1
|
Manjunath P, Stojkovič G, Euro L, Konovalova S, Wanrooij S, Koski K, Tyynismaa H. Preferential binding of ADP-bound mitochondrial HSP70 to the nucleotide exchange factor GRPEL1 over GRPEL2. Protein Sci 2024; 33:e5190. [PMID: 39445986 PMCID: PMC11500471 DOI: 10.1002/pro.5190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.
Collapse
Affiliation(s)
- Pooja Manjunath
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Gorazd Stojkovič
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
- Present address:
University Hospital of UmeåUmeåSweden
| | - Liliya Euro
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Sjoerd Wanrooij
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
- Present address:
University Hospital of UmeåUmeåSweden
| | - Kristian Koski
- Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Bidooki SH, Sánchez-Marco J, Martínez-Beamonte R, Herrero-Continente T, Navarro MA, Rodríguez-Yoldi MJ, Osada J. Endoplasmic Reticulum Protein TXNDC5 Interacts with PRDX6 and HSPA9 to Regulate Glutathione Metabolism and Lipid Peroxidation in the Hepatic AML12 Cell Line. Int J Mol Sci 2023; 24:17131. [PMID: 38138960 PMCID: PMC10743020 DOI: 10.3390/ijms242417131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Non-alcoholic fatty liver disease or steatosis is an accumulation of fat in the liver. Increased amounts of non-esterified fatty acids, calcium deficiency, or insulin resistance may disturb endoplasmic reticulum (ER) homeostasis, which leads to the abnormal accumulation of misfolded proteins, activating the unfolded protein response. The ER is the primary location site for chaperones like thioredoxin domain-containing 5 (TXNDC5). Glutathione participates in cellular oxidative stress, and its interaction with TXNDC5 in the ER may decrease the disulfide bonds of this protein. In addition, glutathione is utilized by glutathione peroxidases to inactivate oxidized lipids. To characterize proteins interacting with TXNDC5, immunoprecipitation and liquid chromatography-mass spectrometry were used. Lipid peroxidation, reduced glutathione, inducible phospholipase A2 (iPLA2) and hepatic transcriptome were assessed in the AML12 and TXNDC5-deficient AML12 cell lines. The results showed that HSPA9 and PRDX6 interact with TXNDC5 in AML12 cells. In addition, TXNDC5 deficiency reduced the protein levels of PRDX6 and HSPA9 in AML12. Moreover, lipid peroxidation, glutathione and iPLA2 activities were significantly decreased in TXNDC5-deficient cells, and to find the cause of the PRDX6 protein reduction, proteasome suppression revealed no considerable effect on it. Finally, hepatic transcripts connected to PRDX6 and HSPA9 indicated an increase in the Dnaja3, Mfn2 and Prdx5 and a decrease in Npm1, Oplah, Gstp3, Gstm6, Gstt1, Serpina1a, Serpina1b, Serpina3m, Hsp90aa1 and Rps14 mRNA levels in AML12 KO cells. In conclusion, the lipid peroxidation system and glutathione mechanism in AML12 cells may be disrupted by the absence of TXNDC5, a novel protein-protein interacting partner of PRDX6 and HSPA9.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- CNRS, IPREM, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - María J. Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (J.S.-M.); (R.M.-B.); (T.H.-C.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
3
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
5
|
Dang X, Cao D, Zhao J, Schank M, Khanal S, Nguyen LNT, Wu XY, Zhang Y, Zhang J, Jiang Y, Ning S, Wang L, El Gazzar M, Moorman JP, Yao ZQ. Mitochondrial topoisomerase 1 inhibition induces topological DNA damage and T cell dysfunction in patients with chronic viral infection. Front Cell Infect Microbiol 2022; 12:1026293. [PMID: 36405960 PMCID: PMC9669385 DOI: 10.3389/fcimb.2022.1026293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
T cells are crucial for controlling viral infections; however, the mechanisms that dampen their responses during viral infections remain incompletely understood. Here, we studied the role and mechanisms of mitochondrial topoisomerase 1 (Top1mt) inhibition in mitochondrial dysfunction and T cell dysregulation using CD4 T cells from patients infected with HCV or HIV and compared it with CD4 T cells from healthy individuals following treatment with Top1 inhibitor - camptothecin (CPT). We found that Top1mt protein levels and enzymatic activity are significantly decreased, along with Top1 cleavage complex (Top1cc) formation, in mitochondria of CD4 T cells from HCV- and HIV-infected patients. Notably, treatment of healthy CD4 T cells with CPT caused similar changes, including inhibition of Top1mt, accumulation of Top1cc in mitochondria, increase in PARP1 cleavage, and decrease in mtDNA copy numbers. These molecular changes resulted in mitochondrial dysfunction, T cell dysregulation, and programmed cell death through multiple signaling pathways, recapitulating the phenotype we detected in CD4 T cells from HCV- and HIV-infected patients. Moreover, treatment of CD4 T cells from HCV or HIV patients with CPT further increased cellular and mitochondrial reactive oxygen species (ROS) production and cell apoptosis, demonstrating a critical role for Top1 in preventing mtDNA damage and cell death. These results provide new insights into the molecular mechanisms underlying immune dysregulation during viral infection and indicate that Top1 inhibition during chronic HCV or HIV infection can induce mtDNA damage and T cell dysfunction. Thus, reconstituting Top1mt protein may restore the mtDNA topology and T cell functions in humans with chronic viral infection.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| |
Collapse
|
6
|
Prasad M, Kataria P, Ningaraju S, Buddidathi R, Bankapalli K, Swetha C, Susarla G, Venkatesan R, D'Silva P, Shivaprasad PV. Double DJ-1 domain containing Arabidopsis DJ-1D is a robust macromolecule deglycase. THE NEW PHYTOLOGIST 2022; 236:1061-1074. [PMID: 35976797 DOI: 10.1111/nph.18414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Plants, being sessile, are prone to genotoxin-induced macromolecule damage. Among the inevitable damaging agents are reactive carbonyls that induce glycation of DNA, RNA and proteins to result in the build-up of advanced glycated end-products. However, it is unclear how plants repair glycated macromolecules. DJ-1/PARK7 members are a highly conserved family of moonlighting proteins having double domains in higher plants and single domains in other phyla. Here we show that Arabidopsis DJ-1D offers robust tolerance to endogenous and exogenous stresses through its ability to repair glycated DNA, RNA and proteins. DJ-1D also reduced the formation of reactive carbonyls through its efficient methylglyoxalase activity. Strikingly, full-length double domain-containing DJ-1D suppressed the formation of advanced glycated end-products in yeast and plants. DJ-1D also efficiently repaired glycated nucleic acids and nucleotides in vitro and mitochondrial DNA in vivo under stress, indicating the existence of a new DNA repair pathway in plants. We propose that multi-stress responding plant DJ-1 members, often present in multiple copies among plants, probably contributed to the adaptation to a variety of endogenous and exogenous stresses.
Collapse
Affiliation(s)
- Melvin Prasad
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Priyanka Kataria
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Sunayana Ningaraju
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Radhika Buddidathi
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Kondalarao Bankapalli
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Chenna Swetha
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
| | - Gautam Susarla
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences, GKVK Campus, Bangalore, 560 065, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560 012, India
| | | |
Collapse
|
7
|
Vishwanathan V, D’Silva P. Loss of Function of mtHsp70 Chaperone Variants Leads to Mitochondrial Dysfunction in Congenital Sideroblastic Anemia. Front Cell Dev Biol 2022; 10:847045. [PMID: 35252210 PMCID: PMC8888832 DOI: 10.3389/fcell.2022.847045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital Sideroblastic Anemias (CSA) is a group of rare genetic disorders characterized by the abnormal accumulation of iron in erythrocyte precursors. A common hallmark underlying these pathological conditions is mitochondrial dysfunction due to altered protein homeostasis, heme biosynthesis, and oxidative phosphorylation. A clinical study on congenital sideroblastic anemia has identified mutations in mitochondrial Hsp70 (mtHsp70/Mortalin). Mitochondrial Hsp70 plays a critical role in maintaining mitochondrial function by regulating several pathways, including protein import and folding, and iron-sulfur cluster synthesis. Owing to the structural and functional homology between human and yeast mtHsp70, we have utilized the yeast system to delineate the role of mtHsp70 variants in the etiology of CSA’s. Analogous mutations in yeast mtHsp70 exhibited temperature-sensitive growth phenotypes under non-respiratory and respiratory conditions. In vivo analyses indicate a perturbation in mitochondrial mass and functionality accompanied by an alteration in the organelle network and cellular redox levels. Preliminary in vitro biochemical studies of mtHsp70 mutants suggest impaired import function, altered ATPase activity and substrate interaction. Together, our findings suggest the loss of chaperone activity to be a pivotal factor in the pathophysiology of congenital sideroblastic anemia.
Collapse
|
8
|
GrpEL1 Regulates Mitochondrial Unfolded Protein Response after Experimental Subarachnoid Hemorrhage in vivo and in vitro. Brain Res Bull 2022; 181:97-108. [DOI: 10.1016/j.brainresbull.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
|
9
|
Mitochondrial "dysmorphology" in variant classification. Hum Genet 2021; 141:55-64. [PMID: 34750646 DOI: 10.1007/s00439-021-02378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/25/2021] [Indexed: 10/19/2022]
Abstract
Mitochondrial disorders are challenging to diagnose. Exome sequencing has greatly enhanced the diagnostic precision of these disorders although interpreting variants of uncertain significance (VUS) remains a formidable obstacle. Whether specific mitochondrial morphological changes can aid in the classification of these variants is unknown. Here, we describe two families (four patients), each with a VUS in a gene known to affect the morphology of mitochondria through a specific role in the fission-fusion balance. In the first, the missense variant in MFF, encoding a fission factor, was associated with impaired fission giving rise to a characteristically over-tubular appearance of mitochondria. In the second, the missense variant in DNAJA3, which has no listed OMIM phenotype, was associated with fragmented appearance of mitochondria consistent with its published deficiency states. In both instances, the highly specific phenotypes allowed us to upgrade the classification of the variants. Our results suggest that, in select cases, mitochondrial "dysmorphology" can be helpful in interpreting variants to reach a molecular diagnosis.
Collapse
|
10
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
11
|
Dores-Silva PR, Kiraly VTR, Moritz MNDO, Serrão VHB, Dos Passos PMS, Spagnol V, Teixeira FR, Gava LM, Cauvi DM, Ramos CHI, De Maio A, Borges JC. New insights on human Hsp70-escort protein 1: Chaperone activity, interaction with liposomes, cellular localizations and HSPA's self-assemblies remodeling. Int J Biol Macromol 2021; 182:772-784. [PMID: 33857516 DOI: 10.1016/j.ijbiomac.2021.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
The 70 kDa heat shock proteins (Hsp70) are prone to self-assembly under thermal stress conditions, forming supramolecular assemblies (SMA), what may have detrimental consequences for cellular viability. In mitochondria, the cochaperone Hsp70-escort protein 1 (Hep1) maintains mitochondrial Hsp70 (mtHsp70) in a soluble and functional state, contributing to preserving proteostasis. Here we investigated the interaction between human Hep1 (hHep1) and HSPA9 (human mtHsp70) or HSPA1A (Hsp70-1A) in monomeric and thermic SMA states to unveil further information about the involved mechanisms. hHep1 was capable of blocking the formation of HSPA SMAs under a thermic treatment and stimulated HSPA ATPase activity in both monomeric and preformed SMA. The interaction of hHep1 with both monomeric and SMA HSPAs displayed a stoichiometric ratio close to 1, suggesting that hHep1 has access to most protomers within the SMA. Interestingly, hHep1 remodeled HSPA9 and HSPA1A SMAs into smaller forms. Furthermore, hHep1 was detected in the mitochondria and nucleus of cells transfected with the respective coding DNA and interacted with liposomes resembling mitochondrial membranes. Altogether, these new features reinforce that hHep1 act as a "chaperone for a chaperone", which may play a critical role in cellular proteostasis.
Collapse
Affiliation(s)
- Paulo Roberto Dores-Silva
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP, Brazil; Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, USA
| | | | | | | | | | - Valentine Spagnol
- Department of Genetics and Evolution, Federal University of Sao Carlos, SP, Brazil
| | | | | | - David Mario Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, USA
| | | | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, USA; Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, USA; Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Júlio César Borges
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP, Brazil.
| |
Collapse
|
12
|
Dhamad AE, Greene E, Sales M, Nguyen P, Beer L, Liyanage R, Dridi S. 75-kDa glucose-regulated protein (GRP75) is a novel molecular signature for heat stress response in avian species. Am J Physiol Cell Physiol 2020; 318:C289-C303. [DOI: 10.1152/ajpcell.00334.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-regulated protein 75 (GRP75) was first characterized in mammals as a heat shock protein-70 (HSP70) family stress chaperone based on its sequence homology. Extensive studies in mammals showed that GRP75 is induced by various stressors such as glucose deprivation, oxidative stress, and hypoxia, although it remained unresponsive to the heat shock. Such investigations are scarce in avian (nonmammalian) species. We here identified chicken GRP75 by using immunoprecipitation assay integrated with LC-MS/MS, and found that its amino acid sequence is conserved with high homology (52.5%) to the HSP70 family. Bioinformatics and 3D-structure prediction indicate that, like most HSPs, chicken GRP75 has two principal domains (the NH2-terminal ATPase and COOH-terminal region). Immunofluorescence staining shows that GRP75 is localized predominantly in the avian myoblast and hepatocyte mitochondria. Heat stress exposure upregulates GRP75 expression in a species-, genotype-, and tissue-specific manner. Overexpression of GRP75 reduces avian cell viability, and blockade of GRP75 by its small molecular inhibitor MKT-077 rescues avian cell viability during heat stress. Taken together, this is the first evidence showing that chicken GRP75, unlike its mammalian ortholog, is responsive to heat shock and plays a key role in cell survival/death pathways. Since modern avian species have high metabolic rates and are sensitive to high environmental temperature, GRP75 could open new vistas in mechanistic understanding of heat stress responses and thermotolerance in avian species.
Collapse
Affiliation(s)
- Ahmed Edan Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Marites Sales
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Phuong Nguyen
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Rohana Liyanage
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
13
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
A novel variant of the human mitochondrial DnaJ protein, Tid1, associates with a human disease exhibiting developmental delay and polyneuropathy. Eur J Hum Genet 2019; 27:1072-1080. [PMID: 30770860 DOI: 10.1038/s41431-019-0358-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we describe a single patient from a consanguineous family, who suffers from developmental delay, intellectual disability, hypermetropia, moderate alternating esotropia, unsteady gait, and peripheral polyneuropathy. Brain MRI revealed basal ganglia disease. Exome analysis disclosed a homozygous variant, c.452G>C (p.(Arg151Thr)), in TID1, encoding a mitochondrial J-protein chaperone that is known for its function in assisting the Hsp70 chaperone, mortalin, in mediating the refolding of denatured protein and dissolving protein aggregates. Results from in vitro import assays showed that both wild type and c.452G>C (p.(Arg151Thr)) are efficiently imported into isolated mitochondria. However, the import rate of the c.452G>C (p.(Arg151Thr)) variant was less than that of the wild-type protein. In the second part of this study, we demonstrated, in vitro, that the disaggregation function of the mortalin/Tid1 team is compromised in the TID1 c.452G>C (p.(Arg151Thr)) variant, as its chaperone activity has a level similar to that of the non-functional H→Q HPD domain variant. The results shed light on the essential function played by Tid1 during neuronal development.
Collapse
|
15
|
Nyakundi DO, Bentley SJ, Boshoff A. Hsp70 Escort Protein: More Than a Regulator of Mitochondrial Hsp70. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713104919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hsp70 members occupy a central role in proteostasis and are found in different eukaryotic
cellular compartments. The mitochondrial Hsp70/J-protein machinery performs multiple functions vital
for the proper functioning of the mitochondria, including forming part of the import motor that
transports proteins from the cytosol into the matrix and inner membrane, and subsequently folds these
proteins in the mitochondria. However, unlike other Hsp70s, mitochondrial Hsp70 (mtHsp70) has the
propensity to self-aggregate, accumulating as insoluble aggregates. The self-aggregation of mtHsp70 is
caused by both interdomain and intramolecular communication within the ATPase and linker domains.
Since mtHsp70 is unable to fold itself into an active conformation, it requires an Hsp70 escort protein
(Hep) to both inhibit self-aggregation and promote the correct folding. Hep1 orthologues are present in
the mitochondria of many eukaryotic cells but are absent in prokaryotes. Hep1 proteins are relatively
small and contain a highly conserved zinc-finger domain with one tetracysteine motif that is essential
for binding zinc ions and maintaining the function and solubility of the protein. The zinc-finger domain
lies towards the C-terminus of Hep1 proteins, with very little conservation outside of this domain.
Other than maintaining mtHsp70 in a functional state, Hep1 proteins play a variety of other roles in the
cell and have been proposed to function as both chaperones and co-chaperones. The cellular
localisation and some of the functions are often speculative and are not common to all Hep1 proteins
analysed to date.
Collapse
Affiliation(s)
- David O. Nyakundi
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
16
|
Allu PK, Boggula Y, Karri S, Marada A, Krishnamoorthy T, Sepuri NBV. A conserved R type Methionine Sulfoxide Reductase reverses oxidized GrpEL1/Mge1 to regulate Hsp70 chaperone cycle. Sci Rep 2018; 8:2716. [PMID: 29426933 PMCID: PMC5807549 DOI: 10.1038/s41598-018-21083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cells across evolution employ reversible oxidative modification of methionine and cysteine amino acids within proteins to regulate responses to redox stress. Previously we have shown that mitochondrial localized methionine sulfoxide reductase (Mxr2) reversibly regulates oxidized yeast Mge1 (yMge1), a co-chaperone of Hsp70/Ssc1 to maintain protein homeostasis during oxidative stress. However, the specificity and the conservation of the reversible methionine oxidation mechanism in higher eukaryotes is debatable as human GrpEL1 (hGrpEL1) unlike its homolog yMge1 harbors two methionine residues and multiple cysteines besides the mammalian mitochondria hosting R and S types of Mxrs/Msrs. In this study, using yeast as a surrogate system, we show that hGRPEL1 and R type MSRs but not the S type MSRs complement the deletion of yeast MGE1 or MXR2 respectively. Our investigations show that R type Msrs interact selectively with oxidized hGrpEL1/yMge1 in an oxidative stress dependent manner, reduce the conserved hGrpEL1-Met146-SO and rescue the Hsp70 ATPase activity. In addition, a single point mutation in hGrpEL1-M146L rescues the slow growth phenotype of yeast MXR2 deletion under oxidative duress. Our study illustrates the evolutionarily conserved formation of specific Met-R-SO in hGrpEL1/yMge1 and the essential and canonical role of R type Msrs/Mxrs in mitochondrial redox mechanism.
Collapse
Affiliation(s)
- Praveen Kumar Allu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Yerranna Boggula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Srinivasu Karri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Adinarayana Marada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Thanuja Krishnamoorthy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
17
|
Srivastava S, Savanur MA, Sinha D, Birje A, R V, Saha PP, D'Silva P. Regulation of mitochondrial protein import by the nucleotide exchange factors GrpEL1 and GrpEL2 in human cells. J Biol Chem 2017; 292:18075-18090. [PMID: 28848044 DOI: 10.1074/jbc.m117.788463] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/18/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are organelles indispensable for maintenance of cellular energy homeostasis. Most mitochondrial proteins are nuclearly encoded and are imported into the matrix compartment where they are properly folded. This process is facilitated by the mitochondrial heat shock protein 70 (mtHsp70), a chaperone contributing to mitochondrial protein quality control. The affinity of mtHsp70 for its protein clients and its chaperone function are regulated by binding of ATP/ADP to mtHsp70's nucleotide-binding domain. Nucleotide exchange factors (NEFs) play a crucial role in exchanging ADP for ATP at mtHsp70's nucleotide-binding domain, thereby modulating mtHsp70's chaperone activity. A single NEF, Mge1, regulates mtHsp70's chaperone activity in lower eukaryotes, but the mammalian orthologs are unknown. Here, we report that two putative NEF orthologs, GrpE-like 1 (GrpEL1) and GrpEL2, modulate mtHsp70's function in human cells. We found that both GrpEL1 and GrpEL2 associate with mtHsp70 as a hetero-oligomeric subcomplex and regulate mtHsp70 function. The formation of this subcomplex was critical for conferring stability to the NEFs, helped fine-tune mitochondrial protein quality control, and regulated crucial mtHsp70 functions, such as import of preproteins and biogenesis of Fe-S clusters. Our results also suggested that GrpEL2 has evolved as a possible stress resistance protein in higher vertebrates to maintain chaperone activity under stress conditions. In conclusion, our findings support the idea that GrpEL1 has a role as a stress modulator in mammalian cells and highlight that multiple NEFs are involved in controlling protein quality in mammalian mitochondria.
Collapse
Affiliation(s)
- Shubhi Srivastava
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Devanjan Sinha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijit Birje
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vigneshwaran R
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prasenjit Prasad Saha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
|
19
|
Structural and functional studies of the Leishmania braziliensis mitochondrial Hsp70: Similarities and dissimilarities to human orthologues. Arch Biochem Biophys 2016; 613:43-52. [PMID: 27840097 DOI: 10.1016/j.abb.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
Heat shock protein 70 kDa (Hsp70) is a conserved molecular chaperone family involved in several functions related to protein homeostasis. In eukaryotes, Hsp70 homologues are found in all cell compartments. The mitochondrial Hsp70 isoform (mtHsp70) is involved in import of mitochondrial matrix proteins as well as their folding and maturation. Moreover, mtHsp70 has the propensity to self-aggregate, and it depends on the action of the co-chaperone Hsp70-escort protein 1 (Hep1) to be produced functional. Here, we analyze the solution structure and function of mtHsp70 of Leishmania braziliensis (LbmtHsp70). This recombinant protein was obtained folded, in the monomeric state and it has an elongated shape. We observed that LbmtHsp70 suffers thermal aggregation that depends on the protein concentration and is composed of domains with different thermal stabilities. LbmtHsp70 interacted with adenosine nucleotides with a thermodynamic signature different from those reported for human orthologues and interacted, driven by both enthalpy and entropy, with L. braziliensis Hep1 (LbHep1) with a nanomolar dissociation constant. Moreover, LbHep1 stimulated the LbmtHsp70 ATPase activity. Since little is known about mitochondrial Hsp70, particularly in protozoa, we believe that our data are of interest for understanding protozoan Hsp70 machinery.
Collapse
|
20
|
Sinha D, Srivastava S, D'Silva P. Functional Diversity of Human Mitochondrial J-proteins Is Independent of Their Association with the Inner Membrane Presequence Translocase. J Biol Chem 2016; 291:17345-59. [PMID: 27330077 DOI: 10.1074/jbc.m116.738146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/30/2023] Open
Abstract
Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel.
Collapse
Affiliation(s)
- Devanjan Sinha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Shubhi Srivastava
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Patrick D'Silva
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
21
|
Nyakundi DO, Vuko LAM, Bentley SJ, Hoppe H, Blatch GL, Boshoff A. Plasmodium falciparum Hep1 Is Required to Prevent the Self Aggregation of PfHsp70-3. PLoS One 2016; 11:e0156446. [PMID: 27253881 PMCID: PMC4890766 DOI: 10.1371/journal.pone.0156446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/14/2016] [Indexed: 11/29/2022] Open
Abstract
The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria.
Collapse
Affiliation(s)
- David O. Nyakundi
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Loyiso A. M. Vuko
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
- * E-mail:
| |
Collapse
|
22
|
Krysiak K, Tibbitts JF, Shao J, Liu T, Ndonwi M, Walter MJ. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol 2015; 43:319-30.e10. [PMID: 25550197 PMCID: PMC4375022 DOI: 10.1016/j.exphem.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/23/2022]
Abstract
HSPA9 is located on chromosome 5q31.2 in humans, a region that is commonly deleted in patients with myeloid malignancies [del(5q)], including myelodysplastic syndrome (MDS). HSPA9 expression is reduced by 50% in patients with del(5q)-associated MDS, consistent with haploinsufficient levels. Zebrafish mutants and knockdown studies in human and mouse cells have implicated a role for HSPA9 in hematopoiesis. To comprehensively evaluate the effects of Hspa9 haploinsufficiency on hematopoiesis, we generated an Hspa9 knockout mouse model. Although homozygous knockout of Hspa9 is embryonically lethal, mice with heterozygous deletion of Hspa9 (Hspa9(+/-)) are viable and have a 50% reduction in Hspa9 expression. Hspa9(+/-) mice have normal basal hematopoiesis and do not develop MDS. However, Hspa9(+/-) mice have a cell-intrinsic reduction in bone marrow colony-forming unit-PreB colony formation without alterations in the number of B-cell progenitors in vivo, consistent with a functional defect in Hspa9(+/-) B-cell progenitors. We further reduced Hspa9 expression (<50%) using RNA interference and observed reduced B-cell progenitors in vivo, indicating that appropriate levels (≥50%) of Hspa9 are required for normal B lymphopoiesis in vivo. Knockdown of Hspa9 in an interleukin 7 (IL-7)-dependent mouse B-cell line reduced signal transducer and activator of transcription 5 (Stat5) phosphorylation following IL-7 receptor stimulation, supporting a role for Hspa9 in Stat5 signaling in B cells. Collectively, these data imply a role for Hspa9 in B lymphopoiesis and Stat5 activation downstream of IL-7 signaling.
Collapse
Affiliation(s)
- Kilannin Krysiak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin F Tibbitts
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Shao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tuoen Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Ndonwi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Walter
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
23
|
Samaddar M, Goswami AV, Purushotham J, Hegde P, D'Silva P. Role of the loop L4,5 in allosteric regulation in mtHsp70s: in vivo significance of domain communication and its implications in protein translocation. Mol Biol Cell 2014; 25:2129-42. [PMID: 24829379 PMCID: PMC4091826 DOI: 10.1091/mbc.e14-03-0821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SBD loop L4,5 in mtHsp70s functions synergistically with the linker region to maintain the interdomain interface governing protein translocation and mitochondrial biogenesis. Intragenic suppressors of a communication-impaired L4,5 mutant reveal molecular insights into the allosteric regulation of mtHsp70s at the in vivo level. Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L4,5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L4,5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L4,5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein–bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Madhuja Samaddar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jaya Purushotham
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpa Hegde
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Essential role of TID1 in maintaining mitochondrial membrane potential homogeneity and mitochondrial DNA integrity. Mol Cell Biol 2014; 34:1427-37. [PMID: 24492964 DOI: 10.1128/mcb.01021-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The tumorous imaginal disc 1 (TID1) protein localizes mainly to the mitochondrial compartment, wherein its function remains largely unknown. Here we report that TID1 regulates the steady-state homogeneity of the mitochondrial membrane potential (Δψ) and maintains the integrity of mitochondrial DNA (mtDNA). Silencing of TID1 with RNA interference leads to changes in the distribution of Δψ along the mitochondrial network, characterized by an increase in Δψ in focal regions. This effect can be rescued by ectopic expression of a TID1 construct with an intact J domain. Chronic treatment with a low dose of oligomycin, an inhibitor of F1Fo ATP synthase, decreases the cellular ATP content and phenocopies TID1 loss of function, indicating a connection between the disruption of mitochondrial bioenergetics and hyperpolarization. Prolonged silencing of TID1 or low-dose oligomycin treatment leads to the loss of mtDNA and the consequent inhibition of oxygen consumption. Biochemical and colocalization data indicate that complex I aggregation underlies the focal accumulation of Δψ in TID1-silenced cells. Given that TID1 is proposed to function as a cochaperone, these data show that TID1 prevents complex I aggregation and support the existence of a TID1-mediated stress response to ATP synthase inhibition.
Collapse
|
25
|
Cai K, Frederick RO, Kim JH, Reinen NM, Tonelli M, Markley JL. Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron-sulfur cluster scaffold protein (ISCU). J Biol Chem 2013; 288:28755-70. [PMID: 23940031 PMCID: PMC3789972 DOI: 10.1074/jbc.m113.482042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ISCU is the scaffold protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis and transfer. NMR spectra have revealed that ISCU populates two conformational states; that is, a more structured state (S) and a partially disordered state (D). We identified two single amino acid substitutions (D39V and N90A) that stabilize the S-state and two (D39A and H105A) that stabilize the D-state. We isolated the two constituent proteins of the human cysteine desulfurase complex (NFS1 and ISD11) separately and used NMR spectroscopy to investigate their interaction with ISCU. We found that ISD11 does not interact directly with ISCU. By contrast, NFS1 binds preferentially to the D-state of ISCU as does the NFS1-ISD11 complex. An in vitro Fe-S cluster assembly assay showed that [2Fe-2S] and [4Fe-4S] clusters are assembled on ISCU when catalyzed by NFS1 alone and at a higher rate when catalyzed by the NFS1-ISD11 complex. The DnaK-type chaperone (mtHSP70) and DnaJ-type co-chaperone (HSC20) are involved in the transfer of clusters bound to ISCU to acceptor proteins in an ATP-dependent reaction. We found that the ATPase activity of mtHSP70 is accelerated by HSC20 and further accelerated by HSC20 plus ISCU. NMR studies have shown that mtHSP70 binds preferentially to the D-state of ISCU and that HSC20 binds preferentially to the S-state of ISCU.
Collapse
Affiliation(s)
- Kai Cai
- From the Center for Eukaryotic Structural Genomics and
| | | | | | | | | | | |
Collapse
|
26
|
Lin XQ, Liang SL, Han SY, Zheng SP, Ye YR, Lin Y. Quantitative iTRAQ LC-MS/MS proteomics reveals the cellular response to heterologous protein overexpression and the regulation of HAC1 in Pichia pastoris. J Proteomics 2013; 91:58-72. [PMID: 23851310 DOI: 10.1016/j.jprot.2013.06.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/06/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022]
Abstract
UNLABELLED The methylotrophic yeast Pichia pastoris is an attractive platform for a plethora of recombinant proteins. There is growing evidence that host cells producing recombinant proteins are exposed to a variety of cellular stresses resulting in the induction of the unfolded protein response (UPR) pathway. At present, there is only limited information about the cellular reactions of the host cells at the level of the proteome, especially with regard to recombinant protein secretion. Here we monitored xylanase A secretion from Bacillus halodurans C-125 (xynA) in P. pastoris, using strains containing different copy numbers of the gene encoding xylanase A and co-overexpressing the gene encoding the UPR-regulating transcription factor HAC1 by applying a quantitative proteomics approach (iTRAQ-LC-MS/MS). Many important cellular processes, including carbon metabolism, stress response and protein folding are affected in the investigated conditions. Notably, the analysis revealed that strong over-expression of xynA can efficiently improve protein production but simultaneously cause an unfolded protein burden with a subsequent induction of the UPR. This limits the further improvement of protein production levels. Remarkably, constitutive expression of the gene encoding HAC1 lessens the unfolded protein burden by attenuating protein synthesis and increasing ER protein folding efficiency which is beneficial for protein secretion. BIOLOGICAL SIGNIFICANCE Pichia pastoris expression systems have been successfully used for over 20years in basic research and in the biotechnology industry for the production and secretion of a wide range of recombinant proteins. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. It has become obvious that many protein products can lead to severe stress on the host cell when being over-expressed, thus limiting the potential yield. Detailed understanding of the physiological responses to such stresses gives rise to engineering of host cells that can better cope with the stress factors. Therefore, the regulatory mechanism of heterologous protein secretion by quantitative mass-spectrometry (MS) proteomics is a growing field and an important endeavor in improving protein annotation. Many important cellular processes, including carbon and amino acid metabolism, stress response and protein folding are affected in the over-expression strains. This data represent a first step towards a systems wide approach to assess the response with recombinant protein induced stress in P. pastoris.
Collapse
Affiliation(s)
- Xiao-qiong Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Dores-Silva PR, Minari K, Ramos CHI, Barbosa LRS, Borges JC. Structural and stability studies of the human mtHsp70-escort protein 1: an essential mortalin co-chaperone. Int J Biol Macromol 2013; 56:140-8. [PMID: 23462535 DOI: 10.1016/j.ijbiomac.2013.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 11/20/2022]
Abstract
Mitochondrial Hsp70 is involved in both protein import and folding process, among other essential functions. In mammalian cells, due to its role in the malignant process, it receives the name of mortalin. Despite its importance in protein and mitochondrial homeostasis, mortalin tends to self-aggregate in vitro and in vivo, the later leads to mitochondrial biogenesis failure. Recently, a zinc-finger protein, named Hsp70-escort protein 1 (Hep1, also called Zim17/TIM15/DNLZ), was described as an essential human mitochondrial mortalin co-chaperone which avoids its self-aggregation. Here, we report structural studies of the human Hep1 (hHep1). The results indicate that hHep1 shares some structural similarities with the yeast ortholog despite the low identity and functional differences. We also observed that hHep1 oligomerizes in a concentration-dependent fashion and that the zinc ion, which is essential for hHep1 in vivo function, has an important protein-structure stabilizing effect.
Collapse
Affiliation(s)
- P R Dores-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | | | | | | | | |
Collapse
|
28
|
Fraga H, Papaleo E, Vega S, Velazquez-Campoy A, Ventura S. Zinc induced folding is essential for TIM15 activity as an mtHsp70 chaperone. Biochim Biophys Acta Gen Subj 2013; 1830:2139-49. [DOI: 10.1016/j.bbagen.2012.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/21/2012] [Accepted: 10/03/2012] [Indexed: 11/15/2022]
|
29
|
Abstract
Hep1 acts as a specialized chaperone to mediate the de novo folding of yeast mitochondrial Hsp70. Chaperones mediate protein folding and prevent deleterious protein aggregation in the cell. However, little is known about the biogenesis of chaperones themselves. In this study, we report on the biogenesis of the yeast mitochondrial Hsp70 (mtHsp70) chaperone, which is essential for the functionality of mitochondria. We show in vivo and in organello that mtHsp70 rapidly folds after its import into mitochondria, with its ATPase domain and peptide-binding domain (PBD) adopting their structures independently of each other. Importantly, folding of the ATPase domain but not of the PBD was severely affected in the absence of the Hsp70 escort protein, Hep1. We reconstituted the folding of mtHsp70, demonstrating that Hep1 and ATP/ADP were required and sufficient for its de novo folding. Our data show that Hep1 bound to a folding intermediate of mtHsp70. Binding of an adenine nucleotide triggered release of Hep1 and folding of the intermediate into native mtHsp70. Thus, Hep1 acts as a specialized chaperone mediating the de novo folding of an Hsp70 chaperone.
Collapse
Affiliation(s)
- Marta Blamowska
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | | |
Collapse
|
30
|
Goswami AV, Samaddar M, Sinha D, Purushotham J, D'Silva P. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease. Hum Mol Genet 2012; 21:3317-32. [PMID: 22544056 PMCID: PMC3392108 DOI: 10.1093/hmg/dds162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.
Collapse
Affiliation(s)
| | | | | | | | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
31
|
Kluth J, Schmidt A, März M, Krupinska K, Lorbiecke R. Arabidopsis
Zinc Ribbon 3 is the ortholog of yeast mitochondrial HSP70 escort protein HEP1 and belongs to an ancient protein family in mitochondria and plastids. FEBS Lett 2012; 586:3071-6. [DOI: 10.1016/j.febslet.2012.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 01/14/2023]
|
32
|
Londono C, Osorio C, Gama V, Alzate O. Mortalin, apoptosis, and neurodegeneration. Biomolecules 2012; 2:143-64. [PMID: 24970131 PMCID: PMC4030873 DOI: 10.3390/biom2010143] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023] Open
Abstract
Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin's binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolina Londono
- Systems Proteomics Center Laboratory, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, Escuela de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Cristina Osorio
- Systems Proteomics Center Laboratory and Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Vivian Gama
- Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Oscar Alzate
- Systems Proteomics Center Laboratory, Department of Cell and Developmental Biology, Program in Molecular Biology and Biotechnology and Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, Escuela de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia.
| |
Collapse
|
33
|
Vu MT, Zhai P, Lee J, Guerra C, Liu S, Gustin MC, Silberg JJ. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9. Protein Sci 2012; 21:258-67. [PMID: 22162012 DOI: 10.1002/pro.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/04/2011] [Accepted: 11/27/2011] [Indexed: 01/20/2023]
Abstract
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones.
Collapse
Affiliation(s)
- Michael T Vu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Iosefson O, Sharon S, Goloubinoff P, Azem A. Reactivation of protein aggregates by mortalin and Tid1--the human mitochondrial Hsp70 chaperone system. Cell Stress Chaperones 2012; 17:57-66. [PMID: 21811887 PMCID: PMC3227851 DOI: 10.1007/s12192-011-0285-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/05/2011] [Accepted: 07/13/2011] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.
Collapse
Affiliation(s)
- Ohad Iosefson
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Shelly Sharon
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Pierre Goloubinoff
- Département de Biologie Moléculaire Végétale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
35
|
Díaz de la Loza MDC, Gallardo M, García-Rubio ML, Izquierdo A, Herrero E, Aguilera A, Wellinger RE. Zim17/Tim15 links mitochondrial iron-sulfur cluster biosynthesis to nuclear genome stability. Nucleic Acids Res 2011; 39:6002-15. [PMID: 21511814 PMCID: PMC3152343 DOI: 10.1093/nar/gkr193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron–sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron–sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron–sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.
Collapse
Affiliation(s)
- María Del Carmen Díaz de la Loza
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Avd Américo Vespucio, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhai P, Vu MT, Hoff KG, Silberg JJ. A conserved histidine in human DNLZ/HEP is required for stimulation of HSPA9 ATPase activity. Biochem Biophys Res Commun 2011; 408:589-94. [PMID: 21530495 DOI: 10.1016/j.bbrc.2011.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
The DNL-type zinc-finger protein DNLZ regulates the activity and solubility of the human mitochondrial chaperone HSPA9. To identify DNLZ residues that are critical for chaperone regulation, we carried out an alanine mutagenesis scan of charged residues in a W115I mutant of human DNLZ and assessed the effect of each mutation on interactions with HSPA9. All mutants analyzed promote the solubility of HSPA9 upon expression in Escherichia coli. However, binding studies examining the effect of DNLZ mutants on chaperone tryptophan fluorescence identified three mutations (R81A, H107A, and D111A) that decrease DNLZ binding affinity for nucleotide-free chaperone. In addition, ATPase measurements revealed that DNLZ-R81A and DNLZ-D111A both stimulate the catalytic activity HSPA9, whereas DNLZ-H107A does not elicit an increase in activity even when present at a concentration that is 10-fold higher than the level required for half-maximal stimulation by DNLZ. These findings implicate a conserved histidine as critical for DNLZ regulation of mitochondrial HSPA9 catalytic activity.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | |
Collapse
|
37
|
Pareek G, Samaddar M, D'Silva P. Primary sequence that determines the functional overlap between mitochondrial heat shock protein 70 Ssc1 and Ssc3 of Saccharomyces cerevisiae. J Biol Chem 2011; 286:19001-13. [PMID: 21474445 PMCID: PMC3099715 DOI: 10.1074/jbc.m110.197434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can "make or break" mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
38
|
Clark MS, Thorne MAS, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 2011; 6:e15919. [PMID: 21253607 PMCID: PMC3017093 DOI: 10.1371/journal.pone.0015919] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS), providing a resource for population and also gene function studies. CONCLUSIONS This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding marine ectotherms' capacities to cope with environmental change.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
39
|
Smirnov A, Comte C, Mager-Heckel AM, Addis V, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I. Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J Biol Chem 2010; 285:30792-803. [PMID: 20663881 DOI: 10.1074/jbc.m110.151183] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
5 S rRNA is an essential component of ribosomes. In eukaryotic cells, it is distinguished by particularly complex intracellular traffic, including nuclear export and re-import. The finding that in mammalian cells 5 S rRNA can eventually escape its usual circuit toward nascent ribosomes to get imported into mitochondria has made the scheme more complex, and it has raised questions about both the mechanism of 5 S rRNA mitochondrial targeting and its function inside the organelle. Previously, we showed that import of 5 S rRNA into mitochondria requires unknown cytosolic proteins. Here, one of them was identified as mitochondrial thiosulfate sulfurtransferase, rhodanese. Rhodanese in its misfolded form was found to possess a strong and specific 5 S rRNA binding activity, exploiting sites found earlier to function as signals of 5 S rRNA mitochondrial localization. The interaction with 5 S rRNA occurs cotranslationally and results in formation of a stable complex in which rhodanese is preserved in a compact enzymatically inactive conformation. Human 5 S rRNA in a branched Mg(2+)-free form, upon its interaction with misfolded rhodanese, demonstrates characteristic functional traits of Hsp40 cochaperones implicated in mitochondrial precursor protein targeting, suggesting that it may use this mechanism to ensure its own mitochondrial localization. Finally, silencing of the rhodanese gene caused not only a proportional decrease of 5 S rRNA import but also a general inhibition of mitochondrial translation, indicating the functional importance of the imported 5 S rRNA inside the organelle.
Collapse
Affiliation(s)
- Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156, CNRS-University of Strasbourg, Strasbourg 67084, France
| | | | | | | | | | | | | | | |
Collapse
|