1
|
Gupta M, Khandelwal NK, Nelson A, Hwang P, Pourmal S, Bennett JL, Stroud RM. Structural basis of aquaporin-4 autoantibody binding in neuromyelitis optica. SCIENCE ADVANCES 2025; 11:eadq7560. [PMID: 39982991 PMCID: PMC11844742 DOI: 10.1126/sciadv.adq7560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disease of the central nervous system where pathogenic autoantibodies target the water channel aquaporin-4 on human astrocytes causing neurological impairment. Autoantibody binding leads to complement-dependent and complement-independent cytotoxicity, ultimately resulting in astrocyte death, demyelination, and neuronal loss. Aquaporin-4 assembles in astrocyte plasma membranes as symmetric tetramers or as arrays of tetramers. We report molecular structures of aquaporin-4 alone and bound to Fab fragments from patient-derived NMO autoantibodies using cryogenic electron microscopy. Each antibody binds to epitopes comprised of three extracellular loops of aquaporin-4 with contributions from multiple molecules in the assembly. The structures distinguish between antibodies that bind to the tetrameric form of aquaporin-4 and those targeting higher-order orthogonal arrays of tetramers that provide more diverse bridging epitopes.
Collapse
Affiliation(s)
- Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Nitesh Kumar Khandelwal
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter Hwang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Ye XF, Huang ZP, Li MM, Liu SF, Huang WL, Hamud AMS, Ye LC, Li LY, Wu SJ, Zhuang JL, Chen YH, Chen XR, Lin S, Wei XF, Chen CN. Update on aquaporin-4 antibody detection: the early diagnosis of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 90:105803. [PMID: 39128164 DOI: 10.1016/j.msard.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD. AQP4-Ab has been tested in many clinical and laboratory studies, demonstrating effectiveness in diagnosing NMOSD. Recently, novel assays have been developed for the rapid and accurate detection of AQP4-Ab, providing further guidance for the diagnosis and treatment of NMOSD. This article summarizes the importance of rapid and accurate diagnosis for treating NMOSD based on a review of the latest relevant literature. We discussed current challenges and methods for improvement to offer new ideas for exploring rapid and accurate AQP4-Ab detection methods, aiming for early diagnosis of NMOSD.
Collapse
Affiliation(s)
- Xiao-Fang Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Wan-Li Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Abdullahi Mukhtar Sheik Hamud
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Juan Wu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Centre, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China; Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiao-Feng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, China.
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China.
| |
Collapse
|
3
|
Gupta M, Khandelwal NK, Nelson A, Hwang P, Pourmal S, Bennett JL, Stroud RM. Structural Basis of Aquaporin-4 Autoantibody Binding in Neuromyelitis Optica. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.592631. [PMID: 38798537 PMCID: PMC11118524 DOI: 10.1101/2024.05.12.592631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neuromyelitis Optica (NMO) is an autoimmune disease of the central nervous system where pathogenic autoantibodies target the human astrocyte water channel aquaporin-4 causing neurological impairment. Autoantibody binding leads to complement dependent and complement independent cytotoxicity, ultimately resulting in astrocyte death, demyelination, and neuronal loss. Aquaporin-4 assembles in astrocyte plasma membranes as symmetric tetramers or as arrays of tetramers. We report molecular structures of aquaporin-4 alone and bound to Fab fragments from patient-derived NMO autoantibodies using cryogenic electron microscopy. Each antibody binds to epitopes comprised of three extracellular loops of aquaporin-4 with contributions from multiple molecules in the assembly. The structures distinguish between antibodies that bind to the tetrameric form of aquaporin-4, and those targeting higher order orthogonal arrays of tetramers that provide more diverse bridging epitopes.
Collapse
Affiliation(s)
- Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA 94143, USA
- current address: Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nitesh Kumar Khandelwal
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA 94143, USA
| | - Andrew Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA 94143, USA
| | - Peter Hwang
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA 94143, USA
| | - Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA 94143, USA
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus; Aurora, CO 80045, USA
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco; San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Wang X, Ma S, Bai Y, Wu X, Ji F, Jia L. AQP4-DARPin1: A Chimeric Antigen Based on Scaffold Protein DARPin for Efficient Detection of AQP4-IgG in NMOSD. Biochemistry 2024; 63:855-864. [PMID: 38498694 DOI: 10.1021/acs.biochem.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.
Collapse
Affiliation(s)
- Xiaofei Wang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shubei Ma
- Department of Neurology, Dalian Municipal Central Hospital, Dalian 116000, P. R. China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian 116021, P. R. China
| | - Xinyang Wu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
5
|
Fu Y, Bi J, Yan Y, Sun X, Li K, Kim SY, Han SM, Zhou L, Li R, Huang Q, Wang N, Lin A, Kim HJ, Qiu W. Rapid Immunodot AQP4 Assay for Neuromyelitis Optica Spectrum Disorder. JAMA Neurol 2023; 80:1105-1112. [PMID: 37669037 PMCID: PMC10481325 DOI: 10.1001/jamaneurol.2023.2974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 09/06/2023]
Abstract
Importance Immunoglobulin G autoantibodies for aquaporin 4 (AQP4-IgG) serve as diagnostic biomarkers for neuromyelitis optica spectrum disorder (NMOSD), and the most sensitive and specific laboratory tests for their detection are cell-based assays (CBAs). Nevertheless, the limited availability of special instruments limits the widespread use of CBAs in routine laboratories. Objective To validate an enzyme immunodot assay for simple and rapid detection of AQP4-IgG. Design, Setting, and Participants This multicenter case-control study, conducted from May 2020 to February 2023, involved 4 medical centers (3 in China and 1 in Korea). The study included patients with AQP4-IgG-positive NMOSD, patients with other immune-related diseases, and healthy control individuals. Participants were excluded if they did not agree to participate or if their serum sample had turbidity. Exposures Serum AQP4 antibodies measured with immunodot assay. Main Outcomes and Measures The main outcome was performance of the immunodot assay compared with the gold standard CBA for detecting AQP4-IgG. To examine generalizability, cross-validation in Korea and at a second site in China, validation of patients with other immune-related diseases, and follow-up validation of the original cohort were performed. Results A total of 836 serum samples were collected; 400 were included in the diagnostic study and 436 in the validation sets. In a head-to-head diagnostic study involving 200 patients with NMOSD with AQP4-IgG (mean [SD] age, 43.1 [13.5] years; 188 [94%] female) and 200 healthy controls, use of an immunodot assay demonstrated antibody detection performance comparable to that of the gold standard (κ = 98.0%). The validation sets included 47 patients with NMOSD and 26 patients with other autoimmune diseases from Korea, 31 patients with NMOSD at a second site in China, 275 patients with other diseases, and 57 patients with NMOSD at follow-up. In the validation study, of 436 cases, 2 (<1%) were false positive and none were false negative. The CBA identified 332 AQP4-IgG-positive samples and 504 negative samples (200 [40%] in controls and 304 [60%] in patients with other diseases); 2 of the positive cases (<1%) were false negative and 4 of the negative cases (<1%) were false positive. The overall sensitivity of the immunodot assay was 99.4% (95% CI, 97.8%-99.9%), and the specificity was 99.2% (95% CI, 98.0%-99.8%). Conclusions and Relevance This case-control study found that the immunodot assay was comparable to CBA for detecting AQP4-IgG. With its time- and cost-efficient characteristics, the immunodot assay may be a practical option for AQP4-IgG detection.
Collapse
Affiliation(s)
- Ying Fu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jin Bi
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiaobo Sun
- Department of Neurology of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - So Yeon Kim
- Immuno-oncology Branch, Research Institute of the National Cancer Center, Goyang, Korea
| | - Sang-Min Han
- Immuno-oncology Branch, Research Institute of the National Cancer Center, Goyang, Korea
| | - Luyao Zhou
- Department of Neurology of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Li
- Department of Neurology of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiao Huang
- Department of Neurology of The Second People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Aiyu Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ho Jin Kim
- Immuno-oncology Branch, Research Institute of the National Cancer Center, Goyang, Korea
- Department of Neurology, Hospital of the National Cancer Center, Goyang, Korea
| | - Wei Qiu
- Department of Neurology of The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Tanimura Y, Hiroaki Y, Mori M, Fujiyoshi Y. Cell-based flow cytometry assay for simultaneous detection of multiple autoantibodies in a single serum sample. Anal Biochem 2022; 650:114721. [DOI: 10.1016/j.ab.2022.114721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
7
|
Abe Y, Yasui M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules 2022; 12:biom12040591. [PMID: 35454180 PMCID: PMC9030581 DOI: 10.3390/biom12040591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of a specific autoantibody in patients with neuromyelitis optica spectrum disorder (NMOSD) in 2004, the water channel aquaporin-4 (AQP4) has attracted attention as a target of autoimmune diseases of the central nervous system. In NMOSD, the autoantibody (NMO-IgG) binds to the extracellular loops of AQP4 as expressed in perivascular astrocytic end-feet and disrupts astrocytes in a complement-dependent manner. NMO-IgG is an excellent marker for distinguishing the disease from other inflammatory demyelinating diseases, such as multiple sclerosis. The unique higher-order structure of AQP4—called orthogonal arrays of particles (OAPs)—as well as its subcellular localization may play a crucial role in the pathogenesis of the disease. Recent studies have also demonstrated complement-independent cytotoxic effects of NMO-IgG. Antibody-induced endocytosis of AQP4 has been suggested to be involved in this mechanism. This review focuses on the binding properties of antibodies that recognize the extracellular region of AQP4 and the characteristics of AQP4 that are implicated in the pathogenesis of NMOSD.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Global Research Institute, Tokyo 108-8345, Japan
- Correspondence: (Y.A.); (M.Y.); Tel.: +81-3-5363-3751 (M.Y.)
| |
Collapse
|
8
|
Jeyalatha MV, Therese KL, Anand AR. An Update on the Laboratory Diagnosis of Neuromyelitis Optica Spectrum Disorders. J Clin Neurol 2022; 18:152-162. [PMID: 35274835 PMCID: PMC8926771 DOI: 10.3988/jcn.2022.18.2.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disorder of the central nervous system that is specifically associated with demyelination of spinal cord and optic nerves. The discovery of specific autoantibody markers such as aquaporin-4 IgG and myelin oligodendrocyte glycoprotein IgG has led to several methodologies being developed and validated. There have been numerous investigations of the clinical and radiological presentations used in the clinical diagnosis of NMOSD. However, although various laboratory diagnostic techniques have been standardized and validated, a gold-standard test has yet to be finalized due to uncertain sensitivities and specificities of the methodologies. For this review, the literature was surveyed to compile the standardized laboratory techniques utilized for the differential diagnosis of NMOSD. Enzyme-linked immunosorbent assays enable screening of NMOSD, but they are considered less sensitive than cell-based assays (CBAs), which were found to be highly sensitive and specific. However, CBAs are laborious and prone to batch variations in their results, since the expression levels of protein need to be maintained and monitored meticulously. Standardizing point-of-care devices and peptide-based assays would make it possible to improve the turnaround time and accessibility of the test, especially in resource-poor settings.
Collapse
Affiliation(s)
- Mani Vimalin Jeyalatha
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India
| | - Kulandai Lily Therese
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India.
| | - Appakkudal Ramaswamy Anand
- Department of Microbiology, Larsen & Toubro Microbiology Research Centre, Vision Research Foundation, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India
| |
Collapse
|
9
|
Pisani F, Simone L, Mola MG, De Bellis M, Frigeri A, Nicchia GP, Svelto M. Regulation of aquaporin-4 expression in the central nervous system investigated using M23-AQP4 null mouse. Glia 2021; 69:2235-2251. [PMID: 34038017 PMCID: PMC8361696 DOI: 10.1002/glia.24032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
In astrocytes, unknown mechanisms regulate the expression of M1 and M23 isoforms of water channel aquaporin-4 (M1-AQP4 and M23-AQP4). The ratio between these two isoforms controls the AQP4 assembly state in the plasma membrane known as orthogonal arrays of particles (OAPs). To give new insights into these mechanisms, here, we explore the regulation of AQP4 expression in the spinal cord of a CRISPR/Cas9 M23-null mouse model (M23-null). In the M23-null spinal cord OAP assembly, the perivascular localization of AQP4 and M1-AQP4 protein were drastically reduced. In heterozygous, M1-AQP4 was proportionally reduced with M23-AQP4, maintaining the isoform ratio unaffected. We hypothesize a role of the M23-AQP4 in the regulation of M1-AQP4 expression. M1-AQP4 transcription, splicing and M1-AQP4 protein degradation were found to be unaffected in M23-null spinal cord and in M23-null astrocyte primary culture. The translational control was investigated by mRNA-protein pull down and quantitative mass spectrometry, to isolate and quantify AQP4 mRNA binding proteins (AQP4-RBPs). Compared to WT, in M23-null spinal cord, the interaction between AQP4 mRNA and polypyrimidine tract binding protein 1, a positive regulator of AQP4 translation, was higher, while interaction with the RNA helicase DDX17 was lower. In astrocyte primary cultures, DDX17 knockdown upregulated AQP4 protein expression and increased cell swelling, leaving AQP4 mRNA levels unchanged. Here, we identify AQP4-RBPs and provide evidence that in mouse spinal cord M23-AQP4 deletion changes the interaction between AQP4 mRNA and some RBPs involved in AQP4 translation. We describe for the first time the RNA helicase DDX17 as a regulator of AQP4 expression in astrocytes.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo (FG), Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Manuela De Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
10
|
Gómez-Pinedo U, García-Ávila Y, Gallego-Villarejo L, Matías-Guiu JA, Benito-Martín MS, Esteban-García N, Sanclemente-Alamán I, Pytel V, Moreno-Jiménez L, Sancho-Bielsa F, Vidorreta-Ballesteros L, Montero-Escribano P, Matías-Guiu J. Sera from Patients with NMOSD Reduce the Differentiation Capacity of Precursor Cells in the Central Nervous System. Int J Mol Sci 2021; 22:5192. [PMID: 34068922 PMCID: PMC8155872 DOI: 10.3390/ijms22105192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation. MATERIAL AND METHODS We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. RESULTS AND CONCLUSIONS The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Yolanda García-Ávila
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lucía Gallego-Villarejo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Noelia Esteban-García
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Inmaculada Sanclemente-Alamán
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Vanesa Pytel
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Francisco Sancho-Bielsa
- Department of Physiology, Ciudad Real School of Medicine, Universidad de Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Lucía Vidorreta-Ballesteros
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| |
Collapse
|
11
|
Bollo L, Iaffaldano P, Ruggieri M, Palazzo C, Mastrapasqua M, Manni A, Paolicelli D, Frigeri A, Trojano M. Longitudinal Evaluation of Serum MOG-IgG and AQP4-IgG Antibodies in NMOSD by a Semiquantitative Ratiometric Method. Front Neurol 2021; 12:633115. [PMID: 33763015 PMCID: PMC7982799 DOI: 10.3389/fneur.2021.633115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background and purpose: Immunoadsorption (IA) is an antibody-depleting therapy used to treat neuromyelitis optica spectrum disorder (NMOSD) associated to antiaquaporin 4 (anti-AQP4-IgG) and antimyelin oligodendrocyte glycoprotein (anti-MOG-IgG) serum autoantibodies. Our aim was to evaluate longitudinal changes of serum MOG-IgG and AQP4-IgG antibody titer and to correlate it with the clinical status. Methods: Autoantibody titer and clinical features of two MOG-IgG+/AQP4-IgG– and two AQP4-IgG+/MOG-IgG– patients with NMOSD were collected at baseline (T0), after 6 IA courses (T1), and then 2 weeks (T2) and 6 months after treatment (T3). A fluorescent ratiometric assay was used for a quantitative detection of MOG and AQP4 antibodies, based on HEK-293 cells transfected with the full-length hMOG fused to GFP or h-AQP4-M23 isoform fused to m-cherry, respectively. We defined the antibody titer as MOG quantitative ratio (MOGqr) and AQP4 quantitative ratio (AQP4qr). Results: In Case 1, the MOGqr dropped from 0.98 at T0 to 0.14 at T3, and in Case 2, it decreased from 0.96 at T0 to undetectable at T3. In Case3, the AQP4qr remained high: 0.90 at T0 and 0.92 at T3. In Case 4, the AQP4qr decreased from 0.50 at T0 to undetectable at T3. Complete recovery was found in Cases 1, 2, and 4. Conclusions: Semiquantitative ratiometric method accurately detects even slight variation of MOG-IgG and AQP4-IgG titer, suggesting it may be useful to monitor the antibody titer during the disease course and maintenance immunotherapy.
Collapse
Affiliation(s)
- Luca Bollo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Claudia Palazzo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Mariangela Mastrapasqua
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessia Manni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
de Bellis M, Cibelli A, Mola MG, Pisani F, Barile B, Mastrodonato M, Banitalebi S, Amiry-Moghaddam M, Abbrescia P, Frigeri A, Svelto M, Nicchia GP. Orthogonal arrays of particle assembly are essential for normal aquaporin-4 expression level in the brain. Glia 2020; 69:473-488. [PMID: 32946135 DOI: 10.1002/glia.23909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/11/2022]
Abstract
Astrocyte endfeet are endowed with aquaporin-4 (AQP4)-based assemblies called orthogonal arrays of particles (OAPs) whose function is still unclear. To investigate the function of OAPs and of AQP4 tetramers, we have generated a novel "OAP-null" mouse model selectively lacking the OAP forming M23-AQP4 isoform. We demonstrated that AQP4 transcript levels were not reduced by using qPCR. Blue native (BN)/SDS-PAGE and Western blot performed on OAP-null brain and primary astrocyte cultures showed the complete depletion of AQP4 assemblies, the selective expression of M1-AQP4-based tetramers, and a substantial reduction in AQP4 total expression level. Fluorescence quenching and super-resolution microscopy experiments showed that AQP4 tetramers were functionally expressed in astrocyte plasma membrane and their dimensions were reduced compared to wild-type assemblies. Finally, as shown by light and electron microscopy, OAP depletion resulted in a massive reduction in AQP4 expression and a loss of perivascular AQP4 staining at astrocyte endfeet, with only sparse labeling throughout the brain areas analyzed. Our study relies on the unique property of AQP4 to form OAPs, using a novel OAP-null mouse model for the first time, to show that (a) AQP4 assembly is essential for normal AQP4 expression level in the brain and (b) most of AQP4 is organized into OAPs under physiological conditions. Therefore, AQP4 tetramers cannot be used by astrocytes as an alternative to OAPs without affecting AQP4 expression levels, which is important in the physiological and pathological conditions in which OAP aggregation/disaggregation dynamics have been implicated.
Collapse
Affiliation(s)
- Manuela de Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Shervin Banitalebi
- Department of Molecular Medicine, Division of Anatomy, University of Oslo, Oslo, Norway
| | | | - Pasqua Abbrescia
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
Hofer LS, Ramberger M, Gredler V, Pescoller AS, Rostásy K, Sospedra M, Hegen H, Berger T, Lutterotti A, Reindl M. Comparative Analysis of T-Cell Responses to Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in Inflammatory Demyelinating Central Nervous System Diseases. Front Immunol 2020; 11:1188. [PMID: 32625206 PMCID: PMC7311656 DOI: 10.3389/fimmu.2020.01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
Autoantibodies against aquaporin-4 (AQP4-Ab) and myelin oligodendrocyte glycoprotein (MOG-Ab) are associated with rare central nervous system inflammatory demyelinating diseases like neuromyelitis optica spectrum disorders (NMOSD). Previous studies have shown that not only antibodies, but also autoreactive T-cell responses against AQP4 are present in NMOSD. However, no study has yet analyzed the presence of MOG reactive T-cells in patients with MOG antibodies. Therefore, we compared AQP4 and MOG specific peripheral T-cell response in individuals with AQP4-Ab (n = 8), MOG-Ab (n = 10), multiple sclerosis (MS, n = 8), and healthy controls (HC, n = 14). Peripheral blood mononuclear cell cultures were stimulated with eight AQP4 and nine MOG peptides selected from previous studies and a tetanus toxoid peptide mix as a positive control. Antigen-specific T-cell responses were assessed using the carboxyfluorescein diacetate succinimidyl ester proliferation assay and the detection of granulocyte macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-ɤ and interleukin (IL)-4, IL-6, and IL-17A in cell culture supernatants. Additionally, human leukocyte antigen (HLA)-DQ and HLA-DR genotyping of all participants was performed. We classified a T-cell response as positive if proliferation (measured by a cell division index ≥3) was confirmed by the secretion of at least one cytokine. Reactivity against AQP4 peptides was observed in many groups, but the T-cell response against AQP4 p156-170 was present only in patients with AQP4-Ab (4/8, 50%) and absent in patients with MOG-Ab, MS and HC (corrected p = 0.02). This AQP4 p156-170 peptide specific T-cell response was significantly increased in participants with AQP4-Ab compared to those without [Odds ratio (OR) = 59.00, 95% confidence interval-CI 2.70–1,290.86]. Moreover, T-cell responses against at least one AQP4 peptide were also more frequent in participants with AQP4-Ab (OR = 11.45, 95% CI 1.24–106.05). We did not observe any significant differences for the other AQP4 peptides or any MOG peptide. AQP4-Ab were associated with HLA DQB1*02 (OR = 5.71, 95% CI 1.09–30.07), DRB1*01 (OR = 9.33, 95% CI 1.50–58.02) and DRB1*03 (OR = 6.75, 95% CI = 1.19–38.41). Furthermore, HLA DRB1*01 was also associated with the presence of AQP4 p156-170 reactive T-cells (OR = 31.67, 95% CI 1.30–772.98). To summarize, our findings suggest a role of AQP4-specific, but not MOG-specific T-cells, in NMOSD.
Collapse
Affiliation(s)
- Livia Sophie Hofer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Ramberger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Viktoria Gredler
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Sophie Pescoller
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kevin Rostásy
- Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Mireia Sospedra
- Department of Neuroimmunology, University of Zurich, Zurich, Switzerland
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Andreas Lutterotti
- Department of Neuroimmunology, University of Zurich, Zurich, Switzerland
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
da Silva APB, Silva RBM, Goi LDS, Molina RD, Machado DC, Sato DK. Experimental Models of Neuroimmunological Disorders: A Review. Front Neurol 2020; 11:389. [PMID: 32477252 PMCID: PMC7235321 DOI: 10.3389/fneur.2020.00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira Silva
- Research Center in Toxicology and Pharmacology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leise Daniele Sckenal Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rachel Dias Molina
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
15
|
de Souza Moraes A, Brum DG, Ierich JCM, Higa AM, Assis ASJ, Miyazaki CM, Shimizu FM, Peroni LA, Machini MT, Barreira AA, Ferreira M, Oliveira ON, Leite FL. A highly specific and sensitive nanoimmunosensor for the diagnosis of neuromyelitis optica spectrum disorders. Sci Rep 2019; 9:16136. [PMID: 31695085 PMCID: PMC6834626 DOI: 10.1038/s41598-019-52506-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
A precise diagnosis for neuromyelitis optica spectrum disorders (NMOSD) is crucial to improve patients' prognostic, which requires highly specific and sensitive tests. The cell-based assay with a sensitivity of 76% and specificity of 100% is the most recommended test to detect anti-aquaporin-4 antibodies (AQP4-Ab). Here, we tested four AQP4 external loop peptides (AQP461-70, AQP4131-140, AQP4141-150, and AQP4201-210) with an atomic force microscopy nanoimmunosensor to develop a diagnostic assay. We obtained the highest reactivity with AQP461-70-nanoimunosensor. This assay was effective in detecting AQP4-Ab in sera of NMOSD patients with 100% specificity (95% CI 63.06-100), determined by the cut-off adhesion force value of 241.3 pN. NMOSD patients were successfully discriminated from a set of healthy volunteers, patients with multiple sclerosis, and AQP4-Ab-negative patients. AQP461-70 sensitivity was 81.25% (95% CI 56.50-99.43), slightly higher than with the CBA method. The results with the AQP461-70-nanoimmunosensor indicate that the differences between NMOSD seropositive and seronegative phenotypes are related to disease-specific epitopes. The absence of AQP4-Ab in sera of NMOSD AQP4-Ab-negative patients may be interpreted by assuming the existence of another potential AQP4 peptide sequence or non-AQP4 antigens as the antibody target.
Collapse
Affiliation(s)
- Ariana de Souza Moraes
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, São Paulo, 05403000, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
- Nanoneurobiophysics research group (GNN), Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
| | - Doralina Guimarães Brum
- Nanoneurobiophysics research group (GNN), Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
- Department of Neurology, Psychology and Psychiatry, São Paulo State University, Botucatu, São Paulo, 18618687, Brazil
| | - Jéssica Cristiane Magalhães Ierich
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, São Paulo, 05403000, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
- Nanoneurobiophysics research group (GNN), Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
| | - Akemi Martins Higa
- Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, São Paulo, 05403000, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
- Nanoneurobiophysics research group (GNN), Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
| | - Amanda Stefanie Jabur Assis
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
- Nanoneurobiophysics research group (GNN), Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
| | - Celina Massumi Miyazaki
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
| | - Flávio Makoto Shimizu
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, 13560970, Brazil
| | - Luís Antonio Peroni
- Rheabiotech Laboratory of Research and Development, Campinas, São Paulo, 13084791, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, Brazil
| | - Amilton Antunes Barreira
- Department of Neurosciences and Behavioural Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marystela Ferreira
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, 13560970, Brazil
| | - Fabio Lima Leite
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil.
- Nanoneurobiophysics research group (GNN), Federal University of São Carlos, Sorocaba, São Paulo, 18052780, Brazil.
| |
Collapse
|
16
|
Distribution of Aquaporins 1 and 4 in the Central Nervous System. CURRENT HEALTH SCIENCES JOURNAL 2019; 45:218-226. [PMID: 31624651 PMCID: PMC6778305 DOI: 10.12865/chsj.45.02.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/21/2019] [Indexed: 01/05/2023]
Abstract
The aquaporins (AQP), a protein family, were first discovered in the early 1990s. The primary role of aquaporins is to facilitate water transport across multiple cell types. In the spinal cord and brain responsible for most of the water diffusion are AQP4 and AQP1. In this paper, we describe the structure, localization and role of this water channel family, especially AQP4 and AQP1. AQP4 is involved in various pathologies such as: stroke, brain tumors, Neuromyelitis optica (NMO), Alzheimer’s Disease (AD), traumatic brain injury, Parkinson’s Disease, hydrocephalus, schizophrenia, epilepsy, major depressive disorder, autism. Brain edema is the most important acute complication of the hypoxic-ischemic and it has no pathogenic treatment. Imaging and histopathology studies have shown that inhibition of AQP4 reduces brain edema.
Collapse
|
17
|
Simone L, Pisani F, Mola MG, De Bellis M, Merla G, Micale L, Frigeri A, Vescovi AL, Svelto M, Nicchia GP. AQP4 Aggregation State Is a Determinant for Glioma Cell Fate. Cancer Res 2019; 79:2182-2194. [PMID: 30877104 DOI: 10.1158/0008-5472.can-18-2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
Abstract
The glial water channel protein aquaporin-4 (AQP4) forms heterotetramers in the plasma membrane made of the M23-AQP4 and M1-AQP4 isoforms. The isoform ratio controls AQP4 aggregation into supramolecular structures called orthogonal arrays of particles (AQP4-OAP). The role of AQP4 aggregation into OAP in malignant gliomas is still unclear. In this study, we demonstrate that AQP4 aggregation/disaggregation into OAP influences the biology of glioma cells. Selective expression of the OAP-forming isoform M23-AQP4 (AQP4-OAP) triggered cell shape changes in glioma cells associated with alterations to the F-actin cytoskeleton that affected apoptosis. By contrast, expression of M1-AQP4 (AQP4-tetramers), which is unable to aggregate into OAP, ameliorated glioma cell invasiveness, improved cell migration, and increased methalloproteinase-9 activity. Two prolines (254 and 296) at the C-terminus tail were shown to be important in mediating the relationship between the actin cytoskeleton and AQP4-OAP and AQP4-tetramers. In conclusion, this study demonstrates that AQP4 aggregation state might be an important determinant in orienting glioma cells to persist or perish. AQP4 disaggregation may potentiate invasiveness potential, whereas AQP4 aggregation may activate the apoptotic path. This study shows a new perspective on the role of AQP4 in brain tumors not necessarily associated with edema formation but with AQP4 aggregation/disaggregation dynamics and their link with the actin cytoskeleton. SIGNIFICANCE: This study demonstrates how AQP4 aggregation influences plasma membrane dynamics to alter cell proliferation, invasiveness, migration, and apoptotic potential in glioma cells.
Collapse
Affiliation(s)
- Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Francesco Pisani
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Maria G Mola
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, Bronx, New York
| | - Angelo L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Grazia P Nicchia
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy. .,Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, Bronx, New York
| |
Collapse
|
18
|
Pisani F, Simone L, Mola MG, De Bellis M, Mastrapasqua M, Ruggieri M, Trojano M, Nicchia GP, Svelto M, Frigeri A. Host-Cell Type Dependent Features of Recombinant Human Aquaporin-4 Orthogonal Arrays of Particles-New Insights for Structural and Functional Studies. Cells 2019; 8:cells8020119. [PMID: 30717425 PMCID: PMC6406603 DOI: 10.3390/cells8020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as ‘orthogonal arrays of particles’ (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, 71013 San Giovanni Rotondo (FG), Italy.
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Mastrapasqua
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maddalena Ruggieri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Trojano
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy.
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
19
|
Alves Do Rego C, Collongues N. Neuromyelitis optica spectrum disorders: Features of aquaporin-4, myelin oligodendrocyte glycoprotein and double-seronegative-mediated subtypes. Rev Neurol (Paris) 2018; 174:458-470. [PMID: 29685427 DOI: 10.1016/j.neurol.2018.02.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023]
Abstract
The new diagnostic classification of neuromyelitis optica spectrum disorder (NMOSD) in 2015 highlights the central role of biomarkers, such as antibodies against aquaporin-4 (AQP4-Ab), in diagnosis. Also, in approximately 20-25% of patients without AQP4-Ab (NMOSDAQP4-) the presence of an antibody directed against myelin oligodendrocyte glycoprotein (MOG) characterizes a specific population of NMOSD patients (NMOSDMOG+), according to their demographic and clinical data and prognoses. While double-seronegative cases (NMOSDNEG) have not been fully described, they may correspond to the very first patients with opticospinal demyelination reported by Devic and Gault in 1894. The present report reviews the current knowledge of the pathophysiology and clinical features of NMOSDAQP4+, NMOSDMOG+ and NMOSDNEG patients, and also discusses the relationship between the extended spectrum of MOG disease and NMOSDMOG+. Finally, the current treatments for acute relapses and relapse prevention are described, with a focus on serological-based therapeutic responses and the promising new therapeutic targets.
Collapse
Affiliation(s)
- C Alves Do Rego
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - N Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France; Clinical Investigation Center, INSERM U1434, University Hospital of Strasbourg, Strasbourg, France; Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
20
|
Zarei S, Eggert J, Franqui-Dominguez L, Carl Y, Boria F, Stukova M, Avila A, Rubi C, Chinea A. Comprehensive review of neuromyelitis optica and clinical characteristics of neuromyelitis optica patients in Puerto Rico. Surg Neurol Int 2018; 9:242. [PMID: 30603227 PMCID: PMC6293609 DOI: 10.4103/sni.sni_224_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Neuromyelitis optica (NMO) is an immune-mediated inflammatory disorder of the central nervous system. It is characterized by concurrent inflammation and demyelination of the optic nerve (optic neuritis [ON]) and the spinal cord (myelitis). Multiple studies show variations in prevalence, clinical, and demographic features of NMO among different populations. In addition, ethnicity and race are known as important factors on disease phenotype and clinical outcomes. There are little data on information about NMO patients in underserved groups, including Puerto Rico (PR). In this research, we will provide a comprehensive overview of all aspects of NMO, including epidemiology, environmental risk factors, genetic factors, molecular mechanism, symptoms, comorbidities and clinical differentiation, diagnosis, treatment, its management, and prognosis. We will also evaluate the demographic features and clinical phenotype of NMO patients in PR. This will provide a better understanding of NMO and establish a basis of knowledge that can be used to improve care. Furthermore, this type of population-based study can distinguish the clinical features variation among NMO patients and will provide insight into the potential mechanisms that cause these variations.
Collapse
Affiliation(s)
- Sara Zarei
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - James Eggert
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Yonatan Carl
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Fernando Boria
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marina Stukova
- San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | | | - Cristina Rubi
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| | - Angel Chinea
- Caribbean Neurological Center, Guaynabo, Puerto Rico, USA
| |
Collapse
|
21
|
Frigeri A, Nicchia GP. Response to 'The evolving mystery of why skeletal muscle is spared in seropositive neuromyelitis optica'. J Cell Mol Med 2018; 22:2041-2042. [PMID: 29383838 PMCID: PMC5824411 DOI: 10.1111/jcmm.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Antonio Frigeri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
22
|
He D, Zhang A, Li Y, Cai G, Li Y, Guo S. Autoimmune aquaporin-4 induced damage beyond the central nervous system. Mult Scler Relat Disord 2017; 18:41-46. [DOI: 10.1016/j.msard.2017.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
|
23
|
Rosito S, Nicchia GP, Palazzo C, Lia A, Buccoliero C, Pisani F, Svelto M, Trojano M, Frigeri A. Supramolecular aggregation of aquaporin-4 is different in muscle and brain: correlation with tissue susceptibility in neuromyelitis optica. J Cell Mol Med 2017; 22:1236-1246. [PMID: 29055082 PMCID: PMC5783885 DOI: 10.1111/jcmm.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/26/2017] [Indexed: 11/27/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by autoantibodies (NMO‐IgG) against the water channel aquaporin‐4 (AQP4). Though AQP4 is also expressed outside the CNS, for example in skeletal muscle, patients with NMO generally do not show clinical/diagnostic evidence of skeletal muscle damage. Here, we have evaluated whether AQP4 supramolecular organization is at the basis of the different tissue susceptibility. Using immunofluorescence we found that while the sera of our cohort of patients with NMO gave typical perivascular staining in the CNS, they were largely negative in the skeletal muscle. This conclusion was obtained using human, rat and mouse skeletal muscle including the AQP4‐KO mouse. A biochemical analysis using a new size exclusion chromatography approach for AQP4 suprastructure fractionation revealed substantial differences in supramolecular AQP4 assemblies and isoform abundance between brain and skeletal muscle matching a lower binding affinity of NMO‐IgG to muscle compared to the brain. Super‐resolution microscopy analysis with g‐STED revealed different AQP4 organization in native tissues, while in the brain perivascular astrocyte endfoot membrane AQP4 was mainly organized in large interconnected and raft‐like clusters, in the sarcolemma of fast‐twitch fibres AQP4 aggregates often appeared as small, relatively isolated linear entities. In conclusion, our results provide evidence that AQP4 supramolecular structure is different in brain and skeletal muscle, which is likely to result in different tissues susceptibility to the NMO disease.
Collapse
Affiliation(s)
- Stefania Rosito
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Palazzo
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Anna Lia
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Buccoliero
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Alam J, Koh JH, Kwok SK, Park SH, Park K, Choi Y. Functional Epitopes for Anti-Aquaporin 5 Antibodies in Sjögren Syndrome. J Dent Res 2017; 96:1414-1421. [PMID: 28665757 DOI: 10.1177/0022034517717965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We recently reported the presence of anti-aquaporin 5 (AQP5) immunoglobulin G (IgG) in patients with primary Sjögren syndrome (SS) with a sensitivity of 0.73 and a specificity of 0.68. The aim of this study was to identify functional epitopes for the anti-AQP5 autoantibodies detected in control subjects and patients with SS. Recognition of epitopes by anti-AQP5 autoantibodies in sera ( n = 13 for control and n = 24 for SS) or purified IgG ( n = 1 for control and n = 3 for SS) was evaluated by indirect immunofluorescence (IIF) assay performed in the presence or absence of peptides corresponding to the second transmembrane helix and extracellular loops A, C, and E of AQP5. Functional epitopes were determined by measuring the effects of purified IgG and neutralizing peptides on transepithelial osmotic permeability (PfT) of MDCK cells expressing AQP5. In the IIF assay, 89% of SS samples were inhibited by at least 1 peptide, while only half of control samples were inhibited by any peptide. Overall, SS samples were inhibited by peptides corresponding to extracellular loops A, C, and E by 40% to 50%, whereas control samples were inhibited only by peptides corresponding to loop E by <20%. A cyclized peptide (E1) mimicking loop E was most frequently recognized and best differentiated between the SS and control samples. Incubation of MDCK-AQP5 cells with SS but not with control IgG, significantly decreased PfT, which was reversed by neutralization of IgG binding to any of the extracellular loops. In conclusion, the anti-AQP5 autoantibodies detected in control and SS groups showed differences in fine specificity to the functional epitopes of AQP5. The prevalent recognition of functional epitopes by anti-AQP5 autoantibodies from SS patients suggests that anti-AQP5 autoantibodies act as mediators of glandular hypofunction and are a potential therapeutic target in SS.
Collapse
Affiliation(s)
- J Alam
- 1 School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J H Koh
- 2 Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - S-K Kwok
- 2 Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - S-H Park
- 2 Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - K Park
- 1 School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Y Choi
- 1 School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1326-1334. [PMID: 28477975 DOI: 10.1016/j.bbamem.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP137-138AA, N153Q and V150G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4.
Collapse
|
26
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
27
|
Pisani F, Simone L, Gargano CD, De Bellis M, Cibelli A, Mola MG, Catacchio G, Frigeri A, Svelto M, Nicchia GP. Role of the H-bond between L53 and T56 for Aquaporin-4 epitope in Neuromyelitis Optica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:368-376. [PMID: 28027883 DOI: 10.1016/j.bbamem.2016.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/23/2016] [Indexed: 11/29/2022]
Abstract
Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field. In the present study, we have experimentally tested this MD-prediction using the classic mutagenesis approach. We substituted T56 with V56 and tested this mutant for AQP4 aggregates and AQP4-IgG binding. gSTED super-resolution microscopy showed that the mutation does not affect AQP4 aggregate dimension; immunofluorescence and cytofluorimetric analysis demonstrated its unaltered AQP4-IgG binding, therefore invalidating the MD-prediction. We later investigated whether AQP4, expressed in Sf9 insect and HEK-293F cells, is able to correctly aggregate before and after the purification steps usually applied to obtain AQP4 crystal. The results demonstrated that AQP4-IgG recognizes AQP4 expressed in Sf9 and HEK-293F cells by immunofluorescence even though BN-PAGE analysis showed that AQP4 forms smaller aggregates when expressed in insect cells compared to mammalian cell lines. Notably, after AQP4 purification, from both insect and HEK-293F cells, no aggregates are detectable by BN-PAGE and AQP4-IgG binding is impaired in sandwich ELISA assays. All together these results indicate that 1) the MD prediction under analysis is not supported by experimental data and 2) the procedure to obtain AQP4 crystals might affect its native architecture and, as a consequence, MD simulations. In conclusion, given the complex nature of the AQP4 epitope, MD might not be the suitable for molecular medicine advances in NMO.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Simone
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; IRCCS "Casa Sollievo della Sofferenza", Research Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Concetta Domenica Gargano
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Cibelli
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomo Catacchio
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| |
Collapse
|
28
|
Sinmaz N, Nguyen T, Tea F, Dale RC, Brilot F. Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system. J Neuroinflammation 2016; 13:219. [PMID: 27577085 PMCID: PMC5006540 DOI: 10.1186/s12974-016-0678-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Our knowledge of autoantibody-associated diseases of the central (CNS) and peripheral (PNS) nervous systems has expanded greatly over the recent years. A number of extracellular and intracellular autoantigens have been identified, and there is no doubt that this field will continue to expand as more autoantigens are discovered as a result of improved clinical awareness and methodological practice. In recent years, interest has shifted to uncover the target epitopes of these autoantibodies. MAIN BODY The purpose of this review is to discuss the mapping of the epitope targets of autoantibodies in CNS and PNS antibody-mediated disorders, such as N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), leucine-rich glioma-inactivated protein 1 (Lgi1), contactin-associated protein-like 2 (Caspr2), myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP4), 65 kDa glutamic acid decarboxylase (GAD65), acetylcholine receptor (AChR), muscle-specific kinase (MuSK), voltage-gated calcium channel (VGCC), neurofascin (NF), and contactin. We also address the methods used to analyze these epitopes, the relevance of their determination, and how this knowledge can inform studies on autoantibody pathogenicity. Furthermore, we discuss triggers of autoimmunity, such as molecular mimicry, ectopic antigen expression, epitope spreading, and potential mechanisms for the rising number of double autoantibody-positive patients. CONCLUSIONS Molecular insights into specificity and role of autoantibodies will likely improve diagnosis and treatment of CNS and PNS neuroimmune diseases.
Collapse
Affiliation(s)
- Nese Sinmaz
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Tina Nguyen
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
29
|
Mangiatordi GF, Alberga D, Trisciuzzi D, Lattanzi G, Nicolotti O. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Int J Mol Sci 2016; 17:ijms17071119. [PMID: 27420052 PMCID: PMC4964494 DOI: 10.3390/ijms17071119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/26/2022] Open
Abstract
Among the different aquaporins (AQPs), human aquaporin-4 (hAQP4) has attracted the greatest interest in recent years as a new promising therapeutic target. Such a membrane protein is, in fact, involved in a multiple sclerosis-like immunopathology called Neuromyelitis Optica (NMO) and in several disorders resulting from imbalanced water homeostasis such as deafness and cerebral edema. The gap of knowledge in its functioning and dynamics at the atomistic level of detail has hindered the development of rational strategies for designing hAQP4 modulators. The application, lately, of molecular modeling has proved able to fill this gap providing a breeding ground to rationally address compounds targeting hAQP4. In this review, we give an overview of the important advances obtained in this field through the application of Molecular Dynamics (MD) and other complementary modeling techniques. The case studies presented herein are discussed with the aim of providing important clues for computational chemists and biophysicists interested in this field and looking for new challenges.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Domenico Alberga
- Institut de Recherche de Chimie Paris CNRS Chimie ParisTech, PSL Research University, 11 rue P. et M. Curie, F-75005 Paris, France.
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Gianluca Lattanzi
- INFN-Sez. di Bari and Dipartimento di Medicina Clinica e Sperimentale, University of Foggia, Viale Pinto, 71122 Foggia, Italy.
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| |
Collapse
|
30
|
Tuller F, Holzer H, Schanda K, Aboulenein-Djamshidian F, Höftberger R, Khalil M, Seifert-Held T, Leutmezer F, Berger T, Reindl M. Characterization of the binding pattern of human aquaporin-4 autoantibodies in patients with neuromyelitis optica spectrum disorders. J Neuroinflammation 2016; 13:176. [PMID: 27371173 PMCID: PMC4930584 DOI: 10.1186/s12974-016-0642-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The discovery of a highly specific antibody against the aquaporin-4 (AQP4) water channel (AQP4-IgG) unified the spectrum of neuromyelitis optica spectrum disorders (NMOSD), which are considered to be antibody-mediated autoimmune diseases. The AQP4 water channel is located on astrocytic end-feet processes and consists of six transmembrane helical domains forming three extracellular loops A, C, and E in which defined amino acids were already proven to be critical for AQP4-IgG binding. However, the clinical relevance of these findings is unclear. Therefore, we have characterized the epitope specificity of AQP4-IgG-positive NMOSD patients. METHODS We established a cell-based flow cytometry assay for the quantitative detection of AQP4-IgG-positive serum samples. Human embryonic kidney (HEK) cells were transiently transfected with an EmGFP-tagged AQP4-M23, AQP4-M1, or six AQP4-M23 extracellular loop mutants including two mutations in loop A (serial AA substitution, insertion of a myc-tag), two in loop C (N153Q, insertion of a myc-tag), and two in loop E (H230G, insertion of a myc-tag). Fourty-seven baseline and 49 follow-up serum samples and six paired cerebrospinal fluid (CSF) baseline samples of 47 AQP4-IgG-positive Austrian NMOSD patients were then tested for their binding capability to AQP4-M1 and AQP4-M23 isoforms and these six extracellular loop mutants. RESULTS Overall, we could identify two broad patterns of antibody recognition based on differential sensitivity to mutations in extracellular loop A. Pattern A was characterized by reduced binding to the two mutations in loop A, whereas pattern B had only partial or no reduced binding to these mutations. These two patterns were not associated with significant differences in demographic and clinical parameters or serum titers in this retrospective study. Interestingly, we found a change of AQP4-IgG epitope recognition pattern in seven of 20 NMOSD patients with available follow-up samples. Moreover, we found different binding patterns in five of six paired CSF versus serum samples, with a predominance of pattern A in CSF. CONCLUSIONS Our study demonstrates that AQP4-IgG in sera of NMOSD patients show distinct patterns of antibody recognition. The clinical and diagnostic relevance of these findings have to be addressed in prospective studies.
Collapse
Affiliation(s)
- Friederike Tuller
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Holzer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fahmy Aboulenein-Djamshidian
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Sozialmedizinisches Zentrum Ost Donauspital, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
31
|
Huang P, Takai Y, Kusano-Arai O, Ramadhanti J, Iwanari H, Miyauchi T, Sakihama T, Han JY, Aoki M, Hamakubo T, Fujihara K, Yasui M, Abe Y. The binding property of a monoclonal antibody against the extracellular domains of aquaporin-4 directs aquaporin-4 toward endocytosis. Biochem Biophys Rep 2016; 7:77-83. [PMID: 28955892 PMCID: PMC5613303 DOI: 10.1016/j.bbrep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/03/2022] Open
Abstract
Neuromyelitis optica (NMO), an autoimmune disease of the central nervous system, is characterized by an autoantibody called NMO-IgG that recognizes the extracellular domains (ECDs) of aquaporin-4 (AQP4). In this study, monoclonal antibodies (mAbs) against the ECDs of mouse AQP4 were established by a baculovirus display method. Two types of mAb were obtained: one (E5415A) recognized both M1 and M23 isoforms, and the other (E5415B) almost exclusively recognized the square-array-formable M23 isoform. While E5415A enhanced endocytosis of both M1 and M23, followed by degradation in cells expressing AQP4, including astrocytes, E5415B did so to a much lesser degree, as determined by live imaging using fluorescence-labeled antibodies and by Western blotting of lysate of cells treated with these mAbs. E5415A promoted cluster formation of AQP4 on the cell surface prior to endocytosis as determined by immunofluorescent microscopic observation of bound mAbs to astrocytes as well as by Blue native PAGE analysis of AQP4 in the cells treated with the mAbs. These observations clearly indicate that an anti-AQP4-ECDs antibody possessing an ability to form a large cluster of AQP4 by cross-linking two or more tetramers outside the AQP4 arrays enhances endocytosis and the subsequent lysosomal degradation of AQP4. Two mAbs against the ECD of mAQP4 with different binding properties was established. One of them, E5415A, bound to mAQP4 independent of OAP-formation of AQP4. E5415A but not E5415B strongly enhanced endocytosis of endogenous AQP4 in astrocytes. E5415A formed large clusters of AQP4 cross-linking multiple AQP4 functional units. It is the cluster formation of AQP4 that triggers AQP4 endocytosis.
Collapse
Affiliation(s)
- Ping Huang
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Osamu Kusano-Arai
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Julia Ramadhanti
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroko Iwanari
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takayuki Miyauchi
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Toshiko Sakihama
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Jing-Yan Han
- Department Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
32
|
Detection of aquaporin-4 antibody using aquaporin-4 extracellular loop-based carbon nanotube biosensor for the diagnosis of neuromyelitis optica. Biosens Bioelectron 2016; 78:87-91. [DOI: 10.1016/j.bios.2015.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022]
|
33
|
Hecker M, Fitzner B, Wendt M, Lorenz P, Flechtner K, Steinbeck F, Schröder I, Thiesen HJ, Zettl UK. High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Mol Cell Proteomics 2016; 15:1360-80. [PMID: 26831522 DOI: 10.1074/mcp.m115.051664] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g.MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (pvalues <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392-411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS.
Collapse
Affiliation(s)
- Michael Hecker
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany;
| | - Brit Fitzner
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany
| | - Matthias Wendt
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Peter Lorenz
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Kristin Flechtner
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Felix Steinbeck
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; ‖Gesellschaft für Individualisierte Medizin mbH (IndyMED), Lessingstr. 17, 18055 Rostock, Germany
| | - Ina Schröder
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Hans-Jürgen Thiesen
- §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany; ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; ‖Gesellschaft für Individualisierte Medizin mbH (IndyMED), Lessingstr. 17, 18055 Rostock, Germany
| | - Uwe Klaus Zettl
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
34
|
Development of an Aquaporin-4 Orthogonal Array of Particle-Based ELISA for Neuromyelitis Optica Autoantibodies Detection. PLoS One 2015; 10:e0143679. [PMID: 26599905 PMCID: PMC4658006 DOI: 10.1371/journal.pone.0143679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Serological markers of Nuromyelitis Optica (NMO), an autoimmune disorder of the central nervous system, are autoantibodies targeting the astrocytic water channel aquaporin-4 (AQP4). We have previously demonstrated that the main epitopes for these autoantibodies (AQP4-IgG) are generated by the supramolecular arrangement of AQP4 tetramers into an Orthogonal Array of Particles (OAPs). Many tests have been developed to detect AQP4-IgG in patient sera but several procedural issues affect OAP assembly and consequently test sensitivity. To date, the protein based ELISA test shows the lowest sensitivity while representing a valid alternative to the more sensitive cell based assay (CBA), which, however, shows economic, technical and interpretation problems. Here we have developed a high perfomance ELISA in which native OAPs are used as the molecular target. To this aim a native size exclusion chromatography method has been developed to isolate integral, highly pure and AQP4-IgG-recognized OAPs from rat brain. These OAPs were immobilized and oriented on a plastic plate by a sandwich approach and 139 human sera were tested, including 67 sera from NMO patients. The OAP-ELISA showed a 99% specificity and a higher sensitivity (91%) compared to the CBA test. A comparative analysis revealed an end-point titer three orders of magnitude higher than the commercial ELISA and six times higher than our in-house CBA test. We show that CNS-extracted OAPs are crucial elements in order to perform an efficient AQP4-IgG test and the OAP-ELISA developed represents a valid alternative to the CBA currently used.
Collapse
|
35
|
Miyazaki-Komine K, Takai Y, Huang P, Kusano-Arai O, Iwanari H, Misu T, Koda K, Mitomo K, Sakihama T, Toyama Y, Fujihara K, Hamakubo T, Yasui M, Abe Y. High avidity chimeric monoclonal antibodies against the extracellular domains of human aquaporin-4 competing with the neuromyelitis optica autoantibody, NMO-IgG. Br J Pharmacol 2015; 173:103-14. [PMID: 26398585 DOI: 10.1111/bph.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Most of the cases of neuromyelitis optica (NMO) are characterized by the presence of an autoantibody, NMO-IgG, which recognizes the extracellular domains of the water channel, aquaporin-4. Binding of NMO-IgG to aquaporin-4 expressed in end-feet of astrocytes leads to complement-dependent disruption of astrocytes followed by demyelination. One therapeutic option for NMO is to prevent the binding of NMO-IgG to aquaporin-4, using high-avidity, non-pathogenic-chimeric, monoclonal antibodies to this water channel. We describe here the development of such antibodies. EXPERIMENTAL APPROACH cDNAs encoding variable regions of heavy and light chains of monoclonal antibodies against the extracellular domains of human aquaporin-4 were cloned from hybridoma total RNA and fused to those encoding constant regions of human IgG1 and Igκ respectively. Then mammalian expression vectors were constructed to establish stable cell lines secreting mature chimeric antibodies. KEY RESULTS Original monoclonal antibodies showed high avidity binding to human aquaporin-4, as determined by ELISA. Live imaging using Alexa-Fluor-555-labelled antibodies revealed that the antibody D15107 more rapidly bound to cells expressing human aquaporin-4 than others and strongly enhanced endocytosis of this water channel, while D12092 also bound rapidly to human aquaporin-4 but enhanced endocytosis to a lesser degree. Chimeric D15107 prevented complement-dependent cytotoxicity induced by NMO-IgG from patient sera in vitro. CONCLUSIONS AND IMPLICATIONS We have established non-pathogenic, high-avidity, chimeric antibodies against the extracellular domains of human aquaporin-4, which provide a novel therapeutic option for preventing the progress and recurrence of NMO/NMO spectrum disorders.
Collapse
Affiliation(s)
- Kaori Miyazaki-Komine
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Ping Huang
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Kusano-Arai
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.,Institute of Immunology Co., Ltd., 1-1-10 Koraku, Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Hiroko Iwanari
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tatsuro Misu
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Katsushi Koda
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041, Japan
| | - Katsuyuki Mitomo
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041, Japan
| | - Toshiko Sakihama
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yoshiaki Toyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
36
|
Mangiatordi GF, Alberga D, Siragusa L, Goracci L, Lattanzi G, Nicolotti O. Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1462-71. [PMID: 25839357 DOI: 10.1016/j.bbamem.2015.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability.
Collapse
Affiliation(s)
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica "M. Merlin", Università di Bari "Aldo Moro" and INFN, Via E. Orabona, 4, I-70126 Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy
| | - Lydia Siragusa
- Molecular Discovery Limited, 215 Marsh Road, Pinner, Middlesex, London HA5 5NE, UK
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica "M. Merlin", Università di Bari "Aldo Moro" and INFN, Via E. Orabona, 4, I-70126 Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Via Orabona, 4, Università di Bari "Aldo Moro", Bari, Italy; Centro Ricerche TIRES, University of Bari "Aldo Moro", Via Amendola 173, I-70126 Bari, Italy.
| |
Collapse
|
37
|
Owens GP, Ritchie A, Rossi A, Schaller K, Wemlinger S, Schumann H, Shearer A, Verkman AS, Bennett JL. Mutagenesis of the aquaporin 4 extracellular domains defines restricted binding patterns of pathogenic neuromyelitis optica IgG. J Biol Chem 2015; 290:12123-34. [PMID: 25792738 PMCID: PMC4424347 DOI: 10.1074/jbc.m115.647149] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/18/2022] Open
Abstract
Neuromyelitis optica-immunoglobulin G (NMO-IgG) binds to aquaporin-4 (AQP4) water channels in the central nervous system leading to immune-mediated injury. We have previously demonstrated that a high proportion of CSF plasma cells of NMO patients produce antibody to the extracellular domains of the AQP4 protein and that recombinant IgG (rAb) derived from these cells recapitulate pathogenic features of disease. We performed a comprehensive mutational analysis of the three extracellular loops of the M23 isoform of human AQP4 using both serial and single point mutations, and we evaluated the effects on binding of NMO AQP4-reactive rAbs by quantitative immunofluorescence. Whereas all NMO rAbs required conserved loop C (137TP138 and Val150) and loop E (230HW231) amino acids for binding, two broad patterns of NMO-IgG recognition could be distinguished based on differential sensitivity to loop A amino acid changes. Pattern 1 NMO rAbs were insensitive to loop A mutations and could be further discriminated by differential sensitivity to amino acid changes in loop C (148TM149 and His151) and loop E (Asn226 and Glu228). Alternatively, pattern 2 NMO rAbs showed significantly reduced binding following amino acid changes in loop A (63EKP65 and Asp69) and loop C (Val141, His151, and Leu154). Amino acid substitutions at 137TP138 altered loop C conformation and abolished the binding of all NMO rAbs and NMO-IgG, indicating the global importance of loop C conformation to the recognition of AQP4 by pathogenic NMO Abs. The generation of human NMO rAbs has allowed the first high resolution mapping of extracellular loop amino acids critical for NMO-IgG binding and identified regions of AQP4 extracellular structure that may represent prime targets for drug therapy.
Collapse
Affiliation(s)
| | | | - Andrea Rossi
- the Department III-Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany, and
| | | | | | | | | | - Alan S Verkman
- the Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Jeffrey L Bennett
- From the Departments of Neurology and Ophthalmology and Neuroscience Program, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado 80045,
| |
Collapse
|
38
|
Pisani F, Mola MG, Simone L, Rosito S, Alberga D, Mangiatordi GF, Lattanzi G, Nicolotti O, Frigeri A, Svelto M, Nicchia GP. Identification of a point mutation impairing the binding between aquaporin-4 and neuromyelitis optica autoantibodies. J Biol Chem 2014; 289:30578-30589. [PMID: 25239624 DOI: 10.1074/jbc.m114.582221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuromyelitis optica (NMO) is characterized by the presence of pathogenic autoantibodies (NMO-IgGs) against supra-molecular assemblies of aquaporin-4 (AQP4), known as orthogonal array of particles (OAPs). NMO-IgGs have a polyclonal origin and recognize different conformational epitopes involving extracellular AQP4 loops A, C, and E. Here we hypothesize a pivotal role for AQP4 transmembrane regions (TMs) in epitope assembly. On the basis of multialignment analysis, mutagenesis, NMO-IgG binding, and cytotoxicity assay, we have disclosed the key role of aspartate 69 (Asp(69)) of TM2 for NMO-IgG epitope assembly. Mutation of Asp(69) to histidine severely impairs NMO-IgG binding for 85.7% of the NMO patient sera analyzed here. Although Blue Native-PAGE, total internal reflection fluorescence microscopy, and water transport assays indicate that the OAP Asp(69) mutant is similar in structure and function to the wild type, molecular dynamic simulations have revealed that the D(69)H mutation has the effect of altering the structural rearrangements of extracellular loop A. In conclusion, Asp(69) is crucial for the spatial control of loop A, the particular molecular conformation of which enables the assembly of NMO-IgG epitopes. These findings provide additional clues for new strategies for NMO treatment and a wealth of information to better approach NMO pathogenesis.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari
| | - Laura Simone
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari
| | - Stefania Rosito
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica "M. Merlin", INFN and TIRES, Università di Bari "Aldo Moro", via Orabona, 4, 70126 Bari, Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, Università di Bari "Aldo Moro", Bari, 70126 Bari, and
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica "M. Merlin", INFN and TIRES, Università di Bari "Aldo Moro", via Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, Università di Bari "Aldo Moro", Bari, 70126 Bari, and
| | - Antonio Frigeri
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," 70126 Bari,.
| |
Collapse
|
39
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 2014; 23:661-83. [PMID: 24118483 DOI: 10.1111/bpa.12084] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/19/2023] Open
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
40
|
Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol 2014; 23:684-95. [PMID: 24118484 DOI: 10.1111/bpa.12085] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022] Open
Abstract
The water channel aquaporin-4 (AQP4) is the target of the immunoglobulin G autoantibody (AQP4-IgG) in neuromyelitis optica (NMO). AQP4 is expressed in foot processes of astrocytes throughout the central nervous system, as well as in skeletal muscle and epithelial cells in kidney, lung and gastrointestinal organs. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in water movement into and out of the brain, astrocyte migration, glial scar formation and neuroexcitatory phenomena. AQP4 monomers form tetramers in membranes, which further aggregate to form supramolecular assemblies called orthogonal arrays of particles. AQP4-IgG is pathogenic in NMO by a mechanism involving complement- and cell-mediated astrocyte cytotoxicity, which produces an inflammatory response with oligodendrocyte injury and demyelination. AQP4 orthogonal arrays are crucial in NMO pathogenesis, as they increase AQP4-IgG binding to AQP4 and greatly enhance complement-dependent cytotoxicity. Novel NMO therapeutics are under development that target AQP4-IgG or AQP4, including aquaporumab monoclonal antibodies and small molecules that block AQP4-IgG binding to AQP4, and enzymatic inactivation strategies to neutralize AQP4-IgG pathogenicity.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, University of California, San Francisco, CA; Department of Physiology, University of California, San Francisco, CA
| | | | | | | |
Collapse
|
41
|
Levy M, Wildemann B, Jarius S, Orellano B, Sasidharan S, Weber MS, Stuve O. Immunopathogenesis of neuromyelitis optica. Adv Immunol 2014; 121:213-42. [PMID: 24388217 DOI: 10.1016/b978-0-12-800100-4.00006-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuromyelitis optica (NMO, Devic's syndrome) is a clinical syndrome characterized by optic neuritis and (mostly longitudinally extensive) myelitis. If untreated, NMO usually takes a relapsing course and often results in blindness and tetra- or paraparesis. The discovery of autoantibodies to aquaporin-4, the most abundant water channel in the CNS, in 70-80% of patients with NMO (termed NMO-IgG or AQP4-Ab) and subsequent investigations into the pathogenic impact of this new reactivity have led to the recognition of NMO as an autoimmune condition and as a disease entity in its own right, distinct from classic multiple sclerosis. Here, we comprehensively review the current knowledge on the role of NMO-IgG/AQP4-Ab, B cells, T cells, and the innate immune system in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Brigitte Wildemann
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Benjamine Orellano
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Saranya Sasidharan
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany; Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Olaf Stuve
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, Texas, USA; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, Germany; Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
42
|
Ramadhanti J, Huang P, Kusano-Arai O, Iwanari H, Sakihama T, Misu T, Fujihara K, Hamakubo T, Yasui M, Abe Y. A novel monoclonal antibody against the C-terminal region of aquaporin-4. Monoclon Antib Immunodiagn Immunother 2014; 32:270-6. [PMID: 23909421 DOI: 10.1089/mab.2013.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquaporin-4 (AQP4), the most abundant water channel in the brain, plays a central role in water homeostasis, neuronal activity, and migration of astrocytes in the central nervous system. Recent studies have demonstrated that AQP4 is a target of an autoantibody specifically detected in an autoimmune neurologic disease called neuromyelitis optica. Here we have generated a monoclonal antibody (MAb) against the C-terminal region of AQP4 using a baculovirus expressing mouse AQP4 as an immunogen. This antibody (clone E5206) recognized both human and mouse AQP4s in a denaturing condition and was able to precipitate AQP4 from cell lysates of CHO cells stably expressing AQP4. Western blot analysis using deletion mutants revealed that the epitope was located within a region between Asp(303) and Leu(320) in the C-terminal tail of AQP4. Although clone E5206 could not be used for immunostaining when cells or tissues were fixed with 4% paraformaldehyde or 10% formalin, it could be used when cells were fixed with 10% trichloroacetic acid and when a formalin-fixed tissue section was pretreated with antigen-retrieval reagents. This MAb can be a valuable tool for analysis of AQP4 in a variety of physiological and pathophysiological contexts, in human tissues and organs as well as in rodent models, both in vitro and in vivo.
Collapse
Affiliation(s)
- Julia Ramadhanti
- Department of Pharmacology, School of Medicine, Keio University, Shinjyuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aquaporin-4 autoantibodies in Neuromyelitis Optica: AQP4 isoform-dependent sensitivity and specificity. PLoS One 2013; 8:e79185. [PMID: 24260168 PMCID: PMC3829826 DOI: 10.1371/journal.pone.0079185] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Neuromyelitis Optica (NMO) is an autoimmune demyelinating disease, characterized by the presence of autoantibody (NMO-IgG) to Aquaporin-4 (AQP4). NMO-IgG identification supports NMO diagnosis and several diagnostic tests have been developed, but their sensitivity is too variable, and some assay show low sensitivity. This impairs correct diagnosis of NMO. By cell based assay (CBA) we here evaluate the efficacy of different strategies to express AQP4 in mammalian cells in terms of: a) AQP4 translation initiation signals; b) AQP4 isoforms (M1 and M23) and fluorescent tag position; c) NMO serum concentration and AQP4 degradation. Our results demonstrate that when using AQP4-M1, the nucleotide in position -3 of the AUG greatly affects the AQP4-M1/M23 protein ratio, NMO-IgG binding, and consequently test sensitivity. Test sensitivity was highest with M23 expressing cells (97.5%) and only 27.5% with AQP4-M1. The fluorescent tag added to the N-terminus of AQP4-M23 considerably affected the NMO-IgG binding, and test sensitivity, due to disruption of AQP4 suprastructures. Furthermore, sera used at high concentration resulted in AQP4 degradation which affected test sensitivity. To further evaluate the reliability of the M23 based CBA test, samples of one NMO patient collected during about 2 years clinical follow-up were tested. The results of serum titer correlated with disease activity and treatment response. In conclusion, we provide a molecular explanation for the contrasting CBA test data reported and suggest the use of M23 with a C-terminus fluorescent tag as the proper test for NMO diagnosis.
Collapse
|
44
|
Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2013. [PMID: 24118483 DOI: 10.1111/bpa.12084"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies to aquaporin-4 (called NMO-IgG or AQP4-Ab) constitute a sensitive and highly specific serum marker of neuromyelitis optica (NMO) that can facilitate the differential diagnosis of NMO and classic multiple sclerosis. NMO-IgG/AQP4-Ab seropositive status has also important prognostic and therapeutic implications in patients with isolated longitudinally extensive myelitis (LETM) or optic neuritis (ON). In this article, we comprehensively review and critically appraise the existing literature on NMO-IgG/AQP4-Ab testing. All available immunoassays-including tissue-based (IHC), cell-based (ICC, FACS) and protein-based (RIPA, FIPA, ELISA, Western blotting) assays-and their differential advantages and disadvantages are discussed. Estimates for sensitivity, specificity, and positive and negative likelihood ratios are calculated for all published studies and accuracies of the various immunoassay techniques compared. Subgroup analyses are provided for NMO, LETM and ON, for relapsing vs. monophasic disease, and for various control groups (eg, MS vs. other controls). Numerous aspects of NMO-IgG/AQP4-Ab testing relevant for clinicians (eg, impact of antibody titers and longitudinal testing, indications for repeat testing, relevance of CSF testing and subclass analysis, NMO-IgG/AQP4-Ab in patients with rheumatic diseases) as well as technical aspects (eg, AQP4-M1 vs. AQP4-M23-based assays, intact AQP4 vs. peptide substrates, effect of storage conditions and freeze/thaw cycles) and pitfalls are discussed. Finally, recommendations for the clinical application of NMO-IgG/AQP4-Ab serology are given.
Collapse
Affiliation(s)
- Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
45
|
Miyazaki K, Abe Y, Iwanari H, Suzuki Y, Kikuchi T, Ito T, Kato J, Kusano-Arai O, Takahashi T, Nishiyama S, Ikeshima-Kataoka H, Tsuji S, Arimitsu T, Kato Y, Sakihama T, Toyama Y, Fujihara K, Hamakubo T, Yasui M. Establishment of monoclonal antibodies against the extracellular domain that block binding of NMO-IgG to AQP4. J Neuroimmunol 2013; 260:107-16. [PMID: 23746426 DOI: 10.1016/j.jneuroim.2013.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 03/02/2013] [Accepted: 03/15/2013] [Indexed: 12/21/2022]
Abstract
Neuromyelitis optica is a demyelinating disease characterized by a disease-specific autoantibody designated as NMO-IgG that specifically recognizes aquaporin-4, and the binding of NMO-IgG to AQP4 causes the progress of the disease. Prevention of the binding of NMO-IgG, therefore, may alleviate the disease. Here we have developed monoclonal antibodies against AQP4 with a baculovirus display system in order to obtain high affinity monoclonal antibodies against the extracellular domains of AQP4. Our monoclonal antibodies can block the binding of NMO-IgG in spite of their heterogeneity. Taken together, we propose that our monoclonal antibodies can be applied in clinical therapy for NMO patients.
Collapse
Affiliation(s)
- Kaori Miyazaki
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage.
Collapse
Affiliation(s)
- Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's, University of London, Tooting, London, SW17 0RE, UK. mpapadop@sgul. ac.uk
| | | |
Collapse
|
47
|
Raveendra B, Hao W, Baccala R, Reddy MM, Schilke J, Bennett JL, Theofilopoulos AN, Kodadek T. Discovery of peptoid ligands for anti-aquaporin 4 antibodies. CHEMISTRY & BIOLOGY 2013; 20:351-9. [PMID: 23521793 PMCID: PMC3640264 DOI: 10.1016/j.chembiol.2012.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/02/2012] [Accepted: 12/08/2012] [Indexed: 10/27/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory disorder of the central nervous system. In most NMO patients, autoantibodies to the water channel protein Aquaporin 4 (AQP4) are present at high levels and are thought to drive pathology by mediating complement-dependent destruction of astrocytes. Here, we apply recently developed chemical library screening technology to identify a synthetic peptoid that binds anti-AQP4 antibodies in the serum of NMO patients. This finding validates, in a well-defined human disease, that synthetic, unnatural ligands for the antigen-binding site of a disease-linked antibody can be isolated by high-throughput screening.
Collapse
Affiliation(s)
- Bindu Raveendra
- Departments of Chemistry & Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Wu Hao
- Departments of Chemistry & Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Roberto Baccala
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | | | | | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, 12700 E. 19 Ave., Aurora, CO 80045
| | - Argyrios N. Theofilopoulos
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
48
|
Li M, Su W, Wang J, Pisani F, Frigeri A, Ma T. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients. Neural Regen Res 2013; 8:708-13. [PMID: 25206717 PMCID: PMC4146080 DOI: 10.3969/j.issn.1673-5374.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 11/15/2012] [Indexed: 11/23/2022] Open
Abstract
In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica.
Collapse
Affiliation(s)
- Miao Li
- Membrane Channel Research Laboratory, Northeast Normal University, Changchun 130024, Jilin Province, China ; Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun 130012, Jilin Province, China
| | - Jie Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Francesco Pisani
- Department of General and Environmental Physiology and Centre of Excellence in Comparative Genomics (CEGBA), University of Bari, I-70126 Bari, Italy
| | - Antonio Frigeri
- Department of General and Environmental Physiology and Centre of Excellence in Comparative Genomics (CEGBA), University of Bari, I-70126 Bari, Italy
| | - Tonghui Ma
- Membrane Channel Research Laboratory, Northeast Normal University, Changchun 130024, Jilin Province, China
| |
Collapse
|
49
|
Basco D, Blaauw B, Pisani F, Sparaneo A, Nicchia GP, Mola MG, Reggiani C, Svelto M, Frigeri A. AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations. PLoS One 2013; 8:e58712. [PMID: 23520529 PMCID: PMC3592820 DOI: 10.1371/journal.pone.0058712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/05/2013] [Indexed: 02/07/2023] Open
Abstract
In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise.
Collapse
Affiliation(s)
- Davide Basco
- Department of Bioscience, Biotechnologies and Biopharmaceutics and Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
González C, González-Buitrago JM, Izquierdo G. Aquaporins, anti-aquaporin-4 autoantibodies and neuromyelitis optica. Clin Chim Acta 2013; 415:350-60. [DOI: 10.1016/j.cca.2012.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/24/2022]
|