1
|
Fan W, Sun X, Yuan R, Hou X, Wan J, Liao B. HCN4 and arrhythmias: Insights into base mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108534. [PMID: 39922561 DOI: 10.1016/j.mrrev.2025.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
In the human sinoatrial node (SAN), HCN4 is the primary subtype among the four HCN (hyperpolarization activated cyclic nucleotide-gated) family subtypes. A tetramer of HCN subunits forms the ion channel conducting the hyperpolarization-activated "funny" current (If), which plays an important regulatory role in maintaining the pacemaker activity of the SAN. With the advancement of detection technologies over the past 20 years, the relationship between base mutations in the HCN4 gene encoding the HCN4 protein and arrhythmias has been continuously elucidated. The expression and kinetic changes of mutated channels were investigated in COS-7, CHO, HEK-293T cells, and Xenopus oocytes, but their functional changes were not elucidated in human myocardial cells. New genome editing methods, such as Base editor and Prime editor, use components of the CRISPR system and other enzymes to directly install single-gene mutation into cellular DNA without causing double-stranded DNA breaks, which reproduce and correct base mutations. In this review, we summarize all base mutations of the HCN4 gene, discuss the clinical characteristics and function of some base mutations, and combine base editors to explore the establishment of disease models and the potential for future gene correction.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xuemei Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, PR China
| | - Ruoran Yuan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
2
|
Wojciechowski M, Jokiel J, Kuss H, Bermúdez M, Jose J. Combination of Autodisplay and Dynamic Pharmacophore Modeling Reveals New Insights into Cyclic Nucleotide Binding in Hyperpolarization-Activated and Cyclic Nucleotide-Gated Ion Channel 4 (HCN4). ACS Pharmacol Transl Sci 2024; 7:4010-4020. [PMID: 39698292 PMCID: PMC11651207 DOI: 10.1021/acsptsci.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play a critical role in regulating neuronal and cardiac rhythmicity, with their function being modulated by cyclic nucleotide binding. Dysfunction of HCN ion channels leads to the genesis of several diseases such as arrhythmia, bradycardia, or epilepsy. This study employs a multidisciplinary approach integrating mutagenesis, ligand binding assays, and molecular dynamics (MD) simulations combined with dynamic pharmacophore studies to investigate the impact of single residue mutations within the cyclic nucleotide-binding domain (CNBD) of HCN4 channels. Utilizing an autodisplay-based ligand binding assay, surface-displayed HCN4 CNBD mutants were evaluated for their interaction with 8-Fluo-cAMP, providing insights into the ligand binding properties. While some known mutational effects could be confirmed (R669, T670), we identified L652 to be crucial for successful ligand binding. Surprisingly, C662, located in the center of the binding pocket, was discovered to play a negligible role in cAMP-binding. Both E660 and R710 were shown to substantially affect 8-Fluo-cAMP-binding, uncovering the direct ligand binding capability of the R710A mutant for the first time. Furthermore, MD simulations coupled with dynamic pharmacophore analysis offered detailed insights into dynamic ligand-protein interactions, elucidating the structural basis of ligand binding and modulation induced by single residue mutations. Here, a novel bypass mechanism of R713 that interacts with cAMP in the absence of R710 was demonstrated. These findings unveil new perspectives on cyclic nucleotide binding in HCN4 channels, providing a foundation for future studies of pathogenic HCN4 ion channel mutations.
Collapse
Affiliation(s)
- Magdalena
N. Wojciechowski
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Johannes Jokiel
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Hanna Kuss
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Marcel Bermúdez
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| |
Collapse
|
3
|
Page DA, Ruben PC. Cannabidiol potentiates hyperpolarization-activated cyclic nucleotide-gated (HCN4) channels. J Gen Physiol 2024; 156:e202313505. [PMID: 38652080 PMCID: PMC11040500 DOI: 10.1085/jgp.202313505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to β-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.
Collapse
Affiliation(s)
- Dana A. Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
4
|
Porro A, Saponaro A, Castelli R, Introini B, Hafez Alkotob A, Ranjbari G, Enke U, Kusch J, Benndorf K, Santoro B, DiFrancesco D, Thiel G, Moroni A. A high affinity switch for cAMP in the HCN pacemaker channels. Nat Commun 2024; 15:843. [PMID: 38287019 PMCID: PMC10825183 DOI: 10.1038/s41467-024-45136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | | | - Bianca Introini
- Department of Biosciences, University of Milan, Milano, Italy
| | | | - Golnaz Ranjbari
- Department of Biosciences, University of Milan, Milano, Italy
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Jena, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | | | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano, Italy.
- Institute of Biophysics Milan, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
5
|
Hu Z, Zheng X, Yang J. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Commun 2023; 14:4284. [PMID: 37463923 DOI: 10.1038/s41467-023-39971-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels transduce chemical signals into electrical signals in sensory receptors and neurons. They are activated by cGMP or cAMP, which bind to the cyclic nucleotide-binding domain (CNBD) to open a gate located 50-60 Å away in the central cavity. Structures of closed and open vertebrate CNG channels have been solved, but the conformational landscape of this allosteric gating remains to be elucidated and enriched. Here, we report structures of the cGMP-activated human cone photoreceptor CNGA3/CNGB3 channel in closed, intermediate, pre-open and open states in detergent or lipid nanodisc, all with fully bound cGMP. The pre-open and open states are obtained only in the lipid nanodisc, suggesting a critical role of lipids in tuning the energetic landscape of CNGA3/CNGB3 activation. The different states exhibit subunit-unique, incremental and distinct conformational rearrangements that originate in the CNBD, propagate through the gating ring to the transmembrane domain, and gradually open the S6 cavity gate. Our work illustrates a spatial conformational-change wave of allosteric gating of a vertebrate CNG channel by its natural ligand and provides an expanded framework for studying CNG properties and channelopathy.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Wojciechowski MN, Schreiber S, Jose J. A Novel Flow Cytometry-Based Assay for the Identification of HCN4 CNBD Ligands. Pharmaceuticals (Basel) 2023; 16:ph16050710. [PMID: 37242492 DOI: 10.3390/ph16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP's binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD.
Collapse
Affiliation(s)
- Magdalena N Wojciechowski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Sebastian Schreiber
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| |
Collapse
|
7
|
Yüksel S, Bonus M, Schwabe T, Pfleger C, Zimmer T, Enke U, Saß I, Gohlke H, Benndorf K, Kusch J. Uncoupling of Voltage- and Ligand-Induced Activation in HCN2 Channels by Glycine Inserts. Front Physiol 2022; 13:895324. [PMID: 36091400 PMCID: PMC9452628 DOI: 10.3389/fphys.2022.895324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A′-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A′-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A′-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.
Collapse
Affiliation(s)
- Sezin Yüksel
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tina Schwabe
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Christopher Pfleger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Zimmer
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Uta Enke
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Inga Saß
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Klaus Benndorf
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| | - Jana Kusch
- Universitätsklinikum Jena, Institut für Physiologie II, Jena, Germany
- *Correspondence: Holger Gohlke, ; Klaus Benndorf, ; Jana Kusch,
| |
Collapse
|
8
|
Peters CH, Singh RK, Bankston JR, Proenza C. Regulation of HCN Channels by Protein Interactions. Front Physiol 2022; 13:928507. [PMID: 35795651 PMCID: PMC9251338 DOI: 10.3389/fphys.2022.928507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels are key regulators of subthreshold membrane potentials in excitable cells. The four mammalian HCN channel isoforms, HCN1-HCN4, are expressed throughout the body, where they contribute to diverse physiological processes including cardiac pacemaking, sleep-wakefulness cycles, memory, and somatic sensation. While all HCN channel isoforms produce currents when expressed by themselves, an emerging list of interacting proteins shape HCN channel excitability to influence the physiologically relevant output. The best studied of these regulatory proteins is the auxiliary subunit, TRIP8b, which binds to multiple sites in the C-terminus of the HCN channels to regulate expression and disrupt cAMP binding to fine-tune neuronal HCN channel excitability. Less is known about the mechanisms of action of other HCN channel interaction partners like filamin A, Src tyrosine kinase, and MinK-related peptides, which have a range of effects on HCN channel gating and expression. More recently, the inositol trisphosphate receptor-associated cGMP-kinase substrates IRAG1 and LRMP (also known as IRAG2), were discovered as specific regulators of the HCN4 isoform. This review summarizes the known protein interaction partners of HCN channels and their mechanisms of action and identifies gaps in our knowledge.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rohit K. Singh
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John R. Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Catherine Proenza,
| |
Collapse
|
9
|
Shimizu M, Mi X, Toyoda F, Kojima A, Ding WG, Fukushima Y, Omatsu-Kanbe M, Kitagawa H, Matsuura H. Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism. Biomolecules 2022; 12:biom12040570. [PMID: 35454159 PMCID: PMC9032835 DOI: 10.3390/biom12040570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug.
Collapse
Affiliation(s)
- Morihiro Shimizu
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
- Correspondence: ; Tel.: +81-77-548-2152; Fax: +81-77-548-2348
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| |
Collapse
|
10
|
Ng LCT, Li YX, Van Petegem F, Accili EA. Altered cyclic nucleotide-binding and pore opening in a diseased human HCN4 channel. Biophys J 2022; 121:1166-1183. [PMID: 35219649 PMCID: PMC9034293 DOI: 10.1016/j.bpj.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 μM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Regulation of sinoatrial funny channels by cyclic nucleotides: From adrenaline and I K2 to direct binding of ligands to protein subunits. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:12-21. [PMID: 34237319 DOI: 10.1016/j.pbiomolbio.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
The funny current, and the HCN channels that form it, are affected by the direct binding of cyclic nucleotides. Binding of these second messengers causes a depolarizing shift of the activation curve, which leads to greater availability of current at physiological membrane voltages. This review outlines a brief history on this regulation and provides some evidence that other cyclic nucleotides, especially cGMP, may be important for the regulation of the funny channel in the heart. Current understanding of the molecular mechanism of cyclic nucleotide regulation is also presented, which includes the notions that full and partial agonism occur as a consequence of negatively cooperative binding. Knowledge gaps, including a potential role of cyclic nucleotide-regulation of the funny current under pathophysiological conditions, are included. The work highlighted here is in dedication to Dario DiFrancesco on his retirement.
Collapse
|
12
|
Liang Y, Xu Z, Wu X, Pang J, Zhou P, Cao Y. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels with natural flavonoid quercetin. Biochem Biophys Res Commun 2020; 533:952-957. [PMID: 33008592 DOI: 10.1016/j.bbrc.2020.09.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
Abstract
Quercetin is a natural flavonoid which has been reported to be analgesic in different animal models of pain. However, the mechanism underlying the pain-relieving effects is still unclear. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in controlling pacemaker activity in cardiac and nervous systems, making the channel a new target for therapeutic exploration. In this study, we explored a series of flavonoids for their modulation on HCN channels. Among all tested flavonoids, quercetin was the most potent inhibitor for HCN channels with an IC50 value of 27.32 ± 1.19 μM for HCN2. Furthermore, quercetin prominently left shifted the voltage-dependent activation curves of HCN channels and decelerated deactivation process. The results presented herein firstly characterize quercetin as a novel and potent inhibitor for HCN channels, which represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Porro A, Binda A, Pisoni M, Donadoni C, Rivolta I, Saponaro A. Rational design of a mutation to investigate the role of the brain protein TRIP8b in limiting the cAMP response of HCN channels in neurons. J Gen Physiol 2020; 152:e202012596. [PMID: 32633755 PMCID: PMC7478871 DOI: 10.1085/jgp.202012596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) is the neuronal regulatory subunit of HCN channels, a family of voltage-dependent cation channels also modulated by direct cAMP binding. TRIP8b interacts with the C-terminal region of HCN channels and controls both channel trafficking and gating. The association of HCN channels with TRIP8b is required for the correct expression and subcellular targeting of the channel protein in vivo. TRIP8b controls HCN gating by interacting with the cyclic nucleotide-binding domain (CNBD) and competing for cAMP binding. Detailed structural knowledge of the complex between TRIP8b and CNBD was used as a starting point to engineer a mutant channel, whose gating is controlled by cAMP, but not by TRIP8b, while leaving TRIP8b-dependent regulation of channel trafficking unaltered. We found two-point mutations (N/A and C/D) in the loop connecting the CNBD to the C-linker (N-bundle loop) that, when combined, strongly reduce the binding of TRIP8b to CNBD, leaving cAMP affinity unaltered both in isolated CNBD and in the full-length protein. Proof-of-principle experiments performed in cultured cortical neurons confirm that the mutant channel provides a genetic tool for dissecting the two effects of TRIP8b (gating versus trafficking). This will allow the study of the functional role of the TRIP8b antagonism of cAMP binding, a thus far poorly investigated aspect of HCN physiology in neurons.
Collapse
Affiliation(s)
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Donadoni
- Department of Biosciences, University of Milano, Milano, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Milano, Italy
| |
Collapse
|
14
|
Boulton S, Van K, VanSchouwen B, Augustine J, Akimoto M, Melacini G. Allosteric Mechanisms of Nonadditive Substituent Contributions to Protein-Ligand Binding. Biophys J 2020; 119:1135-1146. [PMID: 32882185 DOI: 10.1016/j.bpj.2020.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Quantifying chemical substituent contributions to ligand-binding free energies is challenging due to nonadditive effects. Protein allostery is a frequent cause of nonadditivity, but the underlying allosteric mechanisms often remain elusive. Here, we propose a general NMR-based approach to elucidate such mechanisms and we apply it to the HCN4 ion channel, whose cAMP-binding domain is an archetypal conformational switch. Using NMR, we show that nonadditivity arises not only from concerted conformational transitions, but also from conformer-specific effects, such as steric frustration. Our results explain how affinity-reducing functional groups may lead to affinity gains if combined. Surprisingly, our approach also reveals that nonadditivity depends markedly on the receptor conformation. It is negligible for the inhibited state but highly significant for the active state, opening new opportunities to tune potency and agonism of allosteric effectors.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Jerry Augustine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
15
|
Porro A, Thiel G, Moroni A, Saponaro A. cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Front Physiol 2020; 11:771. [PMID: 32733276 PMCID: PMC7358946 DOI: 10.3389/fphys.2020.00771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Direct regulation of the pacemaker “funny” current (If) by cyclic AMP (cAMP) underlies heart rate modulation by the autonomic nervous system. At the molecular level, cAMP activates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that drive If in sinoatrial node (SAN) myocytes. Even though HCN channel genes were identified more than 20 years ago, the understanding of how cAMP regulates their gating is still fragmented. Here we summarize present understanding on how the cAMP signal is transmitted from the cytosolic to the transmembrane (TM) domain in HCN4. We further discuss how detailed structural knowledge prompted the development of pharmacological/genetic tools for the control of cAMP regulation in these channels.
Collapse
Affiliation(s)
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Zheng X, Fu Z, Su D, Zhang Y, Li M, Pan Y, Li H, Li S, Grassucci RA, Ren Z, Hu Z, Li X, Zhou M, Li G, Frank J, Yang J. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat Struct Mol Biol 2020; 27:625-634. [PMID: 32483338 PMCID: PMC7354226 DOI: 10.1038/s41594-020-0433-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.
Collapse
Affiliation(s)
- Xiangdong Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,These authors contributed equally to this work
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA,These authors contributed equally to this work
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China,These authors contributed equally to this work
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Minghui Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Current address: HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yaping Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huan Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Shufang Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Zhenning Ren
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
17
|
Ji S, Xiong Y, Lu W, Li M, Wang X, Wang C, Wang D, Xiao J, Zhu Z, Chen L, Zhang Y, Qing G. cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer. Chem Commun (Camb) 2020; 56:3425-3428. [PMID: 32100737 DOI: 10.1039/c9cc09588h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by biological nanochannels, a novel cyclic 3',5'-adenosine monophosphate (cAMP)-regulated artificial nanochannel based on a tripeptide Arg-Thr-Ala (RTA) design is developed. Highly specific binding between the tripeptide and cAMP triggers an obvious conformational transition of a smart polymer chain from a contracted state to a swollen one, which leads to a dynamic modulation of the gating behaviours of the nanochannels.
Collapse
Affiliation(s)
- Shengyan Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang ZJ, Tiwari PB, Üren A, Brelidze TI. Identification of undecylenic acid as EAG channel inhibitor using surface plasmon resonance-based screen of KCNH channels. BMC Pharmacol Toxicol 2019; 20:42. [PMID: 31315662 PMCID: PMC6637479 DOI: 10.1186/s40360-019-0324-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KCNH family of potassium channels is responsible for diverse physiological functions ranging from the regulation of neuronal excitability and cardiac contraction to the regulation of cancer progression. KCNH channels contain a Per-Arn-Sim (PAS) domain in their N-terminal and cyclic nucleotide-binding homology (CNBH) domain in their C-terminal regions. These intracellular domains shape the function of KCNH channels and are important targets for drug development. METHODS Here we describe a surface plasmon resonance (SPR)-based screening method aimed in identifying small molecule binders of PAS and CNBH domains for three KCNH channel subfamilies: ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like K+ (ELK). The method involves purification of the PAS and CNBH domains, immobilization of the purified domains on the SPR senor chip and screening small molecules in a chemical library for binding to the immobilized domains using changes in the SPR response as a reporter of the binding. The advantages of this method include low quantity of purified PAS and CNBH domains necessary for the implementation of the screen, direct assessment of the small molecule binding to the PAS and CNBH domains and easiness of assessing KCNH subfamily specificity of the small molecule binders. RESULTS Using the SPR-based method we screened the Spectrum Collection Library of 2560 compounds against the PAS and CNBH domains of the three KCNH channel subfamilies and identified a pool of small molecules that bind to the PAS or CNBH domains. To further evaluate the effectiveness of the screen we tested the functional effect of one of the identified mEAG PAS domain specific small molecule binders on currents recorded from EAG channels. Undecylenic acid inhibited currents recorded from EAG channels in a concentration-dependent manner with IC50 of ~ 1 μM. CONCLUSION Our results show that the SPR-based method is well suited for identifying small molecule binders of KCNH channels and can facilitate drug discovery for other ion channels as well.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC USA
| | | | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC USA
| | - Tinatin I. Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC USA
| |
Collapse
|
19
|
Chen SJ, Xu Y, Liang YM, Cao Y, Lv JY, Pang JX, Zhou PZ. Identification and characterization of a series of novel HCN channel inhibitors. Acta Pharmacol Sin 2019; 40:746-754. [PMID: 30315249 DOI: 10.1038/s41401-018-0162-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/13/2018] [Indexed: 11/09/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a critical role in controlling pacemaker activity in both heart and nervous system. Developing HCN channel inhibitors has been proposed to be an important strategy for the treatment of pain, heart failure, arrhythmias, and epilepsy. One HCN channel inhibitor, ivabradine, has been clinically approved for the treatment of angina pectoris and heart failure. In this study, we designed and synthesized eight alkanol amine derivatives, and assessed their effects on HCN channels expressed in COS7 cells using a whole-cell patch clamp method. Among them, compound 4e displayed the most potent inhibitory activity with an IC50 of 2.9 ± 1.2 µM at - 120 mV on HCN2 channel expressed in COS7 cells. Further analysis revealed that application of compound 4e (10 μM) caused a slowing of activation and a hyperpolarizing shift (ΔV1/2 = - 30.2 ± 2.9 mV, n = 5) in the voltage dependence of HCN2 channel activation. The inhibitory effect of compound 4e on HCN1 and HCN4 channel expressed in COS7 cells was less potent with IC50 of 17.2 ± 1.3 and 7.3 ± 1.2 μM, respectively. Besides, we showed that application of compound 4e (10 μM) inhibited Ih and action potential firing in acutely dissociated mouse small dorsal root ganglion neurons. Our study provides a new strategy for the design and development of potent HCN channel inhibitors.
Collapse
|
20
|
Otte M, Schweinitz A, Lelle M, Thon S, Enke U, Yüksel S, Schmauder R, Bonus M, Gohlke H, Benndorf K. Novel Fluorescent Cyclic Nucleotide Derivatives to Study CNG and HCN Channel Function. Biophys J 2019; 116:2411-2422. [PMID: 31130235 DOI: 10.1016/j.bpj.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
A highly specific molecular interaction of diffusible ligands with their receptors belongs to the key processes in cellular signaling. Because an appropriate method to monitor the unitary binding events is still missing, most of our present knowledge is based on ensemble signals recorded from a big number of receptors, such as ion currents or fluorescence changes of suitably labeled receptors, and reasoning from these data to the ligand binding. To study the binding process itself, appropriately tagged ligands are required that fully activate the receptors and report the binding at the same time. Herein, we tailored a series of 18 novel fluorescent cyclic nucleotide derivatives by attaching 6 different dyes via different alkyl linkers to the 8-position of the purine ring of cGMP or cAMP. The biological activity was determined in inside-out macropatches containing either homotetrameric (CNGA2), heterotetrameric (CNGA2:CNGA4:CNGB1b), or hyperpolarization-activated cyclic nucleotide-modulated (HCN2) channels. All these novel fluorescent ligands are efficient to activate the channels, and the potency of most of them significantly exceeded that of the natural cyclic nucleotides cGMP or cAMP. Moreover, some of them showed an enhanced brightness when bound to the channels. The best of our derivatives bear great potential to systematically analyze the activation mechanism in CNG and HCN channels, at both the level of ensemble and single-molecule analyses.
Collapse
Affiliation(s)
- Maik Otte
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Andrea Schweinitz
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Marco Lelle
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Uta Enke
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Sezin Yüksel
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Michele Bonus
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing, Jülich Supercomputing Centre & Institute for Complex Systems Structural Biochemistry, Forschungszentrum Jülich, GmbH, Jülich, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
21
|
Baruscotti M, Bucchi A, Milanesi R, Paina M, Barbuti A, Gnecchi-Ruscone T, Bianco E, Vitali-Serdoz L, Cappato R, DiFrancesco D. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial Inappropriate Sinus Tachycardia. Eur Heart J 2019; 38:280-288. [PMID: 28182231 DOI: 10.1093/eurheartj/ehv582] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mirko Baruscotti
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Manuel Paina
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | | | - Elisabetta Bianco
- Cardiovascular Department, 'Ospedali Riuniti di Trieste', University Hospital, Trieste, Italy
| | | | | | - Dario DiFrancesco
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
22
|
Idikuda V, Gao W, Su Z, Liu Q, Zhou L. cAMP binds to closed, inactivated, and open sea urchin HCN channels in a state-dependent manner. J Gen Physiol 2018; 151:200-213. [PMID: 30541772 PMCID: PMC6363418 DOI: 10.1085/jgp.201812019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/08/2018] [Accepted: 11/13/2018] [Indexed: 01/11/2023] Open
Abstract
Mammalian hyperpolarization-activated cyclic-nucleotide–modulated (HCN) channels bind cAMP preferably in the open state. Using sea urchin HCN channels, Idikuda et al. reveal less cAMP binding to the closed state and further reduced binding to the inactivated state and thus demonstrate intricate communication between the gate and ligand-binding domain. Hyperpolarization-activated cyclic-nucleotide–modulated (HCN) channels are nonselective cation channels that regulate electrical activity in the heart and brain. Previous studies of mouse HCN2 (mHCN2) channels have shown that cAMP binds preferentially to and stabilizes these channels in the open state—a simple but elegant implementation of ligand-dependent gating. Distinct from mammalian isoforms, the sea urchin (spHCN) channel exhibits strong voltage-dependent inactivation in the absence of cAMP. Here, using fluorescently labeled cAMP molecules as a marker for cAMP binding, we report that the inactivated spHCN channel displays reduced cAMP binding compared with the closed channel. The reduction in cAMP binding is a voltage-dependent process but proceeds at a much slower rate than the movement of the voltage sensor. A single point mutation in the last transmembrane domain near the channel’s gate, F459L, abolishes inactivation and concurrently reverses the response to hyperpolarizing voltage steps from a decrease to an increase in cAMP binding. ZD7288, an open channel blocker that interacts with a region close to the activation/inactivation gate, dampens the reduction of cAMP binding to inactivated spHCN channels. In addition, compared with closed and “locked” closed channels, increased cAMP binding is observed in channels purposely locked in the open state upon hyperpolarization. Thus, the order of cAMP-binding affinity, measured by the fluorescence signal from labeled cAMP, ranges from high in the open state to intermediate in the closed state to low in the inactivated state. Our work on spHCN channels demonstrates intricate state-dependent communications between the gate and ligand-binding domain and provides new mechanistic insight into channel inactivation/desensitization.
Collapse
Affiliation(s)
- Vinay Idikuda
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Weihua Gao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Zhuocheng Su
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
23
|
Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation. Sci Rep 2018; 8:14960. [PMID: 30297855 PMCID: PMC6175941 DOI: 10.1038/s41598-018-33050-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are tetrameric non-specific cation channels in the plasma membrane that are activated by either cAMP or cGMP binding to specific binding domains incorporated in each subunit. Typical apparent affinities of these channels for these cyclic nucleotides range from several hundred nanomolar to tens of micromolar. Here we synthesized and characterized novel cAMP and cGMP derivatives by substituting either hydrophobic alkyl chains or similar-sized more hydrophilic heteroalkyl chains to the 8-position of the purine ring with the aim to obtain full agonists of higher potency. The compounds were tested in homotetrameric CNGA2, heterotetrameric CNGA2:CNGA4:CNGB1b and homotetrameric HCN2 channels. We show that nearly all compounds are full agonists and that longer alkyl chains systematically increase the apparent affinity, at the best more than 30 times. The effects are stronger in CNG than HCN2 channels which, however, are constitutively more sensitive to cAMP. Kinetic analyses reveal that the off-rate is significantly slowed by the hydrophobic alkyl chains. Molecular dynamics simulations and free energy calculations suggest that an intricate enthalpy - entropy compensation underlies the higher apparent affinity of the derivatives with the longer alkyl chains, which is shown to result from a reduced loss of configurational entropy upon binding.
Collapse
|
24
|
Cao Y, Chen S, Liang Y, Wu T, Pang J, Liu S, Zhou P. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br J Pharmacol 2018; 175:3963-3975. [PMID: 30098004 DOI: 10.1111/bph.14469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a clinically effective β-blocker broadly used for treating congestive heart failure (CHF), and several clinical trials have demonstrated that it shows a favourable effect compared with other β-blockers in patients with CHF. The mechanism underlying this beneficial effect of carvedilol compared to other β-blockers is not clearly understood. In addition to β-blockers, inhibitors of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels, which play a critical role in spontaneous rhythmic activity in the heart, have also been proposed to be suitable drugs for reducing heart rate and, therefore, beneficial for treating CHF. In the present study, we investigated the effect of carvedilol on HCN channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were used to assess the effect of carvedilol on currents from wild-type and mutant HCN1, HCN2 and HCN4 channels expressed in CHO cells. KEY RESULTS Carvedilol was the only β-blocker tested that showed inhibitory effects on the major sinoatrial HCN channel isoform HCN4. Carvedilol inhibited HCN4 in a concentration-dependent manner with an EC50 of 4.4 μM. In addition, carvedilol also inhibited HCN1 and HCN2 channels. Carvedilol blocked HCN channels by decelerating the rate of channel activation and increasing that of deactivation, and shifted the voltage-dependence of activation leftwards. Our data also showed that carvedilol, unlike other inhibitors of this channel (ivabradine and ZD7288), is not an 'open-channel' inhibitor of HCN4. CONCLUSIONS AND IMPLICATIONS Carvedilol is a negative gating modulator of HCN channels. It represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shujun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Byun JA, Melacini G. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes. Methods 2018; 148:19-27. [DOI: 10.1016/j.ymeth.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
|
26
|
Campostrini G, DiFrancesco JC, Castellotti B, Milanesi R, Gnecchi-Ruscone T, Bonzanni M, Bucchi A, Baruscotti M, Ferrarese C, Franceschetti S, Canafoglia L, Ragona F, Freri E, Labate A, Gambardella A, Costa C, Gellera C, Granata T, Barbuti A, DiFrancesco D. A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Front Mol Neurosci 2018; 11:269. [PMID: 30127718 PMCID: PMC6089338 DOI: 10.3389/fnmol.2018.00269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/16/2018] [Indexed: 01/03/2023] Open
Abstract
HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Campostrini
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Jacopo C DiFrancesco
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Milanesi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Mattia Bonzanni
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Silvana Franceschetti
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Labate
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Cinzia Costa
- Neurology Unit, Ospedale S. Maria della Misericordia, Department of Medicine, University of Perugia, Perugia, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Barbuti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Alvarez-Baron CP, Klenchin VA, Chanda B. Minimal molecular determinants of isoform-specific differences in efficacy in the HCN channel family. J Gen Physiol 2018; 150:1203-1213. [PMID: 29980633 PMCID: PMC6080897 DOI: 10.1085/jgp.201812031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate rhythmic activity in the heart and brain. Isoform-specific functional differences reflect the specializations required for the various roles that they play. Despite a high sequence and structural similarity, HCN isoforms differ greatly in their response to cyclic nucleotides. Cyclic AMP (cAMP) enhances the activity of HCN2 and HCN4 isoforms by shifting the voltage dependence of activation to more depolarized potentials, whereas HCN1 and HCN3 isoforms are practically insensitive to this ligand. Here, to determine the molecular basis for increased cAMP efficacy in HCN2 channels, we progressively mutate residues in the C-linker and cyclic nucleotide-binding domain (CNBD) of the mouse HCN2 to their equivalents in HCN1. We identify two clusters of mutations that determine the differences in voltage-dependent activation between these two isoforms. One maps to the C-linker region, whereas the other is in proximity to the cAMP-binding site in the CNBD. A mutant channel containing just five mutations (M485I, G497D, S514T, V562A, and S563G) switches cAMP sensitivity of full-length HCN2 to that of HCN1 channels. These findings, combined with a detailed analysis of various allosteric models for voltage- and ligand-dependent gating, indicate that these residues alter the ability of the C-linker to transduce signals from the CNBD to the pore gates of the HCN channel.
Collapse
Affiliation(s)
| | - Vadim A Klenchin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
| | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI .,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
28
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
29
|
Schmidpeter PAM, Gao X, Uphadyay V, Rheinberger J, Nimigean CM. Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK. J Gen Physiol 2018; 150:821-834. [PMID: 29752414 PMCID: PMC5987880 DOI: 10.1085/jgp.201812023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
SthK is a bacterial cyclic nucleotide–gated ion channel from Spirochaeta thermophila. By optimizing the expression and purification of SthK, Schmidpeter et al. show that cAMP and cGMP bind to the channel with similar affinity but activate it with different efficacy. Cyclic nucleotide–modulated ion channels play several essential physiological roles. They are involved in signal transduction in photoreceptors and olfactory sensory neurons as well as pacemaking activity in the heart and brain. Investigations of the molecular mechanism of their actions, including structural and electrophysiological characterization, are restricted by the availability of stable, purified protein obtained from accessible systems. Here, we establish that SthK, a cyclic nucleotide–gated (CNG) channel from Spirochaeta thermophila, is an excellent model for investigating the gating of eukaryotic CNG channels at the molecular level. The channel has high sequence similarity with its eukaryotic counterparts and was previously reported to be activated by cyclic nucleotides in patch-clamp experiments with Xenopus laevis oocytes. We optimized protein expression and purification to obtain large quantities of pure, homogeneous, and active recombinant SthK protein from Escherichia coli. A negative-stain electron microscopy (EM) single-particle analysis indicated that this channel is a promising candidate for structural studies with cryo-EM. Using radioactivity and fluorescence flux assays, as well as single-channel recordings in lipid bilayers, we show that the protein is partially activated by micromolar concentrations of cyclic adenosine monophosphate (cAMP) and that channel activity is increased by depolarization. Unlike previous studies, we find that cyclic guanosine monophosphate (cGMP) is also able to activate SthK, but with much lower efficiency than cAMP. The distinct sensitivities to different ligands resemble eukaryotic CNG and hyperpolarization-activated and cyclic nucleotide–modulated channels. Using a fluorescence binding assay, we show that cGMP and cAMP bind to SthK with similar apparent affinities, suggesting that the large difference in channel activation by cAMP or cGMP is caused by the efficacy with which each ligand promotes the conformational changes toward the open state. We conclude that the functional characteristics of SthK reported here will permit future studies to analyze ligand gating and discrimination in CNG channels.
Collapse
Affiliation(s)
| | - Xiaolong Gao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Vikrant Uphadyay
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY .,Department of Biochemistry, Weill Cornell Medicine, New York, NY.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
30
|
Hummert S, Thon S, Eick T, Schmauder R, Schulz E, Benndorf K. Activation gating in HCN2 channels. PLoS Comput Biol 2018; 14:e1006045. [PMID: 29565972 PMCID: PMC5863937 DOI: 10.1371/journal.pcbi.1006045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control electrical rhythmicity in specialized brain and heart cells. We quantitatively analysed voltage-dependent activation of homotetrameric HCN2 channels and its modulation by the second messenger cAMP using global fits of hidden Markovian models to complex experimental data. We show that voltage-dependent activation is essentially governed by two separable voltage-dependent steps followed by voltage-independent opening of the pore. According to this model analysis, the binding of cAMP to the channels exerts multiple effects on the voltage-dependent gating: It stabilizes the open pore, reduces the total gating charge from ~8 to ~5, makes an additional closed state outside the activation pathway accessible and strongly accelerates the ON-gating but not the OFF-gating. Furthermore, the open channel has a much slower computed OFF-gating current than the closed channel, in both the absence and presence of cAMP. Together, these results provide detailed new insight into the voltage- and cAMP-induced activation gating of HCN channels. Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric voltage-controlled ion channels in the cell membrane of specialized nerve and heart cells. Their main function is to generate a so-called pacemaker current which plays a key role in the generation of electrical rhythmicity. A special messenger molecule, cAMP, synthesized within these cells at sympathetic stimulation, can bind to these channels, thereby enhancing channel opening evoked by voltage. The mechanism of this dual activation is still poorly understood. Here we quantified this duality of activation for HCN2 channels by globally fitting hidden Markovian state models to extensive sets of data. We propose that activation of this tetrameric channel requires for a full description only two voltage-dependent steps that are followed by a voltage-independent opening step of the channel pore. According to this model analysis cAMP exerts multiple effects on channel activation: It notably accelerates the charge movement of the voltage-dependent steps and reduces the number of the involved electrical charges. Furthermore, it introduces an additional closed state and stabilizes the open pore. Together, our results provide new insight into the duality of voltage- and cAMP-induced activation of HCN channels.
Collapse
Affiliation(s)
- Sabine Hummert
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Susanne Thon
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Thomas Eick
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ralf Schmauder
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Eckhard Schulz
- Fachhochschule Schmalkalden, Fakultät Elektrotechnik, Blechhammer, Schmalkalden, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
31
|
Akimoto M, VanSchouwen B, Melacini G. The structure of the apo cAMP-binding domain of HCN4 - a stepping stone toward understanding the cAMP-dependent modulation of the hyperpolarization-activated cyclic-nucleotide-gated ion channels. FEBS J 2018; 285:2182-2192. [PMID: 29444387 DOI: 10.1111/febs.14408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels control nerve impulse transmission and cardiac pacemaker activity. The modulation by cAMP is critical for the regulatory function of HCN in both neurons and cardiomyocytes, but the underlying mechanism is not fully understood. Here, we show how the structure of the apo cAMP-binding domain of the HCN4 isoform has contributed to a model for the cAMP-dependent modulation of the HCN ion-channel. This model recapitulates the structural and dynamical changes that occur along the thermodynamic cycle arising from the coupling of cAMP-binding and HCN self-association equilibria. The proposed model addresses some of the questions previously open about the auto-inhibition of HCN and its cAMP-induced activation, while opening new opportunities for selectively targeting HCN through allosteric ligands. A remaining challenge is the investigation of HCN dimers and their regulatory role. Overcoming this challenge will require the integration of crystallography, cryo electron microscopy, NMR, electrophysiology and simulations.
Collapse
Affiliation(s)
- Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, ON, Canada
| |
Collapse
|
32
|
Pai VP, Pietak A, Willocq V, Ye B, Shi NQ, Levin M. HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns. Nat Commun 2018. [PMID: 29519998 PMCID: PMC5843655 DOI: 10.1038/s41467-018-03334-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Endogenous bioelectrical signaling coordinates cell behaviors toward correct anatomical outcomes. Lack of a model explaining spatialized dynamics of bioelectric states has hindered the understanding of the etiology of some birth defects and the development of predictive interventions. Nicotine, a known neuroteratogen, induces serious defects in brain patterning and learning. Our bio-realistic computational model explains nicotine’s effects via the disruption of endogenous bioelectrical gradients and predicts that exogenous HCN2 ion channels would restore the endogenous bioelectric prepatterns necessary for brain patterning. Voltage mapping in vivo confirms these predictions, and exogenous expression of the HCN2 ion channel rescues nicotine-exposed embryos, resulting in normal brain morphology and molecular marker expression, with near-normal learning capacity. By combining molecular embryology, electrophysiology, and computational modeling, we delineate a biophysical mechanism of developmental brain damage and its functional rescue. The authors have previously shown that membrane voltage can influence embryonic patterning during development. Here, the authors computationally model how nicotine disrupts Xenopus embryogenesis by perturbing voltage gradients, and rescue nicotine-inducted defects with HCN2 channel expression.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Alexis Pietak
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Valerie Willocq
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Bin Ye
- Veridian Biotechnology Limited, Biotech Center 2, Hong Kong, China
| | - Nian-Qing Shi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University, Boston, MA, 02111, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
33
|
VanSchouwen B, Melacini G. Role of Dimers in the cAMP-Dependent Activation of Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2018; 122:2177-2190. [PMID: 29461059 DOI: 10.1021/acs.jpcb.7b10125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through the cAMP-induced formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. Although evidence from confocal patch-clamp fluorometry indicates that the cAMP-dependent gating of HCN occurs through a dimer of dimers, the structural and dynamical basis of cAMP allostery in HCN dimers has so far remained elusive. Thus, here we examine how dimers influence IR structural dynamics, and the role that such structural dynamics play in HCN allostery. To this end, we performed molecular dynamics (MD) simulations of HCN4 IR dimers in their fully apo, fully holo, and partially cAMP-bound states, resulting in a total simulated time of 1.2 μs. Comparative analyses of these MD trajectories, as well as previous monomer and tetramer simulations utilized as benchmarks for comparison, reveal that dimers markedly sensitize the HCN IR to cAMP-modulated allostery. Our results indicate that dimerization fine-tunes the IR dynamics to enhance, relative to both monomers and tetramers, the allosteric intra- and interprotomer coupling between the cAMP-binding domain and tetramerization domain components of the IR. The resulting allosteric model provides a viable rationalization of electrophysiological data on the role of IR dimers in HCN activation.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology and ‡Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
34
|
James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 2017; 150:225-244. [PMID: 29233886 PMCID: PMC5806680 DOI: 10.1085/jgp.201711898] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
James and Zagotta discuss how recent cryoEM structures inform our understanding of cyclic nucleotide–binding domain channels. Cyclic nucleotide-binding domain (CNBD) channels are a family of ion channels in the voltage-gated K+ channel superfamily that play crucial roles in many physiological processes. CNBD channels are structurally similar but functionally very diverse. This family includes three subfamilies: (1) the cyclic nucleotide-gated (CNG) channels, which are cation-nonselective, voltage-independent, and cyclic nucleotide-gated; (2) the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are weakly K+ selective, hyperpolarization-activated, and cyclic nucleotide-gated; and (3) the ether-à-go-go-type (KCNH) channels, which are strongly K+ selective, depolarization-activated, and cyclic nucleotide-independent. Recently, several high-resolution structures have been reported for intact CNBD channels, providing a structural framework to better understand their diverse function. In this review, we compare and contrast the recent structures and discuss how they inform our understanding of ion selectivity, voltage-dependent gating, and cyclic nucleotide–dependent gating within this channel family.
Collapse
Affiliation(s)
- Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
35
|
VanSchouwen B, Melacini G. Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides. Handb Exp Pharmacol 2017; 238:123-133. [PMID: 28181007 DOI: 10.1007/164_2016_5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) proteins are cAMP-regulated ion channels that play a key role in nerve impulse transmission and heart rate modulation in neuronal and cardiac cells, respectively. Although they are regulated primarily by cAMP, other cyclic nucleotides such as cGMP, cCMP, and cUMP serve as partial agonists for the HCN2 and HCN4 isoforms. By competing with cAMP for binding, these non-canonical ligands alter ion channel gating, and in turn, modulate the cAMP-dependent activation profiles. The partial activation of non-canonical cyclic nucleotides can be rationalized by either a partial reversal of a two-state inactive/active conformational equilibrium, or by sampling of a third conformational state with partial activity. Furthermore, different mechanisms and degrees of activation have been observed upon binding of non-canonical cyclic nucleotides to HCN2 versus HCN4, suggesting that these ligands control HCN ion channels in an isoform-specific manner. While more work remains to be done to achieve a complete understanding of ion channel modulation by non-canonical cyclic nucleotides, it is already clear that such knowledge will ultimately prove invaluable in achieving a more complete understanding of ion channel signaling in vivo, as well as in the development of therapeutics designed to selectively modulate ion channel gating.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1. .,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1.
| |
Collapse
|
36
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
37
|
Hayoz S, Tiwari PB, Piszczek G, Üren A, Brelidze TI. Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance. PLoS One 2017; 12:e0185359. [PMID: 28950029 PMCID: PMC5614581 DOI: 10.1371/journal.pone.0185359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control cardiac and neuronal rhythmicity. HCN channels contain cyclic nucleotide-binding domain (CNBD) in their C-terminal region linked to the pore-forming transmembrane segment with a C-linker. The C-linker couples the conformational changes caused by the direct binding of cyclic nucleotides to the HCN pore opening. Recently, cyclic dinucleotides were shown to antagonize the effect of cyclic nucleotides in HCN4 but not in HCN2 channels. Based on the structural analysis and mutational studies it has been proposed that cyclic dinucleotides affect HCN4 channels by binding to the C-linker pocket (CLP). Here, we first show that surface plasmon resonance (SPR) can be used to accurately measure cyclic nucleotide binding affinity to the C-linker/CNBD of HCN2 and HCN4 channels. We then used SPR to investigate cyclic dinucleotide binding in HCN channels. To our surprise, we detected no binding of cyclic dinucleotides to the isolated monomeric C-linker/CNBDs of HCN4 channels with SPR. The binding of cyclic dinucleotides was further examined with isothermal calorimetry (ITC), which indicated no binding of cyclic dinucleotides to both monomeric and tetrameric C-linker/CNBDs of HCN4 channels. Taken together, our results suggest that interaction of the C-linker/CNBD with other parts of the channel is necessary for cyclic-dinucleotide binding in HCN4 channels.
Collapse
Affiliation(s)
- Sebastien Hayoz
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Purushottam B. Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Grzegorz Piszczek
- Biophysics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Tinatin I. Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
38
|
VanSchouwen B, Ahmed R, Milojevic J, Melacini G. Functional dynamics in cyclic nucleotide signaling and amyloid inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1529-1543. [PMID: 28911813 DOI: 10.1016/j.bbapap.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
It is now established that understanding the molecular basis of biological function requires atomic resolution maps of both structure and dynamics. Here, we review several illustrative examples of functional dynamics selected from our work on cyclic nucleotide signaling and amyloid inhibition. Although fundamentally diverse, a central aspect common to both fields is that function can only be rationalized by considering dynamic equilibria between distinct states of the accessible free energy landscape. The dynamic exchange between ground and excited states of signaling proteins is essential to explain auto-inhibition and allosteric activation. The dynamic exchange between non-toxic monomeric species and toxic oligomers of amyloidogenic proteins provides a foundation to understand amyloid inhibition. NMR ideally probes both types of dynamic exchange at atomic resolution. Specifically, we will show how NMR was utilized to reveal the dynamical basis of cyclic nucleotide affinity, selectivity, agonism and antagonism in multiple eukaryotic cAMP and cGMP receptors. We will also illustrate how NMR revealed the mechanism of action of plasma proteins that act as extracellular chaperones and inhibit the self-association of the prototypical amyloidogenic Aβ peptide. The examples outlined in this review illustrate the widespread implications of functional dynamics and the power of NMR as an indispensable tool in molecular pharmacology and pathology.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Julijana Milojevic
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
39
|
Abstract
Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae-which shares sequence similarity to eukaryotic CNG and HCN channels-in the presence of a saturating concentration of cAMP. A short S4-S5 linker connects nearby voltage-sensing and pore domains to produce a non-domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies.
Collapse
|
40
|
Boulton S, Akimoto M, Akbarizadeh S, Melacini G. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia. J Biol Chem 2017; 292:6414-6428. [PMID: 28174302 DOI: 10.1074/jbc.m116.773697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/28/2017] [Indexed: 12/21/2022] Open
Abstract
The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics.
Collapse
Affiliation(s)
- Stephen Boulton
- From the Departments of Biochemistry and Biomedical Sciences and
| | - Madoka Akimoto
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sam Akbarizadeh
- Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- From the Departments of Biochemistry and Biomedical Sciences and .,Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
41
|
Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 2017; 542:60-65. [PMID: 28099415 DOI: 10.1038/nature20819] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Cyclic-nucleotide-gated channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5-Å-resolution single-particle electron cryo-microscopy structure of a cyclic-nucleotide-gated channel from Caenorhabditis elegans in the cyclic guanosine monophosphate (cGMP)-bound open state. The channel has an unusual voltage-sensor-like domain, accounting for its deficient voltage dependence. A carboxy-terminal linker connecting S6 and the cyclic-nucleotide-binding domain interacts directly with both the voltage-sensor-like domain and the pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of cyclic-nucleotide-gated channels and cyclic nucleotide modulation of related channels.
Collapse
Affiliation(s)
- Minghui Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Xiaoyuan Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ioannis Michailidis
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ye Gong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Deyuan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Huan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xueming Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650223, China.,Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming 650223, China.,Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
42
|
VanSchouwen B, Melacini G. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels. J Phys Chem B 2016; 120:10936-10950. [DOI: 10.1021/acs.jpcb.6b07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan VanSchouwen
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Giuseppe Melacini
- Department
of Chemistry and Chemical Biology, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4M1, Canada
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
43
|
Ufret-Vincenty CA, Klein RM, Collins MD, Rosasco MG, Martinez GQ, Gordon SE. Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels. ACTA ACUST UNITED AC 2016; 145:431-42. [PMID: 25918361 PMCID: PMC4411251 DOI: 10.1085/jgp.201511354] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphoinositides bind to a selective site in the proximal C-terminal region to regulate TRPV1. Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5′ position of the phosphoinositide.
Collapse
Affiliation(s)
| | - Rebecca M Klein
- University of Washington School of Medicine, Seattle, WA 98195
| | | | - Mario G Rosasco
- University of Washington School of Medicine, Seattle, WA 98195
| | | | | |
Collapse
|
44
|
Goldschen-Ohm MP, Klenchin VA, White DS, Cowgill JB, Cui Q, Goldsmith RH, Chanda B. Structure and dynamics underlying elementary ligand binding events in human pacemaking channels. eLife 2016; 5:e20797. [PMID: 27858593 PMCID: PMC5115869 DOI: 10.7554/elife.20797] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Although molecular recognition is crucial for cellular signaling, mechanistic studies have relied primarily on ensemble measures that average over and thereby obscure underlying steps. Single-molecule observations that resolve these steps are lacking due to diffraction-limited resolution of single fluorophores at relevant concentrations. Here, we combined zero-mode waveguides with fluorescence resonance energy transfer (FRET) to directly observe binding at individual cyclic nucleotide-binding domains (CNBDs) from human pacemaker ion channels critical for heart and brain function. Our observations resolve the dynamics of multiple distinct steps underlying cyclic nucleotide regulation: a slow initial binding step that must select a 'receptive' conformation followed by a ligand-induced isomerization of the CNBD. X-ray structure of the apo CNBD and atomistic simulations reveal that the isomerization involves both local and global transitions. Our approach reveals fundamental mechanisms underpinning ligand regulation of pacemaker channels, and is generally applicable to weak-binding interactions governing a broad spectrum of signaling processes.
Collapse
Affiliation(s)
| | - Vadim A Klenchin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| | - David S White
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States,Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - John B Cowgill
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Baron Chanda
- Department of Neuroscience, University of Wisconsin-Madison, Madison, United States,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, United States,
| |
Collapse
|
45
|
Kowal J, Chami M, Baumgartner P, Arheit M, Chiu PL, Rangl M, Scheuring S, Schröder GF, Nimigean CM, Stahlberg H. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 2015; 5:3106. [PMID: 24469021 PMCID: PMC4086158 DOI: 10.1038/ncomms4106] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/13/2013] [Indexed: 12/25/2022] Open
Abstract
Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorhizobium loti, analysed by electron crystallography and atomic force microscopy. Upon cAMP binding, the cyclic nucleotide-binding domains move vertically towards the membrane, and directly contact the S1–S4 voltage sensor domains. This is accompanied by a significant shift and tilt of the voltage sensor domain helices. In both states, the inner pore-lining helices are in an ‘open’ conformation. We propose a mechanism in which ligand binding can favour pore opening via a direct interaction between the cyclic nucleotide-binding domains and voltage sensors. This offers a simple mechanistic hypothesis for the coupling between ligand gating and voltage sensing in eukaryotic HCN channels. The molecular determinants underlying ligand gating of cyclic nucleotide-modulated ion channels remain unclear. Kowal et al. determine the conformational changes underlying cAMP binding to the bacterial channel MloK1, and propose a mechanism for coupling of ligand gating and voltage sensing in eukaryotic HCN channels.
Collapse
Affiliation(s)
- Julia Kowal
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Paul Baumgartner
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marcel Arheit
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martina Rangl
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France
| | - Gunnar F Schröder
- 1] Forschungszentrum Jülich, Institute of Complex Systems, ICS-6: Structural Biochemistry, 52425 Jülich, Germany [2] Department of Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Crina M Nimigean
- Departments of Anesthesiology, Physiology and Biophysics, and Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, New York 10065, USA
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
46
|
Börger C, Schünke S, Lecher J, Stoldt M, Winkhaus F, Kaupp UB, Willbold D. Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:243-246. [PMID: 25324217 DOI: 10.1007/s12104-014-9583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells. Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides shifting the activation potential to more positive values. Although several high-resolution structures of CNBDs from HCN and CNG channels are available, the gating mechanism for murine HCN2 channel, which leads to the opening of the channel pore, is still poorly understood. As part of a structural investigation, here, we report the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker.
Collapse
Affiliation(s)
- Claudia Börger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Sven Schünke
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Justin Lecher
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Matthias Stoldt
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Friederike Winkhaus
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175, Bonn, Germany
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175, Bonn, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| |
Collapse
|
47
|
Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment. PLoS One 2015; 10:e0138943. [PMID: 26407004 PMCID: PMC4583268 DOI: 10.1371/journal.pone.0138943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/06/2015] [Indexed: 12/27/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.
Collapse
|
48
|
Tapping the translation potential of cAMP signalling: molecular basis for selectivity in cAMP agonism and antagonism as revealed by NMR. Biochem Soc Trans 2015; 42:302-7. [PMID: 24646235 DOI: 10.1042/bst20130282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic CBDs (cAMP-binding domains) control multiple cellular functions (e.g. phosphorylation, guanine exchange and ion channel gating). Hence the manipulation of cAMP-dependent signalling pathways has a high translational potential. However, the ubiquity of eukaryotic CBDs also poses a challenge in terms of selectivity. Before the full translational potential of cAMP signalling can be tapped, it is critical to understand the structural basis for selective cAMP agonism and antagonism. Recent NMR investigations have shown that structurally homologous CBDs respond differently to several CBD ligands and that these unexpected differences arise at the level of either binding (i.e. affinity) or allostery (i.e. modulation of the autoinhibitory equilibria). In the present article, we specifically address how the highly conserved CBD fold binds cAMP with markedly different affinities in PKA (protein kinase A) relative to other eukaryotic cAMP receptors, such as Epac (exchange protein directly activated by cAMP) and HCN (hyperpolarization-activated cyclic-nucleotide-modulated channel). A major emerging determinant of cAMP affinity is hypothesized to be the position of the autoinhibitory equilibrium of the apo-CBD, which appears to vary significantly across different CBDs. These analyses may assist the development of selective CBD effectors that serve as potential drug leads for the treatment of cardiovascular diseases.
Collapse
|
49
|
VanSchouwen B, Akimoto M, Sayadi M, Fogolari F, Melacini G. Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels. J Biol Chem 2015; 290:17642-17654. [PMID: 25944904 DOI: 10.1074/jbc.m115.651877] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Madoka Akimoto
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Maryam Sayadi
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Federico Fogolari
- Department of Biomedical Science and Technology, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Giuseppe Melacini
- Departments of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
50
|
DeBerg HA, Bankston JR, Rosenbaum JC, Brzovic PS, Zagotta WN, Stoll S. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b. Structure 2015; 23:734-44. [PMID: 25800552 DOI: 10.1016/j.str.2015.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cyclic AMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here, we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance, we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels.
Collapse
Affiliation(s)
- Hannah A DeBerg
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John R Bankston
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Joel C Rosenbaum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|