1
|
Puja A, Lu J, Du J. Ocular Tissue-Specific Amino Acid Metabolism in Gyrate Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:279-284. [PMID: 39930209 PMCID: PMC11949103 DOI: 10.1007/978-3-031-76550-6_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Deficiency of the mitochondrial enzyme ornithine aminotransferase (OAT) causes gyrate atrophy of the choroid and retina (GACR), a rare autosomal inherited disorder characterized by a substantial elevation in plasma ornithine and progressive chorioretinal degeneration. While OAT is expressed in many tissues, the deficiency mainly affects the retinal pigment epithelium (RPE)/choroid and retina, progressing from the periphery to the macula. RPE has been identified as the initial site of damage in GACR. Amino acid metabolism is crucial for the RPE function and its support for retinal metabolism. In GACR, in addition to ornithine, the metabolism of multiple amino acids is disrupted. This review explores the tissue-specific differences in amino acid metabolism between macular and peripheral ocular regions that may contribute to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Artjola Puja
- West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Jinyu Lu
- West Virginia University, Morgantown, WV, USA
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianhai Du
- West Virginia University, Morgantown, WV, USA.
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
- WVU Eye Institute, Morgantown, WV, USA.
| |
Collapse
|
2
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
3
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Stadnichuk VI, Baratova LA, Sud'ina GF. Effect of Dexamethasone on Adhesion of Human Neutrophils and Concomitant Secretion. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2094-2106. [PMID: 38462453 DOI: 10.1134/s000629792312012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 03/12/2024]
Abstract
Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.
Collapse
Affiliation(s)
- Svetlana I Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Ekaterina A Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Ludmila A Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina F Sud'ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Picker SM, Parker G, Gissen P. Features of Congenital Arthrogryposis Due to Abnormalities in Collagen Homeostasis, a Scoping Review. Int J Mol Sci 2023; 24:13545. [PMID: 37686358 PMCID: PMC10487887 DOI: 10.3390/ijms241713545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Congenital arthrogryposis (CA) refers to the presence of multiple contractures at birth. It is a feature of several inherited syndromes, notable amongst them are disorders of collagen formation. This review aims to characterize disorders that directly or indirectly impact collagen structure and function leading to CA in search for common phenotypic or pathophysiological features, possible genotype-phenotype correlation, and potential novel treatment approaches based on a better understanding of the underlying pathomechanism. Nine genes, corresponding to five clinical phenotypes, were identified after a literature search. The most notable trend was the extreme phenotype variability. Clinical features across all syndromes ranged from subtle with minimal congenital contractures, to severe with multiple congenital contractures and extra-articular features including skin, respiratory, or other manifestations. Five of the identified genes were involved in the function of the Lysyl Hydroxylase 2 or 3 enzymes, which enable the hydroxylation and/or glycosylation of lysyl residues to allow the formation of the collagen superstructure. Whilst current treatment approaches are post-natal surgical correction, there are also potential in-utero therapies being developed. Cyclosporin A showed promise in treating collagen VI disorders although there is an associated risk of immunosuppression. The treatments that could be in the clinical trials soon are the splice correction therapies in collagen VI-related disorders.
Collapse
Affiliation(s)
| | - George Parker
- Newcastle University Medical School, Newcastle NE2 4HH, UK;
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
5
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Chen R, Jiang M, Hu B, Fu B, Sun T. Comprehensive Analysis of the Expression, Prognosis, and Biological Significance of PLOD Family in Bladder Cancer. Int J Gen Med 2023; 16:707-722. [PMID: 36872941 PMCID: PMC9975538 DOI: 10.2147/ijgm.s399875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Background Large numbers of studies have identified that procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family members play important roles in tumorigenesis and tumor progression in various cancers. However, the expression pattern, clinical value and function of PLOD family have yet to be analyzed systematically and comprehensively in bladder urothelial carcinoma (BLCA). Methods We investigated the transcriptional levels, genetic alteration, biological function, immune cell infiltration, data on survival of PLODs in patients with BLCA based on UALCAN, the Cancer Genome Atlas (TCGA) database, Gene Expression Profiling Interactive Analysis (GEPIA), TIMER, STRING, cBioPortal and GSCALite databases. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed in R software using the Cluster Profiler Bioconductor package. Protein-protein interaction (PPI) network was established by STRING and visualized by using R version (3.6.3) software. Survival analysis was performed using the packages "survminer". Results The mRNA and protein expression patterns of PLOD family members were noticeably increased in BLC compared with normal tissue. The mRNA expression levels of PLOD1-2 genes were significantly correlated with histological subtypes and PLOD1 was significantly correlated with pathological stage. Furthermore, the high expression levels of PLOD1-2 were remarkably associated with poor overall survival (OS) in BLCA patients, meanwhile high expression levels of PLOD1 and PLOD3 were markedly associated with poor progression-free interval (PFI). In co-expression gene analysis, 50 genes were primarily associated with the differentially expressed PLODs in BLCA. Functional enrichment analysis revealed that protein hydroxylation, collagen fibril organization, and lysine degradation were key biological functions of PLODs in BLCA. Moreover, PLOD family genes were identified as being associated with the activities of tumor-infiltrating immune cells and closely associated with immune responses in BLCA. Conclusion PLOD family members might serve as potential therapeutic targets and prognostic markers for BLCA patients' survival.
Collapse
Affiliation(s)
- Ru Chen
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China.,Department of Urology, the First Hospital of Putian City, Putian City, People's Republic of China
| | - Ming Jiang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Bing Hu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Ting Sun
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| |
Collapse
|
7
|
Piras C, Pibiri M, Conte S, Ferranti G, Leoni VP, Liggi S, Spada M, Muntoni S, Caboni P, Atzori L. Metabolomics analysis of plasma samples of patients with fibromyalgia and electromagnetic sensitivity using GC-MS technique. Sci Rep 2022; 12:21923. [PMID: 36535959 PMCID: PMC9763344 DOI: 10.1038/s41598-022-25588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Fibromyalgia (FM) is a chronic and systemic condition that causes widespread chronic pain, asthenia, and muscle stiffness, as well as in some cases depression, anxiety, and disorders of the autonomic system. The exact causes that lead to the development of FM are still unknown today. In a percentage of individuals, the symptoms of FM are often triggered and/or exacerbated by proximity to electrical and electromagnetic devices. Plasma metabolomic profile of 54 patients with fibromyalgia and self-reported electromagnetic sensitivity (IEI-EMF) were compared to 23 healthy subjects using gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analysis techniques. Before the GC-MS analysis the plasma samples were extracted with a modified Folch method and then derivatized with methoxamine hydrochloride in pyridine solution and N-trimethylsilyltrifuoroacetamide. The combined analysis allowed to identify a metabolomic profile able of distinguishing IEI-EMF patients and healthy subjects. IEI-EMF patients were therefore characterized by the alteration of 19 metabolites involved in different metabolic pathways such as energy metabolism, muscle, and pathways related to oxidative stress defense and chronic pain. The results obtained in this study complete the metabolomic "picture" previously investigated on the same cohort of IEI-EMF patients with 1H-NMR spectroscopy, placing a further piece for better understanding the pathophysiological mechanisms in patients with IEI-EMF.
Collapse
Affiliation(s)
- Cristina Piras
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Stella Conte
- grid.7763.50000 0004 1755 3242Department of Education, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Gabriella Ferranti
- grid.7763.50000 0004 1755 3242Department of Education, Psychology and Philosophy, University of Cagliari, Cagliari, Italy
| | - Vera Piera Leoni
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Sonia Liggi
- grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Martina Spada
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Sandro Muntoni
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| | - Pierluigi Caboni
- grid.7763.50000 0004 1755 3242Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luigi Atzori
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Clinical Metabolomics Unit, University of Cagliari, Blocco A, Cittadella Universitaria, Monserrato, CA Italy
| |
Collapse
|
8
|
Ivermectin Affects Neutrophil-Induced Inflammation through Inhibition of Hydroxylysine but Stimulation of Cathepsin G and Phenylalanine Secretion. Biomedicines 2022; 10:biomedicines10123284. [PMID: 36552040 PMCID: PMC9775137 DOI: 10.3390/biomedicines10123284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.
Collapse
|
9
|
Clift CL, Saunders J, Drake RR, Angel PM. Perspectives on pediatric congenital aortic valve stenosis: Extracellular matrix proteins, post translational modifications, and proteomic strategies. Front Cardiovasc Med 2022; 9:1024049. [PMID: 36439995 PMCID: PMC9685993 DOI: 10.3389/fcvm.2022.1024049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
In heart valve biology, organization of the extracellular matrix structure is directly correlated to valve function. This is especially true in cases of pediatric congenital aortic valve stenosis (pCAVS), in which extracellular matrix (ECM) dysregulation is a hallmark of the disease, eventually leading to left ventricular hypertrophy and heart failure. Therapeutic strategies are limited, especially in pediatric cases in which mechanical and tissue engineered valve replacements may not be a suitable option. By identifying mechanisms of translational and post-translational dysregulation of ECM in CAVS, potential drug targets can be identified, and better bioengineered solutions can be developed. In this review, we summarize current knowledge regarding ECM proteins and their post translational modifications (PTMs) during aortic valve development and disease and contributing factors to ECM dysregulation in CAVS. Additionally, we aim to draw parallels between other fibrotic disease and contributions to ECM post-translational modifications. Finally, we explore the current treatment options in pediatrics and identify how the field of proteomics has advanced in recent years, highlighting novel characterization methods of ECM and PTMs that may be used to identify potential therapeutic strategies relevant to pCAVS.
Collapse
Affiliation(s)
- Cassandra L. Clift
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Saunders
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Peggi M. Angel,
| |
Collapse
|
10
|
Zhang J, Tian Y, Mo S, Fu X. Overexpressing PLOD Family Genes Predict Poor Prognosis in Pancreatic Cancer. Int J Gen Med 2022; 15:3077-3096. [PMID: 35330878 PMCID: PMC8938171 DOI: 10.2147/ijgm.s341332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer is a common malignant tumor. Multiple studies have shown that procollagen lysyl-hydroxylase (PLOD) family genes were closely related to tumor progression and metastasis in a variety of human cancers. This study aimed to explore the prognosis and biological role of PLOD family genes in pancreatic adenocarcinoma (PAAD). Methods GEPIA, GEO, HPA, CCLE, Kaplan-Meier plotter, cBioPortal, LinkedOmics, DAVID6.8, STRING, and TIMER were employed to determine the prognostic values and biological function of PLOD family members in PAAD. Results The mRNA and protein expression patterns of PLOD family members were noticeably up-regulated in PAAD compared with normal tissues. PLOD family gene expression was also up-regulated in pancreatic cancer cell lines. PLOD1 was correlated with histological and pathological grades of pancreatic cancer. PLOD2 was related to histological grade. The high expression of PLOD1-2 was correlated with the poor overall survival rate and relapse-free survival rate in patients with PAAD. Additionally, PLODs showed high sensitivity and specificity in distinguishing pancreatic cancer from normal tissues. Through the functional enrichment analysis of PLOD-related genes in PAAD, we found that PLODs were enriched in collagen fiber tissue structure, lysine degradation, and collagen biosynthesis. Pathway analysis confirmed that PLODs regulated the proliferation, migration, and metastasis of pancreatic cancer through the RalGEF-Ral signaling pathway. Furthermore, the level of expression of PLOD1-2 was positively correlated with the activity of tumor-infiltrating immune cells, including CD8+T cells, neutrophils, macrophages, and dendritic cells. The level of expression of PLOD3 was inversely correlated with the level of infiltration of CD8+T cells. PLOD1 and PLOD2 were highly expressed in pancreatic cancer tissues with TP53 and KRAS mutations, respectively. However, the level of expression of PLOD3 in SMAD4 wild-type pancreatic cancer was increased. Conclusion The findings showed that individual PLOD genes or PLOD family genes could be potential prognostic biomarkers for PAAD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
- The Fifth People’s Hospital of Datong, Datong, Shanxi Province, 037006, People’s Republic of China
| | - YanZhang Tian
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - ShaoJian Mo
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - XiFeng Fu
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| |
Collapse
|
11
|
Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone Suppresses the Secretory Processes That Ensure the Invasion of Neutrophils into Tissues and Induce Inflammation. Biomedicines 2022; 10:biomedicines10020314. [PMID: 35203523 PMCID: PMC8869632 DOI: 10.3390/biomedicines10020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.
Collapse
|
12
|
Nyström A, Bruckner-Tuderman L, Kiritsi D. Dystrophic Epidermolysis Bullosa: Secondary Disease Mechanisms and Disease Modifiers. Front Genet 2021; 12:737272. [PMID: 34650598 PMCID: PMC8505774 DOI: 10.3389/fgene.2021.737272] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The phenotypic presentation of monogenetic diseases is determined not only by the nature of the causative mutations but also is influenced by manifold cellular, microenvironmental, and external factors. Here, heritable extracellular matrix diseases, including dystrophic epidermolysis bullosa (DEB), are no exceptions. Dystrophic epidermolysis bullosa is caused by mutations in the COL7A1 gene encoding collagen VII. Deficiency of collagen VII leads to skin and mucosal fragility, which progresses from skin blistering to severe fibrosis and cancer. Clinical and pre-clinical studies suggest that targeting of secondary disease mechanisms or employment of natural disease modifiers can alleviate DEB severity and progression. However, since many of these mechanisms are needed for tissue homeostasis, informed, selective targeting is essential for safe and efficacious treatment. Here, we discuss a selection of key disease modifiers and modifying processes active in DEB, summarize the still scattered knowledge of them, and reflect on ways forward toward their utilization for symptom-relief or enhancement of curative therapies.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Arifulin EA, Stadnichuk VI, Baratova LA, Sud'ina GF. Inhibition of Neutrophil Secretion Upon Adhesion as a Basis for the Anti-Inflammatory Effect of the Tricyclic Antidepressant Imipramine. Front Pharmacol 2021; 12:709719. [PMID: 34421605 PMCID: PMC8375473 DOI: 10.3389/fphar.2021.709719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii A Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
15
|
Neutrophil Adhesion and the Release of the Free Amino Acid Hydroxylysine. Cells 2021; 10:cells10030563. [PMID: 33807594 PMCID: PMC7999338 DOI: 10.3390/cells10030563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
During infection or certain metabolic disorders, neutrophils can escape from blood vessels, invade and attach to other tissues. The invasion and adhesion of neutrophils is accompanied and maintained by their own secretion. We have previously found that adhesion of neutrophils to fibronectin dramatically and selectively stimulates the release of the free amino acid hydroxylysine. The role of hydroxylysine and lysyl hydroxylase in neutrophil adhesion has not been studied, nor have the processes that control them. Using amino acid analysis, mass spectrometry and electron microscopy, we found that the lysyl hydroxylase inhibitor minoxidil, the matrix metalloproteinase inhibitor doxycycline, the PI3K/Akt pathway inhibitors wortmannin and the Akt1/2 inhibitor and drugs that affect the actin cytoskeleton significantly and selectively block the release of hydroxylysine and partially or completely suppress spreading of neutrophils. The actin cytoskeleton effectors and the Akt 1/2 inhibitor also increase the phenylalanine release. We hypothesize that hydroxylysine release upon adhesion is the result of the activation of lysyl hydroxylase in interaction with matrix metalloproteinase, the PI3K/Akt pathway and intact actin cytoskeleton, which play important roles in the recruitment of neutrophils into tissue through extracellular matrix remodeling.
Collapse
|
16
|
Xie D, Li J, Wei S, Qi P, Ji H, Su J, Du N, Zhang X. Knockdown of PLOD3 suppresses the malignant progression of renal cell carcinoma via reducing TWIST1 expression. Mol Cell Probes 2020; 53:101608. [PMID: 32585183 DOI: 10.1016/j.mcp.2020.101608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3), also known as lysyl hydroxylase 3 (LH3) has been demonstrated to be overexpressed in several kinds of cancers and facilitate cell migration. Currently, we aimed to reveal the role of PLOD3 in renal cell carcinoma (RCC) progression, and explore whether TWIST1 (Twist family bHLH transcription factor 1) is involved in this process. Fifty-eight paired RCC tissues and normal tissues were collected and subjected to qPCR and immunohistochemistry (IHC) technology to detect the expression levels of PLOD3. The clinical value of PLOD3 in predicting RCC progression was then explored. Cell-Counting Kit-8 (CCK-8), wound healing, transwell chambers and tumor-bearing experiments were applied to monitor cell proliferation, migration, invasion and tumorigenesis. Protein levels were determined by using western blotting technology to assess cell apoptosis and epithelial to mesenchymal transition (EMT). PLOD3 expression was enhanced in RCC tissues and cells, which predicted higher T (tumor), N (lymph node) and M (metastasis) stages, histological grade and TNM (tumor, lymph node, metastasis) stage. PLOD3 downregulation in RCC A498 cells obviously inhibited cell proliferation, migration, invasion, EMT and tumorigenesis and increased cell apoptosis. PLOD3 overexpression led to opposite results in RCC A704 cells. PLOD3 downregulation reduced the expression levels of TWIST1, β-catenin and p-AKT. In addition, TWIST1 overexpression rescued the repressions of cell proliferation, migration, invasion, EMT and the activation of β-catenin and AKT signaling in addition to apoptosis promotion induced by PLOD3 downregulation. Collectively, this study illustrated that PLOD3 knockdown suppressed RCC malignance via inhibiting TWIST1-mediated activation of β-catenin and AKT signaling.
Collapse
Affiliation(s)
- Da Xie
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Jin Li
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Shufei Wei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Pan Qi
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Hongxia Ji
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Nan Du
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Xiaoyu Zhang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China.
| |
Collapse
|
17
|
Cudic M, Fields GB. Modulation of receptor binding to collagen by glycosylated 5-hydroxylysine: Chemical biology approaches made feasible by Carpino's Fmoc group. Pept Sci (Hoboken) 2020; 112. [PMID: 33073165 DOI: 10.1002/pep2.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The creation of the 9-fluorenylmethoxycarbonyl (Fmoc) group by the Carpino laboratory facilitated the synthesis of peptides containing acid-sensitive groups, such as O-linked glycosides. To fully investigative collagen biochemistry, one needs to assemble peptides that possess glycosylated 5-hydroxylysine (Hyl). A convenient method for the synthesis of Fmoc-Hyl(ε-tert-butyloxycarbonyl (Boc),O-tert-butyldimethylsilyl (TBDMS)) and efficient methods for the synthesis of Fmoc-Hyl[ε-Boc,O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)] have been developed. Glycosylated Fmoc-Hyl derivatives were used to construct a series of types I-IV collagen-model triple-helical peptides (THPs) that incorporated known or proposed receptor binding sites. Glycosylation of Hyl was found to strongly down-regulate the binding of CD44 and the α3β1 integrin to collagen, while the impact on α2β1 integrin binding was more modest. Molecular modeling of integrin binding indicated that Hyl glycosylation directly impacted the association between the α3β1 integrin metal ion-dependent adhesion site (MIDAS) and the receptor binding site within type IV collagen. The Fmoc solid-phase strategy ultimately allowed for chemical biology approaches to be utilized to study tumor cell interactions with glycosylated collagen sequences and document the modulation of receptor interactions by Hyl posttranslational modification.
Collapse
Affiliation(s)
- Maré Cudic
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and the Department of Chemistry & Biochemistry, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 U.S.A
| |
Collapse
|
18
|
Binder RL, Freedman MA, Sharma KB, Farage MA, Wang Y, Combs C, Moore D, Tiesman JP, Bascom CC, Isfort RJ, Warren R. Histological and Gene Expression Analysis of the Effects of Menopause Status and Hormone Therapy on the Vaginal Introitus and Labia Majora. J Clin Med Res 2019; 11:745-759. [PMID: 31803317 PMCID: PMC6879024 DOI: 10.14740/jocmr4006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Background The study aimed to determine the effect of menopausal status and hormone therapy on the introitus and labia majora at the levels of histology and gene expression. Methods Three cohorts of 10 women each (pre-menopause, post-menopause and post-menopause + hormone therapy) were selected based on the presentation of clinical atrophy and vaginal pH. Biopsies were obtained from the introitus (fourchette) and labia majora and processed for histology and gene expression analyses with microarrays. Other data collected included self-assessed symptoms, serum estradiol, testosterone, serum hormone binding globulin and the pH of the vagina and labia majora. Results The introitus appears exquisitely sensitive to hormone status. Dramatic changes were observed in histology including a thinning of the epithelium in post-menopausal subjects with vaginal atrophy. Furthermore, there was differential expression of many genes that may contribute to tissue remodeling in the atrophic introitus. Levels of expression of genes associated with wound healing, angiogenesis, cell migration/locomotion, dermal structure, apoptosis, inflammation, epithelial cell differentiation, fatty acid, carbohydrate and steroid metabolism were significantly different in the cohort exhibiting atrophy of the introitus. While changes were also observed at the labia, that site was considerably less sensitive to hormone status. The gene expression changes observed at the introitus in this study were very similar to those reported previously in the atrophic vagina providing further evidence that these changes are associated with atrophy. Conclusions The histological and gene expression changes occurring within the introitus after menopause may contribute to the constellation of symptoms that constitute the genitourinary syndrome of menopause.
Collapse
Affiliation(s)
| | - Murray A Freedman
- Obstetrics & Gynecology, Medical College of Georgia, Augusta, GA, USA
| | - Kailash B Sharma
- Obstetrics & Gynecology, Medical College of Georgia, Augusta, GA, USA
| | | | - Yu Wang
- The Procter & Gamble Company, Cincinnati, OH, USA
| | | | - David Moore
- The Procter & Gamble Company, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
19
|
Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Pajouhanfar S, Baghdadi T, Shadmehri AA, Giunta C, Kraenzlin M, Syx D, Malfait F, Has C, Lwin SM, Karamzadeh R, Liu L, Guy A, Hamid M, Kariminejad A, Zeinali S, McGrath JA, Uitto J. Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019; 81:91-106. [DOI: 10.1016/j.matbio.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/28/2023]
|
20
|
|
21
|
Li H, Xu H, Wen H, Liu T, Sun Y, Xiao N, Bai C, Ge J, Wang X, Song L, Song Y, Zhang Y, Chen J. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2019; 39:547-561. [PMID: 30516406 PMCID: PMC6421250 DOI: 10.1177/0271678x18815791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertensive intracerebral hemorrhage (ICH) is a devastating cerebrovascular disease with no effective treatment. Lysyl hydroxylase 3 (LH3) is essential for collagen IV intermolecular crosslinking and stabilization. Deficiency in LH3 affects the assembly and secretion of collagen IV and basement membrane (BM) integrity of vessels. Here, we investigated whether LH3 has significant implications for disease progression and therapeutic intervention. Spontaneous hypertensive ICH of mice was induced by angiotensin II and L-NAME treatment. The adeno-associated virus was delivered into brain by stereotactic injection to knockdown or overexpress LH3. We found LH3 levels were reduced in human patients with ICH and gradually decreased in mice before ICH. LH3 knockdown increased the incidence of hypertensive ICH in mice. The incidence, number, and size of ICHs in mice were markedly reduced by LH3 overexpression. RNA-seq revealed that LH3 overexpression significantly reversed the profound alterations in gene transcriptional profiles of cerebral vessels. LH3 overexpression was sufficient to enhance BM integrity, inhibit matrix metalloproteinase activity, attenuate microglial activation and leukocyte infiltration, and reduce VSMC apoptosis before ICH. These results indicate that LH3 overexpression attenuates susceptibility to hypertensive ICH. We emphasize that LH3 modulation may serve as a viable approach for future investigations of ICH prevention.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianlong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Abstract
Fibrillar type I collagen is the most abundant structural protein in most tissues and organs. One of the unique and functionally important characteristics of collagen is sequential posttranslational modifications of lysine (Lys) residues. In the endoplasmic reticulum, hydroxylation of specific Lys occurs producing 5-hydroxylysine (Hyl). Then, to the 5-hydroxyl group of Hyl, a single galactose unit can be attached to form galactosyl-Hyl (Gal-Hyl) and further glucose can be added to Gal-Hyl to form glucosylgalactosyl-Hyl (GlcGal-Hyl). These are the only two O-linked glycosides found in mature type I collagen. It has been shown that this modification is critically involved in a number of biological and pathological processes likely through its regulatory roles in collagen fibrillogenesis, intermolecular cross-linking, and collagen-cell interaction. Recently, with the advances in molecular/cell biology and analytical chemistry, the molecular mechanisms of collagen glycosylation have been gradually deciphered, and the type and extent of glycosylation at the specific molecular loci can now be quantitatively analyzed. In this chapter, we describe quantitative analysis of collagen glycosylation by high-performance liquid chromatography (HPLC) and semiquantitative, site-specific analysis by HPLC-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Marnisa Sricholpech
- Faculty of Dentistry, Department of Oral Surgery and Oral Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Masahiko Terajima
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
23
|
Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat Commun 2018; 9:3163. [PMID: 30089812 PMCID: PMC6082870 DOI: 10.1038/s41467-018-05631-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022] Open
Abstract
Lysyl hydroxylases catalyze hydroxylation of collagen lysines, and sustain essential roles in extracellular matrix (ECM) maturation and remodeling. Malfunctions in these enzymes cause severe connective tissue disorders. Human lysyl hydroxylase 3 (LH3/PLOD3) bears multiple enzymatic activities, as it catalyzes collagen lysine hydroxylation and also their subsequent glycosylation. Our understanding of LH3 functions is currently hampered by lack of molecular structure information. Here, we present high resolution crystal structures of full-length human LH3 in complex with cofactors and donor substrates. The elongated homodimeric LH3 architecture shows two distinct catalytic sites at the N- and C-terminal boundaries of each monomer, separated by an accessory domain. The glycosyltransferase domain displays distinguishing features compared to other known glycosyltransferases. Known disease-related mutations map in close proximity to the catalytic sites. Collectively, our results provide a structural framework characterizing the multiple functions of LH3, and the molecular mechanisms of collagen-related diseases involving human lysyl hydroxylases. Lysyl hydroxylase 3 (LH3) catalyzes collagen lysine hydroxylation and their subsequent O-linked glycosylation. Here the authors provide mechanistic insights into the lysyl hydroxylase and glycosyltransferase activities of LH3 by determining the crystal structures of full-length human LH3 bound to cofactors and donor substrates.
Collapse
|
24
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
25
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
26
|
Banushi B, Forneris F, Straatman-Iwanowska A, Strange A, Lyne AM, Rogerson C, Burden JJ, Heywood WE, Hanley J, Doykov I, Straatman KR, Smith H, Bem D, Kriston-Vizi J, Ariceta G, Risteli M, Wang C, Ardill RE, Zaniew M, Latka-Grot J, Waddington SN, Howe SJ, Ferraro F, Gjinovci A, Lawrence S, Marsh M, Girolami M, Bozec L, Mills K, Gissen P. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis. Nat Commun 2016; 7:12111. [PMID: 27435297 PMCID: PMC4961739 DOI: 10.1038/ncomms12111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 06/01/2016] [Indexed: 01/12/2023] Open
Abstract
Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues.
Collapse
Affiliation(s)
- Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Federico Forneris
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Via Ferrata 9/A – 27100, Pavia, Italy
- Division of Crystal and Structural Chemistry, Department of Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Adam Strange
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Anne-Marie Lyne
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| | - Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Wendy E. Heywood
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Joanna Hanley
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ivan Doykov
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kornelis R. Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, UK
| | - Holly Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Danai Bem
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Universitat Autonoma Barcelona, 119-129-08035 Barcelona, Spain
| | - Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7B, 90220 Oulu, Finland
- Unit of Cancer Research and Translational Medicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
| | - Chunguang Wang
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90029, Finland
- Medical Microbiology and Immunology, Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
| | | | | | - Julita Latka-Grot
- Children's Memorial Health Institute, 04-730 Warsaw, 20 Dzieci Polskich Avenue, Poland
| | - Simon N. Waddington
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - S. J. Howe
- Institute for Women's Health, University College London, London WC1E 6AU, UK
| | - Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Asllan Gjinovci
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Scott Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark Girolami
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Laurent Bozec
- Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Kevin Mills
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute of Child Health, University College London, London WC1N 1EH, UK
- Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK
| |
Collapse
|
27
|
Kellokumpu S, Hassinen A, Glumoff T. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol Life Sci 2016; 73:305-25. [PMID: 26474840 PMCID: PMC7079781 DOI: 10.1007/s00018-015-2066-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most common and complex cellular modification of proteins and lipids. It is critical for multicellular life and its abrogation often leads to a devastating disease. Yet, the underlying mechanistic details of glycosylation in both health and disease remain unclear. Partly, this is due to the complexity and dynamicity of glycan modifications, and the fact that not all the players are taken into account. Since late 1960s, a vast number of studies have demonstrated that glycosyltransferases typically form homomeric and heteromeric complexes with each other in yeast, plant and animal cells. To propagate their acceptance, we will summarize here accumulated data for their prevalence and potential functional importance for glycosylation focusing mainly on their mutual interactions, the protein domains mediating these interactions, and enzymatic activity changes that occur upon complex formation. Finally, we will highlight the few existing 3D structures of these enzyme complexes to pinpoint their individual nature and to emphasize that their lack is the main obstacle for more detailed understanding of how these enzyme complexes interact and function in a eukaryotic cell.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| |
Collapse
|
28
|
Lin Q, Lim HSR, Lin HL, Tan HT, Lim TK, Cheong WK, Cheah PY, Tang CL, Chow PKH, Chung MCM. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics 2015; 15:3905-20. [PMID: 26359947 DOI: 10.1002/pmic.201500236] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
The high mortality rate in colorectal cancer is mostly ascribed to metastasis, but the only clinical biomarker available for disease monitoring and prognosis is the carcinoembryonic antigen (CEA). However, the prognostic utility of CEA remains controversial. In an effort to identify novel biomarkers that could be potentially translated for clinical use, we collected the secretomes from the colon adenocarcinoma cell line HCT-116 and its metastatic derivative, E1, using the hollow fiber culture system, and utilized the multilectin affinity chromatography approach to enrich for the secreted glycoproteins (glyco-secretome). The HCT-116 and E1 glyco-secretomes were compared using the label-free quantitative SWATH-MS technology, and a total of 149 glycoproteins were differentially secreted in E1 cells. Among these glycoproteins, laminin β-1 (LAMB1), a glycoprotein not previously known to be secreted in colorectal cancer cells, was observed to be oversecreted in E1 cells. In addition, we showed that LAMB1 levels were significantly higher in colorectal cancer patient serum samples as compared to healthy controls when measured using ELISA. ROC analyses indicated that LAMB1 performed better than CEA at discriminating between colorectal cancer patients from controls. Moreover, the diagnostic performance was further improved when LAMB1 was used in combination with CEA.
Collapse
Affiliation(s)
- Qifeng Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hannah S R Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Hui Ling Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Wai Kit Cheong
- Division of Colorectal Surgery, National University Hospital, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Duke-NUS Graduate Medical School, National University of Singapore, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Pierce K H Chow
- Department of General Surgery, Singapore General Hospital, Singapore.,Department of Surgical Oncology, National Cancer Centre, Singapore.,Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, National University of Singapore, Singapore
| | - Maxey C M Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
29
|
Watt SA, Dayal JHS, Wright S, Riddle M, Pourreyron C, McMillan JR, Kimble RM, Prisco M, Gartner U, Warbrick E, McLean WHI, Leigh IM, McGrath JA, Salas-Alanis JC, Tolar J, South AP. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS One 2015; 10:e0137639. [PMID: 26380979 PMCID: PMC4575209 DOI: 10.1371/journal.pone.0137639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.
Collapse
Affiliation(s)
- Stephen A. Watt
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | | | - Sheila Wright
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Megan Riddle
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Celine Pourreyron
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - James R. McMillan
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Roy M. Kimble
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Marco Prisco
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ulrike Gartner
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Emma Warbrick
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Irene M. Leigh
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, United Kingdom
| | - Julio C. Salas-Alanis
- Basic Sciences Department, Medicine School, University of Monterrey, Monterrey, Mexico
| | - Jakub Tolar
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew P. South
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mammoto T, Mammoto A, Jiang A, Jiang E, Hashmi B, Ingber DE. Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation. Dev Dyn 2015; 244:713-23. [PMID: 25715693 DOI: 10.1002/dvdy.24264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mechanical compression of cells during mesenchymal condensation triggers cells to undergo odontogenic differentiation during tooth organ formation in the embryo. However, the mechanism by which cell compaction is stabilized over time to ensure correct organ-specific cell fate switching remains unknown. RESULTS Here, we show that mesenchymal cell compaction induces accumulation of collagen VI in the extracellular matrix (ECM), which physically stabilizes compressed mesenchymal cell shapes and ensures efficient organ-specific cell fate switching during tooth organ development. Mechanical induction of collagen VI deposition is mediated by signaling through the actin-p38MAPK-SP1 pathway, and the ECM scaffold is stabilized by lysyl oxidase in the condensing mesenchyme. Moreover, perturbation of synthesis or cross-linking of collagen VI alters the size of the condensation in vivo. CONCLUSIONS These findings suggest that the odontogenic differentiation process that is induced by cell compaction during mesenchymal condensation is stabilized and sustained through mechanically regulated production of collagen VI within the mesenchymal ECM.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Basma Hashmi
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald E Ingber
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts.,Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts
| |
Collapse
|
31
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Risteli M, Ruotsalainen H, Bergmann U, Venkatraman Girija U, Wallis R, Myllylä R. Lysyl hydroxylase 3 modifies lysine residues to facilitate oligomerization of mannan-binding lectin. PLoS One 2014; 9:e113498. [PMID: 25419660 PMCID: PMC4242627 DOI: 10.1371/journal.pone.0113498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3) is a multifunctional protein with lysyl hydroxylase, galactosyltransferase and glucosyltransferase activities. The LH3 has been shown to modify the lysine residues both in collagens and also in some collagenous proteins. In this study we show for the first time that LH3 is essential for catalyzing formation of the glucosylgalactosylhydroxylysines of mannan-binding lectin (MBL), the first component of the lectin pathway of complement activation. Furthermore, loss of the terminal glucose units on the derivatized lysine residues in mouse embryonic fibroblasts lacking the LH3 protein leads to defective disulphide bonding and oligomerization of rat MBL-A, with a decrease in the proportion of the larger functional MBL oligomers. The oligomerization could be completely restored with the full length LH3 or the amino-terminal fragment of LH3 that possesses the glycosyltransferase activities. Our results confirm that LH3 is the only enzyme capable of glucosylating the galactosylhydroxylysine residues in proteins with a collagenous domain. In mice lacking the lysyl hydroxylase activity of LH3, but with untouched galactosyltransferase and glucosyltransferase activities, reduced circulating MBL-A levels were observed. Oligomerization was normal, however and residual lysyl hydroxylation was compensated in part by other lysyl hydroxylase isoenzymes. Our data suggest that LH3 is commonly involved in biosynthesis of collagenous proteins and the glucosylation of galactosylhydroxylysines residues by LH3 is crucial for the formation of the functional high-molecular weight MBL oligomers.
Collapse
Affiliation(s)
- Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- * E-mail:
| | - Heli Ruotsalainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, Mass Spectrometry Core Facility, University of Oulu, Oulu, Finland
| | | | - Russell Wallis
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Raili Myllylä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
Perdivara I, Yamauchi M, Tomer KB. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status. Aust J Chem 2013; 66:760-769. [PMID: 25414518 PMCID: PMC4235766 DOI: 10.1071/ch13174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most abundant proteins in vertebrates - the collagen family proteins - play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification - the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking - have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography-mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA
| | - Kenneth B. Tomer
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| |
Collapse
|
34
|
Banerjee S, Isaacman-Beck J, Schneider VA, Granato M. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish. PLoS One 2013; 8:e54609. [PMID: 23349938 PMCID: PMC3548841 DOI: 10.1371/journal.pone.0054609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3–Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jesse Isaacman-Beck
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Valerie A. Schneider
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ruotsalainen H, Risteli M, Wang C, Wang Y, Karppinen M, Bergmann U, Kvist AP, Pospiech H, Herzig KH, Myllylä R. The activities of lysyl hydroxylase 3 (LH3) regulate the amount and oligomerization status of adiponectin. PLoS One 2012; 7:e50045. [PMID: 23209641 PMCID: PMC3510199 DOI: 10.1371/journal.pone.0050045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/15/2012] [Indexed: 01/04/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3) has lysyl hydroxylase, galactosyltransferase, and glucosyltransferase activities, which are sequentially required for the formation of glucosylgalactosyl hydroxylysines in collagens. Here we demonstrate for the first time that LH3 also modifies the lysine residues in the collagenous domain of adiponectin, which has important roles in glucose and lipid metabolism and inflammation. Hydroxylation and, especially, glycosylation of the lysine residues of adiponectin have been shown to be essential for the formation of the more active high molecular weight adiponectin oligomers and thus for its function. In cells that totally lack LH3 enzyme, the galactosylhydroxylysine residues of adiponectin were not glucosylated to glucosylgalactosylhydroxylysine residues and the formation of high and middle molecular weight adiponectin oligomers was impaired. Circulating adiponectin levels in mutant mice lacking the lysyl hydroxylase activity of LH3 were significantly reduced, which indicates that LH3 is required for complete modification of lysine residues in adiponectin and the loss of some of the glycosylated hydroxylysine residues severely affects the secretion of adiponectin. LH mutant mice with reduced adiponectin level showed a high fat diet-induced increase in glucose, triglyceride, and LDL-cholesterol levels, hallmarks of the metabolic syndrome in humans. Our results reveal the first indication that LH3 is an important regulator of adiponectin biosynthesis, secretion and activity and thus might be a potential candidate for therapeutic applications in diseases associated with obesity and insulin resistance.
Collapse
|
36
|
Abstract
Type I collagen is the most abundant structural protein in vertebrates. It is a heterotrimeric molecule composed of two α1 chains and one α2 chain, forming a long uninterrupted triple helical structure with short non-triple helical telopeptides at both the N- and C-termini. During biosynthesis, collagen acquires a number of post-translational modifications, including lysine modifications, that are critical to the structure and biological functions of this protein. Lysine modifications of collagen are highly complicated sequential processes catalysed by several groups of enzymes leading to the final step of biosynthesis, covalent intermolecular cross-linking. In the cell, specific lysine residues are hydroxylated to form hydroxylysine. Then specific hydroxylysine residues located in the helical domain of the molecule are glycosylated by the addition of galactose or glucose-galactose. Outside the cell, lysine and hydroxylysine residues in the N- and C-telopeptides can be oxidatively deaminated to produce reactive aldehydes that undergo a series of non-enzymatic condensation reactions to form covalent intra- and inter-molecular cross-links. Owing to the recent advances in molecular and cellular biology, and analytical technologies, the biological significance and molecular mechanisms of these modifications have been gradually elucidated. This chapter provides an overview on these enzymatic lysine modifications and subsequent cross-linking.
Collapse
|
37
|
Sricholpech M, Perdivara I, Yokoyama M, Nagaoka H, Terajima M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J Biol Chem 2012; 287:22998-3009. [PMID: 22573318 PMCID: PMC3391079 DOI: 10.1074/jbc.m112.343954] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/29/2012] [Indexed: 12/31/2022] Open
Abstract
Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846-8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization.
Collapse
Affiliation(s)
- Marnisa Sricholpech
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Wang C, Ristiluoma MM, Salo AM, Eskelinen S, Myllylä R. Lysyl hydroxylase 3 is secreted from cells by two pathways. J Cell Physiol 2011; 227:668-75. [DOI: 10.1002/jcp.22774] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
ColVI myopathies: where do we stand, where do we go? Skelet Muscle 2011; 1:30. [PMID: 21943391 PMCID: PMC3189202 DOI: 10.1186/2044-5040-1-30] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/23/2011] [Indexed: 02/08/2023] Open
Abstract
Collagen VI myopathies, caused by mutations in the genes encoding collagen type VI (ColVI), represent a clinical continuum with Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) at each end of the spectrum, and less well-defined intermediate phenotypes in between. ColVI myopathies also share common features with other disorders associated with prominent muscle contractures, making differential diagnosis difficult. This group of disorders, under-recognized for a long time, has aroused much interest over the past decade, with important advances made in understanding its molecular pathogenesis. Indeed, numerous mutations have now been reported in the COL6A1, COL6A2 and COL6A3 genes, a large proportion of which are de novo and exert dominant-negative effects. Genotype-phenotype correlations have also started to emerge, which reflect the various pathogenic mechanisms at play in these disorders: dominant de novo exon splicing that enables the synthesis and secretion of mutant tetramers and homozygous nonsense mutations that lead to premature termination of translation and complete loss of function are associated with early-onset, severe phenotypes. In this review, we present the current state of diagnosis and research in the field of ColVI myopathies. The past decade has provided significant advances, with the identification of altered cellular functions in animal models of ColVI myopathies and in patient samples. In particular, mitochondrial dysfunction and a defect in the autophagic clearance system of skeletal muscle have recently been reported, thereby opening potential therapeutic avenues.
Collapse
|
40
|
Rotili D, Altun M, Kawamura A, Wolf A, Fischer R, Leung IKH, Mackeen MM, Tian YM, Ratcliffe PJ, Mai A, Kessler BM, Schofield CJ. A photoreactive small-molecule probe for 2-oxoglutarate oxygenases. ACTA ACUST UNITED AC 2011; 18:642-654. [PMID: 21609845 DOI: 10.1016/j.chembiol.2011.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/29/2022]
Abstract
2-oxoglutarate (2-OG)-dependent oxygenases have diverse roles in human biology. The inhibition of several 2-OG oxygenases is being targeted for therapeutic intervention, including for cancer, anemia, and ischemic diseases. We report a small-molecule probe for 2-OG oxygenases that employs a hydroxyquinoline template coupled to a photoactivable crosslinking group and an affinity-purification tag. Following studies with recombinant proteins, the probe was shown to crosslink to 2-OG oxygenases in human crude cell extracts, including to proteins at endogenous levels. This approach is useful for inhibitor profiling, as demonstrated by crosslinking to the histone demethylase FBXL11 (KDM2A) in HEK293T nuclear extracts. The results also suggest that small-molecule probes may be suitable for substrate identification studies.
Collapse
Affiliation(s)
- Dante Rotili
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.,Pasteur Institute - Cenci Bolognetti Foundation, Department of Chemistry and Technologies of Drugs, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Mikael Altun
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Akane Kawamura
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Alexander Wolf
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Roman Fischer
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ivanhoe K H Leung
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Mukram M Mackeen
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ya-Min Tian
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Peter J Ratcliffe
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Antonello Mai
- Pasteur Institute - Cenci Bolognetti Foundation, Department of Chemistry and Technologies of Drugs, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Benedikt M Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
41
|
Jürgensen HJ, Madsen DH, Ingvarsen S, Melander MC, Gårdsvoll H, Patthy L, Engelholm LH, Behrendt N. A novel functional role of collagen glycosylation: interaction with the endocytic collagen receptor uparap/ENDO180. J Biol Chem 2011; 286:32736-48. [PMID: 21768090 DOI: 10.1074/jbc.m111.266692] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.
Collapse
|
42
|
Sricholpech M, Perdivara I, Nagaoka H, Yokoyama M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J Biol Chem 2011; 286:8846-56. [PMID: 21220425 DOI: 10.1074/jbc.m110.178509] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3), encoded by Plod3, is the multifunctional collagen-modifying enzyme possessing LH, hydroxylysine galactosyltransferase (GT), and galactosylhydroxylysine-glucosyltransferase (GGT) activities. Although an alteration in type I collagen glycosylation has been implicated in several osteogenic disorders, the role of LH3 in bone physiology has never been investigated. To elucidate the function of LH3 in bone type I collagen modifications, we used a short hairpin RNA technology in a mouse osteoblastic cell line, MC3T3-E1; generated single cell-derived clones stably suppressing LH3 (short hairpin (Sh) clones); and characterized the phenotype. Plod3 expression and the LH3 protein levels in the Sh clones were significantly suppressed when compared with the controls, MC3T3-E1, and the clone transfected with an empty vector. In comparison with controls, type I collagen synthesized by Sh clones (Sh collagen) showed a significant decrease in the extent of glucosylgalactosylhydroxylysine with a concomitant increase of galactosylhydroxylysine, whereas the total number of hydroxylysine residues was essentially unchanged. In an in vitro fibrillogenesis assay, Sh collagen showed accelerated fibrillogenesis compared with the controls. In addition, when recombinant LH3-V5/His protein was generated in 293 cells and subjected to GGT/GT activity assay, it showed GGT but not GT activity against denatured type I collagen. The results from this study clearly indicate that the major function of LH3 in osteoblasts is to glucosylate galactosylhydroxylysine residues in type I collagen and that an impairment of this LH3 function significantly affects type I collagen fibrillogenesis.
Collapse
Affiliation(s)
- Marnisa Sricholpech
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bunt S, Denholm B, Skaer H. Characterisation of the Drosophila procollagen lysyl hydroxylase, dPlod. Gene Expr Patterns 2010; 11:72-8. [PMID: 20888931 PMCID: PMC3044864 DOI: 10.1016/j.gep.2010.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/04/2022]
Abstract
The lysyl hydroxylase (LH) family of enzymes has important roles in the biosynthesis of collagen. In this paper we present the first description of Drosophila LH3 (dPlod), the only lysyl hydroxylase encoded in the fly genome. We have characterised in detail the developmental expression patterns of dPlod RNA and protein during embryogenesis. Consistent with its predicted function as a collagen-modifying enzyme, we find that dPlod is highly expressed in type-IV collagen-producing cells, particularly the haemocytes and fat body. Examination of dPlod subcellular localisation reveals that it is an endoplasmic reticulum resident protein, that partially overlaps with intracellular type-IV collagen. Furthermore, we show that dPlod is required for type-IV collagen secretion from haemocytes and fat body, and thus establish that LH3 enzyme function is conserved across widely separated animal phyla. Our findings, and the new tools we describe, establish the fly as an attractive model in which to study this important collagen biosynthesis enzyme.
Collapse
Affiliation(s)
- Stephanie Bunt
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | | | | |
Collapse
|