1
|
Egilmezer E, Hamilton ST, Lauw G, Follett J, Sonntag E, Schütz M, Marschall M, Rawlinson WD. Human Cytomegalovirus Dysregulates Cellular Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases and Sonic Hedgehog Pathway Proteins in Neural Astrocyte and Placental Models. Viruses 2024; 16:918. [PMID: 38932210 PMCID: PMC11209403 DOI: 10.3390/v16060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Human cytomegalovirus (CMV) infection is the leading non-genetic cause of congenital malformation in developed countries, causing significant fetal injury, and in some cases fetal death. The pathogenetic mechanisms through which this host-specific virus infects then damages both the placenta and the fetal brain are currently ill-defined. We investigated the CMV modulation of key signaling pathway proteins for these organs including dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) and Sonic Hedgehog (SHH) pathway proteins using human first trimester placental trophoblast (TEV-1) cells, primary human astrocyte (NHA) brain cells, and CMV-infected human placental tissue. Immunofluorescence demonstrated the accumulation and re-localization of SHH proteins in CMV-infected TEV-1 cells with Gli2, Ulk3, and Shh re-localizing to the CMV cytoplasmic virion assembly complex (VAC). In CMV-infected NHA cells, DYRK1A re-localized to the VAC and DYRK1B re-localized to the CMV nuclear replication compartments, and the SHH proteins re-localized with a similar pattern as was observed in TEV-1 cells. Western blot analysis in CMV-infected TEV-1 cells showed the upregulated expression of Rb, Ulk3, and Shh, but not Gli2. In CMV-infected NHA cells, there was an upregulation of DYRK1A, DYRK1B, Gli2, Rb, Ulk3, and Shh. These in vitro monoculture findings are consistent with patterns of protein upregulation and re-localization observed in naturally infected placental tissue and CMV-infected ex vivo placental explant histocultures. This study reveals CMV-induced changes in proteins critical for fetal development, and identifies new potential targets for CMV therapeutic development.
Collapse
Affiliation(s)
- Ece Egilmezer
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
| | - Stuart T. Hamilton
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
| | - Glen Lauw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - Jasmine Follett
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - William D. Rawlinson
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| |
Collapse
|
2
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
McCoy CJ, Paupelin-Vaucelle H, Gorilak P, Beneke T, Varga V, Gluenz E. ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell 2023; 34:ar66. [PMID: 36989043 PMCID: PMC10295485 DOI: 10.1091/mbc.e22-06-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Unc-51-like kinase (ULK) family serine-threonine protein kinase homologues have been linked to the function of motile cilia in diverse species. Mutations in Fused/STK36 and ULK4 in mice resulted in hydrocephalus and other phenotypes consistent with ciliary defects. How either protein contributes to the assembly and function of motile cilia is not well understood. Here we studied the phenotypes of ULK4 and Fused gene knockout (KO) mutants in the flagellated protist Leishmania mexicana. Both KO mutants exhibited a variety of structural defects of the flagellum cytoskeleton. Biochemical approaches indicate spatial proximity of these proteins and indicate a direct interaction between the N-terminus of LmxULK4 and LmxFused. Both proteins display a dispersed localization throughout the cell body and flagellum, with enrichment near the flagellar base and tip. The stable expression of LmxULK4 was dependent on the presence of LmxFused. Fused/STK36 was previously shown to localize to mammalian motile cilia, and we demonstrate here that ULK4 also localizes to the motile cilia in mouse ependymal cells. Taken together these data suggest a model where the pseudokinase ULK4 is a positive regulator of the kinase Fused/ STK36 in a pathway required for stable assembly of motile cilia.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
4
|
Goruppi S, Clocchiatti A, Bottoni G, Di Cicco E, Ma M, Tassone B, Neel V, Demehri S, Simon C, Paolo Dotto G. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome. Nat Commun 2023; 14:887. [PMID: 36797248 PMCID: PMC9935893 DOI: 10.1038/s41467-023-36410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Epigenetic mechanisms oversee epidermal homeostasis and oncogenesis. The identification of kinases controlling these processes has direct therapeutic implications. We show that ULK3 is a nuclear kinase with elevated expression levels in squamous cell carcinomas (SCCs) arising in multiple body sites, including skin and Head/Neck. ULK3 loss by gene silencing or deletion reduces proliferation and clonogenicity of human keratinocytes and SCC-derived cells and affects transcription impinging on stem cell-related and metabolism programs. Mechanistically, ULK3 directly binds and regulates the activity of two histone arginine methyltransferases, PRMT1 and PRMT5 (PRMT1/5), with ULK3 loss compromising PRMT1/5 chromatin association to specific genes and overall methylation of histone H4, a shared target of these enzymes. These findings are of translational significance, as downmodulating ULK3 by RNA interference or locked antisense nucleic acids (LNAs) blunts the proliferation and tumorigenic potential of SCC cells and promotes differentiation in two orthotopic models of skin cancer.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Min Ma
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Beatrice Tassone
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Shadhmer Demehri
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Christian Simon
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland.
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland.
| |
Collapse
|
5
|
Small Molecule Inhibitors for Unc-51-like Autophagy-Activating Kinase Targeting Autophagy in Cancer. Int J Mol Sci 2023; 24:ijms24020953. [PMID: 36674464 PMCID: PMC9866249 DOI: 10.3390/ijms24020953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a cellular process that removes damaged components of cells and recycles them as biochemical building blocks. Autophagy can also be induced to protect cells in response to intra- and extracellular stresses, including damage to cellular components, nutrient deprivation, hypoxia, and pathogenic invasion. Dysregulation of autophagy has been attributed to various diseases. In particular, autophagy protects cancer cells by supporting tumor cell survival and the development of drug resistance. Understanding the pathophysiological mechanisms of autophagy in cancer has stimulated the research on discovery and development of specific inhibitors targeting various stages of autophagy. In recent years, Unc-51-like autophagy-activating kinase (ULK) inhibitors have become an attractive strategy to treat cancer. This review summarizes recent discoveries and developments in small-molecule ULK inhibitors and their potential as anticancer agents. We focused on structural features, interactions with binding sites, and biological effects of these inhibitors. Overall, this review will provide guidance for using ULK inhibitors as chemical probes for autophagy in various cancers and developing improved ULK inhibitors that would enhance therapeutic benefits in the clinic.
Collapse
|
6
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
7
|
Peris-Celda M, Carrión-Navarro J, Palacín-Aliana I, Sánchez-Gómez P, Acín RP, Garcia-Romero N, Ayuso-Sacido A. Suppressor of fused associates with dissemination patterns in patients with glioma. Front Oncol 2022; 12:923681. [PMID: 36091108 PMCID: PMC9450955 DOI: 10.3389/fonc.2022.923681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common brain tumors, which present poor prognosis, due, in part, to tumor cell migration and infiltration into distant brain areas. However, the underlying mechanisms causing such effects are unknown. Hedgehog (HH)–Gli axis is one of the signaling pathways involved, with a high number of molecular mediators. In this study, we investigated the association between HH-Gli intermediates and clinical parameters. We found that high levels of SuFu are associated with high dissemination patterns in patients with glioma. Therefore, we analyzed SuFu expression data in three glioma cohorts of surgical samples (N =1,759) and modified its expression in Glioblastoma Cancer Stem Cells (GB CSC) in vitro models. Our data reveal that SuFu overexpression increases cancer stemness properties together with a migratory phenotype. This work identifies SuFu as a new molecular player in glioma cell migration and a promising target to develop blocking agents to decrease GB dissemination.
Collapse
Affiliation(s)
- María Peris-Celda
- Department of Neurosurgery, Mayo Clinic, Rochester, NY, United States
| | | | - Irina Palacín-Aliana
- Atrys Health, Barcelona, Spain
- Fundación de Investigación HM-Hospitales, Madrid, Spain
- Faculty of Science, Universidad de Alcalá, Madrid, Spain
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Instituto de Salud Carlos III-Unidad Funcional de Investigación de Enfermedades crónicas (UFIEC), Madrid, Spain
| | - Ricardo Prat Acín
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
8
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Luo S, Zheng N, Lang B. ULK4 in Neurodevelopmental and Neuropsychiatric Disorders. Front Cell Dev Biol 2022; 10:873706. [PMID: 35493088 PMCID: PMC9039724 DOI: 10.3389/fcell.2022.873706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
The gene Unc51-like kinase 4 (ULK4) belongs to the Unc-51-like serine/threonine kinase family and is assumed to encode a pseudokinase with unclear function. Recently, emerging evidence has suggested that ULK4 may be etiologically involved in a spectrum of neuropsychiatric disorders including schizophrenia, but the underlying mechanism remains unaddressed. Here, we summarize the key findings of the structure and function of the ULK4 protein to provide comprehensive insights to better understand ULK4-related neurodevelopmental and neuropsychiatric disorders and to aid in the development of a ULK4-based therapeutic strategy.
Collapse
Affiliation(s)
- Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| | - Nanxi Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Nanxi Zheng, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Nanxi Zheng, ; Bing Lang,
| |
Collapse
|
10
|
Autophagy-related DjAtg1-1 plays critical role in planarian regeneration by regulating proliferation and cell death. Cell Tissue Res 2022; 388:273-286. [PMID: 35107621 DOI: 10.1007/s00441-022-03591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Autophagy is an intracellular degradation process and plays key roles in energy recycle and homeostasis maintenance during planarian regeneration. Although planarians provide an ideal model organism for studying autophagy in vivo, the molecular mechanism of planarian autophagy is still unknown. Here, we identify three autophagy-related (Atg) gene 1 homologs from Dugesia japonica and study their roles in planarian regeneration. Both DjATG1-1 and DjATG1-2 proteins show homology to vertebrate unc-51 like autophagy activating kinase 1 (ULK1) and ULK2, DjATG1-3 shows homology to vertebrate ULK3. In contrast to the ubiquitously expressed DjAtg1-1 and DjAtg1-3, DjAtg1-2 is mainly expressed in the intestine branches and epidermis. All the three DjAtg1s can respond to planarian regeneration and starvation. Both DjAtg1-1 and DjAtg1-2 are expressed in the reproductive organs of the starved sexual worms. DjAtg1-1 or DjAtg1-3 RNAi leads to head lysis and death of starved planarians, accompanied by exhaustion of neoblasts. DjAtg1-1 RNAi causes autophagy and regeneration defects and decreases proliferation and cell death; both DjAtg1-2 and DjAtg1-3 RNAi cause no autophagy or regeneration defect but increase cell death during regeneration. Our findings uncover the roles of DjAtg1s in autophagy and regeneration of planarian and highlight the links between proliferation, cell death, and autophagy during regeneration.
Collapse
|
11
|
Baltzer S, Bulatov T, Schmied C, Krämer A, Berger BT, Oder A, Walker-Gray R, Kuschke C, Zühlke K, Eichhorst J, Lehmann M, Knapp S, Weston J, von Kries JP, Süssmuth RD, Klussmann E. Aurora Kinase A Is Involved in Controlling the Localization of Aquaporin-2 in Renal Principal Cells. Int J Mol Sci 2022; 23:ijms23020763. [PMID: 35054947 PMCID: PMC8776063 DOI: 10.3390/ijms23020763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Timur Bulatov
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Ryan Walker-Gray
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Christin Kuschke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
| | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany; (A.K.); (B.-T.B.); (S.K.)
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
- DKTK (German Translational Research Network), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| | - John Weston
- JQuest Consulting, Carl-Orff-Weg 25, 65779 Kelkheim, Germany;
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (C.S.); (A.O.); (J.E.); (M.L.); (J.P.v.K.)
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; (T.B.); (R.D.S.)
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany; (S.B.); (R.W.-G.); (C.K.); (K.Z.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-9406-2596
| |
Collapse
|
12
|
Conformational plasticity of the ULK3 kinase domain. Biochem J 2021; 478:2811-2823. [PMID: 34190988 DOI: 10.1042/bcj20210257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023]
Abstract
The human protein kinase ULK3 regulates the timing of membrane abscission, thus being involved in exosome budding and cytokinesis. Herein, we present the first high-resolution structures of the ULK3 kinase domain. Its unique features are explored against the background of other ULK kinases. An inhibitor fingerprint indicates that ULK3 is highly druggable and capable of adopting a wide range of conformations. In accordance with this, we describe a conformational switch between the active and an inactive ULK3 conformation, controlled by the properties of the attached small-molecule binder. Finally, we discuss a potential substrate-recognition mechanism of the full-length ULK3 protein.
Collapse
|
13
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
14
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Al Abo M, Hyslop T, Qin X, Owzar K, George DJ, Patierno SR, Freedman JA. Differential alternative RNA splicing and transcription events between tumors from African American and White patients in The Cancer Genome Atlas. Genomics 2021; 113:1234-1246. [PMID: 33705884 DOI: 10.1016/j.ygeno.2021.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Individuals of African ancestry suffer disproportionally from higher incidence, aggressiveness, and mortality for particular cancers. This disparity likely results from an interplay among differences in multiple determinants of health, including differences in tumor biology. We used The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA aggregate expression datasets and identified differential alternative RNA splicing and transcription events (ARS/T) in cancers between self-identified African American (AA) and White (W) patients. We found that retained intron events were enriched among race-related ARS/T. In addition, on average, 12% of the most highly ranked race-related ARS/T overlapped between any two analyzed cancers. Moreover, the genes undergoing race-related ARS/T functioned in cancer-promoting pathways, and a number of race-related ARS/T were associated with patient survival. We built a web-application, CanSplice, to mine genomic datasets by self-identified race. The race-related targets have the potential to aid in the development of new biomarkers and therapeutics to mitigate cancer disparity.
Collapse
Affiliation(s)
- Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel J George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
17
|
Boschen KE, Ptacek TS, Simon JM, Parnell SE. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1540-1550. [PMID: 32557641 DOI: 10.1111/acer.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early gestational alcohol exposure is associated with severe craniofacial and CNS dysmorphologies and behavioral abnormalities during adolescence and adulthood. Alcohol exposure during the formation of the neural tube (gestational day [GD] 8 to 10 in mice; equivalent to4th week of human pregnancy) disrupts development of ventral midline brain structures such as the pituitary, septum, and ventricles. This study identifies transcriptomic changes in the rostroventral neural tube (RVNT), the region of the neural tube that gives rise to the midline structures sensitive to alcohol exposure during neurulation. METHODS Female C57BL/6J mice were administered 2 doses of alcohol (2.9 g/kg) or vehicle 4 hours apart on GD 9.0. The RVNTs of embryos were collected 6 or 24 hours after the first dose and processed for RNA-seq. RESULTS Six hours following GD 9.0 alcohol exposure (GD 9.25), over 2,300 genes in the RVNT were determined to be differentially regulated by alcohol. Enrichment analysis determined that PAE affected pathways related to cell proliferation, p53 signaling, ribosome biogenesis, and immune activation. In addition, over 100 genes involved in primary cilia formation and function and regulation of morphogenic pathways were altered 6 hours after alcohol exposure. The changes to gene expression were largely transient, as only 91 genes identified as differentially regulated by prenatal alcohol at GD 10 (24 hours postexposure). Functionally, the differentially regulated genes at GD 10 were related to organogenesis and cell migration. CONCLUSIONS These data give a comprehensive view of the changing landscape of the embryonic transcriptome networks in regions of the neural tube that give rise to brain structures impacted by a neurulation-stage alcohol exposure. Identification of gene networks dysregulated by alcohol will help elucidate the pathogenic mechanisms of alcohol's actions.
Collapse
Affiliation(s)
- Karen E Boschen
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Travis S Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Scheidt T, Alka O, Gonczarowska-Jorge H, Gruber W, Rathje F, Dell’Aica M, Rurik M, Kohlbacher O, Zahedi RP, Aberger F, Huber CG. Phosphoproteomics of short-term hedgehog signaling in human medulloblastoma cells. Cell Commun Signal 2020; 18:99. [PMID: 32576205 PMCID: PMC7310537 DOI: 10.1186/s12964-020-00591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Aberrant hedgehog (HH) signaling is implicated in the development of various cancer entities such as medulloblastoma. Activation of GLI transcription factors was revealed as the driving force upon pathway activation. Increased phosphorylation of essential effectors such as Smoothened (SMO) and GLI proteins by kinases including Protein Kinase A, Casein Kinase 1, and Glycogen Synthase Kinase 3 β controls effector activity, stability and processing. However, a deeper and more comprehensive understanding of phosphorylation in the signal transduction remains unclear, particularly during early response processes involved in SMO activation and preceding GLI target gene regulation. METHODS We applied temporal quantitative phosphoproteomics to reveal phosphorylation dynamics underlying the short-term chemical activation and inhibition of early hedgehog signaling in HH responsive human medulloblastoma cells. Medulloblastoma cells were treated for 5.0 and 15 min with Smoothened Agonist (SAG) to induce and with vismodegib to inhibit the HH pathway. RESULTS Our phosphoproteomic profiling resulted in the quantification of 7700 and 10,000 phosphosites after 5.0 and 15 min treatment, respectively. The data suggest a central role of phosphorylation in the regulation of ciliary assembly, trafficking, and signal transduction already after 5.0 min treatment. ERK/MAPK signaling, besides Protein Kinase A signaling and mTOR signaling, were differentially regulated after short-term treatment. Activation of Polo-like Kinase 1 and inhibition of Casein Kinase 2A1 were characteristic for vismodegib treatment, while SAG treatment induced Aurora Kinase A activity. Distinctive phosphorylation of central players of HH signaling such as SMO, SUFU, GLI2 and GLI3 was observed only after 15 min treatment. CONCLUSIONS This study provides evidence that phosphorylation triggered in response to SMO modulation dictates the localization of hedgehog pathway components within the primary cilium and affects the regulation of the SMO-SUFU-GLI axis. The data are relevant for the development of targeted therapies of HH-associated cancers including sonic HH-type medulloblastoma. A deeper understanding of the mechanisms of action of SMO inhibitors such as vismodegib may lead to the development of compounds causing fewer adverse effects and lower frequencies of drug resistance. Video Abstract.
Collapse
Affiliation(s)
- Tamara Scheidt
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Humberto Gonczarowska-Jorge
- Leibniz-Institute of Analytical Sciences- ISAS - e.V, Dortmund, Germany
- Present address: CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 Brazil
| | - Wolfgang Gruber
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Present address: EVER Valinject GmbH, 4866 Unterach am Attersee, Austria
| | - Florian Rathje
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | | | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - René P. Zahedi
- Leibniz-Institute of Analytical Sciences- ISAS - e.V, Dortmund, Germany
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Fritz Aberger
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
19
|
Piirsoo A, Pink A, Kasak L, Kala M, Kasvandik S, Ustav M, Piirsoo M. Differential phosphorylation determines the repressor and activator potencies of GLI1 proteins and their efficiency in modulating the HPV life cycle. PLoS One 2019; 14:e0225775. [PMID: 31770404 PMCID: PMC6879148 DOI: 10.1371/journal.pone.0225775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays multiple roles during embryonic development and under pathological conditions. Although the core components of the Shh pathway are conserved, the regulation of signal transduction varies significantly among species and cell types. Protein kinases Ulk3 and Pka are involved in the Shh pathway as modulators of the activities of Gli transcription factors, which are the nuclear mediators of the signal. Here, we investigate the regulation and activities of two GLI1 isoforms, full-length GLI1 (GLI1FL) and GLI1ΔN. The latter protein lacks the first 128 amino acids including the conserved phosphorylation cluster and the binding motif for SUFU, the key regulator of GLI activity. Both GLI1 isoforms are co-expressed in all human cell lines analysed and possess similar DNA binding activity. ULK3 potentiates the transcriptional activity of both GLI1 proteins, whereas PKA inhibits the activity of GLI1ΔN, but not GLI1FL. In addition to its well-established role as a transcriptional activator, GLI1FL acts as a repressor by inhibiting transcription from the early promoters of human papillomavirus type 18 (HPV18). Additionally, compared to GLI1ΔN, GLI1FL is a more potent suppressor of replication of several HPV types. Altogether, our data show that the N-terminal part of GLI1FL is crucial for the realization of its full potential as a transcriptional regulator.
Collapse
Affiliation(s)
- Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anne Pink
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Lagle Kasak
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
20
|
Montagnani V, Stecca B. Role of Protein Kinases in Hedgehog Pathway Control and Implications for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040449. [PMID: 30934935 PMCID: PMC6520855 DOI: 10.3390/cancers11040449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (HH) signaling is an evolutionarily conserved pathway that is crucial for growth and tissue patterning during embryonic development. It is mostly quiescent in the adult, where it regulates tissue homeostasis and stem cell behavior. Aberrant reactivation of HH signaling has been associated to several types of cancer, including those in the skin, brain, prostate, breast and hematological malignancies. Activation of the canonical HH signaling is triggered by binding of HH ligand to the twelve-transmembrane protein PATCHED. The binding releases the inhibition of the seven-transmembrane protein SMOOTHENED (SMO), leading to its phosphorylation and activation. Hence, SMO activates the transcriptional effectors of the HH signaling, that belong to the GLI family of transcription factors, acting through a not completely elucidated intracellular signaling cascade. Work from the last few years has shown that protein kinases phosphorylate several core components of the HH signaling, including SMO and the three GLI proteins, acting as powerful regulatory mechanisms to fine tune HH signaling activities. In this review, we will focus on the mechanistic influence of protein kinases on HH signaling transduction. We will also discuss the functional consequences of this regulation and the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Valentina Montagnani
- Core Research Laboratory⁻Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| | - Barbara Stecca
- Core Research Laboratory⁻Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy.
| |
Collapse
|
21
|
Inactive Tlk associating with Tak1 increases p38 MAPK activity to prolong the G2 phase. Sci Rep 2019; 9:1885. [PMID: 30760733 PMCID: PMC6374402 DOI: 10.1038/s41598-018-36137-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
To guard genome integrity, response mechanisms coordinately execute the G2/M checkpoint in responding to stress. p38 MAPK is activated to prolong the G2 phase for completion of damage repair. Tlk activity is required for DNA repair, chromosome segregation and G2 recovery. However, the involvement of Tlk in G2 recovery differs from previous findings that Tlk overexpression delays the G2/M transition. To clarify this difference, genetic interaction experiments were performed using the second mitotic wave as model system. The results indicate that Tlk overexpression prolongs the G2 phase through p38 MAPK activation, independent of Tlk kinase activity. The results of co-immunoprecipitation, database search and RNAi screening suggest that eEF1α1 and Hsc70-5 links Tlk to Tak1. Reduced gene activities of Tlk, Hsc70-5, eEF1α1 and/or Tak1 couldn’t prolong the G2 phase induced by heat shock, indicating that these proteins work together to elevate p38 MAPK activity. In contrast, a high level of wild type Tlk decreases phosphorylated p38 MAPK levels. Thus, the difference is explained by a dual function of Tlk. When under stress, inactive Tlk increases p38 MAPK activity to prolong the G2 phase, and then activated Tlk modulates activities of p38 MAPK and Asf1 to promote G2 recovery afterwards.
Collapse
|
22
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
23
|
Kasak L, Näks M, Eek P, Piirsoo A, Bhadoria R, Starkov P, Saarma M, Kasvandik S, Piirsoo M. Characterization of Protein Kinase ULK3 Regulation by Phosphorylation and Inhibition by Small Molecule SU6668. Biochemistry 2018; 57:5456-5465. [DOI: 10.1021/acs.biochem.8b00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lagle Kasak
- Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Mihkel Näks
- Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Priit Eek
- Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Rohit Bhadoria
- Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Pavel Starkov
- Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Merilin Saarma
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marko Piirsoo
- Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
24
|
Tassano E, Uccella S, Giacomini T, Striano P, Severino M, Porta S, Gimelli G, Ronchetto P. Intragenic Microdeletion of ULK4 and Partial Microduplication of BRWD3 in Siblings with Neuropsychiatric Features and Obesity. Cytogenet Genome Res 2018; 156:14-21. [PMID: 30086552 DOI: 10.1159/000491871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
ULK4 and BRWD3 deletions have been identified in patients with developmental/language delay and intellectual disability. Both genes play pivotal roles in brain development. In particular, ULK4 encodes serine/threonine kinases that are critical for the development and function of the nervous system, while BRWD3 plays a crucial role in ubiquitination, as part of the ubiquitin/proteasome system. We report on 2 brothers, aged 7.6 and 20 years, presenting with cognitive impairment, epilepsy, autistic features, hearing loss, and obesity. Array-CGH analysis demonstrated 2 rare CNVs in both siblings: a paternally inherited microdeletion of ∼145 kb at 3p22.1, disrupting the ULK4 gene, and a maternally inherited microduplication of ∼117 kb at Xq21.1 including only the BRWD3 gene. As already described for other recurrent syndromes with variable phenotype, these findings are challenging in genetic counseling because of an evident variable penetrance. We discuss the possible correlations between the clinical phenotype of our patients and the function of the genes involved in these microrearrangements.
Collapse
|
25
|
Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res 2018; 374:205-216. [DOI: 10.1007/s00441-018-2829-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/04/2018] [Indexed: 01/14/2023]
|
26
|
Fattahi S, Pilehchian Langroudi M, Akhavan-Niaki H. Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development. J Cell Physiol 2018; 233:5726-5735. [PMID: 29380372 DOI: 10.1002/jcp.26506] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling pathway have critical roles in development and homeostasis of tissues. Under physiological conditions, Hh is controlled at different levels via stem cell maintenance and tissue regeneration. Aberrant activation of this signaling pathway may occur in a wide range of human diseases including different types of cancer. In this review we present a concise overview on the key genes composing Hh signaling pathway and provide recent advances on the molecular mechanisms that regulate Hh signaling pathway from extracellular and receptors to the cytoplasmic and nuclear machinery with a highlight on the role of microRNAs. Furthermore, we focus on critical studies demonstrating dysregulation of the Hh pathway in human disease development, and potential therapeutic implications. Finally, we introduce recent therapeutic drugs acting as Shh signaling pathway inhibitors, including those in clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
Zhao L, Wang L, Chi C, Lan W, Su Y. The emerging roles of phosphatases in Hedgehog pathway. Cell Commun Signal 2017; 15:35. [PMID: 28931407 PMCID: PMC5607574 DOI: 10.1186/s12964-017-0191-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 01/12/2023] Open
Abstract
Hedgehog signaling is evolutionarily conserved and plays a pivotal role in cell fate determination, embryonic development, and tissue renewal. As aberrant Hedgehog signaling is tightly associated with a broad range of human diseases, its activities must be precisely controlled. It has been known that several core components of Hedgehog pathway undergo reversible phosphorylations mediated by protein kinases and phosphatases, which acts as an effective regulatory mechanism to modulate Hedgehog signal activities. In contrast to kinases that have been extensively studied in these phosphorylation events, phosphatases were thought to function in an unspecific manner, thus obtained much less emphasis in the past. However, in recent years, increasing evidence has implicated that phosphatases play crucial and specific roles in the context of developmental signaling, including Hedgehog signaling. In this review, we present a summary of current progress on phosphatase studies in Hedgehog pathway, emphasizing the multiple employments of protein serine/threonine phosphatases during the transduction of morphogenic Hedgehog signal in both Drosophila and vertebrate systems, all of which provide insights into the importance of phosphatases in the specific regulation of Hedgehog signaling.
Collapse
Affiliation(s)
- Long Zhao
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Liguo Wang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chunli Chi
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wenwen Lan
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
28
|
Chen Y, Bartanus J, Liang D, Zhu H, Breman AM, Smith JL, Wang H, Ren Z, Patel A, Stankiewicz P, Cram DS, Cheung SW, Wu L, Yu F. Characterization of chromosomal abnormalities in pregnancy losses reveals critical genes and loci for human early development. Hum Mutat 2017; 38:669-677. [PMID: 28247551 DOI: 10.1002/humu.23207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/09/2022]
Abstract
Detailed characterization of chromosomal abnormalities, a common cause for congenital abnormalities and pregnancy loss, is critical for elucidating genes for human fetal development. Here, 2,186 product-of-conception samples were tested for copy-number variations (CNVs) at two clinical diagnostic centers using whole-genome sequencing and high-resolution chromosomal microarray analysis. We developed a new gene discovery approach to predict potential developmental genes and identified 275 candidate genes from CNVs detected from both datasets. Based on Mouse Genome Informatics (MGI) and Zebrafish model organism database (ZFIN), 75% of identified genes could lead to developmental defects when mutated. Genes involved in embryonic development, gene transcription, and regulation of biological processes were significantly enriched. Especially, transcription factors and gene families sharing specific protein domains predominated, which included known developmental genes such as HOX, NKX homeodomain genes, and helix-loop-helix containing HAND2, NEUROG2, and NEUROD1 as well as potential novel developmental genes. We observed that developmental genes were denser in certain chromosomal regions, enabling identification of 31 potential genomic loci with clustered genes associated with development.
Collapse
Affiliation(s)
- Yiyun Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Justin Bartanus
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Desheng Liang
- State Key Lab of Medical Genetics of China Central South University, Changsha, Hunan, China
| | | | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Cytogenetics Laboratory, Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Cytogenetics Laboratory, Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Hua Wang
- Hunan Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Zhilin Ren
- Berry Genomics Corporation, Beijing, China
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Cytogenetics Laboratory, Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Cytogenetics Laboratory, Baylor Miraca Genetics Laboratories, Houston, Texas
| | | | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Cytogenetics Laboratory, Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Lingqian Wu
- State Key Lab of Medical Genetics of China Central South University, Changsha, Hunan, China
| | - Fuli Yu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Berry Genomics Corporation, Beijing, China
| |
Collapse
|
29
|
Braden CR, Neufeld TP. Atg1-independent induction of autophagy by the Drosophila Ulk3 homolog, ADUK. FEBS J 2016; 283:3889-3897. [PMID: 27717182 DOI: 10.1111/febs.13906] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022]
Abstract
Although canonical autophagy regulation requires a multi-protein complex centered on the Ser/Thr-kinase Atg1 (mammalian Ulk1/2), alternative signals can induce autophagy independent of Atg1 through unknown mechanisms. Here we identify the Drosophila Ulk3 ortholog, another Drosophila Unc-51-like kinase (ADUK), as an Atg1-independent autophagy inducer. ADUK interacts with Atg1 complex members Atg13 and 200 kDa FAK family kinase-interacting protein, and requires Atg13 but not Atg1 for autophagy induction. Loss of ADUK shortens adult lifespan and reduces the autophagic response to a chemical stressor, dimethyl sulfoxide. However, ADUK is not required for autophagy induction by Atg1-dependent nutrient or developmental cues. Atg1 and ADUK/Ulk3 thus represent alternative catalytic components of a shared autophagy kinase complex.
Collapse
Affiliation(s)
- Christopher R Braden
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Control of cortex development by ULK4, a rare risk gene for mental disorders including schizophrenia. Sci Rep 2016; 6:31126. [PMID: 27670918 PMCID: PMC5037360 DOI: 10.1038/srep31126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a debilitating familial neuropsychiatric disorder which affects 1% of people worldwide. Although the heritability for schizophrenia approaches 80% only a small proportion of the overall genetic risk has been accounted for, and to date only a limited number of genetic loci have been definitively implicated. We have identified recently through genetic and in vitro functional studies, a novel serine/threonine kinase gene, unc-51-like kinase 4 (ULK4), as a rare risk factor for major mental disorders including schizophrenia. Now using the approach of in utero gene transfer we have discovered that Ulk4 plays a key modulatory role in corticogenesis. Knockdown of Ulk4 leads to significantly decreased cell proliferation in germinal zones and profound deficits in radial migration and neurite ramification. These abnormalities can be reversed successfully by Ulk4 gene supplementation. Ulk4 also regulated acetylation of α-tubulin, an important post-translational modification of microtubules. We conclude that Ulk4 plays an essential role in normal brain development and when defective, the risk of neurodevelopmental disorders such as schizophrenia is increased.
Collapse
|
31
|
Kanno T, Furukawa K, Horigome T. Exploring the phosphoproteome profiles during Xenopus egg activation by calcium stimulation using a fully automated phosphopeptide purification system. J Biochem 2015; 159:407-19. [PMID: 26530081 DOI: 10.1093/jb/mvv109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
To explore the phosphoproteome profiles duringXenopusegg activation by Ca(2+)-stimulation, an automated phosphopeptide purification system involving a titania column was improved by introducing 4-step elution with phosphate buffers. The number of detected phosphopeptides in the tryptic digest of aXenopusegg cytosol fraction on mass spectrometry (MS) was increased 1.5-fold and the percentage of multiply phosphorylated peptides increased from 17 to 24% with introduction of the 4-step elution method. Phosphopeptides were purified by the improved method from tryptic digests of cytosol fractions ofXenopuseggs without and with a Ca(2+)-stimulus, and then, analysed by MS. One thousand three hundred and seventy-five and 994 phosphopeptides were reproducibly detected on duplicate MS, respectively. They included 818 and 437 phosphopeptides specific to each digest, respectively. A method involving isobaric tags for relative and absolute quantitation (iTRAQ) was also applied to compare the phosphorylation levels inXenopuseggs without and with a Ca(2+)-stimulus, the ratios for 112 phosphopeptides in tryptic digests of these egg cytosol fractions being obtained. It was suggested from all the results that the phosphorylation sites and levels change duringXenopusegg activation for many known and unknown sites on structural proteins, signalling related proteins, cell cycle-related proteins and others.
Collapse
Affiliation(s)
- Takuma Kanno
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsuneyoshi Horigome
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
32
|
Abstract
New work identifies components of the abscission checkpoint that prevent premature severing of the bridge connecting cells at the end of cell division. Kinase activities allow the membrane remodeling machinery to take their mark, but prevent them from leaving the starting block.
Collapse
Affiliation(s)
- Carolyn Ott
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development. Neuroscience 2015; 290:61-79. [DOI: 10.1016/j.neuroscience.2014.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
|
34
|
Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy. Expert Rev Mol Med 2015; 17:e5. [PMID: 25660620 PMCID: PMC4836208 DOI: 10.1017/erm.2015.3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.
Collapse
|
35
|
Kärblane K, Gerassimenko J, Nigul L, Piirsoo A, Smialowska A, Vinkel K, Kylsten P, Ekwall K, Swoboda P, Truve E, Sarmiento C. ABCE1 is a highly conserved RNA silencing suppressor. PLoS One 2015; 10:e0116702. [PMID: 25659154 PMCID: PMC4319951 DOI: 10.1371/journal.pone.0116702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/12/2014] [Indexed: 01/15/2023] Open
Abstract
ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.
Collapse
Affiliation(s)
- Kairi Kärblane
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| | - Jelena Gerassimenko
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| | - Lenne Nigul
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Alla Piirsoo
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Agata Smialowska
- School of Life Sciences, Södertörn University College, S-14189, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, S-14183, Huddinge, Sweden
| | - Kadri Vinkel
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Per Kylsten
- School of Life Sciences, Södertörn University College, S-14189, Huddinge, Sweden
| | - Karl Ekwall
- School of Life Sciences, Södertörn University College, S-14189, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, S-14183, Huddinge, Sweden
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, S-14183, Huddinge, Sweden
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| |
Collapse
|
36
|
Kuzhandaivel A, Schultz SW, Alkhori L, Alenius M. Cilia-mediated hedgehog signaling in Drosophila. Cell Rep 2014; 7:672-80. [PMID: 24768000 DOI: 10.1016/j.celrep.2014.03.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/20/2013] [Accepted: 03/20/2014] [Indexed: 12/20/2022] Open
Abstract
Cilia mediate Hedgehog (Hh) signaling in vertebrates and Hh deregulation results in several clinical manifestations, such as obesity, cognitive disabilities, developmental malformations, and various cancers. Drosophila cells are nonciliated during development, which has led to the assumption that cilia-mediated Hh signaling is restricted to vertebrates. Here, we identify and characterize a cilia-mediated Hh pathway in Drosophila olfactory sensory neurons. We demonstrate that several fundamental key aspects of the vertebrate cilia pathway, such as ciliary localization of Smoothened and the requirement of the intraflagellar transport system, are present in Drosophila. We show that Cos2 and Fused are required for the ciliary transport of Smoothened and that cilia mediate the expression of the Hh pathway target genes. Taken together, our data demonstrate that Hh signaling in Drosophila can be mediated by two pathways and that the ciliary Hh pathway is conserved from Drosophila to vertebrates.
Collapse
Affiliation(s)
- Anujaianthi Kuzhandaivel
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden
| | - Sebastian W Schultz
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden
| | - Liza Alkhori
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
37
|
Piirsoo A, Kasak L, Kauts ML, Loog M, Tints K, Uusen P, Neuman T, Piirsoo M. Protein kinase inhibitor SU6668 attenuates positive regulation of Gli proteins in cancer and multipotent progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:703-14. [PMID: 24418624 PMCID: PMC3946003 DOI: 10.1016/j.bbamcr.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
Abstract
Observations that Glioma-associated transcription factors Gli1 and Gli2 (Gli1/2), executers of the Sonic Hedgehog (Shh) signaling pathway and targets of the Transforming Growth Factor β (TGF-β) signaling axis, are involved in numerous developmental and pathological processes unveil them as attractive pharmaceutical targets. Unc-51-like serine/threonine kinase Ulk3 has been suggested to play kinase activity dependent and independent roles in the control of Gli proteins in the context of the Shh signaling pathway. This study aimed at investigating whether the mechanism of generation of Gli1/2 transcriptional activators has similarities regardless of the signaling cascade evoking their activation. We also elucidate further the role of Ulk3 kinase in regulation of Gli1/2 proteins and examine SU6668 as an inhibitor of Ulk3 catalytic activity and a compound targeting Gli1/2 proteins in different cell-based experimental models. Here we demonstrate that Ulk3 is required not only for maintenance of basal levels of Gli1/2 proteins but also for TGF-β or Shh dependent activation of endogenous Gli1/2 proteins in human adipose tissue derived multipotent stromal cells (ASCs) and mouse immortalized progenitor cells, respectively. We show that cultured ASCs possess the functional Shh signaling axis and differentiate towards osteoblasts in response to Shh. Also, we demonstrate that similarly to Ulk3 RNAi, SU6668 prevents de novo expression of Gli1/2 proteins and antagonizes the Gli-dependent activation of the gene expression programs induced by either Shh or TGF-β. Our data suggest SU6668 as an efficient inhibitor of Ulk3 kinase allowing manipulation of the Gli-dependent transcriptional outcome. Ulk3 is involved in the maintenance of Gli1/2 expression. SU6668 prevents de novo expression of Gli1/2 proteins induced by Shh or TGF-β. SU6668 inhibits up-regulation of Gli1/2 proteins via Ulk3. Human ASCs differentiate towards osteoblasts in response to Shh.
Collapse
Affiliation(s)
- Alla Piirsoo
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Cellin Technologies LLC, Mäealuse 4, Tallinn 12618, Estonia.
| | - Lagle Kasak
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | | | - Mart Loog
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Kairit Tints
- Cellin Technologies LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Piia Uusen
- Cellin Technologies LLC, Mäealuse 4, Tallinn 12618, Estonia
| | | | - Marko Piirsoo
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
38
|
Crosstalk between TGF-β and hedgehog signaling in cancer. FEBS Lett 2012; 586:2016-25. [PMID: 22609357 DOI: 10.1016/j.febslet.2012.05.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 01/21/2023]
Abstract
Hedgehog (HH) and TGF-β signals control various aspects of embryonic development and cancer progression. While their canonical signal transduction cascades have been well characterized, there is increasing evidence that these pathways are able to exert overlapping activities that challenge efficient therapeutic targeting. We herein review the current knowledge on HH signaling and summarize the recent findings on the crosstalks between the HH and TGF-β pathways in cancer.
Collapse
|
39
|
Alers S, Löffler AS, Wesselborg S, Stork B. The incredible ULKs. Cell Commun Signal 2012; 10:7. [PMID: 22413737 PMCID: PMC3330011 DOI: 10.1186/1478-811x-10-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/13/2012] [Indexed: 01/14/2023] Open
Abstract
Macroautophagy (commonly abbreviated as autophagy) is an evolutionary conserved lysosome-directed vesicular trafficking pathway in eukaryotic cells that mediates the lysosomal degradation of intracellular components. The cytoplasmic cargo is initially enclosed by a specific double membrane vesicle, termed the autophagosome. By this means, autophagy either helps to remove damaged organelles, long-lived proteins and protein aggregates, or serves as a recycling mechanism for molecular building blocks. Autophagy was once invented by unicellular organisms to compensate the fluctuating external supply of nutrients. In higher eukaryotes, it is strongly enhanced under various stress conditions, such as nutrient and growth factor deprivation or DNA damage. The serine/threonine kinase Atg1 was the first identified autophagy-related gene (ATG) product in yeast. The corresponding nematode homolog UNC-51, however, has additional neuronal functions. Vertebrate genomes finally encode five closely related kinases, of which UNC-51-like kinase 1 (Ulk1) and Ulk2 are both involved in the regulation of autophagy and further neuron-specific vesicular trafficking processes. This review will mainly focus on the vertebrate Ulk1/2-Atg13-FIP200 protein complex, its function in autophagy initiation, its evolutionary descent from the yeast Atg1-Atg13-Atg17 complex, as well as the additional non-autophagic functions of its components. Since the rapid nutrient- and stress-dependent cellular responses are mainly mediated by serine/threonine phosphorylation, it will summarize our current knowledge about the relevant upstream signaling pathways and the altering phosphorylation status within this complex during autophagy induction.
Collapse
Affiliation(s)
- Sebastian Alers
- Department of Internal Medicine I, University Hospital of Tübingen, Otfried-Müller-Str, 10, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
40
|
Maloverjan A, Piirsoo M. Mammalian homologues of Drosophila fused kinase. VITAMINS AND HORMONES 2012; 88:91-113. [PMID: 22391301 DOI: 10.1016/b978-0-12-394622-5.00005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sonic Hedgehog (Shh) signaling pathway is implicated in various developmental and postnatal processes. Much of the current knowledge about the mechanisms of Shh signal transduction in vertebrates comes from the investigations of the respective pathway in fruit fly Drosophila melanogaster. In Drosophila, serine/threonine kinase fused is involved in all aspects of regulation of the Hh-dependent transcription factor cubitus interruptus possessing both catalytic and regulatory functions. Two proteins, Stk36 and Ulk3, share similarity with fu and have been suggested as mammalian fu homologues. However, in vivo data clarify that Stk36 is not required for embryonic development in mice and participates in Shh-independent genesis of motile cilia. Even if Stk36 is associated with any pathological or physiological aspect of postnatal Shh signaling in mammals, it has perhaps only regulatory functions since its catalytic activity seems to be lost during evolution. In contrast to Stk36, Ulk3 is an active kinase. In non-stimulated cells, Ulk3 catalytic activity is blocked, and it is involved in negative control of Gli proteins, mediators of Shh signaling. In response to Shh, Ulk3 positively regulates Gli proteins by directly phosphorylating them. Thus, Ulk3 is able to recapitulate both positive and negative roles of fu in vitro. However, Ulk3 functioning in vivo remains to be investigated.
Collapse
|
41
|
Sodium arsenite dependent protein expression analysis on human embryonic carcinoma (NCCIT) cell line. Toxicol Lett 2011; 207:149-58. [DOI: 10.1016/j.toxlet.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 01/23/2023]
|
42
|
Zhou Q, Kalderon D. Hedgehog activates fused through phosphorylation to elicit a full spectrum of pathway responses. Dev Cell 2011; 20:802-14. [PMID: 21664578 DOI: 10.1016/j.devcel.2011.04.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/10/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
In flies and mammals, extracellular Hedgehog (Hh) molecules alter cell fates and proliferation by regulating the levels and activities of Ci/Gli family transcription factors. How Hh-induced activation of transmembrane Smoothened (Smo) proteins reverses Ci/Gli inhibition by Suppressor of Fused (SuFu) and kinesin family protein (Cos2/Kif7) binding partners is a major unanswered question. Here we show that the Fused (Fu) protein kinase is activated by Smo and Cos2 via Fu- and CK1-dependent phosphorylation. Activated Fu can recapitulate a full Hh response, stabilizing full-length Ci via Cos2 phosphorylation and activating full-length Ci by antagonizing Su(fu) and by other mechanisms. We propose that Smo/Cos2 interactions stimulate Fu autoactivation by concentrating Fu at the membrane. Autoactivation primes Fu for additional CK1-dependent phosphorylation, which further enhances kinase activity. In this model, Smo acts like many transmembrane receptors associated with cytoplasmic kinases, such that pathway activation is mediated by kinase oligomerization and trans-phosphorylation.
Collapse
Affiliation(s)
- Qianhe Zhou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
43
|
Abstract
Gli zinc-finger proteins are transcription factors involved in the intracellular signal transduction controlled by the Hedgehog family of secreted molecules. They are frequently mutated in human congenital malformations, and their abnormal regulation leads to tumorigenesis. Genetic studies in several model systems indicate that their activity is tightly regulated by Hedgehog signaling through various posttranslational modifications, including phosphorylation, ubiquitin-mediated degradation, and proteolytic processing, as well as through nucleocytoplasmic shuttling. In vertebrate cells, primary cilia are required for the sensing of Hedgehog pathway activity and involved in the processing and activation of Gli proteins. Two evolutionarily conserved Hedgehog pathway components, Suppressor of fused and Kif7, are core intracellular regulators of mammalian Gli proteins. Recent studies revealed that Gli proteins are also regulated transcriptionally and posttranslationally through noncanonical mechanisms independent of Hedgehog signaling. In this review, we describe the regulation of Gli proteins during development and discuss possible mechanisms for their abnormal activation during tumorigenesis.
Collapse
Affiliation(s)
- Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | | |
Collapse
|