1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Poudel S, Shrestha H, Pan Y, Li Q, Li K, Im C, Dixon SB, Ehrhardt MJ, Mulrooney DA, Zhou S, Tan H, High AA, Burridge PW, Bhatia S, Jefferies JL, Ness KK, Hudson MM, Robison LL, Armstrong GT, Peng J, Ky B, Yasui Y, Sapkota Y. Serum Proteins Predict Treatment-Related Cardiomyopathy Among Survivors of Childhood Cancer. JACC CardioOncol 2025; 7:56-67. [PMID: 39896123 PMCID: PMC11782007 DOI: 10.1016/j.jaccao.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 02/04/2025] Open
Abstract
Background Anthracyclines, a highly effective chemotherapy for many pediatric malignancies, cause cardiomyopathy, a major late effect in adult survivors. Biomarkers are needed for early detection and targeted interventions for anthracycline-associated cardiomyopathy. Objectives The aim of this study was to determine if serum proteins and/or metabolites in asymptomatic childhood cancer survivors can discriminate symptomatic cardiomyopathy. Methods Using an untargeted mass spectrometry-based approach, 867 proteins and 218 metabolites were profiled in serum samples of 75 asymptomatic survivors with subclinical cardiomyopathy and 75 individually matched survivors without cardiomyopathy from SJLIFE (St. Jude Lifetime Cohort Study). Models were developed on the basis of the most influential differentially expressed proteins and metabolites, using conditional logistic regression with a least absolute shrinkage and selection operator penalty. The best performing model was evaluated in 23 independent survivors with severe or symptomatic cardiomyopathy and 23 individually matched cardiomyopathy-free survivors. Results A 27-protein model identified using conditional logistic regression with a least absolute shrinkage and selection operator penalty discriminated symptomatic or severe cardiomyopathy requiring heart failure medications in independent survivors; 19 of 23 individually matched survivors with and without cardiomyopathy were correctly discriminated with 82.6% (95% CI: 71.4%-93.8%) accuracy. Pathway enrichment analysis revealed that the 27 proteins were enriched in various biological processes, many of which have been linked to anthracycline-related cardiomyopathy. Conclusions A risk model was developed on the basis of the differential expression of serum proteins in subclinical cardiomyopathy, which accurately discriminated the risk for severe cardiomyopathy in an independent, matched sample. Further assessment of these proteins as biomarkers of cardiomyopathy risk should be conducted in external larger cohorts and through prospective studies.
Collapse
Affiliation(s)
- Suresh Poudel
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Him Shrestha
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yue Pan
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Qian Li
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kendrick Li
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cindy Im
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Suiping Zhou
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Haiyan Tan
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Anthony A. High
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Smita Bhatia
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John L. Jefferies
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kirsten K. Ness
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | | | | | - Junmin Peng
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Bonnie Ky
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yutaka Yasui
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Hartill V, Kabir M, Best S, Shaikh Qureshi WM, Baross SL, Lord J, Yu J, Sasaki E, Needham H, Shears D, Roche M, Wall E, Cooper N, Ryan G, Eason J, Johnson R, Keavney B, Hentges KE, Johnson CA. Molecular diagnoses and candidate gene identification in the congenital heart disease cohorts of the 100,000 genomes project. Eur J Hum Genet 2024:10.1038/s41431-024-01744-2. [PMID: 39587356 DOI: 10.1038/s41431-024-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Congenital heart disease (CHD) describes a structural cardiac defect present from birth. A cohort of participants recruited to the 100,000 Genomes Project (100 kGP) with syndromic CHD (286 probands) and familial CHD (262 probands) were identified. "Tiering" following genome sequencing data analysis prioritised variants in gene panels linked to participant phenotype. To improve diagnostic rates in the CHD cohorts, we implemented an agnostic de novo Gene Discovery Pipeline (GDP). We assessed de novo variants (DNV) for unsolved CHD participants following filtering to select variants of interest in OMIM-morbid genes, as well as novel candidate genes. The 100kGP CHD cohorts had low rates of pathogenic diagnoses reported (combined CHD "solved" 5.11% (n = 28/548)). Our GDP provided diagnostic uplift of nearly one third (1.28% uplift; 5.11% vs. 6.39%), with a new or potential diagnosis for 9 additional participants with CHD. When a filtered DNV occurred within a non-morbid gene, our GDP prioritised biologically-plausible candidate CHD genes (n = 79). Candidate variants occurred in both genes linked to cardiac development (e.g. AKAP13 and BCAR1) and those currently without a known role (e.g. TFAP2C and SETDB1). Sanger sequencing of a cohort of patients with CHD did not identify a second de novo variant in the candidate dataset. However, literature review identified rare variants in HMCN1, previously reported as causative for pulmonary atresia, confirming the approach utility. As well as diagnostic uplift for unsolved participants of the 100 kGP, our GDP created a dataset of candidate CHD genes, which forms an important resource for further evaluation.
Collapse
Affiliation(s)
- Verity Hartill
- Leeds Institute of Medical Research, University of Leeds, St James University Hospital, Beckett Street, Leeds, UK.
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK.
| | - Mitra Kabir
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, UK
| | - Sunayna Best
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, UK
| | - Stephanie L Baross
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jenny Lord
- Department of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jing Yu
- Novo Nordisk Research Centre Oxford, The Innovation Building, Roosevelt Dr, Headington, Oxford, OX3 7FZ, UK
| | - Erina Sasaki
- Oxford Centre for Genomic Medicine, ACE Building, Nuffield Orthopaedic Centre, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Hazel Needham
- Dingley Specialist Childrens Centre, University of Reading Campus, Royal Berkshire NHS Foundation Trust, Berkshire, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, ACE Building, Nuffield Orthopaedic Centre, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | | | - Elizabeth Wall
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Nicola Cooper
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Mindelsohn Way, Birmingham, UK
| | - Jacqueline Eason
- Nottingham Regional Genetics Service, City Hospital, Nottingham, UK
| | - Robert Johnson
- Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kathryn E Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, St James University Hospital, Beckett Street, Leeds, UK
| |
Collapse
|
5
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
6
|
Song X, Bai Y, Yuan R, Zhu H, Lan X, Qu L. InDel and CNV within the AKAP13 Gene Revealing Strong Associations with Growth Traits in Goat. Animals (Basel) 2023; 13:2746. [PMID: 37685010 PMCID: PMC10487263 DOI: 10.3390/ani13172746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
A-kinase-anchoring protein 13 (AKAP13) is a member of the AKAP protein family that has been found to be associated with bone formation. Thus, we investigated the AKAP13 gene as a potential candidate gene for molecular-marker-assisted selection (MAS) in breeding. Our aim was to explore genetic variations (InDel and CNV) within the AKAP13 gene of Shaanbei white cashmere (SBWC) goats and analyze their relationship with growth traits. Ultimately, we identified three InDel loci (16-bp deletion, 15-bp insertion, and 25-bp deletion) and three CNVs, and the 16-bp and 15-bp loci were significantly associated with goat body length (p < 0.05). Both the 16-bp deletion variant and the 15-bp insertion variant facilitated an increase in body length in goats. In addition to this, there was a certain superposition effect between 16-bp and 15-bp loci, although there was no linkage. Additionally, the CNV1 locus was significantly correlated with body height and body length of goats (p < 0.05), and CNV2 was significantly correlated with chest depth, chest circumference, and cannon circumference of goats (p < 0.05). Individuals with gain type showed excellent growth performance. In conclusion, the InDel and CNV loci that we have identified could possibly serve as effective molecular markers in goat breeding, which is very essential for improving efficiency and success of breeding. Moreover, our findings provide a new avenue for further research into the function of the AKAP13 gene.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Yangyang Bai
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rongrong Yuan
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (X.S.); (Y.B.); (R.Y.); (H.Z.)
- College of Life Sciences, Yulin University, Yulin 719000, China
| |
Collapse
|
7
|
Cayton Vaught KC, Hazimeh D, Carter AS, Devine K, Maher JY, Maguire M, McGee EA, Driggers PH, Segars JH. AKAP13 Enhances CREB1 Activation by FSH in Granulosa Cells. Reprod Sci 2023; 30:1528-1539. [PMID: 36401072 PMCID: PMC10164136 DOI: 10.1007/s43032-022-01097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022]
Abstract
Granulosa cells (GCs) must respond appropriately to follicle-stimulating hormone (FSH) for proper follicle maturation. FSH activates protein kinase A (PKA) leading to phosphorylation of the cyclic AMP response element binding protein-1 (CREB1). We identified a unique A-kinase anchoring protein (AKAP13) containing a Rho guanine nucleotide exchange factor (RhoGEF) region that was induced in GCs during folliculogenesis. AKAPs are known to coordinate signaling cascades, and we sought to evaluate the role of AKAP13 in GCs in response to FSH. Aromatase reporter activity was increased in COV434 human GCs overexpressing AKAP13. Addition of FSH, or the PKA activator forskolin, significantly enhanced this activity by 1.5- to 2.5-fold, respectively (p < 0.001). Treatment with the PKA inhibitor H89 significantly reduced AKAP13-dependent activation of an aromatase reporter (p = 0.0067). AKAP13 physically interacted with CREB1 in co-immunoprecipitation experiments and increased the phosphorylation of CREB1. CREB1 phosphorylation increased after FSH treatment in a time-specific manner, and this effect was reduced by siRNA directed against AKAP13 (p = 0.05). CREB1 activation increased by 18.5-fold with co-expression of AKAP13 in the presence of FSH (p < 0.001). Aromatase reporter activity was reduced by inhibitors of the RhoGEF region, C3 transferase and A13, and greatly enhanced by the RhoGEF activator, A02. In primary murine and COV43 GCs, siRNA knockdown of Akap13/AKAP13 decreased aromatase and luteinizing hormone receptor transcripts in cells treated with FSH, compared with controls. Collectively, these findings suggest that AKAP13 may function as a scaffolding protein in FSH signal transduction via an interaction with CREB, resulting in phosphorylation of CREB.
Collapse
Affiliation(s)
- Kamaria C Cayton Vaught
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Dana Hazimeh
- American University of Beirut Medical Centre, Beirut, Lebanon
| | - Ashlie Sewdass Carter
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kate Devine
- Section On Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Shady Grove Fertility, Washington, DC, 20006, USA
| | - Jacqueline Y Maher
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Section On Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marcy Maguire
- Section On Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Reproductive Medicine Associates of New Jersey, West Orange, NJ, 07052, USA
| | - Elizabeth A McGee
- Division of Reproductive Endocrinology, Department of Obstetrics, Gynecology, and Reproductive Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Paul H Driggers
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James H Segars
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Allele-specific expression analysis for complex genetic phenotypes applied to a unique dilated cardiomyopathy cohort. Sci Rep 2023; 13:564. [PMID: 36631531 PMCID: PMC9834222 DOI: 10.1038/s41598-023-27591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Allele-specific expression (ASE) analysis detects the relative abundance of alleles at heterozygous loci as a proxy for cis-regulatory variation, which affects the personal transcriptome and proteome. This study describes the development and application of an ASE analysis pipeline on a unique cohort of 87 well phenotyped and RNA sequenced patients from the Maastricht Cardiomyopathy Registry with dilated cardiomyopathy (DCM), a complex genetic disorder with a remaining gap in explained heritability. Regulatory processes for which ASE is a proxy might explain this gap. We found an overrepresentation of known DCM-associated genes among the significant results across the cohort. In addition, we were able to find genes of interest that have not been associated with DCM through conventional methods such as genome-wide association or differential gene expression studies. The pipeline offers RNA sequencing data processing, individual and population level ASE analyses as well as group comparisons and several intuitive visualizations such as Manhattan plots and protein-protein interaction networks. With this pipeline, we found evidence supporting the case that cis-regulatory variation contributes to the phenotypic heterogeneity of DCM. Additionally, our results highlight that ASE analysis offers an additional layer to conventional genomic and transcriptomic analyses for candidate gene identification and biological insight.
Collapse
|
9
|
Mohajeri K, Yadav R, D'haene E, Boone PM, Erdin S, Gao D, Moyses-Oliveira M, Bhavsar R, Currall BB, O'Keefe K, Burt ND, Lowther C, Lucente D, Salani M, Larson M, Redin C, Dudchenko O, Aiden EL, Menten B, Tai DJC, Gusella JF, Vergult S, Talkowski ME. Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models. Am J Hum Genet 2022; 109:2049-2067. [PMID: 36283406 PMCID: PMC9674968 DOI: 10.1016/j.ajhg.2022.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/29/2022] [Indexed: 01/26/2023] Open
Abstract
Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.
Collapse
Affiliation(s)
- Kiana Mohajeri
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva D'haene
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Philip M Boone
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mariana Moyses-Oliveira
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Riya Bhavsar
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin B Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas D Burt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mathew Larson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Claire Redin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX, USA; UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong, China
| | - Björn Menten
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Derek J C Tai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah Vergult
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
11
|
Maher JY, Islam MS, Yin O, Brennan J, Gough E, Driggers P, Segars J. The role of Hippo pathway signaling and A-kinase anchoring protein 13 in primordial follicle activation and inhibition. F&S SCIENCE 2022; 3:118-129. [PMID: 35560009 PMCID: PMC11096729 DOI: 10.1016/j.xfss.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine whether the mechanotransduction and pharmacomanipulation of A-kinase anchoring protein 13 (AKAP13) altered Hippo signaling pathway transcription and growth factors in granulosa cells. Primary ovarian insufficiency is the depletion or dysfunction of primordial ovarian follicles. In vitro activation of ovarian tissue in patients with primary ovarian insufficiency alters the Hippo and phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B/forkhead box O3 pathways. A-kinase anchoring protein 13 is found in granulosa cells and may regulate the Hippo pathway via F-actin polymerization resulting in altered nuclear yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif coactivators and Tea domain family (TEAD) transcription factors. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S) None. INTERVENTION(S) COV434 cells, derived from a primary human granulosa tumor cell line, were studied under different cell density and well stiffness conditions. Cells were transfected with a TEAD-luciferase (TEAD-luc) reporter as well as expression constructs for AKAP13 or AKAP13 mutants and then treated with AKAP13 activators, inhibitors, and follicle-stimulating hormone. MAIN OUTCOME MEASURE(S) TEAD gene activation or inhibition was measured by TEAD-luciferase assays. The messenger ribonucleic acid levels of Hippo pathway signaling molecules, including connective tissue growth factor (CTGF), baculoviral inhibitors of apoptosis repeat-containing 5, Ankyrin repeat domain-containing protein 1, YAP1, and TEAD1, were measured by quantitative real-time polymerase chain reaction. Protein expressions for AKAP13, CTGF, YAP1, and TEAD1 were measured using Western blot. RESULT(S) Increased TEAD-luciferase activity and expression of markers for cellular growth were associated with decreased cell density, increased well stiffness, and AKAP13 activator (A02) treatment. Additionally, decreased TEAD-luc activity and expression of markers for cellular growth were associated with AKAP13 inhibitor (A13) treatment, including a reduced expression of the BIRC5 and ANKRD1 (YAP-responsive genes) transcript levels and CTGF protein levels. There were no changes in TEAD-luc with follicle-stimulating hormone treatment, supporting Hippo pathway involvement in the gonadotropin-independent portion of folliculogenesis. CONCLUSION(S) These findings suggest that AKAP13 mediates Hippo-regulated changes in granulosa cell growth via mechanotransduction and pharmacomanipulation. The AKAP13 regulation of the Hippo pathway may represent a potential target for regulation of follicle activation.
Collapse
Affiliation(s)
- Jacqueline Yano Maher
- Johns Hopkins School of Medicine, Baltimore, Maryland; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Children's National Medical Center, Washington, D.C..
| | | | - Ophelia Yin
- David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - Ethan Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Paul Driggers
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James Segars
- Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Cordeiro Mitchell CN, Islam MS, Afrin S, Brennan J, Psoter KJ, Segars JH. Mechanical stiffness augments ligand-dependent progesterone receptor B activation via MEK 1/2 and Rho/ROCK-dependent signaling pathways in uterine fibroid cells. Fertil Steril 2021; 116:255-265. [PMID: 33676751 DOI: 10.1016/j.fertnstert.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To test whether mechanical substrate stiffness would influence progesterone receptor B (PRB) signaling in fibroid cells. Uterine fibroids feature an excessive extracellular matrix, increased stiffness, and altered mechanical signaling. Fibroid growth is stimulated by progestins and opposed by anti-progestins, but a functional interaction between progesterone action and mechanical signaling has not been evaluated. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S)/ANIMAL(S) Human fibroid cell lines and patient-matched fibroid and myometrial cell lines. INTERVENTION(S) Progesterone receptor B-dependent reporter assays and messenger RNA quantitation in cells cultured on stiff polystyrene plates (3GPa) or soft silicone plates (930KPa). Pharmacologic inhibitors of extracellular signal-related protein kinase (ERK) kinase 1/2 (MEK 1/2; PD98059), p38 mitogen-activated protein kinase (SB202190), receptor tyrosine kinases (RTKs; nintedanib), RhoA (A13), and Rho-associated coiled-coil kinase (ROCK; Y27632). MAIN OUTCOME MEASURE(S) Progesterone-responsive reporter activation. RESULT(S) Fibroid cells exhibited higher PRB-dependent reporter activity with progesterone (P4) in cells cultured on stiff vs. soft plates. Mechanically induced PRB activation with P4 was decreased 62% by PD98059, 78% by nintedanib, 38% by A13, and 50% by Y27632. Overexpression of the Rho-guanine nucleotide exchange factor (Rho-GEF), AKAP13, significantly increased PRB-dependent reporter activity. Collagen 1 messenger RNA levels were higher in fibroid cells grown on stiff vs. soft plates with P4. CONCLUSION(S) Cells cultured on mechanically stiff substrates had enhanced PRB activation via a mechanism that required MEK 1/2 and AKAP13/RhoA/ROCK signaling pathways. These studies provide a framework to explore the mechanisms by which mechanical stiffness affects progesterone receptor activation.
Collapse
Affiliation(s)
- Christina N Cordeiro Mitchell
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology & Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Kevin J Psoter
- Department of Pediatrics, Division of General Pediatrics and Adolescent Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology & Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland.
| |
Collapse
|
13
|
Afrin S, Islam MS, Patzkowsky K, Malik M, Catherino WH, Segars JH, Borahay MA. Simvastatin ameliorates altered mechanotransduction in uterine leiomyoma cells. Am J Obstet Gynecol 2020; 223:733.e1-733.e14. [PMID: 32417359 DOI: 10.1016/j.ajog.2020.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/18/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Uterine leiomyomas, the most common tumors of the female reproductive system, are characterized by excessive deposition of disordered stiff extracellular matrix and fundamental alteration in the mechanical signaling pathways. Specifically, these alterations affect the normal dynamic state of responsiveness to mechanical cues in the extracellular environment. These mechanical cues are converted through integrins, cell membrane receptors, to biochemical signals including cytoskeletal signaling pathways to maintain mechanical homeostasis. Leiomyoma cells overexpress β1 integrin and other downstream mechanical signaling proteins. We previously reported that simvastatin, an antihyperlipidemic drug, has antileiomyoma effects through cellular, animal model, and epidemiologic studies. OBJECTIVE This study aimed to examine the hypothesis that simvastatin might influence altered mechanotransduction in leiomyoma cells. STUDY DESIGN This is a laboratory-based experimental study. Primary leiomyoma cells were isolated from 5 patients who underwent hysterectomy at the Department of Gynecology and Obstetrics of the Johns Hopkins University Hospital. Primary and immortalized human uterine leiomyoma cells were treated with simvastatin at increasing concentrations (0.001, 0.01, 0.1, and 1 μM, or control) for 48 hours. Protein and mRNA levels of β1 integrin and extracellular matrix components involved in mechanical signaling were quantified by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. In addition, we examined the effect of simvastatin on the activity of Ras homolog family member A using pull-down assay and gel contraction. RESULTS We found that simvastatin significantly reduced the protein expression of β1 integrin by 44% and type I collagen by 60% compared with untreated leiomyoma cells. Simvastatin-treated cells reduced phosphorylation of focal adhesion kinase down to 26%-60% of control, whereas it increased total focal adhesion kinase protein expression. Using a Ras homolog family member A pull-down activation assay, we observed reduced levels of active Ras homolog family member A in simvastatin-treated cells by 45%-85% compared with control. Consistent with impaired Ras homolog family member A activation, simvastatin treatment reduced tumor gel contraction where gel area was 122%-153% larger than control. Furthermore, simvastatin treatment led to reduced levels of mechanical signaling proteins involved in β1 integrin downstream signaling, such as A-kinase anchor protein 13, Rho-associated protein kinase 1, myosin light-chain kinase, and cyclin D1. CONCLUSION The results of this study suggest a possible therapeutic role of simvastatin in restoring the altered state of mechanotransduction signaling in leiomyoma. Collectively, these findings are aligned with previous epidemiologic studies and other reports and support the need for clinical trials.
Collapse
|
14
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
15
|
Ng SSM, Jorge S, Malik M, Britten J, Su SC, Armstrong CR, Brennan JT, Chang S, Baig KM, Driggers PH, Segars JH. A-Kinase Anchoring Protein 13 (AKAP13) Augments Progesterone Signaling in Uterine Fibroid Cells. J Clin Endocrinol Metab 2019; 104:970-980. [PMID: 30239831 PMCID: PMC6365770 DOI: 10.1210/jc.2018-01216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 01/11/2023]
Abstract
CONTEXT Uterine leiomyomata (fibroids) are prevalent sex hormone‒dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood. OBJECTIVE Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to altered mechanotransduction in fibroids. Because AKAP13 augmented nuclear receptor signaling in other tissues, we sought to determine whether AKAP13 might influence PR signaling in fibroids. METHODS AND RESULTS Fibroid samples from patients treated with ulipristal acetate or placebo were examined for AKAP13 expression by using immunohistochemistry. In immortalized uterine fibroid cell lines and COS-7 cells, we observed that AKAP13 increased ligand-dependent PR activation of luciferase reporters and endogenous progesterone-responsive genes for PR-B but not PR-A. Inhibition of ERK reduced activation of PR-dependent signaling by AKAP13, but inhibition of p38 MAPK had no effect. In addition, glutathione S-transferase‒binding assays revealed that AKAP13 was bound to PR-B through its carboxyl terminus. CONCLUSION These data suggest an intersection of mechanical signaling and PR signaling involving AKAP13 through ERK. Further elucidation of the integration of mechanical and hormonal signaling pathways in fibroids may provide insight into fibroid development and suggest new therapeutic strategies for treatment.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Soledad Jorge
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Szu-Chi Su
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Charles R Armstrong
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua T Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sydney Chang
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of OBGYN and Reproductive Science, Mount Sinai School of Medicine, New York, New York
| | - Kimberlyn Maravet Baig
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul H Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Correspondence and Reprint Requests: James H. Segars, MD, Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Ross Building 624, 720 Rutland Avenue, Baltimore, Maryland 21205. E-mail address:
| |
Collapse
|
16
|
Spontaneous reactivation of latent HIV-1 promoters is linked to the cell cycle as revealed by a genetic-insulators-containing dual-fluorescence HIV-1-based vector. Sci Rep 2018; 8:10204. [PMID: 29977044 PMCID: PMC6033903 DOI: 10.1038/s41598-018-28161-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Long-lived latently HIV-1-infected cells represent a barrier to cure. We developed a dual-fluorescence HIV-1-based vector containing a pair of genetic insulators flanking a constitutive fluorescent reporter gene to study HIV-1 latency. The protective effects of these genetic insulators are demonstrated through long-term (up to 394 days) stable fluorescence profiles in transduced SUP-T1 cells. Analysis of 1,941 vector integration sites confirmed reproduction of HIV-1 integration patterns. We sorted monoclonal cells representing latent HIV-1 infections and found that both vector integration sites and integrity of the vector genomes influence the reactivation potentials of latent HIV-1 promoters. Interestingly, some latent monoclonal cells exhibited a small cell subpopulation with a spontaneously reactivated HIV-1 promoter. Higher expression levels of genes involved in cell cycle progression are observed in these cell subpopulations compared to their counterparts with HIV-1 promoters that remained latent. Consistently, larger fractions of spontaneously reactivated cells are in the S and G2 phases of the cell cycle. Furthermore, genistein and nocodazole treatments of these cell clones, which halted cells in the G2 phase, resulted in a 1.4–2.9-fold increase in spontaneous reactivation. Taken together, our HIV-1 latency model reveals that the spontaneous reactivation of latent HIV-1 promoters is linked to the cell cycle.
Collapse
|
17
|
Maravet Baig K, Su SC, Mumford SL, Giuliani E, Ng SSM, Armstrong C, Keil MF, Vaught KC, Olsen N, Pettiford E, Burd I, Segars JH. Mice deficient in AKAP13 (BRX) develop compulsive-like behavior and increased body weight. Brain Res Bull 2018; 140:72-79. [PMID: 29653158 PMCID: PMC6045963 DOI: 10.1016/j.brainresbull.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hormonal contributions to the sex-dependent development of both obsessive-compulsive disorder (OCD) and obesity have been described, but the underlying mechanisms are incompletely understood. A-kinase anchoring protein 13 (AKAP13) significantly augments ligand-dependent activation of estrogen receptors alpha and beta. The hypothalamus and pituitary gland are implicated in the development and exacerbation of OCD and obesity and have strong AKAP13 expression. The AKAP13 localization pattern observed in these key brain regions together with its effects on sex steroid action suggest a potential role for AKAP13 in compulsive-like behaviors. Here we tested the role of AKAP13 in compulsive-like behavior and body weight using an Akap13 haploinsufficient murine model. MATERIALS AND METHODS Targeted deletion of the Akap13 gene generated haploinsufficient (Akap13+/-) mice in a C57BL6/J genetic background. Established behavioral assays were conducted, video recorded, and scored blindly to assess compulsive-like behavior based on genotype and gender. Tests included: marble-burying, grooming, open- field and elevated plus-maze. Brain and body weights were also obtained. Mean levels of test outcomes were compared using multi-way ANOVA to test for genotype, sex, genotype*sex, and genotype*sex*age interaction effects with Bonferroni adjustment for multiple comparisons, to further explain any significant interactions. RESULTS The marble-burying and grooming assays revealed significant sex-dependent increases in perseverative, compulsive-like behaviors in female Akap13 haploinsufficient mice compared to female wild type (WT) mice by demonstrating increased marble-burying activity (p = .0025) and a trend towards increased grooming behavior (p = .06). Male Akap13 haploinsufficient mice exhibited no behavioral changes (p > 0.05). Elevated plus-maze and open-field test results showed no overt anxiety-like behavior in Akap13 haploinsufficient mice irrespective of sex (p > 0.05, both). No differences in brain weight were found in Akap13 haploinsufficient mice compared to WT mice (p > 0.05). However, female Akap13 haploinsufficient mice weighed more than female WT mice in the 4 to <7 months age range (p = .0051). Male Akap13 haploinsufficient mice showed no differences in weight compared to male WT mice (p = >0.05) at any age range examined. CONCLUSION Akap13 haploinsufficiency led to sex-dependent, compulsive-like behavioral changes in a murine model. Interestingly, Akap13 haploinsufficiency also led to a sex-dependent increase in body weight. These results revealed a requirement for AKAP13 in murine behavior, particularly in female mice, and is the first report of AKAP13 involvement in murine behavior. Future studies may examine the involvement of AKAP13 in the pathophysiology of OCD in female humans and may contribute to a better understanding of the role of AKAP13 and sex hormones in the development and exacerbation of OCD.
Collapse
Affiliation(s)
- K Maravet Baig
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, United States; Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Szu-Chi Su
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Sunni L Mumford
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Emma Giuliani
- Department of Obstetrics and Gynecology, Grand Rapids Medical Education Partners/Michigan State University, Grand Rapids, MI, 49503, United States
| | - Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Charles Armstrong
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Margaret F Keil
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kamaria Cayton Vaught
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - Nils Olsen
- Organizational Sciences and Communications Department, The George Washington University, Washington, D.C., 20052, United States
| | - Elyse Pettiford
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States
| | - James H Segars
- Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
18
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
19
|
Suryavanshi SV, Jadhav SM, McConnell BK. Polymorphisms/Mutations in A-Kinase Anchoring Proteins (AKAPs): Role in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:E7. [PMID: 29370121 PMCID: PMC5872355 DOI: 10.3390/jcdd5010007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
A-kinase anchoring proteins (AKAPs) belong to a family of scaffolding proteins that bind to protein kinase A (PKA) by definition and a variety of crucial proteins, including kinases, phosphatases, and phosphodiesterases. By scaffolding these proteins together, AKAPs build a "signalosome" at specific subcellular locations and compartmentalize PKA signaling. Thus, AKAPs are important for signal transduction after upstream activation of receptors ensuring accuracy and precision of intracellular PKA-dependent signaling pathways. Since their discovery in the 1980s, AKAPs have been studied extensively in the heart and have been proven essential in mediating cyclic adenosine monophosphate (cAMP)-PKA signaling. Although expression of AKAPs in the heart is very low, cardiac-specific knock-outs of several AKAPs have a noteworthy cardiac phenotype. Moreover, single nucleotide polymorphisms and genetic mutations in crucial cardiac proteins play a substantial role in the pathophysiology of cardiovascular diseases (CVDs). Despite the significant role of AKAPs in the cardiovascular system, a limited amount of research has focused on the role of genetic polymorphisms and/or mutations in AKAPs in increasing the risk of CVDs. This review attempts to overview the available literature on the polymorphisms/mutations in AKAPs and their effects on human health with a special focus on CVDs.
Collapse
Affiliation(s)
- Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Texas Medical Center, Houston, TX 77204, USA.
| | - Shweta M Jadhav
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Texas Medical Center, Houston, TX 77204, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Texas Medical Center, Houston, TX 77204, USA.
| |
Collapse
|
20
|
Common functional variants of the glutamatergic system in Autism spectrum disorder with high and low intellectual abilities. J Neural Transm (Vienna) 2017; 125:259-271. [PMID: 29147782 DOI: 10.1007/s00702-017-1813-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
Abstract
The genetic architecture underlying Autism spectrum disorder (ASD) has been suggested to differ between individuals with lower (IQ ≤ 70; LIQ) and higher intellectual abilities (IQ > 70; HIQ). Among the identified pathomechanisms, the glutamatergic signalling pathway is of specific interest in ASD. We investigated 187 common functional variants of this neurotransmitter system for association with ASD and with symptom severity in two independent samples, a German (German-ALL: N = 583 families) and the Autism Genome Project cohort (AGP-ALL: N = 2001 families), split into HIQ, and LIQ subgroups. We did not identify any association withstanding correction for multiple testing. However, we report a replicated nominal significant under-transmission (OR < 0.79, p < 0.04) of the AKAP13 rs745191-T allele in both LIQ cohorts, but not in the much larger HIQ cohorts. At the phenotypic level, we nominally replicated associations of CAMK2A-rs2241694 with non-verbal communication in both combined LIQ and HIQ ASD cohorts. Variants PLD1-rs2124147 and ADCY1-rs2461127 were nominally associated with impaired non-verbal abilities and AKAP2-rs3739456 with repetitive behaviour in both LIQ cohorts. All four LIQ-associated genes are involved in G-protein coupled signal transduction, a downstream pathway of metabotropic glutamate receptor activation. We conclude that functional common variants of glutamatergic genes do not have a strong impact on ASD, but seem to moderately affect ASD risk and phenotypic expression. Since most of our nominally replicated hits were identified in the LIQ cohort, further investigation of the glutamatergic system in this subpopulation might be warranted.
Collapse
|
21
|
Allen RJ, Porte J, Braybrooke R, Flores C, Fingerlin TE, Oldham JM, Guillen-Guio B, Ma SF, Okamoto T, John AE, Obeidat M, Yang IV, Henry A, Hubbard RB, Navaratnam V, Saini G, Thompson N, Booth HL, Hart SP, Hill MR, Hirani N, Maher TM, McAnulty RJ, Millar AB, Molyneaux PL, Parfrey H, Rassl DM, Whyte MKB, Fahy WA, Marshall RP, Oballa E, Bossé Y, Nickle DC, Sin DD, Timens W, Shrine N, Sayers I, Hall IP, Noth I, Schwartz DA, Tobin MD, Wain LV, Jenkins RG. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. THE LANCET. RESPIRATORY MEDICINE 2017; 5:869-880. [PMID: 29066090 PMCID: PMC5666208 DOI: 10.1016/s2213-2600(17)30387-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote IPF remain unclear. We aimed to identify genetic variants associated with IPF susceptibility and provide mechanistic insight using gene and protein expression analyses. METHODS We used a two-stage approach: a genome-wide association study in patients with IPF of European ancestry recruited from nine different centres in the UK and controls selected from UK Biobank (stage 1) matched for age, sex, and smoking status; and a follow-up of associated genetic variants in independent datasets of patients with IPF and controls from two independent US samples from the Chicago consortium and the Colorado consortium (stage 2). We investigated the effect of novel signals on gene expression in large transcriptomic and genomic data resources, and examined expression using lung tissue samples from patients with IPF and controls. FINDINGS 602 patients with IPF and 3366 controls were selected for stage 1. For stage 2, 2158 patients with IPF and 5195 controls were selected. We identified a novel genome-wide significant signal of association with IPF susceptibility near A-kinase anchoring protein 13 (AKAP13; rs62025270, odds ratio [OR] 1·27 [95% CI 1·18-1·37], p=1·32 × 10-9) and confirmed previously reported signals, including in mucin 5B (MUC5B; rs35705950, OR 2·89 [2·56-3·26], p=1·12 × 10-66) and desmoplakin (DSP; rs2076295, OR 1·44 [1·35-1·54], p=7·81 × 10-28). For rs62025270, the allele A associated with increased susceptibility to IPF was also associated with increased expression of AKAP13 mRNA in lung tissue from patients who had lung resection procedures (n=1111). We showed that AKAP13 is expressed in the alveolar epithelium and lymphoid follicles from patients with IPF, and AKAP13 mRNA expression was 1·42-times higher in lung tissue from patients with IPF (n=46) than that in lung tissue from controls (n=51). INTERPRETATION AKAP13 is a Rho guanine nucleotide exchange factor regulating activation of RhoA, which is known to be involved in profibrotic signalling pathways. The identification of AKAP13 as a susceptibility gene for IPF increases the prospect of successfully targeting RhoA pathway inhibitors in patients with IPF. FUNDING UK Medical Research Council, National Heart, Lung, and Blood Institute of the US National Institutes of Health, Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Spain, UK National Institute for Health Research, and the British Lung Foundation.
Collapse
Affiliation(s)
- Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Joanne Porte
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - Rebecca Braybrooke
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Carlos Flores
- Research Unit, Hospital Universitario NS de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain; Instituto Tecnológico y de Energías Renovables (ITER, S.A.), Santa Cruz de Tenerife, Spain
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Justin M Oldham
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario NS de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Shwu-Fan Ma
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Tsukasa Okamoto
- Department of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Alison E John
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Ivana V Yang
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Amanda Henry
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Richard B Hubbard
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Vidya Navaratnam
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Gauri Saini
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Norma Thompson
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Helen L Booth
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Simon P Hart
- Respiratory Research Group, Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, Hull, UK
| | - Mike R Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nik Hirani
- MRC Centre for Inflammation Research at the University of Edinburgh, Edinburgh, UK
| | - Toby M Maher
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Ann B Millar
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Philip L Molyneaux
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Helen Parfrey
- Respiratory Medicine, Papworth Hospital, Cambridge, UK
| | - Doris M Rassl
- Department of Pathology, Papworth Hospital, Cambridge, UK
| | - Moira K B Whyte
- MRC Centre for Inflammation Research at the University of Edinburgh, Edinburgh, UK
| | - William A Fahy
- Fibrosis Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | | | - Eunice Oballa
- Fibrosis Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - David C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, MA, USA
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Imre Noth
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - David A Schwartz
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Denver, CO, USA; Department of Immunology, University of Colorado Denver, Denver, CO, USA
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - R Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| |
Collapse
|
22
|
Alder JK, Kass DJ. Another building in the IPF Manhattan plot skyline. THE LANCET. RESPIRATORY MEDICINE 2017; 5:837-839. [PMID: 29066087 DOI: 10.1016/s2213-2600(17)30394-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Jonathan K Alder
- University of Pittsburgh School of Medicine, Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, Pittsburgh, PA 15213, USA
| | - Daniel J Kass
- University of Pittsburgh School of Medicine, Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Kangawa Y, Yoshida T, Tanaka T, Kataoka A, Koyama N, Ohsumi T, Hayashi SM, Shibutani M. Expression of A-kinase anchor protein 13 and Rho-associated coiled-coil containing protein kinase in restituted and regenerated mucosal epithelial cells following mucosal injury and colorectal cancer cells in mouse models. ACTA ACUST UNITED AC 2017; 69:443-450. [PMID: 28434818 DOI: 10.1016/j.etp.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
We demonstrate the expression patterns of A-kinase anchor protein 13 (AKAP13), a scaffold protein that acts upstream of Rho signaling, and Rho-associated coiled-coil containing protein kinase (ROCK) 1/2 in mouse colorectal cancer and during the healing stage of mouse colitis. BALB/c mice received an intraperitoneal injection of azoxymethane at 10mg/kg, followed by two 7-day cycles of 3% dextran sulfate sodium (DSS) administered through their drinking water to induce colon cancer, or a 7-day administration of 4% DSS to induce colitis. The colorectal tissue was then analyzed for gene expression, histopathology, and immunohistochemistry. In the colorectal cancer, AKAP13 and ROCK1/2 were highly expressed in adenocarcinoma compared to the control tissue and low-grade dysplasia. In colitis, AKAP13 and ROCK1 were highly expressed in the restituted and regenerated mucosa but were only moderately expressed in the injured mucosal epithelium, compared to the normal epithelium that exhibited weak expression levels. ROCK2 was weakly expressed in these cells, consistent with the expression of AKAP13 and ROCK1. Furthermore, we found several clumps of epithelial cells expressing AKAP13 and ROCK1/2 in the lamina propria during the mucosal healing process, and these cells also expressed interleukin-6, which is a multipotential cytokine for both inflammation and healing. These data suggest that AKAP13 was expressed in relation with ROCK1/2, which probably play an overall role in both mucosal healing and tumorigenesis.
Collapse
Affiliation(s)
- Yumi Kangawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Akira Kataoka
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Tomoka Ohsumi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
24
|
Abstract
AKAP-Lbc is a Rho-activating guanine nucleotide exchange factor (RhoGEF) important in heart development and pro-fibrotic signaling in cardiomyocytes. Heterotrimeric G proteins of the G12/13 subfamily, comprising Gα12 and Gα13, are well characterized as stimulating a specialized group of RhoGEFs through interaction with their RGS-homology (RH) domain. Despite lacking an RH domain, AKAP-Lbc is bound by Gα12 through an unknown mechanism to activate Rho signaling. We identified a Gα12-binding region near the C-terminus of AKAP-Lbc, closely homologous to a region of p114RhoGEF that we also discovered to interact with Gα12. This binding mechanism is distinct from the well-studied interface between RH-RhoGEFs and G12/13 α subunits, as demonstrated by Gα12 mutants selectively impaired in binding either this AKAP-Lbc/p114RhoGEF region or RH-RhoGEFs. AKAP-Lbc and p114RhoGEF showed high specificity for binding Gα12 in comparison to Gα13, and experiments using chimeric G12/13 α subunits mapped determinants of this selectivity to the N-terminal region of Gα12. In cultured cells expressing constitutively GDP-bound Gα12 or Gα13, the Gα12 construct was more potent in exerting a dominant-negative effect on serum-mediated signaling to p114RhoGEF, demonstrating coupling of these signaling proteins in a cellular pathway. In addition, charge-reversal of conserved residues in AKAP-Lbc and p114RhoGEF disrupted Gα12 binding for both proteins, suggesting they harbor a common structural mechanism for interaction with this α subunit. Our results provide the first evidence of p114RhoGEF as a Gα12 signaling effector, and define a novel region conserved between AKAP-Lbc and p114RhoGEF that allows Gα12 signaling input to these non-RH RhoGEFs.
Collapse
|
25
|
Singh AR, Sivadas A, Sabharwal A, Vellarikal SK, Jayarajan R, Verma A, Kapoor S, Joshi A, Scaria V, Sivasubbu S. Chamber Specific Gene Expression Landscape of the Zebrafish Heart. PLoS One 2016; 11:e0147823. [PMID: 26815362 PMCID: PMC4729522 DOI: 10.1371/journal.pone.0147823] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis.
Collapse
Affiliation(s)
- Angom Ramcharan Singh
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Ankit Sabharwal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Shamsudheen Karuthedath Vellarikal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Rijith Jayarajan
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Ankit Verma
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Shruti Kapoor
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
| | - Adita Joshi
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
- * E-mail: (VS); (SS)
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi 110025, India
- * E-mail: (VS); (SS)
| |
Collapse
|
26
|
Koide H, Holmbeck K, Lui JC, Guo XC, Driggers P, Chu T, Tatsuno I, Quaglieri C, Kino T, Baron J, Young MF, Robey PG, Segars JH. Mice Deficient in AKAP13 (BRX) Are Osteoporotic and Have Impaired Osteogenesis. J Bone Miner Res 2015; 30:1887-95. [PMID: 25892096 PMCID: PMC4590282 DOI: 10.1002/jbmr.2534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/03/2015] [Accepted: 04/15/2015] [Indexed: 01/23/2023]
Abstract
Mechanical stimulation is crucial to bone growth and triggers osteogenic differentiation through a process involving Rho and protein kinase A. We previously cloned a gene (AKAP13, aka BRX) encoding a protein kinase A-anchoring protein in the N-terminus, a guanine nucleotide-exchange factor for RhoA in the mid-section, coupled to a carboxyl region that binds to estrogen and glucocorticoid nuclear receptors. Because of the critical role of Rho, estrogen, and glucocorticoids in bone remodeling, we examined the multifunctional role of Akap13. Akap13 was expressed in bone, and mice haploinsufficient for Akap13 (Akap13(+/-)) displayed reduced bone mineral density, reduced bone volume/total volume, and trabecular number, and increased trabecular spacing; resembling the changes observed in osteoporotic bone. Consistent with the osteoporotic phenotype, Colony forming unit-fibroblast numbers were diminished in Akap13(+/-) mice, as were osteoblast numbers and extracellular matrix production when compared to control littermates. Transcripts of Runx2, an essential transcription factor for the osteogenic lineage, and alkaline phosphatase (Alp), an indicator of osteogenic commitment, were both reduced in femora of Akap13(+/-) mice. Knockdown of Akap13 reduced levels of Runx2 and Alp transcripts in immortalized bone marrow stem cells. These findings suggest that Akap13 haploinsufficient mice have a deficiency in early osteogenesis with a corresponding reduction in osteoblast number, but no impairment of mature osteoblast activity.
Collapse
Affiliation(s)
- Hisashi Koide
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiaoxiao C Guo
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul Driggers
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tiffany Chu
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| | - Caroline Quaglieri
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tomoshige Kino
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - James H Segars
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
27
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|
28
|
Ohgushi M, Minaguchi M, Sasai Y. Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells. Cell Stem Cell 2015; 17:448-61. [PMID: 26321201 DOI: 10.1016/j.stem.2015.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/21/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022]
Abstract
Human embryonic stem cells (hESCs) can survive and proliferate for an extended period of time in culture, but unlike that of tumor-derived cells, this form of cellular immortality does not depend on genomic aberrations. In this study, we sought to elucidate the molecular basis of this long-term growth property of hESCs. We found that the survival of hESCs depends on the small GTPase Rho and its activator AKAP-Lbc. We show that AKAP-Lbc/Rho signaling sustains the nuclear function of the transcriptional cofactors YAP and TAZ by modulating actin microfilament organization. By inducing reprogramming and differentiation, we found that dependency on this Rho signaling pathway is associated with the pluripotent state. Thus, our findings show that the capacity of hESCs to undergo long-term expansion in vitro is intrinsically coupled to their cellular identity through interconnected molecular circuits that link cell survival to pluripotency.
Collapse
Affiliation(s)
- Masatoshi Ohgushi
- Unit for Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | - Maki Minaguchi
- Unit for Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Unit for Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
29
|
Randall JM, Millard F, Kurzrock R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art. Cancer Metastasis Rev 2015; 33:1109-24. [PMID: 25365943 DOI: 10.1007/s10555-014-9533-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is among the most prevalent malignancies in the USA. Most RCCs are sporadic, but hereditary syndromes associated with RCC account for 2-3 % of cases and include von Hippel-Lindau, hereditary leiomyomatosis, Birt-Hogg-Dube, tuberous sclerosis, hereditary papillary RCC, and familial renal carcinoma. In the past decade, our understanding of the genetic mutations associated with sporadic forms of RCC has increased considerably, with the most common mutations in clear cell RCC seen in the VHL, PBRM1, BAP1, and SETD2 genes. Among these, BAP1 mutations are associated with aggressive disease and decreased survival. Several targeted therapies for advanced RCC have been approved and include sunitinib, sorafenib, pazopanib, axitinib (tyrosine kinase inhibitors (TKIs) with anti-vascular endothelial growth factor (VEGFR) activity), everolimus, and temsirolimus (TKIs that inhibit mTORC1, the downstream part of the PI3K/AKT/mTOR pathway). High-dose interleukin 2 (IL-2) immunotherapy and the combination of bevacizumab plus interferon-α are also approved treatments. At present, there are no predictive genetic markers to direct therapy for RCC, perhaps because the vast majority of trials have been evaluated in unselected patient populations, with advanced metastatic disease. This review will focus on our current understanding of the molecular genetics of RCC, and how this may inform therapeutics.
Collapse
Affiliation(s)
- J Michael Randall
- Department of Medicine, Division of Hematology/Oncology, UCSD Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, #0987, La Jolla, CA, 92093-0987, USA,
| | | | | |
Collapse
|
30
|
Fan X, Hou N, Fan K, Yuan J, Mo X, Deng Y, Wan Y, Teng Y, Yang X, Wu X. Geft is dispensable for the development of the second heart field. BMB Rep 2014; 45:153-8. [PMID: 22449701 DOI: 10.5483/bmbrep.2012.45.3.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geft is a guanine nucleotide exchange factor, which can specifically activate Rho family of small GTPase by catalyzing the exchange of bound GDP for GTP. Geft is highly expressed in the excitable tissue as heart and skeletal muscle and plays important roles in many cellular processes, such as cell proliferation, migration, and cell fate decision. However, the in vivo role of Geft remains unknown. Here, we generated a Geft conditional knockout mouse by flanking exons 5-17 of Geft with loxP sites. Cre-mediated deletion of the Geft gene in heart using Mef2c-Cre transgenic mice resulted in a dramatic decrease of Geft expression. Geft knockout mice develop normally and exhibit no discernable phenotype, suggesting Geft is dispensable for the development of the second heart field in mouse. The Geft conditional knockout mouse will be a valuable genetic tool for uncovering the in vivo roles of Geft during development and in adult homeostasis.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Miller NLG, Kleinschmidt EG, Schlaepfer DD. RhoGEFs in cell motility: novel links between Rgnef and focal adhesion kinase. Curr Mol Med 2014; 14:221-34. [PMID: 24467206 DOI: 10.2174/1566524014666140128110339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/08/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022]
Abstract
Rho guanine exchange factors (GEFs) are a large, diverse family of proteins defined by their ability to catalyze the exchange of GDP for GTP on small GTPase proteins such as Rho family members. GEFs act as integrators from varied intra- and extracellular sources to promote spatiotemporal activity of Rho GTPases that control signaling pathways regulating cell proliferation and movement. Here we review recent studies elucidating roles of RhoGEF proteins in cell motility. Emphasis is placed on Dbl-family GEFs and connections to development, integrin signaling to Rho GTPases regulating cell adhesion and movement, and how these signals may enhance tumor progression. Moreover, RhoGEFs have additional domains that confer distinctive functions or specificity. We will focus on a unique interaction between Rgnef (also termed Arhgef28 or p190RhoGEF) and focal adhesion kinase (FAK), a non-receptor tyrosine kinase that controls migration properties of normal and tumor cells. This Rgnef-FAK interaction activates canonical GEF-dependent RhoA GTPase activity to govern contractility and also functions as a scaffold in a GEF-independent manner to enhance FAK activation. Recent studies have also brought to light the importance of specific regions within the Rgnef pleckstrin homology (PH) domain for targeting the membrane. As revealed by ongoing Rgnef-FAK investigations, exploring GEF roles in cancer will yield fundamental new information on the molecular mechanisms promoting tumor spread and metastasis.
Collapse
Affiliation(s)
| | | | - D D Schlaepfer
- University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, MC 0803, 3855 Health Sciences Dr., La Jolla, CA 92093 USA.
| |
Collapse
|
32
|
Li X, Matta SM, Sullivan RD, Bahouth SW. Carvedilol reverses cardiac insufficiency in AKAP5 knockout mice by normalizing the activities of calcineurin and CaMKII. Cardiovasc Res 2014; 104:270-9. [PMID: 25225170 DOI: 10.1093/cvr/cvu209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS Cardiac β-adrenergic receptors (β-AR) are key regulators of cardiac haemodynamics and size. The scaffolding protein A-kinase anchoring protein 79/150 (AKAP5) is a key regulator of myocardial signalling by β-ARs. We examined the function of AKAP5 in regulating cardiac haemodynamics and size, and the role of β-ARs and Ca(2+)-regulated intracellular signalling pathways in this phenomenon. METHODS AND RESULTS We used echocardiographic, histological, genetic, and biochemical methods to examine the effect of ablation of AKAP5 on cardiac haemodynamics, size, and signalling in mice. AKAP5(-/-) mice exhibited enhanced signs of cardiac dilatation and dysfunction that progressed with age. Infusions of isoprenaline worsened cardiac haemodynamics in wild-type (WT) mice only, but increased the ratio of heart-to-body weight equally in WT and in AKAP5(-/-) mice. Mechanistically, loss of AKAP5 was associated with enhanced activity of cardiac calmodulin kinase II (CaMKII) and calcineurin (CaN) as indexed by nuclear factor of activated T-cell-luciferase activity. Loss of AKAP5 interfered with the recycling of cardiac β1-ARs, which was mediated in part by CaN binding to AKAP5. Carvedilol reversed cardiac hypertrophy and haemodynamic deficiencies in AKAP5(-/-) mice by normalizing the activities of cardiac CaN and CaMKII. CONCLUSIONS These findings identify a novel cardioprotective role for AKAP5 that is mediated by regulating the activities of cardiac CaN and CaMKII and highlight a significant role for cardiac β-ARs in this phenomenon.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, The University of Tennessee Health Sciences Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Shannon M Matta
- Department of Pharmacology, The University of Tennessee Health Sciences Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Ryan D Sullivan
- Department of Comparative Medicine, The University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Suleiman W Bahouth
- Department of Pharmacology, The University of Tennessee Health Sciences Center, 874 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
33
|
Lenoir M, Sugawara M, Kaur J, Ball LJ, Overduin M. Structural insights into the activation of the RhoA GTPase by the lymphoid blast crisis (Lbc) oncoprotein. J Biol Chem 2014; 289:23992-4004. [PMID: 24993829 PMCID: PMC4156082 DOI: 10.1074/jbc.m114.561787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small GTPase RhoA promotes deregulated signaling upon interaction with lymphoid blast crisis (Lbc), the oncogenic form of A-kinase anchoring protein 13 (AKAP13). The onco-Lbc protein is a hyperactive Rho-specific guanine nucleotide exchange factor (GEF), but its structural mechanism has not been reported despite its involvement in cardiac hypertrophy and cancer causation. The pleckstrin homology (PH) domain of Lbc is located at the C-terminal end of the protein and is shown here to specifically recognize activated RhoA rather than lipids. The isolated dbl homology (DH) domain can function as an independent activator with an enhanced activity. However, the DH domain normally does not act as a solitary Lbc interface with RhoA-GDP. Instead it is negatively controlled by the PH domain. In particular, the DH helical bundle is coupled to the structurally dependent PH domain through a helical linker, which reduces its activity. Together the two domains form a rigid scaffold in solution as evidenced by small angle x-ray scattering and 1H,13C,15N-based NMR spectroscopy. The two domains assume a “chair” shape with its back possessing independent GEF activity and the PH domain providing a broad seat for RhoA-GTP docking rather than membrane recognition. This provides structural and dynamical insights into how DH and PH domains work together in solution to support regulated RhoA activity. Mutational analysis supports the bifunctional PH domain mediation of DH-RhoA interactions and explains why the tandem domain is required for controlled GEF signaling.
Collapse
Affiliation(s)
- Marc Lenoir
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Masae Sugawara
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jaswant Kaur
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Linda J Ball
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and The Leibniz Institute of Molecular Pharmacology, Campus Buch, 13125 Berlin, Germany
| | - Michael Overduin
- From the School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
34
|
Taglieri DM, Johnson KR, Burmeister BT, Monasky MM, Spindler MJ, DeSantiago J, Banach K, Conklin BR, Carnegie GK. The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy. J Mol Cell Cardiol 2014; 66:27-40. [PMID: 24161911 PMCID: PMC4074493 DOI: 10.1016/j.yjmcc.2013.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/24/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study was to determine the role of A-Kinase Anchoring Protein (AKAP)-Lbc in the development of heart failure, by investigating AKAP-Lbc-protein kinase D1 (PKD1) signaling in vivo in cardiac hypertrophy. Using a gene-trap mouse expressing a truncated version of AKAP-Lbc (due to disruption of the endogenous AKAP-Lbc gene), that abolishes PKD1 interaction with AKAP-Lbc (AKAP-Lbc-ΔPKD), we studied two mouse models of pathological hypertrophy: i) angiotensin (AT-II) and phenylephrine (PE) infusion and ii) transverse aortic constriction (TAC)-induced pressure overload. Our results indicate that AKAP-Lbc-ΔPKD mice exhibit an accelerated progression to cardiac dysfunction in response to AT-II/PE treatment and TAC. AKAP-Lbc-ΔPKD mice display attenuated compensatory cardiac hypertrophy, increased collagen deposition and apoptosis, compared to wild-type (WT) control littermates. Mechanistically, reduced levels of PKD1 activation are observed in AKAP-Lbc-ΔPKD mice compared to WT mice, resulting in diminished phosphorylation of histone deacetylase 5 (HDAC5) and decreased hypertrophic gene expression. This is consistent with a reduced compensatory hypertrophy phenotype leading to progression of heart failure in AKAP-Lbc-ΔPKD mice. Overall, our data demonstrates a critical in vivo role for AKAP-Lbc-PKD1 signaling in the development of compensatory hypertrophy to enhance cardiac performance in response to TAC-induced pressure overload and neurohumoral stimulation by AT-II/PE treatment.
Collapse
Affiliation(s)
- Domenico M Taglieri
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Keven R Johnson
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Brian T Burmeister
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Michelle M Monasky
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA; Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Matthew J Spindler
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Jaime DeSantiago
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Kathrin Banach
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Graeme K Carnegie
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, 60612 IL, USA.
| |
Collapse
|
35
|
Esseltine JL, Scott JD. AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Trends Pharmacol Sci 2013; 34:648-55. [PMID: 24239028 DOI: 10.1016/j.tips.2013.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A-kinase anchoring proteins (AKAPs) streamline signal transduction by localizing signaling enzymes with their substrates. Great strides have been made in elucidating the role of these macromolecular signaling complexes as new binding partners and novel AKAPs are continually being uncovered. The mechanics and dynamics of these multi-enzyme assemblies suggest that AKAP complexes are viable targets for therapeutic intervention. This review will highlight recent advances in AKAP research focusing on local signaling events that are perturbed in disease.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
36
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
37
|
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2013; 33:4021-35. [PMID: 24037532 DOI: 10.1038/onc.2013.362] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).
Collapse
Affiliation(s)
- D R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - K L Rossman
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - C J Der
- 1] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA [2] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Spindler MJ, Burmeister BT, Huang Y, Hsiao EC, Salomonis N, Scott MJ, Srivastava D, Carnegie GK, Conklin BR. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy. PLoS One 2013; 8:e62705. [PMID: 23658642 PMCID: PMC3637253 DOI: 10.1371/journal.pone.0062705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/28/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. METHODOLOGY/PRINCIPAL FINDINGS To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. CONCLUSIONS These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Matthew J Spindler
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The A-kinase-anchoring protein AKAP-Lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser(16). Biochem J 2012; 446:437-43. [PMID: 22731613 DOI: 10.1042/bj20120570] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hsp20 (heat-shock protein of 20 kDa; HspB6) is a cardioprotective agent which combats a number of pathophysiological processes in the heart, including hypertrophy, apoptosis and ischaemia/reperfusion injury. The cardioprotective actions of Hsp20 require its phosphorylation by PKA (cAMP-dependent protein kinase) on Ser(16). Although the extracellular stimuli that promote cAMP-responsive phosphorylation of Hsp20 are well known, less is understood about the molecular processes that regulate this modification. AKAPs (A-kinase-anchoring proteins) physically compartmentalize PKA to specific locations within a cell to both direct PKA phosphorylation toward selected substrates and to orchestrate downstream signalling events. In the present study we used PKA anchoring disruptor peptides to verify that an AKAP underpins the cardioprotective phosphorylation of Hsp20. Biochemical and immunofluorescence techniques identify the cytosolic protein AKAP-Lbc (AKAP13) as the anchoring protein responsible for directing PKA phosphorylation of Hsp20 on Ser(16). Gene silencing and rescue experiments establish that AKAP-Lbc-mediated PKA phosphorylation of Hsp20 is crucial to the anti-apoptotic effects of the Hsp. Thus AKAP-Lbc may serve an ancillary cardioprotective role by favouring the association of PKA with Hsp20.
Collapse
|
40
|
Abstract
Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology.
Collapse
Affiliation(s)
- Alessia Perino
- Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
41
|
Shanks MO, Lund LM, Manni S, Russell M, Mauban JRH, Bond M. Chromodomain helicase binding protein 8 (Chd8) is a novel A-kinase anchoring protein expressed during rat cardiac development. PLoS One 2012; 7:e46316. [PMID: 23071553 PMCID: PMC3468582 DOI: 10.1371/journal.pone.0046316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) bind the regulatory subunits of protein kinase A (PKA) and localize the holoenzyme to discrete signaling microdomains in multiple subcellular compartments. Despite emerging evidence for a nuclear pool of PKA that rapidly responds to activation of the PKA signaling cascade, only a few AKAPs have been identified that localize to the nucleus. Here we show a PKA-binding domain in the amino terminus of Chd8, and demonstrate subcellular colocalization of Chd8 with RII. RII overlay and immunoprecipitation assays demonstrate binding between Chd8-S and RIIα. Binding is abrogated upon dephosphorylation of RIIα. By immunofluorescence, we identified nuclear and perinuclear pools of Chd8 in HeLa cells and rat neonatal cardiomyocytes. We also show high levels of Chd8 mRNA in RNA extracted from post-natal rat hearts. These data add Chd8 to the short list of known nuclear AKAPs, and implicate a function for Chd8 in post-natal rat cardiac development.
Collapse
Affiliation(s)
- Maureen O. Shanks
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Linda M. Lund
- Department of Biochemistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Sabrina Manni
- Department of Medicine, Clinical Immunology and Hematology Branches, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mary Russell
- Department of Biological Sciences, Trumbull Campus, Kent State University, Warren, Ohio, United States of America
| | - Joseph R. H. Mauban
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Meredith Bond
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Scott JD, Dessauer CW, Taskén K. Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol 2012; 53:187-210. [PMID: 23043438 DOI: 10.1146/annurev-pharmtox-011112-140204] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Second messenger responses rely on where and when the enzymes that propagate these signals become active. Spatial and temporal organization of certain signaling enzymes is controlled in part by A-kinase anchoring proteins (AKAPs). This family of regulatory proteins was originally classified on the basis of their ability to compartmentalize the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (also known as protein kinase A, or PKA). However, it is now recognized that AKAPs position G protein-coupled receptors, adenylyl cyclases, G proteins, and their effector proteins in relation to protein kinases and signal termination enzymes such as phosphodiesterases and protein phosphatases. This arrangement offers a simple and efficient means to limit the scope, duration, and directional flow of information to sites deep within the cell. This review focuses on the pros and cons of reagents that define the biological role of kinase anchoring inside cells and discusses recent advances in our understanding of anchored second messenger signaling in the cardiovascular and immune systems.
Collapse
Affiliation(s)
- John D Scott
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
43
|
Tröger J, Moutty MC, Skroblin P, Klussmann E. A-kinase anchoring proteins as potential drug targets. Br J Pharmacol 2012; 166:420-33. [PMID: 22122509 DOI: 10.1111/j.1476-5381.2011.01796.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) crucially contribute to the spatial and temporal control of cellular signalling. They directly interact with a variety of protein binding partners and cellular constituents, thereby directing pools of signalling components to defined locales. In particular, AKAPs mediate compartmentalization of cAMP signalling. Alterations in AKAP expression and their interactions are associated with or cause diseases including chronic heart failure, various cancers and disorders of the immune system such as HIV. A number of cellular dysfunctions result from mutations of specific AKAPs. The link between malfunctions of single AKAP complexes and a disease makes AKAPs and their interactions interesting targets for the development of novel drugs. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Jessica Tröger
- Max Delbrück Center for Molecular Medicine Berlin-Buch (MDC), Berlin, Germany Leibniz Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Diviani D, Maric D, Pérez López I, Cavin S, Del Vescovo CD. A-kinase anchoring proteins: molecular regulators of the cardiac stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:901-8. [PMID: 22889610 DOI: 10.1016/j.bbamcr.2012.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/26/2012] [Accepted: 07/29/2012] [Indexed: 12/29/2022]
Abstract
In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Miller NLG, Lawson C, Chen XL, Lim ST, Schlaepfer DD. Rgnef (p190RhoGEF) knockout inhibits RhoA activity, focal adhesion establishment, and cell motility downstream of integrins. PLoS One 2012; 7:e37830. [PMID: 22649559 PMCID: PMC3359313 DOI: 10.1371/journal.pone.0037830] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/24/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility. PRINCIPAL FINDINGS Rgnef exon 24 floxed mice (Rgnef(flox)) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous Rgnef(WT/flox) (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnef(flox/flox) (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnef(flox/flox) (Cre+) (Rgnef-/-) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef-/- MEF phenotypes were rescued by epitope-tagged Rgnef re-expression. CONCLUSIONS Rgnef-/- MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration.
Collapse
Affiliation(s)
| | | | | | | | - David D. Schlaepfer
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS. A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Physiol Heart Circ Physiol 2011; 301:H1742-53. [PMID: 21856912 DOI: 10.1152/ajpheart.00569.2011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, Université de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
47
|
AKAPs: the architectural underpinnings of local cAMP signaling. J Mol Cell Cardiol 2011; 52:351-8. [PMID: 21600214 DOI: 10.1016/j.yjmcc.2011.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have been implicated in the regulation of excitation-contraction coupling and cardiac remodeling. AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling, as well as a few of the individual AKAPs that have been shown to be functionally relevant in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
|
48
|
Hong KW, Lim JE, Oh B. A regulatory SNP in AKAP13 is associated with blood pressure in Koreans. J Hum Genet 2011; 56:205-10. [PMID: 21228793 DOI: 10.1038/jhg.2010.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High blood pressure contributes to more than 10 million deaths per year worldwide through stroke and ischemic heart disease. Yet, genome-wide association studies (GWASs) have identified a small fraction of its underlying genetic factors. To identify biologically important single-nucleotide polymorphisms (SNPs) that regulate variations in blood pressure, we analyzed SNPs in a genome-wide association study. Genome-wide genotype data (original study n = 7551, SNP = 352,228; replication study n = 3703, SNP = 20) were obtained from the Korea National Institute of Health, wherein 29,921 of 352,228 SNPs lay within 5 kbp upstream of genes. Linear regression analysis was performed for systolic and diastolic blood pressure (DBP) by controlling for cohort, age, sex and body mass index. For the 20 SNPs that were associated with both blood pressure values, a replication study was performed in an independent population. A total of 20 SNPs were significantly associated with both blood pressure values in the original study, 13 of which lay in a conserved transcription factor-binding site. One SNP (rs11638762), in the GATA-3 binding site upstream of the AKAP13 gene, was significantly replicated in another cohort (P-value of the meta-analysis = 1.4 × 10(-5) for systolic blood pressure and 6.3 × 10(-4) for DBP). A functional GWAS was performed using upstream SNPs, and a novel genetic factor (AKAP13), which is essential for cardiac myocyte development in mice, was identified as a regulator of blood pressure.
Collapse
Affiliation(s)
- Kyung-Won Hong
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
49
|
Bear MD, Li M, Liu Y, Giel-Moloney MA, Fanburg BL, Toksoz D. The Lbc Rho guanine nucleotide exchange factor α-catulin axis functions in serotonin-induced vascular smooth muscle cell mitogenesis and RhoA/ROCK activation. J Biol Chem 2010; 285:32919-32926. [PMID: 20696764 DOI: 10.1074/jbc.m109.062513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is mitogenic for several cell types including pulmonary arterial smooth muscle cells (PASMC), and is associated with the abnormal vascular smooth muscle remodeling that occurs in pulmonary arterial hypertension. RhoA/Rho kinase (ROCK) function is required for 5-HT-induced PASMC mitogenesis, and 5-HT activates RhoA; however, the signaling steps are poorly defined. Rho guanine nucleotide exchange factors (Rho GEFs) transduce extracellular signals to Rho, and we found that 5-HT treatment of PASMC led to increased membrane-associated Lbc Rho GEF, suggesting modulation by 5-HT. Lbc knockdown by siRNA attenuated 5-HT-induced thymidine uptake in PASMC, indicating a role in PASMC mitogenesis. 5-HT triggered Rho-dependent serum response factor-mediated reporter activation in PASMC, and this was reduced by Lbc depletion. Lbc knockdown reduced 5-HT-induced RhoA/ROCK activation, but not p42/44 ERK MAP kinase activation, suggesting that Lbc is an intermediary between 5-HT and RhoA/ROCK, but not ERK. 5-HT stimulation of PASMC led to increased association between Lbc, RhoA, and the α-catulin scaffold. Furthermore, α-catulin knockdown attenuated 5-HT-induced PASMC thymidine uptake. 5-HT-induced PASMC mitogenesis was reduced by dominant-negative G(q) protein, suggesting cooperation with Lbc/α-catulin. These results for the first time define a Rho GEF involved in vascular smooth muscle cell growth and serotonin signaling, and suggest that Lbc Rho GEF family members play distinct roles. Thus, the Lbc/α-catulin axis participates in 5-HT-induced PASMC mitogenesis and RhoA/ROCK signaling, and may be an interventional target in diseases involving vascular smooth muscle remodeling.
Collapse
Affiliation(s)
- Michael D Bear
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Min Li
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Yinglin Liu
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Maryann A Giel-Moloney
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Barry L Fanburg
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Deniz Toksoz
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111.
| |
Collapse
|
50
|
Kino T, Segars JH, Chrousos GP. The Guanine Nucleotide Exchange Factor Brx: A Link between Osmotic Stress, Inflammation and Organ Physiology and Pathophysiology. Expert Rev Endocrinol Metab 2010; 5:603-614. [PMID: 21037977 PMCID: PMC2964845 DOI: 10.1586/eem.10.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dehydration, and consequent intracellular hyperosmolarity, is a major challenge to land organisms, as it is associated with extraction of water from cells and disturbance of global cellular function. Organisms have thus developed a highly conserved regulatory mechanism that transduces the hyperosmolarity signal from the cell surface to the cell nucleus and adjusts the expression of cellular osmolarity-regulating genes. We recently found that the Rho-type guanine nucleotide exchange factor Brx, or AKAP13, is essential for osmotic stress-stimulated expression of nuclear factor of activated T-cells 5 (NFAT5), a key transcription factor of intracellular osmolarity. It accomplishes this by first attracting cJun kinase (JNK)-interacting protein (JIP) 4 and then coupling activated Rho-type small G-proteins to cascade components of the p38 MAPK signaling pathway, ultimately activating NFAT5. We describe the potential implications of osmotic stress and Brx activation in organ physiology and pathophysiology and connect activation of this system to key human homeostatic states.
Collapse
Affiliation(s)
- Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|