1
|
Takase HM, Mishina T, Hayashi T, Yoshimura M, Kuse M, Nikaido I, Kitajima TS. Transcriptomic signatures of WNT-driven pathways and granulosa cell-oocyte interactions during primordial follicle activation. PLoS One 2024; 19:e0311978. [PMID: 39441825 PMCID: PMC11498688 DOI: 10.1371/journal.pone.0311978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Primordial follicle activation (PFA) is a pivotal event in female reproductive biology, coordinating the transition from quiescent to growing follicles. This study employed comprehensive single-cell RNA sequencing to gain insights into the detailed regulatory mechanisms governing the synchronized dormancy and activation between granulosa cells (GCs) and oocytes with the progression of the PFA process. Wntless (Wls) conditional knockout (cKO) mice served as a unique model, suppressing the transition from pre-GCs to GCs, and disrupting somatic cell-derived WNT signaling in the ovary. Our data revealed immediate transcriptomic changes in GCs post-PFA in Wls cKO mice, leading to a divergent trajectory, while oocytes exhibited modest transcriptomic alterations. Subpopulation analysis identified the molecular pathways affected by WNT signaling on GC maturation, along with specific gene signatures linked to dormant and activated oocytes. Despite minimal evidence of continuous up-regulation of dormancy-related genes in oocytes, the loss of WNT signaling in (pre-)GCs impacted gene expression in oocytes even before PFA, subsequently influencing them globally. The infertility observed in Wls cKO mice was attributed to compromised GC-oocyte molecular crosstalk and the microenvironment for oocytes. Our study highlights the pivotal role of the WNT-signaling pathway and its molecular signature, emphasizing the importance of intercellular crosstalk between (pre-)GCs and oocytes in orchestrating folliculogenesis.
Collapse
Affiliation(s)
- Hinako M. Takase
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mariko Kuse
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
2
|
Rother F, Depping R, Popova E, Huegel S, Heiler A, Hartmann E, Bader M. Karyopherin α2 is a maternal effect gene required for early embryonic development and female fertility in mice. FASEB J 2024; 38:e23623. [PMID: 38656660 DOI: 10.1096/fj.202301572rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.
Collapse
Affiliation(s)
- Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | | | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Ariane Heiler
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 PMCID: PMC10930381 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| |
Collapse
|
4
|
Indrigo M, Morella I, Orellana D, d'Isa R, Papale A, Parra R, Gurgone A, Lecca D, Cavaccini A, Tigaret CM, Cagnotto A, Jones K, Brooks S, Ratto GM, Allen ND, Lelos MJ, Middei S, Giustetto M, Carta AR, Tonini R, Salmona M, Hall J, Thomas K, Brambilla R, Fasano S. Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2. EMBO Mol Med 2023; 15:e15984. [PMID: 37792911 PMCID: PMC10630888 DOI: 10.15252/emmm.202215984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.
Collapse
Affiliation(s)
- Marzia Indrigo
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| | - Daniel Orellana
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific InstituteMilanoItaly
| | - Alessandro Papale
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| | - Riccardo Parra
- NEST, Istituto Nanoscienze CNR, and Scuola Normale SuperiorePisaItaly
| | | | - Daniela Lecca
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Anna Cavaccini
- Neuromodulation of Cortical and Subcortical Circuits LaboratoryFondazione Istituto Italiano di TecnologiaGenovaItaly
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Alfredo Cagnotto
- Dipartimento di Biochimica e Farmacologia MolecolareIstituto di Ricerche Farmacologiche Mario Negri‐IRCCSMilanoItaly
| | | | - Simon Brooks
- School of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Silvia Middei
- Institute of Cell Biology and Neurobiology CNRRomaItaly
| | - Maurizio Giustetto
- Department of NeuroscienceUniversity of TorinoTorinoItaly
- National Institute of NeuroscienceTorinoItaly
| | - Anna R Carta
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits LaboratoryFondazione Istituto Italiano di TecnologiaGenovaItaly
| | - Mario Salmona
- Dipartimento di Biochimica e Farmacologia MolecolareIstituto di Ricerche Farmacologiche Mario Negri‐IRCCSMilanoItaly
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Kerrie Thomas
- Neuroscience and Mental Health Research Institute, School of MedicineCardiff UniversityCardiffUK
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”Università degli Studi di PaviaPaviaItaly
| | - Stefania Fasano
- Neuroscience and Mental Health Innovation Institute, School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
5
|
Herbst A, Bexter F, Kouassi NM, Gabriel G, Rautenschlein S. Distribution of importin-α isoforms in poultry species and their tissue- and age-related differences. Res Vet Sci 2023; 164:104994. [PMID: 37696109 DOI: 10.1016/j.rvsc.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
While importin-α is well studied in mammals, the knowledge in avian species is still limited. In this study, we compared the mRNA expression patterns of five importin-α isoforms in the respiratory tract, liver, and spleen of chickens, turkeys, and pekin ducks in two different age-groups. In addition, we determined the distribution of importin-α in selected tissue of conchae, trachea, and lung of post-hatch chickens at all cellular levels by immunohistochemical staining. Our results indicate that importin-α3 is the most abundant isoform in the respiratory tract of chickens, turkeys, and pekin ducks. Moreover, importin-α is expressed as a gradient with lowest mRNA levels in the conchae and highest levels in the lung. The mRNA expression levels of most isoforms were higher in tissues from post-hatch chickens and turkeys in comparison to the corresponding embryos. In contrast to that, duck embryos mostly show higher mRNA expression levels of importin-α than post-hatch ducks.
Collapse
Affiliation(s)
- Alexandra Herbst
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | | | - Gülsah Gabriel
- Leibniz-Institute for Virology, Martinistraße 52, 20251 Hamburg, Germany; Institute for Virology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
6
|
Navarrete-López P, Maroto M, Pericuesta E, Fernández-González R, Lombó M, Ramos-Ibeas P, Gutiérrez-Adán A. Loss of the importin Kpna2 causes infertility in male mice by disrupting the translocation of testis-specific transcription factors. iScience 2023; 26:107134. [PMID: 37456838 PMCID: PMC10338237 DOI: 10.1016/j.isci.2023.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Karyopherins mediate the movement between the nucleus and cytoplasm of specific proteins in diverse cellular processes. Through a loss-of-function approach, we here examine the role of Karyopherin Subunit Alpha 2 (Kpna2) in spermatogenesis. Knockout male mice exhibited reduced body size and sperm motility, increased sperm abnormalities, and led to the dysregulation of testis gene expression and ultimately to infertility. Impaired mRNA expression mainly affected clusters of genes expressed in spermatids and spermatocytes. Downregulated genes included a set of genes that participate in cell adhesion and extracellular matrix (ECM) organization. We detected both the enrichment of some transcription factors that bind to regions around transcription start sites of downregulated genes and the impaired transport of specific factors to the nucleus of spermatid cells. We propose that Kpna2 is essential in the seminiferous tubules for promoting the translocation of testis-specific transcription factors that control the expression of genes related to ECM organization.
Collapse
Affiliation(s)
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Eva Pericuesta
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | | | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | | | | |
Collapse
|
7
|
Nie X, Xu Q, Xu C, Chen F, Wang Q, Qin D, Wang R, Gao Z, Lu X, Yang X, Wu Y, Gu C, Xie W, Li L. Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation. Nat Commun 2023; 14:4275. [PMID: 37460529 DOI: 10.1038/s41467-023-39924-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Zygotic genome activation (ZGA) is essential for early embryonic development. However, the regulation of ZGA remains elusive in mammals. Here we report that a maternal factor TDP-43, a nuclear transactive response DNA-binding protein, regulates ZGA through RNA Pol II and is essential for mouse early embryogenesis. Maternal TDP-43 translocates from the cytoplasm into the nucleus at the early two-cell stage when minor to major ZGA transition occurs. Genetic deletion of maternal TDP-43 results in mouse early embryos arrested at the two-cell stage. TDP-43 co-occupies with RNA Pol II as large foci in the nucleus and also at the promoters of ZGA genes at the late two-cell stage. Biochemical evidence indicates that TDP-43 binds Polr2a and Cyclin T1. Depletion of maternal TDP-43 caused the loss of Pol II foci and reduced Pol II binding on chromatin at major ZGA genes, accompanied by defective ZGA. Collectively, our results suggest that maternal TDP-43 is critical for mouse early embryonic development, in part through facilitating the correct RNA Pol II configuration and zygotic genome activation.
Collapse
Affiliation(s)
- Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Gao
- Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xinai Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Ducreux B, Barberet J, Guilleman M, Pérez-Palacios R, Teissandier A, Bourc’his D, Fauque P. Assessing the influence of distinct culture media on human pre-implantation development using single-embryo transcriptomics. Front Cell Dev Biol 2023; 11:1155634. [PMID: 37435029 PMCID: PMC10330962 DOI: 10.3389/fcell.2023.1155634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
The use of assisted reproductive technologies is consistently rising across the world. However, making an informed choice on which embryo culture medium should be preferred to ensure satisfactory pregnancy rates and the health of future children critically lacks scientific background. In particular, embryos within their first days of development are highly sensitive to their micro-environment, and it is unknown how their transcriptome adapts to different embryo culture compositions. Here, we determined the impact of culture media composition on gene expression in human pre-implantation embryos. By employing single-embryo RNA-sequencing after 2 or 5 days of the post-fertilization culture in different commercially available media (Ferticult, Global, and SSM), we revealed medium-specific differences in gene expression changes. Embryos cultured pre-compaction until day 2 in Ferticult or Global media notably displayed 266 differentially expressed genes, which were related to essential developmental pathways. Herein, 19 of them could have a key role in early development, based on their previously described dynamic expression changes across development. When embryos were cultured after day 2 in the same media considered more suitable because of its amino acid enrichment, 18 differentially expressed genes thought to be involved in the transition from early to later embryonic stages were identified. Overall, the differences were reduced at the blastocyst stage, highlighting the ability of embryos conceived in a suboptimal in vitro culture medium to mitigate the transcriptomic profile acquired under different pre-compaction environments.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
| | - Julie Barberet
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Magali Guilleman
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Raquel Pérez-Palacios
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | - Patricia Fauque
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| |
Collapse
|
9
|
Sharif M, Detti L, Van den Veyver IB. Take your mother's ferry: preimplantation embryo development requires maternal karyopherins for nuclear transport. J Clin Invest 2023; 133:e166279. [PMID: 36647833 PMCID: PMC9843045 DOI: 10.1172/jci166279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genetic basis of preimplantation embryo arrest is slowly being unraveled. Recent discoveries point to maternally expressed proteins required for cellular functions before the embryonic genome is activated. In this issue of the JCI, Wang, Miyamoto, et al. suggest a critical role for karyopherin-mediated protein cargo transport between oocyte cytoplasm and nucleus. Defective maternal oocyte-expressed human karyopherin subunit α7 (KPNA7) and mouse KPNA2 fail to bind a critical substrate, ribosomal L1 domain-containing protein 1 (RSL1D1), affecting its transport to the nucleus. As shown in embryos of Kpna2-null females, the consequences are disrupted zygotic genome activation and arrest of development. These findings have important implications for diagnosis and treatment of female infertility.
Collapse
Affiliation(s)
| | - Laura Detti
- Department of Obstetrics and Gynecology
- Division of Reproductive Endocrinology and Infertility
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology
- Divisions of Maternal Fetal Medicine and Prenatal and Reproductive Genetics, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Wang W, Miyamoto Y, Chen B, Shi J, Diao F, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao X, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang Z, Wu T, Zhao L, Wang W, Zhou Z, Dong J, Li Q, Jin L, He L, Sun X, Lin G, Kuang Y, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J Clin Invest 2023; 133:159951. [PMID: 36647821 PMCID: PMC9843055 DOI: 10.1172/jci159951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 01/18/2023] Open
Abstract
Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene-based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2-/- female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2-/- mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2-/- mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.
Collapse
Affiliation(s)
- Wenjing Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Jiangsu, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qun Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lan Yu
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Li
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Fu
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xia Xue
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Jian Mu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Bhavana K, Foote DJ, Srikanth K, Balakrishnan CN, Prabhu VR, Sankaralingam S, Singha HS, Gopalakrishnan A, Nagarajan M. Comparative transcriptome analysis of Indian domestic duck reveals candidate genes associated with egg production. Sci Rep 2022; 12:10943. [PMID: 35768515 PMCID: PMC9243076 DOI: 10.1038/s41598-022-15099-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Egg production is an important economic trait and a key indicator of reproductive performance in ducks. Egg production is regulated by several factors including genes. However the genes involved in egg production in duck remain unclear. In this study, we compared the ovarian transcriptome of high egg laying (HEL) and low egg laying (LEL) ducks using RNA-Seq to identify the genes involved in egg production. The HEL ducks laid on average 433 eggs while the LEL ducks laid 221 eggs over 93 weeks. A total of 489 genes were found to be significantly differentially expressed out of which 310 and 179 genes were up and downregulated, respectively, in the HEL group. Thirty-eight differentially expressed genes (DEGs), including LHX9, GRIA1, DBH, SYCP2L, HSD17B2, PAR6, CAPRIN2, STC2, and RAB27B were found to be potentially related to egg production and folliculogenesis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that DEGs were enriched for functions related to glutamate receptor activity, serine-type endopeptidase activity, immune function, progesterone mediated oocyte maturation and MAPK signaling. Protein-protein interaction network analysis (PPI) showed strong interaction between 32 DEGs in two distinct clusters. Together, these findings suggest a mix of genetic and immunological factors affect egg production, and highlights candidate genes and pathways, that provides an understanding of the molecular mechanisms regulating egg production in ducks and in birds more broadly.
Collapse
Affiliation(s)
- Karippadakam Bhavana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Dustin J Foote
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Vandana R Prabhu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.,ICAR-Central Marine Fisheries Research Institute, Ernakulam North PO, Kochi, Kerala, 682 018, India
| | - Shanmugam Sankaralingam
- Department of Poultry Science, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, 680 651, India
| | - Hijam Surachandra Singha
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | | | - Muniyandi Nagarajan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
12
|
Klein RH, Knoepfler PS. DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer. Stem Cell Reports 2021; 16:2844-2851. [PMID: 34767751 PMCID: PMC8693620 DOI: 10.1016/j.stemcr.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Many gene networks are shared between pluripotent stem cells and cancer; a concept exemplified by several DPPA factors such as DPPA2 and DPPA4, which are highly and selectively expressed in stem cells but also found to be reactivated in cancer. Despite their striking expression pattern, for many years the function of DPPA2 and DPPA4 remained a mystery; knockout of Dppa2 and Dppa4 did not affect pluripotency, but caused lung and skeletal defects late in development, long after Dppa2 and Dppa4 expression had been turned off. A number of recent papers have further clarified and defined the roles of these important factors, identifying roles in priming the chromatin and maintaining developmental competency through regulating both H3K4me3 and H3K27me3 at bivalent chromatin domains, and acting to remodel chromatin and facilitate reprogramming of somatic cells to induced pluripotency. These findings highlight an important regulatory role for DPPA2 and DPPA4 at the transitional boundary between pluripotency and differentiation and may have relevance to the functions of DPPA2 and 4 in the context of cancer cells as well.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817, USA; Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Moravec CE, Voit GC, Otterlee J, Pelegri F. Identification of maternal-effect genes in zebrafish using maternal crispants. Development 2021; 148:dev199536. [PMID: 34463742 PMCID: PMC8543149 DOI: 10.1242/dev.199536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023]
Abstract
In animals, early development is dependent on a pool of maternal factors, both RNA and proteins, which are required for basic cellular processes and cell differentiation until zygotic genome activation. The role of the majority of these maternally expressed factors is not fully understood. By exploiting the biallelic editing ability of CRISPR-Cas9, we identify and characterize maternal-effect genes in a single generation, using a maternal crispant technique. We validated the ability to generate biallelic mutations in the germ line by creating maternal crispants that phenocopied previously characterized maternal-effect genes: birc5b, tmi and mid1ip1. Additionally, by targeting maternally expressed genes of unknown function in zebrafish, we identified two maternal-effect zebrafish genes, kpna7 and fhdc3. The genetic identity of these maternal crispants was confirmed by sequencing haploid progeny from F0 females, which allowed the analysis of newly induced lesions in the maternal germ line. Our studies show that maternal crispants allow for the effective identification and primary characterization of maternal-effect genes in a single generation, facilitating the reverse genetics analysis of maternal factors that drive embryonic development.
Collapse
Affiliation(s)
| | | | | | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
14
|
Zhang Y, Li M, Liu J, Peng Y, Zuo B, Xu Z. Effects of KPNA7 gene polymorphisms on reproductive traits in France Large White pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1965609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yunxia Zhang
- College of life Science and Agronomy, Zhoukou Normal University, Zhoukou, People’s Republic of China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Mingyang Li
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jun Liu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Department of Basic Veterinary, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
15
|
Importins: Diverse roles in male fertility. Semin Cell Dev Biol 2021; 121:82-98. [PMID: 34426066 DOI: 10.1016/j.semcdb.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.
Collapse
|
16
|
Lüdke D, Roth C, Kamrad SA, Messerschmidt J, Hartken D, Appel J, Hörnich BF, Yan Q, Kusch S, Klenke M, Gunkel A, Wirthmueller L, Wiermer M. Functional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:994-1009. [PMID: 33210758 DOI: 10.1111/tpj.15082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 05/28/2023]
Abstract
IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin-α isoforms in Arabidopsis that recruit nuclear localization signal-containing cargo proteins to the nuclear import machinery. IMP-α3/MOS6 is required genetically for full autoimmunity of the nucleotide-binding leucine-rich repeat immune receptor mutant snc1 (suppressor of npr1-1, constitutive 1) and MOS6 also contributes to basal disease resistance. Here, we investigated the contribution of the other importin-α genes to both types of immune responses, and we analyzed potential interactions of all importin-α isoforms with SNC1. By using reverse-genetic analyses in Arabidopsis and protein-protein interaction assays in Nicotiana benthamiana, we provide evidence that among the nine α-importins in Arabidopsis, IMP-α3/MOS6 is the main nuclear transport receptor of SNC1, and that IMP-α3/MOS6 is required selectively for autoimmunity of snc1 and basal resistance to mildly virulent Pseudomonas syringae in Arabidopsis.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Charlotte Roth
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Sieglinde A Kamrad
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Jana Messerschmidt
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Jonas Appel
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Bojan F Hörnich
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Stefan Kusch
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annette Gunkel
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Lennart Wirthmueller
- Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Molecular Biology of Plant-Microbe Interactions Research Group, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| |
Collapse
|
17
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
18
|
Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS J 2020; 288:5569-5585. [PMID: 33296547 DOI: 10.1111/febs.15659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Extensive structural and functional studies have been carried out in the field of nucleocytoplasmic transport. Nuclear transport factors, such as Importin-α/-β, recognize nuclear localization signals (NLSs) on cargo, and together with the small GTPase Ran, facilitate their nuclear localization. However, it is now emerging that binding of nuclear transport factors to NLSs not only mediates nuclear transport but also contributes to a variety of cellular functions in eukaryotes. Here, we describe recent advances that reveal how NLSs facilitate diverse cellular functions beyond nuclear transport activity. We review separately NLS-mediated regulatory mechanisms at different levels of biological organization, including (a) assembly of higher-order structures; (b) cellular organelle dynamics; and (c) modulation of cellular stress responses and viral infections. Finally, we provide mechanistic insights into how NLSs can regulate such a broad range of functions via their structural and biochemical properties.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
19
|
He J, Yang L, Chang P, Yang S, Lin S, Tang Q, Wang X, Zhang YJ. Zika virus NS2A protein induces the degradation of KPNA2 (karyopherin subunit alpha 2) via chaperone-mediated autophagy. Autophagy 2020; 16:2238-2251. [PMID: 32924767 PMCID: PMC7751636 DOI: 10.1080/15548627.2020.1823122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
KPNA2/importin-alpha1 (karyopherin subunit alpha 2) is the primary nucleocytoplasmic transporter for some transcription factors to activate cellular proliferation and differentiation. Aberrant increase of KPNA2 level is identified as a prognostic marker in a variety of cancers. Yet, the turnover mechanism of KPNA2 remains unknown. Here, we demonstrate that KPNA2 is degraded via the chaperone-mediated autophagy (CMA) and that Zika virus (ZIKV) enhances the KPNA2 degradation. KPNA2 contains a CMA motif, which possesses an indispensable residue Gln109 for the CMA-mediated degradation. RNAi-mediated knockdown of LAMP2A, a vital component of the CMA pathway, led to a higher level of KPNA2. Moreover, ZIKV reduced KPNA2 via the viral NS2A protein, which contains an essential residue Thr100 for inducing the CMA-mediated KPNA2 degradation. Notably, mutant ZIKV with T100A alteration in NS2A replicates much weaker than the wild-type virus. Also, knockdown of KPNA2 led to a higher ZIKV viral yield, which indicates that KPNA2 mediates certain antiviral effects. These data provide insights into the KPNA2 turnover and the ZIKV-cell interactions.
Collapse
Affiliation(s)
- Jia He
- College of Veterinary Medicine, Jilin University, Jilin, China,Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Peixi Chang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Shixing Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA,CONTACT Xinping Wang
| | - Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington DC, USA
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Jilin, China,Yan-Jin Zhang
Present address of Shixing Yang is School of Medicine, Jiangsu University, Jiangsu, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA,Yan-Jin Zhang
Present address of Shixing Yang is School of Medicine, Jiangsu University, Jiangsu, China.
| |
Collapse
|
20
|
Miyamoto Y, Sasaki M, Miyata H, Monobe Y, Nagai M, Otani M, Whiley PAF, Morohoshi A, Oki S, Matsuda J, Akagi KI, Adachi J, Okabe M, Ikawa M, Yoneda Y, Loveland KL, Oka M. Genetic loss of importin α4 causes abnormal sperm morphology and impacts on male fertility in mouse. FASEB J 2020; 34:16224-16242. [PMID: 33058343 DOI: 10.1096/fj.202000768rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/11/2022]
Abstract
Importin α proteins play a central role in the transport of cargo from the cytoplasm to the nucleus. In this study, we observed that male knock-out mice for importin α4, which is encoded by the Kpna4 gene (Kpna4-/- ), were subfertile and yielded smaller litter sizes than those of wild-type (WT) males. In contrast, mice lacking the closely related importin α3 (Kpna3-/- ) were fertile. In vitro fertilization and sperm motility assays demonstrated that sperm from Kpna4-/- mice had significantly reduced quality and motility. In addition, acrosome reaction was also impaired in Kpna4-/- mice. Transmission electron microscopy revealed striking defects, including abnormal head morphology and multiple axoneme structures in the flagella of Kpna4-/- mice. A five-fold increase in the frequency of abnormalities in Kpna4-/- mice compared to WT mice indicates the functional importance of importin α4 in normal sperm development. Moreover, Nesprin-2, which is a component of the linker of nucleus and cytoskeleton complex, was expressed at lower levels in sperm from Kpna4-/- mice and was localized with abnormal axonemes, suggesting incorrect formation of the nuclear membrane-cytoskeleton structure during spermiogenesis. Proteomics analysis of Kpna4-/- testis showed significantly altered expression of proteins related to sperm formation, which provided evidence that genetic loss of importin α4 perturbed chromatin status. Collectively, these findings indicate that importin α4 is critical for establishing normal sperm morphology in mice, providing new insights into male germ cell development by highlighting the requirement of importin α4 for normal fertility.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Mitsuho Sasaki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Monobe
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masahiro Nagai
- Department of Frontier Bioscience, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Mayumi Otani
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Penny A F Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junichiro Matsuda
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ken-Ichi Akagi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshihiro Yoneda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| |
Collapse
|
21
|
Characterization of the Importin-β binding domain in nuclear import receptor KPNA7. Biochem J 2020; 476:3413-3434. [PMID: 31642884 DOI: 10.1042/bcj20190717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The KPNA family of mammalian nuclear import receptors are encoded by seven genes that generate isoforms with 42-86% identity. KPNA isoforms have the same protein architecture and share the functional property of nuclear localization signal (NLS) recognition, however, the tissue and developmental expression patterns of these receptors raise the question of whether subtle differences in KPNA isoforms might be important in specific biological contexts. Here, we show that KPNA7, an isoform with expression mostly limited to early development, can bind Importin-β (Imp-β) in the absence of NLS cargo. This result contrasts with Imp-β interactions with other KPNA family members, where affinity is regulated by NLS cargo as part of a cooperative binding mechanism. The Imp-β binding (IBB) domain, which is highly conserved in all KPNA family members, generally serves to occlude the NLS binding groove and maintain the receptor in an auto-inhibited 'closed' state prior to NLS contact. Cooperative binding of NLS cargo and Imp-β to KPNA results in an 'open'state. Characterization of KPNA2-KPNA7 chimeric proteins suggests that features of both the IBB domain and the core structure of the receptor contribute to the extent of IBB domain accessibility for Imp-β binding, which likely reflects an 'open' state. We also provide evidence that KPNA7 maintains an open-state in the nucleus. We speculate that KPNA7 could function within the nucleus by interacting with NLS-containing proteins.
Collapse
|
22
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
23
|
Radhakrishnan K, Park SJ, Kim SW, Hariharasudhan G, Jeong SY, Chang IY, Lee JH. Karyopherin α-2 Mediates MDC1 Nuclear Import through a Functional Nuclear Localization Signal in the tBRCT Domain of MDC1. Int J Mol Sci 2020; 21:2650. [PMID: 32290222 PMCID: PMC7177644 DOI: 10.3390/ijms21072650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mediator of DNA damage checkpoint protein 1 (MDC1) plays a vital role in DNA damage response (DDR) by coordinating the repair of double strand breaks (DSBs). Here, we identified a novel interaction between MDC1 and karyopherin α-2 (KPNA2), a nucleocytoplasmic transport adaptor, and showed that KPNA2 is necessary for MDC1 nuclear import. Thereafter, we identified a functional nuclear localization signal (NLS) between amino acid residues 1989-1994 of the two Breast Cancer 1 (BRCA1) carboxyl-terminal (tBRCT) domain of MDC1 and demonstrated disruption of this NLS impaired interaction between MDC1 and KPNA2 and reduced nuclear localization of MDC1. In KPNA2-depleted cells, the recruitment of MDC1, along with the downstream signaling p roteins Ring Finger Protein 8 (RNF8), 53BP1-binding protein 1 (53BP1), BRCA1, and Ring Finger Protein 168 (RNF168), to DNA damage sites was abolished. Additionally, KPNA2-depleted cells had a decreased rate of homologous recombination (HR) repair. Our data suggest that KPNA2-mediated MDC1 nuclear import is important for DDR signaling and DSB repair.
Collapse
Affiliation(s)
- Kamalakannan Radhakrishnan
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea; (K.R.); (S.-J.P.); (S.W.K.); (G.H.); (S.-Y.J.)
| | - Seon-Joo Park
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea; (K.R.); (S.-J.P.); (S.W.K.); (G.H.); (S.-Y.J.)
- Department of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Seok Won Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea; (K.R.); (S.-J.P.); (S.W.K.); (G.H.); (S.-Y.J.)
- Department of Neurosurgery, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea; (K.R.); (S.-J.P.); (S.W.K.); (G.H.); (S.-Y.J.)
| | - Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea; (K.R.); (S.-J.P.); (S.W.K.); (G.H.); (S.-Y.J.)
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - In Youb Chang
- Department of Anatomy, College of Medicine, Chosun University, Gwangju 61452, Korea;
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University, Gwangju 61452, Korea; (K.R.); (S.-J.P.); (S.W.K.); (G.H.); (S.-Y.J.)
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
24
|
Oostdyk LT, Wang Z, Zang C, Li H, McConnell MJ, Paschal BM. An epilepsy-associated mutation in the nuclear import receptor KPNA7 reduces nuclear localization signal binding. Sci Rep 2020; 10:4844. [PMID: 32179771 PMCID: PMC7076015 DOI: 10.1038/s41598-020-61369-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
KPNA7 is a member of the Importin-α family of nuclear import receptors. KPNA7 forms a complex with Importin-β and facilitates the translocation of signal-containing proteins from the cytoplasm to the nucleus. Exome sequencing of siblings with severe neurodevelopmental defects and clinical features of epilepsy identified two amino acid-altering mutations in KPNA7. Here, we show that the E344Q substitution reduces KPNA7 binding to nuclear localization signals, and that this limits KPNA7 nuclear import activity. The P339A substitution, by contrast, has little effect on KPNA7 binding to nuclear localization signals. Given the neuronal phenotype described in the two patients, we used SILAC labeling, affinity enrichment, and mass spectrometry to identify KPNA7-interacting proteins in human induced pluripotent stem cell-derived neurons. We identified heterogeneous nuclear ribonucleoproteins hnRNP R and hnRNP U as KPNA7-interacting proteins. The E344Q substitution reduced binding and KPNA7-mediated import of these cargoes. The c.1030G > C allele which generates E344Q is within a predicted CTCF binding site, and we found that it reduces CTCF binding by approximately 40-fold. Our data support a role for altered neuronal expression and activity of KPNA7 in a rare type of pediatric epilepsy.
Collapse
Affiliation(s)
- Luke T Oostdyk
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Chongzhi Zang
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hui Li
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bryce M Paschal
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
25
|
Phillips CA, Reading BJ, Livingston M, Livingston K, Ashwell CM. Evaluation via Supervised Machine Learning of the Broiler Pectoralis Major and Liver Transcriptome in Association With the Muscle Myopathy Wooden Breast. Front Physiol 2020; 11:101. [PMID: 32158398 PMCID: PMC7052112 DOI: 10.3389/fphys.2020.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
The muscle myopathy wooden breast (WB) has recently appeared in broiler production and has a negative impact on meat quality. WB is described as hard/firm consistency found within the pectoralis major (PM). In the present study, we use machine learning from our PM and liver transcriptome dataset to capture the complex relationships that are not typically revealed by traditional statistical methods. Gene expression data was evaluated between the PM and liver of birds with WB and those that were normal. Two separate machine learning algorithms were performed to analyze the data set including the sequential minimal optimization (SMO) of support vector machines (SVMs) and Multilayer Perceptron (MLP) Artificial Neural Network (ANN). Machine learning algorithms were compared to identify genes within a gene expression data set of approximately 16,000 genes for both liver and PM, which can be correctly classified from birds with or without WB. The performance of both machine learning algorithms SMO and MLP was determined using percent correct classification during the cross-validations. By evaluating the WB transcriptome datasets by 5× cross-validation using ANNs, the expression of nine genes ranked based on Shannon Entropy (Information Gain) from PM were able to correctly classify if the individual bird was normal or exhibited WB 100% of the time. These top nine genes were all protein coding and potential biomarkers. When PM gene expression data were evaluated between normal birds and those with WB using SVMs they were correctly classified 95% of the time using 450 of the top genes sorted ranked based on Shannon Entropy (Information Gain) as a preprocessing step. When evaluating the 450 attributes that were 95% correctly classified using SVMs through Ingenuity Pathway Analysis (IPA) there was an overlap in top genes identified through MLP. This analysis allowed the identification of critical transcriptional responses for the first time in both liver and muscle during the onset of WB. The information provided has revealed many molecules and pathways making up a complex molecular mechanism involved with the progression of wooden breast and suggests that the etiology of the myopathy is not limited to activity in the muscle alone, but is an altered systemic pathology.
Collapse
Affiliation(s)
- Chelsea A. Phillips
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Matthew Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Kimberly Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Chris M. Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
26
|
Wang L, Hand JM, Fu L, Smith GW, Yao J. DNA methylation and miRNA-1296 act in concert to mediate spatiotemporal expression of KPNA7 during bovine oocyte and early embryonic development. BMC DEVELOPMENTAL BIOLOGY 2019; 19:23. [PMID: 31787077 PMCID: PMC6886206 DOI: 10.1186/s12861-019-0204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/27/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Epigenetic regulation of oocyte-specific maternal factors is essential for oocyte and early embryonic development. KPNA7 is an oocyte-specific maternal factor, which controls transportation of nuclear proteins important for early embryonic development. To elucidate the epigenetic mechanisms involved in the controlled expression of KPNA7, both DNA methylation associated transcriptional silencing and microRNA (miRNA)-mediated mRNA degradation of KPNA7 were examined. RESULTS Comparison of DNA methylation profiles at the proximal promoter of KPNA7 gene between oocyte and 6 different somatic tissues identified 3 oocyte-specific differentially methylated CpG sites. Expression of KPNA7 mRNA was reintroduced in bovine kidney-derived CCL2 cells after treatment with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza-CdR). Analysis of the promoter region of KPNA7 gene in CCL2 cells treated with 5-Aza-CdR showed a lighter methylation rate in all the CpG sites. Bioinformatic analysis predicted 4 miRNA-1296 binding sites in the coding region of KPNA7 mRNA. Ectopic co-expression of miRNA-1296 and KPNA7 in HEK293 cells led to reduced expression of KPNA7 protein. Quantitative real time PCR (RT-qPCR) analysis revealed that miRNA-1296 is expressed in oocytes and early stage embryos, and the expression reaches a peak level in 8-cell stage embryos, coincident with the time of embryonic genome activation and the start of declining of KPNA7 expression. CONCLUSIONS These results suggest that DNA methylation may account for oocyte-specific expression of KPNA7, and miRNA-1296 targeting the coding region of KPNA7 is a potential mechanism for KPNA7 transcript degradation during the maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jacqelyn M Hand
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Liyuan Fu
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Departments of Animal Science and Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
27
|
Vuorinen EM, Rajala NK, Ihalainen TO, Kallioniemi A. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells. BMC Cancer 2018; 18:325. [PMID: 29580221 PMCID: PMC5870926 DOI: 10.1186/s12885-018-4261-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. Methods We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. Results In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Conclusions Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4261-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Nina K Rajala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Teemu O Ihalainen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland.,BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, University of Tampere, PL 100, 33014, Tampere, Finland.,Tampere Imaging Facility, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland. .,Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland.
| |
Collapse
|
28
|
Cabot B, Cabot RA. Chromatin remodeling in mammalian embryos. Reproduction 2018; 155:R147-R158. [PMID: 29339454 DOI: 10.1530/rep-17-0488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022]
Abstract
The mammalian embryo undergoes a dramatic amount of epigenetic remodeling during the first week of development. In this review, we discuss several epigenetic changes that happen over the course of cleavage development, focusing on covalent marks (e.g., histone methylation and acetylation) and non-covalent remodeling (chromatin remodeling via remodeling complexes; e.g., SWI/SNF-mediated chromatin remodeling). Comparisons are also drawn between remodeling events that occur in embryos from a variety of mammalian species.
Collapse
Affiliation(s)
- Birgit Cabot
- Department of Animal SciencesPurdue University, West Lafayette, Indiana, USA
| | - Ryan A Cabot
- Department of Animal SciencesPurdue University, West Lafayette, Indiana, USA
| |
Collapse
|
29
|
OKA M, YONEDA Y. Importin α: functions as a nuclear transport factor and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:259-274. [PMID: 30078827 PMCID: PMC6117492 DOI: 10.2183/pjab.94.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleocytoplasmic transport is an essential process in eukaryotes. The molecular mechanisms underlying nuclear transport that involve the nuclear transport receptor, small GTPase Ran, and the nuclear pore complex are highly conserved from yeast to humans. On the other hand, it has become clear that the nuclear transport system diverged during evolution to achieve various physiological functions in multicellular eukaryotes. In this review, we first summarize the molecular mechanisms of nuclear transport and how these were elucidated. Then, we focus on the diverse functions of importin α, which acts not merely an import factor but also as a multi-functional protein contributing to a variety of cellular functions in higher eukaryotes.
Collapse
Affiliation(s)
- Masahiro OKA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro YONEDA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Correspondence should be addressed: Y. Yoneda, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan (e-mail: )
| |
Collapse
|
30
|
Supplementation of L-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence: An experimental study. Int J Reprod Biomed 2017; 15:779-786. [PMID: 29492475 PMCID: PMC5816238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Oocyte developmental competence is one of the key factors for determining the success rate of assisted reproductive technique. OBJECTIVE The aim of the current study was to investigate the effect of L-carnitine (LC) supplementation during in vitro maturation (IVM), on preimplantation embryo development and expression of genes involved in embryo competence derived from oocytes selected with brilliant cresyl blue (BCB) test. MATERIALS AND METHODS Cumulus-oocyte complexes (COCs) were obtained from NMRI mice ovaries. COCs were stained with BCB and then BCB+ (colored cytoplasm) oocytes cultured in IVM medium supplemented with 0.3 or 0.6 mg/ml LC. COCs untreated with LC were used as control. Fertilization rate and blastocyst development rate were determined after in vitro fertilization. In addition, quantitative reverse transcriptase polymerase chain reaction was used to measure relative genes expression related with development (Ccnb1, Mos, Ces5, and Dppa2) and apoptosis (Bax and Bcl-xL) in oocytes and embryos. RESULTS Oocytes treated with both LC concentrations showed higher blastocyst development rate compared with untreated oocytes (p<0.01). Moreover, fertilization rate was increased in oocytes treated with 0.6 mg/ml LC (p<0.01). Treatment of oocytes with both LC concentrations increased (p<0.01) the level of Ccnb1 mRNA in MII oocytes. The two-cell stage embryos and blastocysts derived from LC-treated oocytes (0.6 mg/ml) showed increased the expression levels of Dppa2 and Bcl-xl mRNA, respectively (p<0.01). CONCLUSION The results of the present study show that adding of LC to the IVM medium of BCB+ oocytes can ameliorate reproductive success following in vitro fertilization.
Collapse
|
31
|
Zare Z, Abouhamzeh B, Masteri Farahani R, Salehi M, Mohammadi M. Supplementation of L-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence:An experimental study. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.12.779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Zhang Y, Cheng M, Wu L, Zhang G, Wang Z. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:18-26. [PMID: 27561114 DOI: 10.1016/j.aquatox.2016.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not' been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225μgL(-1) (0.99μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Mengqian Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Guo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China.
| |
Collapse
|
33
|
Vuorinen EM, Rajala NK, Rauhala HE, Nurminen AT, Hytönen VP, Kallioniemi A. Search for KPNA7 cargo proteins in human cells reveals MVP and ZNF414 as novel regulators of cancer cell growth. Biochim Biophys Acta Mol Basis Dis 2016; 1863:211-219. [PMID: 27664836 DOI: 10.1016/j.bbadis.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Nina K Rajala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Hanna E Rauhala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland.
| | - Anssi T Nurminen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Vesa P Hytönen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Anne Kallioniemi
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| |
Collapse
|
34
|
Miyamoto Y, Yamada K, Yoneda Y. Importin α: a key molecule in nuclear transport and non-transport functions. J Biochem 2016; 160:69-75. [DOI: 10.1093/jb/mvw036] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
|
35
|
Labrecque R, Fournier E, Sirard MA. Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol Reprod Dev 2016; 83:558-69. [DOI: 10.1002/mrd.22651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/19/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Rémi Labrecque
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| | - Eric Fournier
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| | - Marc-André Sirard
- Faculté des sciences de l'Agriculture et de l'Alimentation; Département des Sciences Animales; Centre de Recherche en Biologie de la Reproduction; Pavillon INAF; Université Laval; Québec QC Canada
| |
Collapse
|
36
|
Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes. Mol Cell Proteomics 2016; 15:2616-27. [PMID: 27215607 DOI: 10.1074/mcp.m115.056887] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142.
Collapse
Affiliation(s)
- Irma Virant-Klun
- From the ‡Reproductive Unit, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000 Ljubljana, Slovenia
| | - Stefan Leicht
- §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christopher Hughes
- ¶British Columbia Cancer Research Agency, 675 West 10th Avenue, Vancouver, Canada
| | - Jeroen Krijgsveld
- §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; ‖German Cancer Research Center and Heidelberg University, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Sun C, Yu Z, Wang Y, Tao T. The importin protein karyopherin-β1 regulates the mice fibroblast-like synoviocytes inflammation via facilitating nucleus transportation of STAT3 transcription factor. Biochem Biophys Res Commun 2016; 471:553-9. [DOI: 10.1016/j.bbrc.2016.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
|
38
|
Mihalas BP, Western PS, Loveland KL, McLaughlin EA, Holt JE. Changing expression and subcellular distribution of karyopherins during murine oogenesis. Reproduction 2015; 150:485-96. [DOI: 10.1530/rep-14-0585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Abstract
Mammalian oocyte growth and development is driven by a strict program of gene expression that relies on the timely presence of transcriptional regulators via nuclear pores. By targeting specific cargos for nucleo-cytoplasmic transport, karyopherin (KPN) proteins are key to the relocation of essential transcription factors and chromatin-remodelling factors into and out of the nucleus. Using multiple complementary techniques, here we establish that KPNA genes and proteins are dynamically expressed and relocalised throughout mouse oogenesis and folliculogenesis. Of the KPNAs examined (Kpna1, Kpna2, Kpna3, Kpna4, Kpna6, Kpna7, Kpnb1, Ipo5 and Xpo1), all were expressed in the embryonic ovary with up-regulation of protein levels concomitant with meiotic entry for KPNA2, accompanied by the redistribution of the cellular localisation of KPNA2 and XPO1. In contrast, postnatal folliculogenesis revealed significant up-regulation of Kpna1, Kpna2, Kpna4, Kpna6 and Ipo5 and down-regulation of Kpnb1, Kpna7 and Xpo1 at the primordial to primary follicle transition. KPNAs exhibited different localisation patterns in both oocytes and granulosa cells during folliculogenesis, with three KPNAs – KPNA1, KPNA2 and IPO5 – displaying marked enrichment in the nucleus by antral follicle stage. Remarkably, varied subcellular expression profiles were also identified in isolated pre-ovulatory oocytes with KPNAs KPNA2, KPNB1 and IPO5 detected in the cytoplasm and at the nuclear rim and XPO1 in cytoplasmic aggregates. Intriguingly, meiotic spindle staining was also observed for KPNB1 and XPO1 in meiosis II eggs, implying roles for KPNAs outside of nucleo-cytoplasmic transport. Thus, we propose that KPNAs, by targeting specific cargoes, are likely to be key regulators of oocyte development.
Collapse
|
39
|
Kimoto C, Moriyama T, Tsujii A, Igarashi Y, Obuse C, Miyamoto Y, Oka M, Yoneda Y. Functional characterization of importin α8 as a classical nuclear localization signal receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Taubert H, Wach S, Jung R, Pugia M, Keck B, Bertz S, Nolte E, Stoehr R, Lehmann J, Ohlmann CH, Stöckle M, Wullich B, Hartmann A. Piwil 2 expression is correlated with disease-specific and progression-free survival of chemotherapy-treated bladder cancer patients. Mol Med 2015; 21:371-80. [PMID: 25998509 DOI: 10.2119/molmed.2014.00250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
Abstract
Piwi-like 2 (Piwil 2) belongs to the family of Argonaute genes/proteins. The expression of Piwil 2 is associated with stem cells. A role in tumorigenesis and/or tumor progression is proposed for different cancers but not yet for bladder cancer (BCa). We investigated the Piwil 2 expression by immunohistochemistry in a cohort of 202 BCa patients treated by cystectomy and adjuvant chemotherapy. The association between Piwil 2 expression and disease-specific (DSS) or progression-free survival (PFS) was calculated using Kaplan Meier analyses and univariate/multivariate Cox's regression hazard models.In a multivariate Cox's regression, Piwil 2 expression, either in the cytoplasm or the nucleus, was significantly associated with DSS and PFS. A weak cytoplasmic staining pattern was associated with poor DSS and tumor progression (RR=2.7; P=0.004 and RR=2.4; P=0.027). Likewise,, absent nuclear Piwil 2 immunoreactivity was associated with poor DSS and tumor progression (RR=2.3; P=0.023 and RR=2.2; P=0.022). BCa patients whose tumors exhibited a combination of weak cytoplasmic and absent nuclear immunoreactivity had a 6-fold increased risk of tumor-related death (P=0.005) compared to patients with strong expression. Considering only patients with high grade G3 tumors, a 7.8-fold risk of tumor-associated death and a 3.6-fold risk of tumor progression were detected independently of the histologic tumor subtype or the chemotherapy regimen. In summary, a combination of weak cytoplasmic and absent nuclear expression of Piwil 2 is significantly associated with an increased risk of DSS and tumor progression. This implicates that Piwil 2 could be a valuable prognostic marker for high-risk BCa patients.
Collapse
Affiliation(s)
- Helge Taubert
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rudolf Jung
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Pugia
- Siemens Healthcare Diagnostics, Elkhart, Indiana, USA
| | - Bastian Keck
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Bertz
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Nolte
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Stoehr
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Lehmann
- Urologische Gemeinschaftspraxis, Prüner Gang and Department of Urology, Städtisches Krankenhaus, Kiel, Germany
| | | | - Michael Stöckle
- Department of Urology, Saarland University, Homburg, Germany
| | - Bernd Wullich
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Abstract
The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases.
Collapse
|
42
|
Zhang Z, Elsayed AK, Shi Q, Zhang Y, Zuo Q, Li D, Lian C, Tang B, Xiao T, Xu Q, Chang G, Chen G, Zhang L, Wang K, Wang Y, Jin K, Wang Y, Song J, Cui H, Li B. Crucial genes and pathways in chicken germ stem cell differentiation. J Biol Chem 2015; 290:13605-21. [PMID: 25847247 DOI: 10.1074/jbc.m114.601401] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/16/2022] Open
Abstract
Male germ cell differentiation is a subtle and complex regulatory process. Currently, its regulatory mechanism is still not fully understood. In our experiment, we performed the first comprehensive genome and transcriptome-wide analyses of the crucial genes and signaling pathways in three kinds of crucial cells (embryonic stem cells, primordial germ cell, and spermatogonial stem cells) that are associated with the male germ cell differentiation. We identified thousands of differentially expressed genes in this process, and from these we chose 173 candidate genes, of which 98 genes were involved in cell differentiation, 19 were involved in the metabolic process, and 56 were involved in the differentiation and metabolic processes, like GAL9, AMH, PLK1, and PSMD7 and so on. In addition, we found that 18 key signaling pathways were involved mainly in cell proliferation, differentiation, and signal transduction processes like TGF-β, Notch, and Jak-STAT. Further exploration found that the candidate gene expression patterns were the same between in vitro induction experiments and transcriptome results. Our results yield clues to the mechanistic basis of male germ cell differentiation and provide an important reference for further studies.
Collapse
Affiliation(s)
- Zhentao Zhang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Ahmed Kamel Elsayed
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China, the Anatomy and Embryology Department, College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qingqing Shi
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Yani Zhang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China,
| | - Qisheng Zuo
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Dong Li
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Chao Lian
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Beibei Tang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Tianrong Xiao
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Qi Xu
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Guobin Chang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Guohong Chen
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Lei Zhang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Kehua Wang
- the Poultry Institute, Chinese Academy of Agricultural Sciences, 225009 Yangzhou, China
| | - Yingjie Wang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Kai Jin
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Yilin Wang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Jiuzhou Song
- the Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20740, and
| | - Hengmi Cui
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Bichun Li
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China,
| |
Collapse
|
43
|
Wang L, Ma H, Fu L, Yao J. Kpna7 interacts with egg-specific nuclear factors in the rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 2014; 81:1136-45. [PMID: 25511304 DOI: 10.1002/mrd.22433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| | | | | | | |
Collapse
|
44
|
Rise ML, Nash GW, Hall JR, Booman M, Hori TS, Trippel EA, Gamperl AK. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study. Mar Genomics 2014; 18 Pt A:3-20. [PMID: 24878168 DOI: 10.1016/j.margen.2014.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
Early life stage mortality is an important issue for Atlantic cod aquaculture, yet the impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work, we studied embryonic mortality and maternal transcript expression using eggs from 15 females. Total mortality at 7days post-fertilization (7 dpf, segmentation stage) was used as an indice of egg quality. A 20,000 probe (20K) microarray experiment compared the 7hours post-fertilization (7 hpf, ~2-cell stage) egg transcriptome of the two lowest quality females (>90% mortality at 7 dpf) to that of the highest quality female (~16% mortality at 7 dpf). Forty-three microarray probes were consistently differentially expressed in both low versus high quality egg comparisons (25 higher expressed in low quality eggs, and 18 higher expressed in high quality eggs). The microarray experiment also identified many immune-relevant genes [e.g. interferon (IFN) pathway genes ifngr1 and ifrd1)] that were highly expressed in eggs of all 3 females regardless of quality. Twelve of the 43 candidate egg quality-associated genes, and ifngr1, ifrd1 and irf7, were included in a qPCR study with 7 hpf eggs from all 15 females. Then, the genes that were confirmed by qPCR to be greater than 2-fold differentially expressed between 7 hpf eggs from the lowest and highest quality females (dcbld1, ddc, and acy3 more highly expressed in the 2 lowest quality females; kpna7 and hacd1 more highly expressed in the highest quality female), and the 3 IFN pathway genes, were included in a second qPCR study with unfertilized eggs. While some maternal transcripts included in these qPCR studies were associated with extremes in egg quality, there was little correlation between egg quality and gene expression when all females were considered. Both dcbld1 and ddc showed greater than 100-fold differences in transcript expression between females and were potentially influenced by family. The Atlantic cod ddc (dopa decarboxylase) complete cDNA was characterized, and has a 1461bp open reading frame encoding a 486 amino acid protein that contains all eight residues of the conserved pyridoxal 5'-phosphate binding site including the catalytic lysine. This study provides valuable new information and resources related to the Atlantic cod egg transcriptome. Some of these microarray-identified, qPCR-confirmed, Atlantic cod egg transcripts (e.g. ddc, kpna7) play important roles during embryonic development of other vertebrate species, and may have similar functions in Atlantic cod.
Collapse
Affiliation(s)
- Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Tiago S Hori
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Edward A Trippel
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB, E5B 2L9, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
45
|
KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro. Exp Cell Res 2014; 322:159-67. [DOI: 10.1016/j.yexcr.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/26/2022]
|
46
|
Autosomal recessive mutations in nuclear transport factor KPNA7 are associated with infantile spasms and cerebellar malformation. Eur J Hum Genet 2013; 22:587-93. [PMID: 24045845 DOI: 10.1038/ejhg.2013.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022] Open
Abstract
Nuclear import receptors of the KPNA family recognize the nuclear localization signal in proteins and together with importin-β mediate translocation into the nucleus. Accordingly, KPNA family members have a highly conserved architecture with domains that contact the nuclear localization signal and bind to importin-β. Here, we describe autosomal recessive mutations in KPNA7 found by whole exome sequencing in a sibling pair with severe developmental disability, infantile spasms, subsequent intractable epilepsy consistent with Lennox-Gastaut syndrome, partial agenesis of the corpus callosum, and cerebellar vermis hypoplasia. The mutations mapped to exon 7 in KPNA7 result in two amino-acid substitutions, Pro339Ala and Glu344Gln. On the basis of the crystal structure of the paralog KPNA2 bound to a bipartite nuclear localization signal from the retinoblastoma protein, the amino-acid substitutions in the affected subjects were predicted to occur within the seventh armadillo repeat that forms one of the two nuclear localization signal-binding sites in KPNA family members. Glu344 is conserved in all seven KPNA proteins, and we found that the Glu354Gln mutation in KPNA2 is sufficient to reduce binding to the retinoblastoma nuclear localization signal to approximately one-half that of wild-type protein. Our data show that compound heterozygous mutations in KPNA7 are associated with a human neurodevelopmental disease, and provide the first example of a human disease associated with mutation of a nuclear transport receptor.
Collapse
|
47
|
Luo Y, Wang Z, Tian L, Li X. The function of importin β1 is conserved in eukaryotes but the substrates may vary in organisms. PLANT SIGNALING & BEHAVIOR 2013; 8:25106. [PMID: 23733071 PMCID: PMC3999071 DOI: 10.4161/psb.25106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Importin β1 is the nuclear-cytoplasmic transport receptor in eukaryotic cells. Its main function is to transport NLS (nuclear localization signal)-containing proteins from cytoplasm to nucleus. Our recent study found that AtKPNB1, a homolog of the human KPNB1, is an essential component of the classical nuclear import of the NLS-containing proteins in Arabidopsis and modulates plant development and ABA-mediated stress response. Human KPNB1 can also directly transport the nuclear proteins, such as ribosomal protein RPS7e, without the intervention of importin α proteins. However, we found that AtKPNB1 does not directly recognize and import the human RPS7e homologous proteins AtRPS7A, AtRPS7B and AtRPS7C into the nucleus like human KPNB1. These findings suggest that the importin β1 protein has the conserved function in translocating nuclear proteins to the nucleus, but their specific cargos may vary in different organisms.
Collapse
Affiliation(s)
- Yanjie Luo
- The State Key Laboratory of Plant Cell & Chromosome Engineering; Center of Agricultural Research Resources; Institute of Genetics and Developmental Biology
- Gradulate University of Chinese Academy of Sciences; Beijing, PR China
| | - Zhijuan Wang
- The State Key Laboratory of Plant Cell & Chromosome Engineering; Center of Agricultural Research Resources; Institute of Genetics and Developmental Biology
| | - Lining Tian
- Southern Crop Protection and Food Research Centre; Agriculture and Agri-Food Canada; London, ON Canada
- Department of Biology; Western University; London, ON Canada
| | - Xia Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering; Center of Agricultural Research Resources; Institute of Genetics and Developmental Biology
| |
Collapse
|
48
|
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013; 500:593-7. [PMID: 23892778 DOI: 10.1038/nature12364] [Citation(s) in RCA: 720] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 06/10/2013] [Indexed: 12/22/2022]
Abstract
Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.
Collapse
|
49
|
Sasaki Y, Hagiwara K, Kakisaka M, Yamada K, Murakami T, Aida Y. Importin α3/Qip1 is involved in multiplication of mutant influenza virus with alanine mutation at amino acid 9 independently of nuclear transport function. PLoS One 2013; 8:e55765. [PMID: 23383277 PMCID: PMC3559588 DOI: 10.1371/journal.pone.0055765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 01/04/2013] [Indexed: 01/06/2023] Open
Abstract
The nucleoprotein (NP) of influenza A virus is transported into the nucleus via the classical importin α/β pathway, and proceeds via nuclear localization signals (NLSs) recognized by importin α molecules. Although NP binds to importin α isoforms Rch1, Qip1 and NPI-1, the role of each individual isoform during the nuclear transport of NP and replication of the influenza virus remains unknown. In this study, we examined the contribution of importin α isoforms for nuclear localization of NP and viral growth using a panel of NP mutants containing serial alanine replacements within an unconventional NLS of NP. Alanine mutation at amino acid 8 (R8A) caused a significant reduction in the nuclear localization and binding to the three importin isoforms. The R8A NP mutant virus did not generate by reverse-genetics approach. This indicates that position 8 is the main site that mediates nuclear localization via interactions with Rch1, Qip1 and NPI-1, and subsequent viral production. This was confirmed by the finding that the conservation of amino acid 8 in human- and avian-origin influenza virus NP was necessary for virus propagation. By contrast, another mutant, S9A NP, which localized in the nucleus, caused a reduction in viral growth and vRNA transcription, suggesting that the unconventional NLS within NP may be associated with nuclear transport, vRNA transcription and viral replication through independent pathways. Interestingly, the N-terminal 110-amino acid region, which contained the unconventional NLS with S9A mutation, mainly bound to Qip1. Furthermore, activities of vRNA transcription and replication of S9A NP mutants were decreased by silencing Qip1 in without changing nuclear localization, indicating that Qip1 involves in multiplication of S9A mutant virus independently of nuclear transport function. Collectively, our results demonstrate the unconventional NLS within NP might have the additional ability to regulate the viral replication that is independent of nuclear localization activity via interactions with Qip1.
Collapse
Affiliation(s)
- Yutaka Sasaki
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
| | - Kyoji Hagiwara
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
| | | | - Kazunori Yamada
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
50
|
Wirthmueller L, Roth C, Banfield MJ, Wiermer M. Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling. FRONTIERS IN PLANT SCIENCE 2013; 4:149. [PMID: 23734157 PMCID: PMC3659281 DOI: 10.3389/fpls.2013.00149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/02/2013] [Indexed: 05/19/2023]
Abstract
Nuclear translocation of immune regulatory proteins and signal transducers is an essential process in animal and plant defense signaling against pathogenic microbes. Import of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors termed importins, typically dimers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complex. Here, we review recent reports of importin-α cargo specificity and mutant phenotypes in plant- and animal-microbe interactions. Using homology modeling of the NLS-binding cleft of nine predicted Arabidopsis α-importins and analyses of their gene expression patterns, we discuss functional redundancy and specialization within this transport receptor family. In addition, we consider how pathogen effector proteins that promote infection by manipulating host cell nuclear processes might compete with endogenous cargo proteins for nuclear uptake.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- Department of Biological Chemistry, John Innes Centre, Norwich Research ParkNorwich, UK
- *Correspondence: Lennart Wirthmueller, Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. e-mail: ; Marcel Wiermer, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany. e-mail:
| | - Charlotte Roth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University GöttingenGöttingen, Germany
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research ParkNorwich, UK
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University GöttingenGöttingen, Germany
- *Correspondence: Lennart Wirthmueller, Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. e-mail: ; Marcel Wiermer, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Cell Biology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany. e-mail:
| |
Collapse
|