1
|
Silvano S, Napolitano T, Plaisant M, Sousa-De-Veiga A, Fofo H, Ayachi C, Allegrini B, Rekima S, Pichery E, Becam J, Lepage V, Treins C, Etasse L, Tran L, Thévenet J, Pasquetti G, Kerr-Conte J, Pattou F, Botti P, Arduini A, Mizrahi J, Charles B, Collombat P. RSPO1, a potent inducer of pancreatic β cell neogenesis. Cell Rep Med 2025; 6:102126. [PMID: 40339569 DOI: 10.1016/j.xcrm.2025.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/02/2024] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Inducing the neogenesis of pancreatic insulin-producing β cells holds great promise for diabetes research. However, non-toxic compounds with such activities remain to be discovered. Herein, we report the identification of RSPO1, a key agonist of the Wnt/β-catenin pathway, as an inducer of β cell replication. Specifically, we provide evidence that RSPO1 promotes a significant increase in β cell neogenesis in vitro, ex vivo, and in vivo. Importantly, RSPO1 administration is sufficient to activate Wnt/β-catenin signaling in β cells and counter chemically induced or autoimmune-mediated diabetes. Similarly, an optimized analog of RSPO1, allowing for weekly administration, also prevents diabetes in vivo. Lastly, the treatment of transplanted human islets with RSPO1 induces a significant 2.78-fold increase in human β cell numbers in only 60 days, these cells being functional. Such activities of RSPO1 to promote β cell neogenesis could therefore represent an unprecedented hope in the continued search for diabetes alternative therapies.
Collapse
Affiliation(s)
| | | | | | - Anette Sousa-De-Veiga
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Hugo Fofo
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Chaïma Ayachi
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Benoit Allegrini
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Samah Rekima
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | | | - Jérôme Becam
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Valentin Lepage
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | | | - Laura Etasse
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | - Loan Tran
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | - Julien Thévenet
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Gianni Pasquetti
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - François Pattou
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Paolo Botti
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | | | | | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France; University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
2
|
Filipowska J, Cisneros Z, Varghese SS, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Shih HP, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. Mol Metab 2025; 92:102097. [PMID: 39788290 PMCID: PMC11788739 DOI: 10.1016/j.molmet.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVE Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The Leucine-rich repeat-containing G-protein-coupled receptor (GPCR) 4 (LGR4) is expressed in β-cells and is the fourth most abundant GPCR in human islets. Although LGR4 has regenerative, anti-inflammatory, and anti-apoptotic effects in other tissues, its functional significance in β-cells remains unknown. We have previously identified Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) as a negative regulator of β-cell health. In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo. METHODS We evaluated Lgr4 expression in mouse and human islets in response to acute (proinflammatory cytokines), or chronic (high fat fed mice, db/db mice, and aging) stress. To determine the role of LGR4 we employed in vitro Lgr4 loss and gain of function in primary rodent and human β-cells and examined its mechanism of action in the rodent INS1 cell line. Using Lgr4fl/fl and Lgr4fl/fl/Rankfl/fl × Ins1-Cre mice we generated β-cell-specific conditional knockout (cko) mice to test the role of LGR4 and its interaction with RANK in vivo under basal and stress-induced conditions. RESULTS Lgr4 expression in rodent and human islets was reduced by multiple stressors. In vitro, Lgr4 knockdown decreased proliferation and survival in rodent β-cells, while overexpression protected against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 protects β-cells by suppressing RANK- Tumor necrosis factor receptor associated factor 6 (TRAF6) interaction and subsequent activation of NFκB. Lgr4cko mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased β-cell proliferation and maturation only in females. Male Lgr4cko mice under stress displayed reduced β-cell proliferation and a further increase in β-cell death. The impaired β-cell phenotype in Lgr4cko mice was rescued in Lgr4/Rank double ko (dko) mice. Upon aging, both male and female Lgr4cko mice displayed impaired β-cell homeostasis, however, only female mice became glucose intolerant with decreased plasma insulin. CONCLUSIONS These data demonstrate a novel role for LGR4 as a positive regulator of β-cell health under basal and stress-induced conditions, through suppressing the negative effects of RANK.
Collapse
Affiliation(s)
- Joanna Filipowska
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Zelda Cisneros
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Sneha S Varghese
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, and Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Geming Lu
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Computational Quantitative Medicine, City of Hope, Duarte, CA 91010, USA
| | - Hung-Ping Shih
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Supriyo Bhattacharya
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular Imaging and Therapy, City of Hope, Duarte, CA 91010, USA
| | - Sangeeta Dhawan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA 91010, USA
| | - Nagesha Guthalu Kondegowda
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA
| | - Rupangi C Vasavada
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
4
|
Filipowska J, Cisneros Z, Leon-Rivera N, Wang P, Kang R, Lu G, Yuan YC, Bhattacharya S, Dhawan S, Garcia-Ocaña A, Kondegowda NG, Vasavada RC. LGR4 is essential for maintaining β-cell homeostasis through suppression of RANK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593645. [PMID: 38798561 PMCID: PMC11118322 DOI: 10.1101/2024.05.10.593645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Pancreatic β-cell stress contributes to diabetes progression. This study demonstrates that Leucine-rich repeat-containing G-protein-coupled-receptor-4 (LGR4) is critical for maintaining β-cell health and is modulated by stressors. In vitro , Lgr4 knockdown decreases proliferation and survival in rodent β-cells, while overexpression protects against cytokine-induced cell death in rodent and human β-cells. Mechanistically, LGR4 suppresses Receptor Activator of Nuclear Factor Kappa B (NFκB) (RANK) and its subsequent activation of NFκB to protect β-cells. β-cell-specific Lgr4 -conditional knockout (cko) mice exhibit normal glucose homeostasis but increased β-cell death in both sexes and decreased proliferation only in females. Male Lgr4 cko mice under stress display reduced β-cell proliferation and a further increase in β-cell death. Upon aging, both male and female Lgr4 cko mice display impaired β-cell homeostasis, however, only female mice are glucose intolerant with decreased plasma insulin. We show that LGR4 is required for maintaining β-cell health under basal and stress-induced conditions, through suppression of RANK. Teaser LGR4 receptor is critical for maintaining β-cell health under basal and stressed conditions, through suppression of RANK.
Collapse
|
5
|
Tan L, Yan M, Su Z, Wang H, Li H, Zhao X, Liu S, Zhang L, Sun Q, Lu D. R-spondin-1 induces Axin degradation via the LRP6-CK1ε axis. Cell Commun Signal 2024; 22:14. [PMID: 38183076 PMCID: PMC10768284 DOI: 10.1186/s12964-023-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
R-spondins (RSPOs) are secreted signaling molecules that potentiate the Wnt/β-catenin pathway by cooperating with Wnt ligands. RSPO1 is crucial in tissue development and tissue homeostasis. However, the molecular mechanism by which RSPOs activate Wnt/β-catenin signaling remains elusive. In this study, we found that RSPOs could mediate the degradation of Axin through the ubiquitin-proteasome pathway. The results of Co-IP showed that the recombinant RSPO1 protein promoted the interaction between Axin1 and CK1ε. Either knockout of the CK1ε gene or treatment with the CK1δ/CK1ε inhibitor SR3029 caused an increase in Axin1 protein levels and attenuated RSPO1-induced degradation of the Axin1 protein. Moreover, we observed an increase in the number of associations of LRP6 with CK1ε and Axin1 following RSPO1 stimulation. Overexpression of LRP6 further potentiated Axin1 degradation mediated by RSPO1 or CK1ε. In addition, recombinant RSPO1 and Wnt3A proteins synergistically downregulated the protein expression of Axin1 and enhanced the transcriptional activity of the SuperTOPFlash reporter. Taken together, these results uncover the novel mechanism by which RSPOs activate Wnt/β-catenin signaling through LRP6/CK1ε-mediated degradation of Axin.
Collapse
Affiliation(s)
- Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengfang Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanbin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
7
|
GÜRBÜZ T, GÖKMEN O, AYAR MADENLİ A, DİLBAZ B. R-Spondin1 and tumor necrosis factor-alpha in infertile women with polycystic ovary syndrome: relationships with insulin resistance and other parameters. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1210721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Aim: To evaluate the relationship between R-spondin1 (RSPO1) and Tumor Necrosis Factor-Alpha (TNF-α) levels with insulin resistance (IR) and other parameters in infertile women with polycystic ovary syndrome (PCOS).
Material and Method: This case-control prospective observational study was carried out on 84 patients admitted to the University of Health Sciences Etlik Zübeyde Hanım Training and Research Hospital Gynecology and IVF Clinic and Medistate Hospital Gynecology and IVF Clinic between September 2020 and June 2021. Women aged 18-36 years diagnosed with infertility and PCOS constituted the PCOS group. Women who were diagnosed with infertility but not PCOS formed the control group. Cases were divided according to their body mass index (BMI) values into obese (BMI≥25) and non-obese (BMI
Collapse
Affiliation(s)
- Tuğba GÜRBÜZ
- Medistate Hospital, Gynecology and Obstetric Clinic ,Istanbul/Turkey
| | - Oya GÖKMEN
- Department of Gynecology Obstetrics & Reproductive Medicine, Medistate Kavacik Hospital, Istanbul, Turkey
| | - Asena AYAR MADENLİ
- Department of Obstetrics and Gynecology, Liv Hospital Vadistanbul,Istanbul,Turkey
| | - Berna DİLBAZ
- Department of Gynecology Obstetrics & Reproductive Medicine, University of Health Sciences Etlik Zubeyde Hanim Training and Research Hospital, Ankara,Turkey
| |
Collapse
|
8
|
Lyu Z, Zhao M, Atanes P, Persaud SJ. Quantification of changes in human islet G protein-coupled receptor mRNA expression in obesity. Diabet Med 2022; 39:e14974. [PMID: 36260369 DOI: 10.1111/dme.14974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) play crucial roles in regulating islet function, with Gαs- and Gαq-coupled receptors being linked to the stimulation of insulin secretion. We have quantified the mRNA expression of 384 non-olfactory GPCRs in islets isolated from lean and obese organ donors to determine alterations in islet GPCR mRNA expression in obesity. METHODS RT-qPCR was used to quantify GPCR mRNAs relative to five reference genes (ACTB, GAPDH, PPIA, TBP, and TFRC) in human islets isolated from lean (BMI = 22.6 ± 0.5) and obese (BMI = 32.0 ± 0.8) donors. RESULTS Overall, 197 and 256 GPCR mRNAs were detected above trace level in islets from lean and obese donors, respectively, with 191 GPCR mRNAs being common to the lean and obese groups. 40.9% (n = 157) and 27.1% (n = 104) of the mRNAs were expressed at trace level whilst 7.8% and 6.3% were absent in islets from lean and obese donors, respectively. Hundred and seventeen GPCR mRNAs were upregulated at least twofold in islets from obese donors, and there was >twofold downregulation of 21 GPCR mRNAs. Of particular interest, several receptors signalling via Gαs or Gαq showed significant mRNA upregulation in islets from obese donors (fold increase: PTH2R: 54.0 ± 14.6; MC2R: 34.3 ± 11.5; RXFP1: 8.5 ± 2.1; HTR2B: 6.0 ± 2.0; GPR110: 3.9 ± 1.2; PROKR2: 3.9 ± 0.7). CONCLUSIONS Under conditions of obesity, human islets showed significant alterations in mRNAs encoding numerous GPCRs. The increased expression of Gαs- and Gαq-coupled receptors that have not previously been investigated in β-cells opens up possibilities of novel therapeutic candidates that may lead to the potentiation of insulin secretion and/or β-cell mass to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Zekun Lyu
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Min Zhao
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Patricio Atanes
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Shanta Jean Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Filipowska J, Kondegowda NG, Leon-Rivera N, Dhawan S, Vasavada RC. LGR4, a G Protein-Coupled Receptor With a Systemic Role: From Development to Metabolic Regulation. Front Endocrinol (Lausanne) 2022; 13:867001. [PMID: 35707461 PMCID: PMC9190282 DOI: 10.3389/fendo.2022.867001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4/GPR48), a member of the GPCR (G protein-coupled receptors) superfamily, subfamily B, is a common intestinal crypt stem cell marker. It binds R-spondins/Norrin as classical ligands and plays a crucial role in Wnt signaling potentiation. Interaction between LGR4 and R-spondins initiates many Wnt-driven developmental processes, e.g., kidney, eye, or reproductive tract formation, as well as intestinal crypt (Paneth) stem cell pool maintenance. Besides the well-described role of LGR4 in development, several novel functions of this receptor have recently been discovered. In this context, LGR4 was indicated to participate in TGFβ and NFκB signaling regulation in hematopoietic precursors and intestinal cells, respectively, and found to be a new, alternative receptor for RANKL (Receptor Activator of NF kappa B Ligand) in bone cells. LGR4 inhibits the process of osteoclast differentiation, by antagonizing the interaction between RANK (Receptor Activator of NF kappa B) and its ligand-RANKL. It is also known to trigger anti-inflammatory responses in different tissues (liver, intestine, cardiac cells, and skin), serve as a sensor of the circadian clock in the liver, regulate adipogenesis and energy expenditure in adipose tissue and skeletal muscles, respectively. The extracellular domain of LGR4 (LGR4-ECD) has emerged as a potential new therapeutic for osteoporosis and cancer. LGR4 integrates different signaling pathways and regulates various cellular processes vital for maintaining whole-body homeostasis. Yet, the role of LGR4 in many cell types (e.g. pancreatic beta cells) and diseases (e.g., diabetes) remains to be elucidated. Considering the broad spectrum of LGR4 actions, this review aims to discuss both canonical and novel roles of LGR4, with emphasis on emerging research directions focused on this receptor.
Collapse
|
10
|
Spicer LJ. Wingless-type mouse mammary tumor virus integration site regulation of bovine theca cells. J Anim Sci 2021; 99:6309027. [PMID: 34166505 DOI: 10.1093/jas/skab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Ovarian paracrine mediation by components of the wingless-type mouse mammary tumor virus integration site ligands (WNT1 to 11) and their receptors, frizzled family members (FZD1 to 10), has been proposed. Secreted truncated forms of FZD proteins (e.g., secreted frizzled-related protein 4 [SFRP4]) block the action of WNT ligands. Dickkopf-1 (DKK1) is another WNT antagonist, and R-spondin-1 (RSPO1) is one of a group of four secreted proteins that enhance WNT/β-catenin signaling. Our hypothesis was that granulosa cells signal theca cells (TCs) via SFRP4, DKK1, RSPO1, and WNT secretion to regulate TC differentiation and proliferation. Therefore, in vitro experiments were conducted to study the effects of WNT family member 3A (WNT3A), WNT5A, RSPO1, DKK1, insulin-like growth factor 1 (IGF1), bone morphogenetic protein 7 (BMP7), Indian hedgehog (IHH), and fibroblast growth factor 9 (FGF9) on bovine TC proliferation and steroidogenesis. TCs of large (8 to 20 mm) and small (3 to 6 mm) follicles were collected from bovine ovaries; TC monolayers were established in vitro and treated with various doses of recombinant human WNT3A, WNT5A, RSPO1, DKK1, IGF1, FGF9, BMP7, IHH, and/or ovine luteinizing hormone (LH) in serum-free medium for 48 h. In experiment 1, using LH-treated TC, IGF1, IHH, and WNT3A increased (P < 0.05) cell numbers and androstenedione production, whereas WNT3A and BMP7 inhibited (P < 0.05) progesterone production. In experiment 2, FGF9 blocked (P < 0.05) the WNT3A-induced increase in androstenedione production in LH plus IGF1-treated TC. In experiment 3, RSPO1 further increased (P < 0.05) LH plus IGF1-induced progesterone and androstenedione production. In experiment 4, SFRP4 and DKK1 alone had no significant effect on TC proliferation or progesterone production of large-follicle TC but both blocked the inhibitory effect of WNT5A on androstenedione production. In contrast, DKK1 alone inhibited (P < 0.05) small-follicle TC androstenedione production whereas SFRP4 was without effect. We conclude that the ovarian TC WNT system is functional in cattle, with WNT3A increasing proliferation and androstenedione production of TC.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Huang G, Cao J, Gao F, Liu Z, Lu M, Chen G. R-spondin1 in loach (Misgurnus anguillicaudatus): Identification, characterization, and analysis of its expression patterns and DNA methylation in response to high-temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110569. [PMID: 33515787 DOI: 10.1016/j.cbpb.2021.110569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
With a well-understood function in mammals, R-spondin1 (Rspo1) is an important regulator of ovarian development via the Wnt/β-catenin pathway. Rspo1 deficiency causes retardation of ovarian development in XX fish, and increases Rspo1 function induces femininity and sex reversal in XY fish. In this study, Rspo1 was successfully cloned from loach (Misgurnus anguillicaudatus), and its expression profile was analyzed. The full-length cDNA of Misgurnus anguillicaudatus Rspo1 (MaRspo1) comprised 1322 bp and included an open reading frame (ORF) of 795 bp, which encoded a predicted polypeptide measuring 264 amino acids in length. Phylogenetic and gene structure analyses showed a highly conserved sequence of MaRspo1 (identical to the Rspo1 genes of other species), consisting of an N-terminal signal peptide (SP), two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat (TSP1) and a C-terminal region. Real-time PCR revealed the female-biased expression profile of MaRspo1, with the highest expression level among tested tissues detected in ovary. Investigation of MaRspo1 expression levels throughout the early development stage (10-60 days post hatching) under three temperature treatments (25 °C, 28 °C, and 31 °C) revealed significantly differential expression of MaRspo1 among the three temperature groups, with decreased MaRspo1 expression in the high-temperature (31 °C) group. The results of DNA methylation analysis indicated that exposure to high temperature during early development can increase the average promoter methylation level of MaRspo1 in both females and males. Taken together, the results of this study provide the basis for the further investigation of the molecular mechanism of Rspo1 in response to temperature.
Collapse
Affiliation(s)
- Guiyun Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|
12
|
Levin G, Koga BAA, Belchior GG, Carreira ACO, Sogayar MC. Production, purification and characterization of recombinant human R-spondin1 (RSPO1) protein stably expressed in human HEK293 cells. BMC Biotechnol 2020; 20:5. [PMID: 31959207 PMCID: PMC6971977 DOI: 10.1186/s12896-020-0600-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background The R-Spondin proteins comprise a family of secreted proteins, known for their important roles in cell proliferation, differentiation and death, by inducing the Wnt pathway. Several studies have demonstrated the importance of RSPOs in regulation of a number of tissue-specific processes, namely: bone formation, skeletal muscle tissue development, proliferation of pancreatic β-cells and intestinal stem cells and even cancer. RSPO1 stands out among RSPOs molecules with respect to its potential therapeutic use, especially in the Regenerative Medicine field, due to its mitogenic activity in stem cells. Here, we generated a recombinant human RSPO1 (rhRSPO1) using the HEK293 cell line, obtaining a purified, characterized and biologically active protein product to be used in Cell Therapy. The hRSPO1 coding sequence was synthesized and subcloned into a mammalian cell expression vector. HEK293 cells were stably co-transfected with the recombinant expression vector containing the hRSPO1 coding sequence and a hygromycin resistance plasmid, selected for hygror and subjected to cell clones isolation. Results rhRSPO1 was obtained, in the absence of serum, from culture supernatants of transfected HEK293 cells and purified using a novel purification strategy, involving two sequential chromatographic steps, namely: heparin affinity chromatography, followed by a molecular exclusion chromatography, designed to yield a high purity product. The purified protein was characterized by Western blotting, mass spectrometry and in vitro (C2C12 cells) and in vivo (BALB/c mice) biological activity assays, confirming the structural integrity and biological efficacy of this human cell expression system. Furthermore, rhRSPO1 glycosylation analysis allowed us to describe, for the first time, the glycan composition of this oligosaccharide chain, confirming the presence of an N-glycosylation in residue Asn137 of the polypeptide chain, as previously described. In addition, this analysis revealing the presence of glycan structures such as terminal sialic acid, N-acetylglucosamine and/or galactose. Conclusion Therefore, a stable platform for the production and purification of recombinant hRSPO1 from HEK293 cells was generated, leading to the production of a purified, fully characterized and biologically active protein product to be applied in Tissue Engineering.
Collapse
Affiliation(s)
- Gabriel Levin
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Bruna Andrade Aguiar Koga
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.,Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, 13635-900, Brazil
| | - Gustavo Gross Belchior
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ana Claudia Oliveira Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil. .,Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, 13635-900, Brazil.
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, Edifício NUCEL, Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil. .,Biochemistry Department, Chemistry Institute, University of São Paulo, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
13
|
Xu CF, Liu YJ, Wang Y, Mao YF, Xu DF, Dong WW, Zhu XY, Jiang L. Downregulation of R-Spondin1 Contributes to Mechanical Stretch-Induced Lung Injury. Crit Care Med 2019; 47:e587-e596. [PMID: 31205087 DOI: 10.1097/ccm.0000000000003767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The R-spondin family attenuates tissue damage via tightening endothelium and preventing vascular leakage. This study aims to investigate whether R-spondins protect against mechanical stretch-induced endothelial dysfunction and lung injury and to reveal the underlying mechanisms. DESIGN Randomized controlled study. SETTING University research laboratory. SUBJECTS Patients scheduled to undergo surgery with mechanical ventilation support. Adult male Institute of Cancer Research mice. Primary cultured mouse lung vascular endothelial cells. INTERVENTIONS Patients underwent a surgical procedure with mechanical ventilation support of 3 hours or more. Mice were subjected to mechanical ventilation (6 or 30 mL/kg) for 0.5-4 hours. Another group of mice were intraperitoneally injected with 1 mg/kg lipopolysaccharide, and 12 hours later subjected to mechanical ventilation (10 mL/kg) for 4 hours. Mouse lung vascular endothelial cells were subjected to cyclic stretch for 4 hours. MEASUREMENTS AND MAIN RESULTS R-spondin1 were downregulated in both surgical patients and experimental animals exposed to mechanical ventilation. Intratracheal instillation of R-spondin1 attenuated, whereas knockdown of pulmonary R-spondin1 exacerbated ventilator-induced lung injury and mechanical stretch-induced lung vascular endothelial cell apoptosis. The antiapoptotic effect of R-spondin1 was mediated through the leucine-rich repeat containing G-protein coupled receptor 5 in cyclic stretched mouse lung vascular endothelial cells. We identified apoptosis-stimulating protein of p53 2 as the intracellular signaling protein interacted with leucine-rich repeat containing G-protein coupled receptor 5. R-spondin1 treatment decreased the interaction of apoptosis-stimulating protein of p53 2 with p53 while increased the binding of apoptosis-stimulating protein of p53 2 to leucine-rich repeat containing G-protein coupled receptor 5, therefore resulting in inactivation of p53-mediated proapoptotic pathway in cyclic stretched mouse lung vascular endothelial cells. CONCLUSIONS Mechanical ventilation leads to down-regulation of R-spondin1. R-spondin1 may enhance the interaction of leucine-rich repeat containing G-protein coupled receptor 5 and apoptosis-stimulating protein of p53 2, thus inactivating p53-mediated proapoptotic pathway in cyclic stretched mouse lung vascular endothelial cells. R-spondin1 may have clinical benefit in alleviating mechanical ventilator-induced lung injury.
Collapse
Affiliation(s)
- Chu-Fan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Kang YE, Kim JM, Yi HS, Joung KH, Lee JH, Kim HJ, Ku BJ. Serum R-Spondin 1 Is a New Surrogate Marker for Obesity and Insulin Resistance. Diabetes Metab J 2019; 43:368-376. [PMID: 30398036 PMCID: PMC6581548 DOI: 10.4093/dmj.2018.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/22/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent in vivo studies indicated that R-spondin 1 (RSPO1) regulates food intake and increases insulin secretion, but its role in humans remains unknown. This study investigated the association between serum levels of RSPO1 and diverse metabolic parameters in humans. METHODS The study population consisted of 43 subjects with newly diagnosed diabetes mellitus, and 79 non-diabetic participants. Serum levels of RSPO1 were measured using the enzyme-linked immunosorbent assay. The relationships between circulating RSPO1 and diverse metabolic parameters were analyzed. RESULTS Circulating RSPO1 levels increased to a greater extent in the obese group than in the lean group. Moreover, serum levels of RSPO1 were higher in the insulin-resistant group than in the insulin-sensitive group. Serum levels of RSPO1 were significantly correlated with a range of metabolic parameters including body mass index, fasting C-peptide, homeostasis model assessment of insulin resistance index, and lipid profile. Moreover, levels were significantly associated with insulin resistance and obesity in non-diabetic subjects. CONCLUSION This study demonstrated the association between serum levels of RSPO1 and a range of metabolic parameters in humans. Serum levels of RSPO1 are significantly related to obesity and insulin resistance, although the precise mechanisms remain unknown.
Collapse
Affiliation(s)
- Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Min Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon Seung Yi
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea.
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
15
|
Wu X, Li Z, Chen K, Yin P, Zheng L, Sun S, Chen X. Egr-1 transactivates WNT5A gene expression to inhibit glucose-induced β-cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30218-9. [PMID: 30025875 DOI: 10.1016/j.bbagrm.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Selective β-cell loss is a characteristic of type 2 diabetes mellitus (T2DM). Inhibition of glucose-stimulated β-cell proliferation is one of the in vivo results of the lipotoxicity of saturated fatty acids (SFAs). However, the mechanism by which lipotoxicity inhibits β-cell proliferation is still unclear. In this study, we found palmitate, a saturated fatty acid, inhibited the β-cell proliferation induced by high glucose through the induction of Wnt5a expression in vitro and in vivo. We also found that Wnt5a was both sufficient and necessary for inhibition of β-cell proliferation. Additionally, Egr-1, but not NF-κB, FOXO1, Smad2, Smad3, SP1 or SP3 mediated the expression of Wnt5a. Deletion and site-directed mutagenesis of the WNT5A promoter revealed that activation of WNT5A gene transcription depends primarily on a putative Egr-binding sequence between nucleotides -52 to -44, upstream of the transcription start site. Furthermore, Egr-1 bound directly to this sequence in response to palmitate treatment, both in vitro and in vivo. Moreover, after mice islets were treated with Egr inhibitors, the expression of Wnt5a decreased significantly and the glucose-induced β-cell proliferation inhibited by palmitate was resumed. These findings establish Wnt5a as an Egr-1 target gene in β-cells, uncovering a novel Egr-1/Wnt5a pathway by which saturated free fatty acids block glucose-induced β-cell proliferation. Our study lends support for the potential of Egr-1 inhibitors or Wnt5a antibodies as therapeutics for the treatment of T2DM.
Collapse
Affiliation(s)
- XingEr Wu
- The Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China; Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - ZeHong Li
- Guzhen Sub-bureau, Zhongshan Public Security Bureau, Zhongshan 528400, Guangdong, China
| | - Kang Chen
- Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - PeiHong Yin
- Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - ShiJun Sun
- The Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China.
| | - XiaoYu Chen
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Futian, 518000 Shenzhen, China.
| |
Collapse
|
16
|
Lacour F, Vezin E, Bentzinger CF, Sincennes MC, Giordani L, Ferry A, Mitchell R, Patel K, Rudnicki MA, Chaboissier MC, Chassot AA, Le Grand F. R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways. Cell Rep 2017; 18:2320-2330. [PMID: 28273449 PMCID: PMC5357729 DOI: 10.1016/j.celrep.2017.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/15/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo) family of secreted proteins potently activates the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/β-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/β-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.
Collapse
Affiliation(s)
- Floriane Lacour
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Elsa Vezin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - C Florian Bentzinger
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H5N4 QC, Canada
| | - Marie-Claude Sincennes
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, K1H8L6 ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | - Lorenzo Giordani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Arnaud Ferry
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, RG6 6UB Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, RG6 6UB Reading, UK; Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, K1H8L6 ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | | | | | - Fabien Le Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France.
| |
Collapse
|
17
|
Li H, Xu W, Zhu Y, Zhang N, Ma J, Sun A, Cui Z, Gao F, Wang N, Shao C, Dong Z, Li Y. Characterization and expression pattern of r-spondin1 in Cynoglossus semilaevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:772-780. [PMID: 29044994 DOI: 10.1002/jez.b.22774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023]
Abstract
r-spondin1 (rspo1) encodes a secreted protein that is involved in the determination and differentiation of the mammalian ovary. However, little information is yet available for teleosts. Here, we identified a homologue of rspo1 in Cynoglossus semilaevis. The full-length cDNA of rspo1 had a length of 2,703 bp with an open reading frame of 834 bp, encoding a protein with a length of 277 amino-acids. rspo1 expression was detected via qRT-PCR in various tissues, and significant sexually dimorphic expression was observed in the gonads. Furthermore, ISH located rspo1 in germ cells such as spermatogonia, spermatocytes, spermatids, spermatozoa, and oocytes, as well as in somatic cells of the gonads. Following knockdown of rspo1 in an ovarian cell line, the expressions of wnt4a, β-catenin, foxl2, and StAR were highly affected; wnt4a and β-catenin were significantly downregulated, whereas foxl2 and StAR were significantly upregulated. In summary, these data suggest that rspo1 may be involved in the regulation of ovarian development and differentiation through a conserved pathway, while the function of the gene in the testis remains elusive.
Collapse
Affiliation(s)
- Hailong Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Wenteng Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jialu Ma
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ai Sun
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Beijing Key Laboratory of Fishery Biotechnology (No.BZ0301), Beijing Fisheries Research Institute, Beijing, China
| | - Zhongkai Cui
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fengtao Gao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Na Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongdian Dong
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yangzhen Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant 2017; 7:117-128. [PMID: 28507914 PMCID: PMC5409911 DOI: 10.5500/wjt.v7.i2.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/28/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
The intra-islet microvasculature is a critical interface between the blood and islet endocrine cells governing a number of cellular and pathophysiological processes associated with the pancreatic tissue. A growing body of evidence indicates a strong functional and physical interdependency of β-cells with endothelial cells (ECs), the building blocks of islet microvasculature. Intra-islet ECs, actively regulate vascular permeability and appear to play a role in fine-tuning blood glucose sensing and regulation. These cells also tend to behave as “guardians”, controlling the expression and movement of a number of important immune mediators, thereby strongly contributing to the physiology of islets. This review will focus on the molecular signalling and crosstalk between the intra-islet ECs and β-cells and how their relationship can be a potential target for intervention strategies in islet pathology and islet transplantation.
Collapse
|
19
|
Minchenko DO, Davydov VV, Budreiko OA, Moliavko OS, Kulieshova DK, Tiazhka OV, Minchenko OH. The expression of CCN2, IQSEC, RSPO1, DNAJC15, RIPK2, IL13RA2, IRS1, and IRS2 genes in blood of obese boys with insulin resistance. ACTA ACUST UNITED AC 2015; 61:10-8. [PMID: 26040030 DOI: 10.15407/fz61.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of obesity and its metabolic complications is associated with dysregulation of various intrinsic mechanisms, which control basic metabolic processes via changes in the expression of numerous regulatory genes. We studied the expression of the subset of genes, which responsible for control of cell growth and glucose metabolism, in blood cells of obese boys with normal and impaired insulin sensitivity as well as in normal (control) individuals. It was shown that obesity with normal insulin sensitivity enhances the expression of IRS1, RIPK2, IL13RA2, RSPO1, IQSEC, and CCN2 genes but decreases the expression level IRS2 and DNAJC15 genes in the blood cells as compared to control group. Insulin resistance in obese boys leads to up-regulation of IRS2, RSPO1, and DNAJC15 gene expressions as wells to down-regulation of IRS1 and RIPK2 genes in the blood cells versus obese patients with normal insulin sensitivity. Results of this study provide evidence that obesity affects the expression of the subset of genes related to cell growth and glucose metabolism in blood cells and that insulin resistance in obesity is associated with changes in the expression level of IRS1, IRS2, RIPK2, RSPO1, and DNA JC15 genes, which contribute to the development of insulin resistance and glucose intolerance and possibly reflect some changes in fat tissue.
Collapse
|
20
|
Li Z, Zhang W, Mulholland MW. LGR4 and Its Role in Intestinal Protection and Energy Metabolism. Front Endocrinol (Lausanne) 2015; 6:131. [PMID: 26379625 PMCID: PMC4548225 DOI: 10.3389/fendo.2015.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 01/04/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptors were identified by the unique nature of their long leucine-rich repeat extracellular domains. Distinct from classical G protein-coupled receptors which act via G proteins, LGR4 functions mainly through Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system, urinary system, sensory organs, digestive system, and the central nervous system, indicating LGR4 may have multiple functions in development. Here, we focus on the digestive system by reviewing its effects on crypt cells differentiation and stem cells maintenance, which are important for cell regeneration after injury. Through effects on Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of energy metabolism, including food intake, energy expenditure, and lipid metabolism, as well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the identification of LGR4, its endogenous ligand, ligand-receptor binding and intracellular signaling. Physiological functions include intestinal development and energy metabolism. The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel disease, chemoradiotherapy-induced gut damage, colorectal cancer, and diabetes are also discussed.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- *Correspondence: Weizhen Zhang, 4618B, MSII, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China, ; Michael W. Mulholland, 1500 East Medical Center Drive, 2101 Taubman Center SPC 5346, Ann Arbor, MI 48109, USA,
| | - Michael W. Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- *Correspondence: Weizhen Zhang, 4618B, MSII, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China, ; Michael W. Mulholland, 1500 East Medical Center Drive, 2101 Taubman Center SPC 5346, Ann Arbor, MI 48109, USA,
| |
Collapse
|
21
|
Sharma AR, Chakraborty C, Lee SS, Sharma G, Yoon JK, George Priya Doss C, Song DK, Nam JS. Computational biophysical, biochemical, and evolutionary signature of human R-spondin family proteins, the member of canonical Wnt/β-catenin signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:974316. [PMID: 25276837 PMCID: PMC4172882 DOI: 10.1155/2014/974316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 12/27/2022]
Abstract
In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital, College of Medicine, Chuncheon-si, Gangwon-do 200-704, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
- Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida 203201, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| | - Jeong Kyo Yoon
- Center for Molecular Medicine, Maine Medial Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - C. George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Dong-Keun Song
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Republic of Korea
| |
Collapse
|
22
|
Li SK, Zhu D, Gaisano HY, Brubaker PL. Role of vesicle-associated membrane protein 2 in exocytosis of glucagon-like peptide-1 from the murine intestinal L cell. Diabetologia 2014; 57:809-18. [PMID: 24356748 DOI: 10.1007/s00125-013-3143-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1), secreted by the enteroendocrine L cell, is an incretin hormone that potently stimulates insulin secretion. Although signalling pathways promoting GLP-1 release are well characterised, the mechanisms by which GLP-1-containing granules fuse to the L cell membrane are unknown. As soluble NSF attachment proteins (SNAREs) are known to mediate granule-membrane fusion, the role of vesicle-associated membrane proteins (VAMPs) in GLP-1 exocytosis was examined. METHODS SNARE expression was determined in murine GLUTag L cells by RT-PCR and immunoblot and in primary murine L cells by immunofluorescence. Co-immunoprecipitation was used to examine SNARE interactions, while tetanus toxin (TetX)-mediated cleavage of VAMP was used with a GLP-1 secretion assay and total internal reflection fluorescence microscopy to determine the role of VAMP2 in exocytosis. RESULTS VAMP2 was expressed in murine L cells and localised to secretory granules in GLUTag cells. VAMP1/3 and the core membrane proteins syntaxin1a and synaptosomal-associated protein 25 kDa (SNAP25) were also detected. TetX cleaved VAMPs in GLUTag cells. However, only VAMP2 interacted with syntaxin1a, as did SNAP25 and Munc18-1. TetX treatment of GLUTag cells prevented glucose-dependent insulinotrophic peptide- and oleic-acid-stimulated GLP-1 secretion (p < 0.05-0.01), as well as K(+)-stimulated single-cell exocytosis (p < 0.05-0.001), while TetX-resistant VAMP2 expression rescued GLP-1 secretion (p < 0.01-0.001). CONCLUSIONS/INTERPRETATION Together, these findings indicate an essential role for VAMP2 in GLP-1 exocytosis from the GLUTag L cell in response to a variety of established secretagogues. An improved understanding of the mechanisms governing the release of GLP-1 may lead to new therapeutic approaches to enhance the levels of this incretin hormone in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Samantha K Li
- Department of Physiology, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVE The cWnt activator, R-spondin1 (Rspo1), regulates β-cell growth, function, and neogenesis, although its role in conditions such as streptozotocin (STZ)-induced diabetes is unknown. We hypothesized that Rspo1 deficiency enhances β-cell neogenesis in STZ-induced diabetes. METHODS Wild-type (Rspo1) and knockout (Rspo1) mice were injected with STZ (40 mg/kg) for 5 days, followed by analysis of oral glucose and insulin tolerance, and were killed on day 6 (acute; 9-11 mice) or 32 (chronic; 11-16 mice). Immunohistochemistry was performed for β-cell apoptosis, proliferation, neogenesis, and markers of β-cell maturity. RESULTS There was no difference in oral glucose handling between STZ-induced Rspo1 and Rspo1 mice, although Rspo1 mice demonstrated increased insulin sensitivity. β-cell mass, islet number, and islet size distribution did not differ between STZ-induced Rspo1 and Rspo1 mice, but Rspo1 animals had reduced β-cell apoptosis and increased numbers of insulin-positive ductal cells, indicating β-cell neogenesis. Furthermore, the increased β-cell regeneration observed in the Rspo1 animals was associated with a more differentiated/mature β-cell phenotype as assessed by increased immunopositivity for Nkx6.1, MafA, and GLUT2. CONCLUSIONS These findings indicate that Rspo1 is a negative regulator of β-cell neogenesis, development, and survival in the face of STZ-induced diabetes, providing a therapeutic target for the enhancement of β-cell mass.
Collapse
|
24
|
Yi J, Xiong W, Gong X, Bellister S, Ellis LM, Liu Q. Analysis of LGR4 receptor distribution in human and mouse tissues. PLoS One 2013; 8:e78144. [PMID: 24205130 PMCID: PMC3804454 DOI: 10.1371/journal.pone.0078144] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
LGR4 is an R-spondin receptor with strong positive effect on Wnt signaling. It plays a critical role in development as its ablation in the mouse led to total embryonic/neonatal lethality with profound defects in multiple organs. Haplotype insufficiency of LGR4 in human was associated with several diseases, including increased risk of squamous cell carcinoma of the skin, reduced birth weights, electrolyte imbalance, and decreased levels of testosterone, which are similar to the phenotypes of LGR4-hypomorphic mice. Tissue distribution of LGR4 was extensively analyzed in the mouse using gene-trap reporter enzyme alleles. However, its expression pattern in human tissues remained largely unknown. We have developed LGR4-specific monoclonal antibodies and used them to examine the expression of LGR4 in selected adult human and mouse tissues by immunohistochemical analysis. Intense LGR4-like immunoreactivity was observed in the epidermis and hair follicle of the skin, pancreatic islet cells, and epithelial cells in both the male and female reproductive organs. Of particular interest is that LGR4 is highly expressed in germ cells and pancreatic islet cells, which have important implications given the role of R-spondin-LGR4 signaling in the survival of adult stem cells. In addition, the majority of colon tumors showed elevated levels of LGR4 receptor. Overall, the expression pattern of LGR4 in human tissues mapped by this IHC analysis is similar to that in the mouse as revealed from gene trap alleles. Importantly, the pattern lends strong support to the important role of LGR4 in the development and maintenance of skin, kidney, reproductive systems, and other organs.
Collapse
Affiliation(s)
- Jing Yi
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wei Xiong
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Xing Gong
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Seth Bellister
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lee M. Ellis
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingyun Liu
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013; 139:359-91. [PMID: 23694765 DOI: 10.1016/j.pharmthera.2013.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
26
|
Aly H, Rohatgi N, Marshall CA, Grossenheider TC, Miyoshi H, Stappenbeck TS, Matkovich SJ, McDaniel ML. A novel strategy to increase the proliferative potential of adult human β-cells while maintaining their differentiated phenotype. PLoS One 2013; 8:e66131. [PMID: 23776620 PMCID: PMC3680388 DOI: 10.1371/journal.pone.0066131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
Our previous studies demonstrated that Wnt/GSK-3/β-catenin and mTOR signaling are necessary to stimulate proliferative processes in adult human β-cells. Direct inhibition of GSK-3, that engages Wnt signaling downstream of the Wnt receptor, increases β-catenin nuclear translocation and β-cell proliferation but results in lower insulin content. Our current goal was to engage canonical and non-canonical Wnt signaling at the receptor level to significantly increase human β-cell proliferation while maintaining a β-cell phenotype in intact islets. We adopted a system that utilized conditioned medium from L cells that expressed Wnt3a, R-spondin-3 and Noggin (L-WRN conditioned medium). In addition we used a ROCK inhibitor (Y-27632) and SB-431542 (that results in RhoA inhibition) in these cultures. Treatment of intact human islets with L-WRN conditioned medium plus inhibitors significantly increased DNA synthesis ∼6 fold in a rapamycin-sensitive manner. Moreover, this treatment strikingly increased human β-cell proliferation ∼20 fold above glucose alone. Only the combination of L-WRN conditioned medium with RhoA/ROCK inhibitors resulted in substantial proliferation. Transcriptome-wide gene expression profiling demonstrated that L-WRN medium provoked robust changes in several signaling families, including enhanced β-catenin-mediated and β-cell-specific gene expression. This treatment also increased expression of Nr4a2 and Irs2 and resulted in phosphorylation of Akt. Importantly, glucose-stimulated insulin secretion and content were not downregulated by L-WRN medium treatment. Our data demonstrate that engaging Wnt signaling at the receptor level by this method leads to necessary crosstalk between multiple signaling pathways including activation of Akt, mTOR, Wnt/β-catenin, PKA/CREB, and inhibition of RhoA/ROCK that substantially increase human β-cell proliferation while maintaining the β-cell phenotype.
Collapse
Affiliation(s)
- Haytham Aly
- Department of Pathology and Immunology Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Nidhi Rohatgi
- Department of Pathology and Immunology Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Marshall
- Department of Pathology and Immunology Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tiffani C. Grossenheider
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hiroyuki Miyoshi
- Department of Pathology and Immunology Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Scot J. Matkovich
- Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael L. McDaniel
- Department of Pathology and Immunology Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Yoon JK, Lee JS. Cellular signaling and biological functions of R-spondins. Cell Signal 2012; 24:369-377. [PMID: 21982879 PMCID: PMC3237830 DOI: 10.1016/j.cellsig.2011.09.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
R-spondins (RSPOs) are a family of cysteine-rich secreted proteins containing a single thrombospondin type I repeat (TSR) domain. A vast amount of information regarding cellular signaling and biological functions of RSPOs has emerged over the last several years, especially with respect to their roles in the activation of the WNT signaling pathway. The identification of several classes of RSPO receptors may indicate that this family of proteins can affect several signaling cascades. Herein, we summarize the current understanding of RSPO signaling and its biological functions, and discuss its potential therapeutic implications to human diseases.
Collapse
Affiliation(s)
- Jeong Kyo Yoon
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | - Jin-Seon Lee
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
28
|
Dias T, Liu B, Jones P, Houghton PJ, Mota-Filipe H, Paulo A. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:485-92. [PMID: 22143153 DOI: 10.1016/j.jep.2011.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/19/2011] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE [corrected] Coreopsis tinctoria flowering tops infusion is traditionally used in Portugal for treating the symptoms of diabetes. Recent studies have revealed its antihyperglycemic activity when administered for 3 weeks to a STZ-induced glucose intolerance model in the rat and glucose tolerance regain was even clearer and pancreatic function recovery was achieved when administering Coreopsis tinctoria flavonoid-rich AcOEt fraction. In this study we aimed to evaluate the protective effect of Coreopsis tinctoria flowering tops aqueous extract, AcOEt fraction and the pure compounds marein and flavanomarein, against beta-cell injury, in a mouse insulinoma cell line (MIN6) challenged with pro-oxidant tert-butyl-hydroperoxide (tBHP) or cytokines. MATERIALS AND METHODS The protective effects of Coreopsis tinctoria flowering tops extracts and pure compounds were evaluated through pre-incubating MIN6 cells with samples followed by treatment with tBHP (400 μM for 2 h) after which viability was determined through ATP measurements. In order to assess whether plant extracts were involved in decreasing reactive oxygen species, superoxide anion production was determined through a lucigenin-enhanced chemiluminescent method. Lastly, the direct influence of Coreopsis tinctoria extracts and main compounds on cell survival/apoptosis was determined measuring caspase 3 and 7 cleavage induced by cytokines. RESULTS Coreopsis tinctoria flowering tops extracts (25-100 μg/mL) and pure compounds (200-400 μM), when pre-incubated with MIN6 cells did not present any cytotoxicity, instead they increased cell viability in a dose dependent manner when challenged with tBHP. Treatment with this pro-oxidant also showed a rise in superoxide radical anion formation in MIN6 cells. This increase was significantly reduced by treatment with superoxide dismutase enzyme (SOD) but not by pre-treatment with Coreopsis tinctoria flowering tops extracts. Caspase 3/7 activation measurements show that Coreopsis tinctoria flowering tops extracts, as well as marein and flavanomarein, significantly inhibit apoptosis. CONCLUSIONS Coreopsis tinctoria extracts and pure compounds show cytoprotection that seems to be due to inhibition of the apoptotic pathway, and not through a decrease on superoxide radical production.
Collapse
Affiliation(s)
- Teresa Dias
- i.Med-UL-Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Wong VSC, Oh AH, Chassot AA, Chaboissier MC, Brubaker PL. R-spondin1 deficiency in mice improves glycaemic control in association with increased beta cell mass. Diabetologia 2011; 54:1726-34. [PMID: 21484214 DOI: 10.1007/s00125-011-2136-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/10/2011] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Roof plate-specific spondin (R-spondin1; RSPO1) is a modulator of canonical Wg (wingless) plus Int1 (chromosomal integration site of mouse mammary tumour virus on mouse chromosome 15) (cWNT) signalling that induces cWNT target genes. We have demonstrated that Rspo1 is expressed in murine beta cells, and that it stimulates proliferation and insulin secretion, and inhibits cytokine-induced apoptosis, in mouse insulinoma (MIN6) and beta cells. We thus investigated the role of RSPO1 in beta cells in vivo using Rspo1 ( -/- ) mice. METHODS The effects of Rspo1 deficiency were assessed by determination of cWNT signalling, glucose tolerance and beta cell mass. RESULTS Rspo1 ( -/- ) mice demonstrated an 82% reduction in RSPO1 transcripts and a 61% reduction in the signal detected by an RSPO1 antibody, as well as a 47% decrease in islet cWNT signalling. Despite no differences in body and pancreatic weights or in fasting glycaemia and insulinaemia compared with Rspo1 (+/+) mice, Rspo1 ( -/- ) animals had improved glycaemic control after oral glucose challenge (p < 0.05), with no difference in insulin sensitivity, but an enhanced insulin response over 30 min (p < 0.05); glucagon responses were normal. Rspo1 deficiency also resulted in a twofold increase in beta cell mass (p < 0.05) in association with 2- and 12-fold increases in the number of beta cells positive for antigen identified by monoclonal antibody Ki67 (Ki67) (p < 0.01) and insulin-positive ductal cells (p < 0.05), respectively. No change in the number of TUNEL-positive beta cells was detected. Islets isolated from Rspo1 ( -/- ) animals displayed no differences in glucose-induced insulin secretion or in glucose suppression of glucagon. CONCLUSIONS/INTERPRETATION The present study reveals an unexpected role for RSPO1 as a regulator of both beta cell proliferation and neogenesis in vivo, and reinforces the importance of cWNT signalling for the maintenance of normal pancreatic beta cell behaviour.
Collapse
Affiliation(s)
- V S C Wong
- Department of Physiology, Room 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|