systematic investigations on how the functionalities of nanobody and CPP combine with each other at the level of 2D and 3D cell cultures and in vivo are lacking. Here, we demonstrate that conjugates of the epidermal growth factor receptor (EGFR)-binding nanobody 7D12 with different CPPs (nonaarginine, penetratin, Tat and hLF) differ with respect to cell binding and induction of endocytosis. For nonaarginine and penetratin we compared the competition of EGF binding and performance of L- and D-peptide stereoisomers, and tested the D-peptide conjugates in tumor cell spheroids and in vivo. The D-peptide conjugates showed better penetration into spheroids than the unconjugated 7D12. Both in vivo and in vitro, the behavior of the agent reflects the combination of both functionalities. Although CPPs cause promising increases in in vitro uptake and 3D penetration, the dominant effect of the CPP in the control of biodistribution warrants further investigation.
Collapse
Affiliation(s)
- Estel Collado Camps
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.C.C.); (J.L.)
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (S.A.M.v.L.); (C.F.); (M.G.)
| | - Sanne A. M. van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (S.A.M.v.L.); (C.F.); (M.G.)
| | - Cathelijne Frielink
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (S.A.M.v.L.); (C.F.); (M.G.)
| | - Jordi Lankhof
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.C.C.); (J.L.)
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Martin Gotthardt
- Department of Medical Imaging, Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands; (S.A.M.v.L.); (C.F.); (M.G.)
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.C.C.); (J.L.)
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
| |
Collapse
|
20
|
Han H, Teng D, Mao R, Hao Y, Yang N, Wang Z, Li T, Wang X, Wang J. Marine Peptide-N6NH2 and Its Derivative-GUON6NH2 Have Potent Antimicrobial Activity Against Intracellular Edwardsiella tarda in vitro and in vivo. Front Microbiol 2021; 12:637427. [PMID: 33767681 PMCID: PMC7985170 DOI: 10.3389/fmicb.2021.637427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. There is no effective way except vaccine candidates to eradicate intracellular E. tarda. In this study, four derivatives of marine peptide-N6NH2 were designed by an introduction of unnatural residues or substitution of natural ones, and their intracellular activities against E. tarda were evaluated in macrophages and in mice, respectively. The minimum inhibitory concentration (MIC) value of N6NH2 and GUON6NH2 against E. tarda was 8 μg/mL. GUON6NH2 showed higher stability to trypsin, lower toxicity (<1%) and longer post-antibiotic effect (PAE) than N6NH2 and other derivatives. Antibacterial mechanism results showed that GUON6NH2 could bind to LPS and destroyed outer/inner cell membranes of E. tarda, superior to N6NH2 and norfloxacin. Both N6NH2 and GUON6NH2 were internalized into macrophages mainly via lipid rafts, micropinocytosis, and microtubule polymerization, respectively, and distributed in the cytoplasm. The intracellular inhibition rate of GUON6NH2 against E. tarda was 97.05–100%, higher than that in case of N6NH2 (96.82–100%). In the E. tarda-induced peritonitis mouse model, after treatment with of 1 μmol/kg N6NH2 and GUON6NH2, intracellular bacterial numbers were reduced by 1.54- and 1.97-Log10 CFU, respectively, higher than norfloxacin (0.35-Log10 CFU). These results suggest that GUON6NH2 may be an excellent candidate for novel antimicrobial agents to treat infectious diseases caused by intracellular E. tarda.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
21
|
Horváth D, Taricska N, Keszei E, Stráner P, Farkas V, Tóth GK, Perczel A. Compactness of Protein Folds Alters Disulfide-Bond Reducibility by Three Orders of Magnitude: A Comprehensive Kinetic Case Study on the Reduction of Differently Sized Tryptophan Cage Model Proteins. Chembiochem 2019; 21:681-695. [PMID: 31475422 PMCID: PMC7079008 DOI: 10.1002/cbic.201900470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/12/2022]
Abstract
A new approach to monitor disulfide-bond reduction in the vicinity of aromatic cluster(s) has been derived by using the near-UV range (λ=266-293 nm) of electronic circular dichroism (ECD) spectra. By combining the results from NMR and ECD spectroscopy, the 3D fold characteristics and associated reduction rate constants (k) of E19_SS, which is a highly thermostable, disulfide-bond reinforced 39-amino acid long exenatide mimetic, and its N-terminally truncated derivatives have been determined under different experimental conditions. Single disulfide bond reduction of the E19_SS model (with an 18-fold excess of tris(2-carboxyethyl)phosphine, pH 7, 37 °C) takes hours, which is 20-30 times longer than that expected, and thus, would not reach completion by applying commonly used reduction protocols. It is found that structural, steric, and electrostatic factors influence the reduction rate, resulting in orders of magnitude differences in reduction half-lives (900>t1/2 >1 min) even for structurally similar, well-folded derivatives of a small model protein.
Collapse
Affiliation(s)
- Dániel Horváth
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Ernő Keszei
- Chemical Kinetics Laboratory, Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Pál Stráner
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Viktor Farkas
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Faculty of General Medicine, University of Szeged, Szeged Dóm tér 8, H-6720, Szeged, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology and, MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eötvös Loránd University, 112, P. O. Box 32, 1518, Budapest, Hungary
| |
Collapse
|
22
|
Fazil MHUT, Chalasani MLS, Choong YK, Schmidtchen A, Verma NK, Saravanan R. A C-terminal peptide of TFPI-1 facilitates cytosolic delivery of nucleic acid cargo into mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183093. [PMID: 31672541 DOI: 10.1016/j.bbamem.2019.183093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Efficient intracellular nucleic acid delivery into mammalian cells remains a long-standing challenge owing to poor cell permeability and uptake of naked nucleic acids across the cell membrane and limited cargo stability. Conventional delivery methods have several drawbacks, such as cytotoxicity, limited cell-type applicability, low efficiency, hindrances that limit the potential of oligonucleotide delivery in functional genomics, therapeutics and diverse research applications. Thus, new approaches that are robust, safe, effective and valid across multiple cell types are much needed. Here, we demonstrate that GGL27, a TFPI-1-derived novel cationic host defence peptide, facilitates the delivery of nucleic acid cargo into the cytosol of a range of mammalian cells. The GGL27 peptide is non-cytotoxic and is internalized in a broad range of mammalian cell-types, including transformed cell lines and primary cells. GGL27 spontaneously forms complexes with nucleic acids of variable sizes, protects them from nuclease degradation, and delivers cargo effectively. Together, our observations demonstrate the versatile cell-penetrating property of GGL27, providing an excellent template for developing a simple, non-toxic peptide-based cytosolic delivery tool for wide use in biomedical research.
Collapse
Affiliation(s)
| | | | - Yeu Khai Choong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden; Wound Healing Centre, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; Skin Research Institute of Singapore, 11 Mandalay Road, Clinical Sciences Building, Singapore 308232, Singapore
| | - Rathi Saravanan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
23
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
24
|
Li Y, Li J, Gong Z, Pan XH, Ma ZH, Ma SY, Wang HM, Dong HL, Gong FY, Gao XM. M860, a Monoclonal Antibody against Human Lactoferrin, Enhances Tumoricidal Activity of Low Dosage Lactoferrin via Granzyme B Induction. Molecules 2019; 24:molecules24203640. [PMID: 31600968 PMCID: PMC6832554 DOI: 10.3390/molecules24203640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/05/2022] Open
Abstract
Lactoferrin (LF) is a soluble glycoprotein of the transferring family found in most biological fluids, functioning as a major first line defense molecule against infection in mammals. It also shows certain anti-tumor activity, but its clinical application in tumor therapy is limited because high dosage is required. In this study, we demonstrate that M860, a monoclonal antibody against human LF (hLF), could significantly increase the anti-tumor potential of low dosage hLF by forming LF-containing immune complex (IC). Human monocytes primed with LF-IC, but not hLF or M860 alone, or control ICs, showed strong tumoricidal activity on leukemia cell lines Jurkat and Raji through induction of secreted Granzyme B (GzB). LF-IC is able to colligate membrane-bound CD14 (a TLR4 co-receptor) and FcγRIIa (a low affinity activating Fcγ receptor) on the surface of human monocytes, thereby triggering the Syk-PI3K-AKT-mTOR pathway leading to GzB production. Our work identifies a novel pathway for LF-mediated tumoricidal activity and may extend the clinical application of LF in tumor therapy.
Collapse
Affiliation(s)
- Ya Li
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China
| | - Jie Li
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng Gong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiao-Hua Pan
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zi-Han Ma
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Shu-Yan Ma
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hong-Min Wang
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hong-Liang Dong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fang-Yuan Gong
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China.
| | - Xiao-Ming Gao
- The Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
- Key Laboratory of Systemic Biomedicine of Suzhou, Suzhou 215000, China.
| |
Collapse
|
25
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
26
|
Internalization, distribution, and activity of peptide H2 against the intracellular multidrug-resistant bovine mastitis-causing bacterium Staphylococcus aureus. Sci Rep 2019; 9:7968. [PMID: 31138863 PMCID: PMC6538662 DOI: 10.1038/s41598-019-44459-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis is mainly caused by Staphylococcus aureus, which is difficult to eliminate, prone to escape from antibacterial agents, and may cause recurring infections due to the intracellular nature of its infection and multidrug resistance. In this study, the intracellular activities of the NZ2114 derivative peptide H18R (H2) against methicillin-resistant S. aureus (MRSA) and multidrug-resistant bovine S. aureus strains were investigated in bovine mammary epithelial MAC-T cells and mouse mammary glands. The minimum inhibitory concentrations of H2 against S. aureus were 0.5‒1 μg/ml; H2 displayed a lower cytotoxicity than its parental peptide NZ2114 (survival rates of MAC-T cells: 100% [H2 treatment] vs 60.7% [NZ2114 (256 μg/ml) treatment]). H2 was internalized into MAC-T cells mainly via clathrin-mediated endocytosis, and distributed in the cytoplasm. The intracellular inhibition rates against MRSA ATCC43300, the mastitis isolates S. aureus CVCC 3051 and E48 were above 99%, 99%, and 94%, respectively; these were higher than those in case of vancomycin (23-47%). In the mouse model of S. aureus E48-induced mastitis, after treatment with 100 μg of H2 and vancomycin, bacterial numbers in each mammary gland were reduced by 3.96- and 1.59-log CFU, respectively. Additionally, similar to NZ2114 and vancomycin, H2 alleviated the histopathological damage of the mammary tissue and polymorphonuclear neutrophil infiltration in the alveoli. These results suggest that H2 can be used as a safe and effective candidate for treating S. aureus-induced mastitis.
Collapse
|
27
|
Wei HH, Yang W, Tang H, Lin H. The Development of Machine Learning Methods in Cell-Penetrating Peptides Identification: A Brief Review. Curr Drug Metab 2019; 20:217-223. [DOI: 10.2174/1389200219666181010114750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022]
Abstract
Background:Cell-penetrating Peptides (CPPs) are important short peptides that facilitate cellular intake or uptake of various molecules. CPPs can transport drug molecules through the plasma membrane and send these molecules to different cellular organelles. Thus, CPP identification and related mechanisms have been extensively explored. In order to reveal the penetration mechanisms of a large number of CPPs, it is necessary to develop convenient and fast methods for CPPs identification.Methods:Biochemical experiments can provide precise details for accurately identifying CPP, but these methods are expensive and laborious. To overcome these disadvantages, several computational methods have been developed to identify CPPs. We have performed review on the development of machine learning methods in CPP identification. This review provides an insight into CPP identification.Results:We summarized the machine learning-based CPP identification methods and compared the construction strategies of 11 different computational methods. Furthermore, we pointed out the limitations and difficulties in predicting CPPs.Conclusion:In this review, the last studies on CPP identification using machine learning method were reported. We also discussed the future development direction of CPP recognition with computational methods.
Collapse
Affiliation(s)
- Huan-Huan Wei
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wuritu Yang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Hao Lin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
28
|
van Oppen LMPE, Pille J, Stuut C, van Stevendaal M, van der Vorm LN, Smeitink JAM, Koopman WJH, Willems PHGM, van Hest JCM, Brock R. Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. Eur J Pharm Biopharm 2019; 137:175-184. [PMID: 30776413 DOI: 10.1016/j.ejpb.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptide (ELP) nanoparticles are a versatile platform for targeted drug delivery. As for any type of nanocarrier system, an important challenge remains the ability of deep (tumor) tissue penetration. In this study, ELP particles with controlled surface density of the cell-penetrating peptide (CPP) octa-arginine (R8) were created by temperature-induced co-assembly. ELPs formed micellar nanoparticles with a diameter of around 60 nm. Cellular uptake in human skin fibroblasts was directly dependent on the surface density of R8 as confirmed by flow cytometry and confocal laser scanning microscopy. Remarkably, next to promoting cellular uptake, the presence of the CPP also enhanced penetration into spheroids generated from human glioblastoma U-87 cells. After 24 h, uptake into cells was observed in multiple layers towards the spheroid core. ELP particles not carrying any CPP did not penetrate. Clearly, a high CPP density exerted a dual benefit on cellular uptake and tissue penetration. At low nanoparticle concentration, there was evidence of a binding site barrier as observed for the penetration of molecules binding with high affinity to cell surface receptors. In conclusion, R8-functionalized ELP nanoparticles form an excellent delivery vehicle that combines tunability of surface characteristics with small and well-defined size.
Collapse
Affiliation(s)
- Lisanne M P E van Oppen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan Pille
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Christiaan Stuut
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Marleen van Stevendaal
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Lisa N van der Vorm
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands; Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, PO Box 9010, 6525 AJ Nijmegen, the Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed Pharmacother 2018; 108:1090-1096. [DOI: 10.1016/j.biopha.2018.09.097] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
|
30
|
Haghi M, Windhab N, Hartwig B, Young PM, Traini D. Human Stimulus Factor Is a Promising Peptide for Delivery of Therapeutics. J Pharm Sci 2018; 108:1401-1403. [PMID: 30465781 DOI: 10.1016/j.xphs.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Fluticasone propionate uptake in the presence of a proprietary cell-penetrating peptide (human stimulus factor, [HSF]) based on the N-terminal domain of lactoferrin was studied, alone and in combination with salmeterol, using an air interface Calu-3 epithelial model. The HSF enhanced uptake and transport of fluticasone propionate across the epithelial barrier when alone and in presence of salmeterol. This was attributed to transcellular-mediated uptake. This HSF is a promising peptide for delivery of therapeutics where enhanced epithelial penetrating is required.
Collapse
Affiliation(s)
- Mehra Haghi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Norbert Windhab
- Evonik Nutrition and Care GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Benedikt Hartwig
- Evonik Nutrition and Care GmbH, Kirschenallee, 64293 Darmstadt, Germany
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
31
|
Abstract
Treatment of Staphylococcus aureus infections remains very difficult due to its capacity to survive intracellularly and its multidrug resistance. In this study, the extracellular/intracellular activities of plectasin derivatives-MP1102/NZ2114 were investigated against three methicillin-susceptible/-resistant S. aureus (MSSA/MRSA) strains in RAW 264.7 macrophages and mice to overcome poor intracellular activity. Antibacterial activities decreased 4–16-fold under a mimic phagolysosomal environment. MP1102/NZ2114 were internalized into the cells via clathrin-mediated endocytosis and macropinocytosis and distributed in the cytoplasm; they regulated tumor necrosis factor-α, interleukin-1β and interleukin-10 levels. The extracellular maximal relative efficacy (Emax) values of MP1102/NZ2114 towards the three S. aureus strains were >5-log decrease in colony forming units (CFU). In the methicillin-resistant and virulent strains, MP1102/NZ2114 exhibited intracellular bacteriostatic efficacy with an Emax of 0.42–1.07-log CFU reduction. In the MSSA ATCC25923 mouse peritonitis model, 5 mg/kg MP1102/NZ2114 significantly reduced the bacterial load at 24 h, which was superior to vancomycin. In MRSA ATCC43300, their activity was similar to that of vancomycin. The high virulent CVCC546 strain displayed a relatively lower efficiency, with log CFU decreases of 2.88–2.91 (total), 3.41–3.50 (extracellular) and 2.11–2.51 (intracellular) compared with vancomycin (3.70). This suggests that MP1102/NZ2114 can be used as candidates for treating intracellular S. aureus.
Collapse
|
32
|
van Lith SA, van den Brand D, Wallbrecher R, Wübbeke L, van Duijnhoven SM, Mäkinen PI, Hoogstad-van Evert JS, Massuger L, Ylä-Herttuala S, Brock R, Leenders WP. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur J Pharm Biopharm 2018; 124:63-72. [DOI: 10.1016/j.ejpb.2017.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
|
33
|
Cosme PJ, Ye J, Sears S, Wojcikiewicz EP, Terentis AC. Label-Free Confocal Raman Mapping of Transportan in Melanoma Cells. Mol Pharm 2018; 15:851-860. [PMID: 29397737 DOI: 10.1021/acs.molpharmaceut.7b00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-penetrating peptides (CPPs) are promising vectors for the intracellular delivery of a variety of membrane-impermeable bioactive compounds. The mechanisms by which CPPs cross the cell membrane, and the effects that CPPs may have on cell function, still remain to be fully clarified. In this work, we employed confocal Raman microscopy (CRM) and atomic force microscopy (AFM) to study the infiltration and physiological effects of the amphipathic CPP transportan (Tp) on the metastatic melanoma cell line SK-Mel-2. CRM enabled the detection of label-free Tp within the cells. Raman maps of live cells revealed rapid entry (within 5 min) and widespread distribution of the peptide throughout the cytoplasm and the presence of the peptide within the nucleus after ∼20 min. Principal component analysis of the CRM data collected from Tp-treated and untreated cells showed that Tp Raman bands were not positively correlated with lipid Raman bands, indicating that Tp entered the cells via a nonendocytic mechanism. Analysis of intracellularly recovered Tp by mass spectrometry showed that Tp remained intact in SK-Mel-2 cells for up to 24 h. The Raman spectroscopic data also showed that, although Tp was predominantly unstructured (random coil) in aqueous solution, it accumulated to high densities within the cells with mostly β-sheet and α-helical structures. AFM was employed to measure the effect of Tp treatment on cell stiffness. These data showed that Tp induced a significant increase in cell stiffness within the first hour of treatment, which was partially abated after 2 h. It is hypothesized that the increase in cell stiffness was the result of cytoskeletal changes triggered by Tp.
Collapse
|
34
|
van Lith SAM, van den Brand D, Wallbrecher R, van Duijnhoven SMJ, Brock R, Leenders WPJ. A Conjugate of an Anti-Epidermal Growth Factor Receptor (EGFR) VHH and a Cell-Penetrating Peptide Drives Receptor Internalization and Blocks EGFR Activation. Chembiochem 2017; 18:2390-2394. [DOI: 10.1002/cbic.201700444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sanne A. M. van Lith
- Radboud University Medical Centre; Department of Pathology; P. O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Dirk van den Brand
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
- Radboud University Medical Centre; Department of Gynecology; P. O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Rike Wallbrecher
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
| | | | - Roland Brock
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
| | - William P. J. Leenders
- Radboud University Medical Centre; Department of Pathology; P. O. Box 9101 6500 HB Nijmegen The Netherlands
- Radboud Institute for Molecular Life Sciences; Department of Biochemistry; Geert-Grooteplein 26 6525 GA Nijmegen The Netherlands
| |
Collapse
|
35
|
Budagavi DP, Zarin S, Chugh A. Antifungal activity of Latarcin 1 derived cell-penetrating peptides against Fusarium solani. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:250-256. [PMID: 29108892 DOI: 10.1016/j.bbamem.2017.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022]
Abstract
Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani. We observed that LDP-NLS and LDP exhibited excellent antifungal activity against the fungus. Cellular uptake experiments with LDP-NLS and LDP showed that LDP-NLS acted as a CPP but LDP uptake into fungal spores and hyphae was negligible. CPP and AMP activity of mutated version of LDP-NLS was also evaluated and it was observed that both the activities of the peptide were compromised, signifying the importance of arginines and lysines present in LDP-NLS for initial interaction of membrane active peptides with biological membranes. Dextrans and Propidium Iodide uptake studies revealed that the mode of entry of LDP-NLS into fungal hyphae is through pore formation. Also, both LDP-NLS and LDP showed no cytotoxicity when infiltered into leaf tissues. Overall, our results suggest that LDP-NLS and LDP are selectively cytotoxic to F. solani and can be a potent peptide based antifungal agents.
Collapse
Affiliation(s)
| | - Sheeba Zarin
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
36
|
Agyei D, Acquah C, Tan KX, Hii HK, Rajendran SRCK, Udenigwe CC, Danquah MK. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Anal Bioanal Chem 2017; 410:297-306. [PMID: 28884330 DOI: 10.1007/s00216-017-0599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022]
Abstract
Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.
Collapse
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Caleb Acquah
- Curtin Sarawak Research Institute, Curtin University, 98009, Sarawak, Malaysia.,Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia
| | - Kei Xian Tan
- Curtin Sarawak Research Institute, Curtin University, 98009, Sarawak, Malaysia.,Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia
| | - Hieng Kok Hii
- Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia
| | - Subin R C K Rajendran
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, NS, B1P 6L2, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michael K Danquah
- Curtin Sarawak Research Institute, Curtin University, 98009, Sarawak, Malaysia. .,Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia.
| |
Collapse
|
37
|
Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017; 90:1079-1093. [DOI: 10.1111/cbdd.13031] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Urszula Piotrowska
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Marcin Sobczak
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Ewa Oledzka
- Chair of Inorganic and Analytical Chemistry; Department of Biomaterials Chemistry; Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
38
|
Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J Control Release 2017; 256:68-78. [DOI: 10.1016/j.jconrel.2017.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/19/2022]
|
39
|
Dissanayake S, Denny WA, Gamage S, Sarojini V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release 2017; 250:62-76. [DOI: 10.1016/j.jconrel.2017.02.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
|
40
|
Kerkis I, de Brandão Prieto da Silva AR, Pompeia C, Tytgat J, de Sá Junior PL. Toxin bioportides: exploring toxin biological activity and multifunctionality. Cell Mol Life Sci 2017; 74:647-661. [PMID: 27554773 PMCID: PMC11107510 DOI: 10.1007/s00018-016-2343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Toxins have been shown to have many biological functions and to constitute a rich source of drugs and biotechnological tools. We focus on toxins that not only have a specific activity, but also contain residues responsible for transmembrane penetration, which can be considered bioportides-a class of cell-penetrating peptides that are also intrinsically bioactive. Bioportides are potential tools in pharmacology and biotechnology as they help deliver substances and nanoparticles to intracellular targets. Bioportides characterized so far are peptides derived from human proteins, such as cytochrome c (CYCS), calcitonin receptor (camptide), and endothelial nitric oxide synthase (nosangiotide). However, toxins are usually disregarded as potential bioportides. In this review, we discuss the inclusion of some toxins and molecules derived thereof as a new class of bioportides based on structure activity relationship, minimization, and biological activity studies. The comparative analysis of the amino acid residue composition of toxin-derived bioportides and their short molecular variants is an innovative analytical strategy which allows us to understand natural toxin multifunctionality in vivo and plan novel pharmacological and biotechnological products. Furthermore, we discuss how many bioportide toxins have a rigid structure with amphiphilic properties important for both cell penetration and bioactivity.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| | | | - Celine Pompeia
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Louvain, Belgium
| | - Paulo L de Sá Junior
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
41
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
42
|
Reyes-Cortes R, Acosta-Smith E, Mondragón-Flores R, Nazmi K, Bolscher JGM, Canizalez-Roman A, Leon-Sicairos N. Antibacterial and cell penetrating effects of LFcin17-30, LFampin265-284, and LF chimera on enteroaggregative Escherichia coli. Biochem Cell Biol 2016; 95:76-81. [PMID: 28165291 DOI: 10.1139/bcb-2016-0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a protein with antimicrobial activity, which is conferred in part by 2 regions contained in its N-terminal lobe. These regions have been used to develop the following synthetic peptides: lactoferricin17-30, lactoferrampin265-284, and LF chimera (a fusion of lactoferricin17-30 and lactoferrampin265-284). We have reported that these LF peptides have antibacterial activity against several pathogenic bacteria; however, the exact mechanism of action has not been established. Here, we report the effects of LF peptides on the viability of enteroaggregative Escherichia coli (EAEC) and the ability of these peptides to penetrate into the bacteria cytoplasm. The viability of EAEC treated with LF peptides was determined via enumeration of colony-forming units, and the binding and internalization of the LF peptides was followed via immunogold labeling and electron microscopy. Treatment of EAEC with 20 and 40 μmol/L LF peptides reduced bacterial growth compared with untreated bacteria. Initially the peptides associated with the plasma membrane, but after 5 to 30 min of incubation, the peptides were found in the cytoplasm. Remarkably, bacteria treated with LF chimera developed cytosolic electron-dense structures that contained the antimicrobial peptide. Our results suggest that the antibacterial mechanism of LF peptides on EAEC involves their interaction with and penetration into the bacteria.
Collapse
Affiliation(s)
- Ruth Reyes-Cortes
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico
| | - Erika Acosta-Smith
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico
| | - Ricardo Mondragón-Flores
- b Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Avenida IPN #2508, Del. G.A. Madero, Ciudad de México, Mexico
| | - Kamran Nazmi
- c Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- c Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico.,d Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, Mexico
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Cedros y Sauces, Fracc. Fresnos C.P. 80246, Culiacán, Sinaloa, Mexico.,e Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, col. Jorge Almada, Culiacan 80200, Sinaloa, Mexico
| |
Collapse
|
43
|
A novel trichosanthin fusion protein with increased cytotoxicity to tumor cells. Biotechnol Lett 2016; 39:71-78. [DOI: 10.1007/s10529-016-2222-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
44
|
Gomes Dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Deliv 2016; 14:319-330. [PMID: 27426972 DOI: 10.1080/17425247.2016.1214569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Gene therapy is a potential alternative to treat a number of diseases. Different hurdles are associated with aerosol gene delivery due to the susceptibility of plasmid DNA (pDNA) structure to be degraded during the aerosolization process. Different strategies have been investigated in order to protect and efficiently deliver pDNA to the lungs using non-viral vectors. To date, no successful therapy involving non-viral vectors has been marketed, highlighting the need for further investigation in this field. Areas covered: This review is focused on the formulation and delivery of DNA to the lungs, using non-viral vectors. Aerosol gene formulations are divided according to the current delivery systems for the lung: nebulizers, dry powder inhalers and pressurized metered dose inhalers; highlighting its benefits, challenges and potential application. Expert opinion: Successful aerosol delivery is achieved when the supercoiled DNA structure is protected during aerosolization. A formulation strategy or compounds that can protect, stabilize and efficiently transfect DNA into the cells is desired in order to produce an effective, low-cost and safe formulation. Nebulizers and dry powder inhalers are the most promising approaches to be used for aerosol delivery, due to the lower shear forces involved. In this context it is also important to highlight the importance of considering the 'pDNA-formulation-device system' as an integral part of the formulation development for a successful nucleic acid delivery.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Maree Svolos
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Benedikt Hartwig
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Norbert Windhab
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Paul M Young
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Daniela Traini
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| |
Collapse
|
45
|
Significant antibacterial activity and synergistic effects of camel lactoferrin with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Res Microbiol 2016; 167:480-91. [PMID: 27130281 DOI: 10.1016/j.resmic.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022]
|
46
|
Wang H, Ma J, Yang Y, Zeng F, Liu C. Highly Efficient Delivery of Functional Cargoes by a Novel Cell-Penetrating Peptide Derived from SP140-Like Protein. Bioconjug Chem 2016; 27:1373-1381. [PMID: 27070736 DOI: 10.1021/acs.bioconjchem.6b00161] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell-penetrating peptides (CPPs) have been successfully applied to deliver various functional macromolecules into cells in recent times. Here, we describe a novel CPP designated as hPP3 (KPKRKRRKKKGHGWSR), which were derived from human nuclear body protein SP140-like protein. The location of hPP3-FITC in cells was investigated using the fluorescence microscopy, and the internalization of hPP3 was quantitatively measured using a fluorescence spectrophotometer. The results showed that hPP3-FITC could enter into culturing cells, following a concentration-, incubation time-, serum-, and temperature-dependent manner. Uptake of hPP3-FITC into cells was significantly enhanced by DMSO pretreatment, and inhibited by heparin and the endocytosis inhibitors (chlorpromazine and sodium azide), while the potent lysosomotropic agent, chloroquine, showed small positive effects on hPP3-FITC penetrating. Moreover, hPP3 could mediate functional GFP, KLA, or NBD penetration. The findings of this study showed that human origin peptide hPP3 has the potential to act as a macromolecular carrier penetrating cellular membranes and promising delivery peptide as drug delivery vectors.
Collapse
Affiliation(s)
| | | | | | - Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture , Enshi 445000, China
| | | |
Collapse
|
47
|
Lim S, Lee JA, Koo JH, Kang TG, Ha SJ, Choi JM. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells. PLoS One 2016; 11:e0155689. [PMID: 27186978 PMCID: PMC4871486 DOI: 10.1371/journal.pone.0155689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Cell-permeable peptides (CPPs) have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Jung-ah Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- * E-mail:
| |
Collapse
|
48
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
49
|
Pae J, Liivamägi L, Lubenets D, Arukuusk P, Langel Ü, Pooga M. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1860-7. [PMID: 27117133 DOI: 10.1016/j.bbamem.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides.
Collapse
Affiliation(s)
- Janely Pae
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Laura Liivamägi
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Dmitri Lubenets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu, Estonia; Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
50
|
Liu H, Zeng F, Zhang M, Huang F, Wang J, Guo J, Liu C, Wang H. Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release 2016; 226:124-137. [PMID: 26849918 DOI: 10.1016/j.jconrel.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
The plasma membrane remains a major barrier for intracellular drug delivery, to overcome this issue, a variety of approaches have been developed and used to deliver therapeutic cargos. Among these approaches, cell penetrating peptide (CPP) is promising and affords widely used vector for efficient intracellular delivery of cargos. Moreover, the latter findings including iPS reprogramming and direct transdifferentiation as well as gene editing have gradually become hot research topic; because their application in tissue engineering and disease modeling have great potential to advance innovation in precision medicine. Since the beginning, research on these approaches is mainly based on virus transduction system, while, under the consideration for obviating the risk of mutagenic insertion and enables more accurate controlling, CPP-based efficient virus-free delivery strategy has been used recently. In this review, we summarize the existing CPP-based delivery system, emerging landscape of CPP application in stem cell manipulation and reprogramming, along with CPP contributions to gene editing techniques.
Collapse
Affiliation(s)
- Huiting Liu
- Medical School, China Three Gorges University, Yichang 443002, China; Department of Nuclear Medicine, Chongqing Three Gorges Central Hospital, Wanzhou 404000, China
| | - Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Ming Zhang
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi 445000, China
| | - Jiajun Wang
- Medical School, China Three Gorges University, Yichang 443002, China; School of Medical Science, Hubei University for Nationalities, Enshi 445000, China.
| | - Jingjing Guo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Changbai Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang 443002, China; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|