1
|
Li X, Zhao S, Li M, Xing X, Xie J, Wang M, Xu A, Zhao Q, Zhang J. Wogonoside ameliorates oxidative damage in tubular epithelial cells of diabetic nephropathy by modulating the HNF4A-NRF2 axis. Int Immunopharmacol 2025; 152:114481. [PMID: 40086061 DOI: 10.1016/j.intimp.2025.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease, presents significant challenges due to its complex pathophysiology and limited effective treatment options. Increasing evidence suggests that tubular injury is an early event preceding glomerular damage in DN. Wogonoside, a natural flavonoid derived from Scutellaria baicalensis, has not been previously reported for DN treatment. This study aims to investigate the protective effects and underlying mechanisms of wogonoside on renal tubular epithelial cells (TECs) in DN. The results showed that wogonoside mitigates high glucose (HG)-induced oxidative stress in TCMK-1 cells. Additionally, wogonoside protects renal function, reduces renal tubular damage, and modulates the oxidative stress response in HFD/STZ-induced DN mouse model. Importantly, our results indicated that hepatocyte nuclear factor 4 alpha (HNF4A) expression is downregulated in the kidneys of DN mice and HG-induced TCMK-1 cells. Wogonoside can bind to HNF4A, upregulate its expression, and promote nuclear translocation. Bioinformatic analysis suggested that NRF2 might be a downstream signaling of HNF4A. This was confirmed by Co-IP and experiments involving HNF4A overexpression and NRF2 knockdown, which demonstrated that wogonoside regulates the HNF4A-NRF2 axis to alleviate oxidative stress in TECs. Collectively, these findings identify wogonoside as a possible therapeutic agent for DN, highlighting HNF4A as a promising target for intervention.
Collapse
Affiliation(s)
- Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shuyan Zhao
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Xie
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Mo Wang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jian Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Kim JS, Kim KH, Heo JY, Choi MK, Yeo MK. Dual Role of HNF4α in Colorectal Adenocarcinoma During Carcinogenesis and Metastasis. Cells 2025; 14:599. [PMID: 40277924 PMCID: PMC12025726 DOI: 10.3390/cells14080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α), a highly conserved member of the nuclear receptor superfamily of transcription factors, has been identified as a promising therapeutic candidate for colorectal adenocarcinoma (CRAC). This study was to investigate the significance of HNF4α in CRAC and mechanisms governing its function. The expression patterns and clinical relevance of HNF4α were evaluated in relation to nuclear factor kappa B (NF-κb), Yes-associated protein (YAP), and epithelial-mesenchymal transition markers. HNF4α exhibited upregulation during carcinogenesis compared to normal and precancerous lesions. The overexpression and inhibition of HNF4α were correlated with the modulation of CRAC cell migration and invasion, either promoting or suppressing these processes. Notably, levels of HNF4α were significantly diminished in metastatic and poorly differentiated CRAC relative to primary CRAC samples. Moreover, reduced HNF4α levels were associated with unfavorable prognostic factors. The inhibition of HNF4A induced a decrease in NF-κb protein levels, concomitant with an increase in YAP. Our results indicate a dual role of HNF4α in tumor progression, either as a promotor or inhibitor, depending on the pathologic condition of CRAC and the related signaling pathways. HNF4α exhibits a complex role, whereby its overexpression is linked to early carcinogenesis and reduced expression is associated with the progression and metastasis of CRAC.
Collapse
Affiliation(s)
- Ju Seok Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea;
| | - Kyung-Hee Kim
- Department of Pathology, Translational Immunology Institute, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea; (K.-H.K.); (M.K.C.)
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea;
- System Network Inflammation Control Research Center, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea
| | - Min Kyung Choi
- Department of Pathology, Translational Immunology Institute, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea; (K.-H.K.); (M.K.C.)
| | - Min-Kyung Yeo
- Department of Pathology, Translational Immunology Institute, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea; (K.-H.K.); (M.K.C.)
- System Network Inflammation Control Research Center, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Yang L, Li P, Zhao J, Bai Z, Zeng G, Liu X, Zou B, Li J. CAT and CXCL8 are crucial cofactors for the progression of nonalcoholic steatohepatitis to hepatocellular carcinoma, the immune infiltration and prognosis of hepatocellular carcinoma. Discov Oncol 2025; 16:272. [PMID: 40053253 PMCID: PMC11889291 DOI: 10.1007/s12672-025-02051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a malignant tumour characterized by high morbidity and mortality. Immunotherapy is an important treatment newly approved for the treatment for advanced hepatocellular carcinoma. However, how NASH progresses to HCC and the association between the immune signature in HCC and patient prognosis remain unclear. METHODS Data from NASH and NASH-HCC patients were obtained from the GEO database. Differentially expressed genes were screened and hub genes were identified. The enrichment analysis, clustering, cibersort, ssGSEA, Xcell and immune checkpoint expression data of the samples were analysed. Survival analysis of dual genes was performed using TCGA liver cancer samples and the lasso regression model, and Cox regression analysis was conducted. Pathology specimens from 21 NASH-associated hepatocellular carcinoma patients were collected, and immunohistochemical staining was used to verify gene expression. RESULTS Compared with HCC patients with high CAT and low CXCL8 expression, those with low CAT and high CXCL8 expression had significantly higher levels of infiltration of multiple immune cell types and the common immune checkpoints CD274, PDCD1 and CTLA4. Furthermore, CAT was a protective factor, and CXCL8 was a risk factor for the prognosis of HCC patients. CONCLUSION CAT and CXCL8 might impact NASH-HCC progression. HCC patients with low CAT and high CXCL8 expression might have more extensive immune cell infiltration and stronger tumour immune escape. However, probably due to their different effects on CD8 + T cells and reactive oxygen species, increased expression of CAT contributes to improved prognosis in HCC patients, whereas increased expression of CXCL8 leads to a poor prognosis.
Collapse
Affiliation(s)
- Liang Yang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - JiaLi Zhao
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Guifang Zeng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China.
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
4
|
Cloutier G, Seltana A, Fallah S, Beaulieu JF. Integrin α7β1 represses intestinal absorptive cell differentiation. Exp Cell Res 2023; 430:113723. [PMID: 37499931 DOI: 10.1016/j.yexcr.2023.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Intestinal epithelial cell differentiation is a highly controlled and orderly process occurring in the crypt so that cells migrating out to cover the villi are already fully functional. Absorptive cell precursors, which originate from the stem cell population located in the lower third of the crypt, are subject to several cycles of amplification in the transit amplifying (TA) zone, before reaching the terminal differentiation compartment located in the upper third. There is a large body of evidence that absorptive cell differentiation is halted in the TA zone through various epigenetic, transcriptional and intracellular signalling events or mechanisms allowing the transient expansion of this cell population but how these mechanisms are themself regulated remains obscure. One clue can be found in the epithelial cell-matrix microenvironment located all along the crypt-villus axis. Indeed, a previous study from our group revealed that α5-subunit containing laminins such as lamimin-511 and 512 inhibit early stages of differentiation in Caco-2/15 cells. Among potential receptors for laminin 511/512 is the integrin α7β1, which has previously been reported to be expressed in the human intestinal crypts and in early stages of Caco-2/15 cell differentiation. In this study, the effects of knocking down ITGA7 in Caco-2/15 cells were studied using shRNA and CRISPR/Cas9 strategies. Abolition of the α7 integrin subunit resulted in a significant increase in the level of differentiation and polarization markers as well as the morphological features of intestinal cells. Activities of focal adhesion kinase and Src kinase were both reduced in α7-knockdown cells while the three major intestinal pro-differentiation factors CDX2, HNFα1 and HNF4α were overexpressed. Two epigenetic events associated with intestinal differentiation, the reduction of tri-methylated lysine 27 on histone H3 and the increase of acetylation of histone H4 were also observed in α7-knockdown cells. On the other hand, the ablation of α7 had no effect on cell proliferation. In conclusion, these data indicate that integrin α7β1 acts as a major repressor of absorptive cell terminal differentiation in the Caco-2/15 cell model and suggest that the laminin-α7β1 integrin interaction occurring in the transit amplifying zone of the adult intestine is involved in the transient halting of absorptive cell terminal differentiation.
Collapse
Affiliation(s)
- Gabriel Cloutier
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Amira Seltana
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
5
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
6
|
Bayliak MM, Vatashchuk MV, Gospodaryov DV, Hurza VV, Demianchuk OI, Ivanochko MV, Burdyliuk NI, Storey KB, Lushchak O, Lushchak VI. High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects. Biochim Biophys Acta Gen Subj 2022; 1866:130226. [PMID: 35987369 DOI: 10.1016/j.bbagen.2022.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes. METHODS Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks. RESULTS The HFFD had no effect on body mass but activated fructolysis and glycolysis and induced inflammation and oxidative stress with a concomitant increase in activity of antioxidant enzymes in the mouse liver. HFFD-fed mice also showed lower mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and slightly increased intensity of mitochondrial respiration in liver compared to mice on the standard diet. No significant effects of HFFD on transcription of PDK2 and PGC1α, a peroxisome proliferator-activated receptor co-activator-1α, or protein levels of p-AMPK, an active form of AMP-activated protein kinase, were found. The addition of AKG to HFFD decreased oxidized glutathione levels, did not affect levels of lipid peroxides and PDK4 transcripts but increased activities of hexokinase and phosphofructokinase in mouse liver. CONCLUSIONS Supplementation with AKG had weak modulating effects on HFFD-induced oxidative stress and changes in energetics in mouse liver. GENERAL SIGNIFICANCE Our research expands the understanding of diet-induced metabolic switching and elucidates further roles of alpha-ketoglutarate as a metabolic regulator.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Myroslava V Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Viktoria V Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Marian V Ivanochko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
7
|
Role of Bile Acids and Nuclear Receptors in Acupuncture in Improving Crohn's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5814048. [PMID: 35600949 PMCID: PMC9122672 DOI: 10.1155/2022/5814048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Bile acids (BAs) can be used as effector molecules to regulate physiological processes in the gut, and NRs are important receptors for bile acid signaling. Relevant studies have shown that NRs are closely related to the occurrence of Crohn's disease (CD). Although the mechanism of NRs in CD has not been clarified completely, growing evidence shows that NRs play an important role in regulating intestinal immunity, mucosal barrier, and intestinal flora. NRs can participate in the progress of CD by mediating inflammation, immunity, and autophagy. As the important parts of traditional Chinese medicine (TCM) therapy, acupuncture and moxibustion in the treatment of CD curative mechanism can get a lot of research support. At the same time, acupuncture and moxibustion can regulate the changes of related NRs. Therefore, to explore whether acupuncture can regulate BA circulation and NRs expression and then participate in the disease progression of CD, a new theoretical basis for acupuncture treatment of CD is provided.
Collapse
|
8
|
Koudoufio M, Feldman F, Ahmarani L, Delvin E, Spahis S, Desjardins Y, Levy E. Intestinal protection by proanthocyanidins involves anti-oxidative and anti-inflammatory actions in association with an improvement of insulin sensitivity, lipid and glucose homeostasis. Sci Rep 2021; 11:3878. [PMID: 33594093 PMCID: PMC7886900 DOI: 10.1038/s41598-020-80587-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Recent advances have added another dimension to the complexity of cardiometabolic disorders (CMD) by directly implicating the gastrointestinal tract as a key player. In fact, multiple factors could interfere with intestinal homeostasis and elicit extra-intestinal CMD. As oxidative stress (OxS), inflammation, insulin resistance and lipid abnormalities are among the most disruptive events, the aim of the present study is to explore whether proanthocyanidins (PACs) exert protective effects against these disorders. To this end, fully differentiated intestinal Caco-2/15 cells were pre-incubated with PACs with and without the pro-oxidant and pro-inflammatory iron/ascorbate (Fe/Asc). PACs significantly reduce malondialdehyde, a biomarker of lipid peroxidation, and raise antioxidant SOD2 and GPx via the increase of NRF2/Keap1 ratio. Likewise, PACs decrease the inflammatory agents TNFα and COX2 through abrogation of NF-κB. Moreover, according to crucial biomarkers, PACs result in lipid homeostasis improvement as reflected by enhanced fatty acid β-oxidation, diminished lipogenesis, and lowered gluconeogenesis as a result of PPARα, γ and SREBP1c modulation. Since these metabolic routes are mainly regulated by insulin sensitivity, we have examined the insulin signaling pathway and found an upregulation of phosphoPI3K/Akt and downregulation of p38-MAPK expressions, indicating beneficial effects in response to PACs. Taken together, PACs display the potential to counterbalance OxS and inflammation in Fe/Asc-exposed intestinal cells, in association with an improvement of insulin sensitivity, which ameliorates lipid and glucose homeostasis.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, CHU Sainte-Justine, Université de Montréal, 3175 Ste Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Nutrition, Université de Montréal, Montreal, QC, H3T 1A8, Canada.,Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Francis Feldman
- Research Centre, CHU Sainte-Justine, Université de Montréal, 3175 Ste Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Nutrition, Université de Montréal, Montreal, QC, H3T 1A8, Canada.,Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Lena Ahmarani
- Research Centre, CHU Sainte-Justine, Université de Montréal, 3175 Ste Catherine Road, Montreal, QC, H3T 1C5, Canada.,Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Edgard Delvin
- Research Centre, CHU Sainte-Justine, Université de Montréal, 3175 Ste Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Biochemistry, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Schohraya Spahis
- Research Centre, CHU Sainte-Justine, Université de Montréal, 3175 Ste Catherine Road, Montreal, QC, H3T 1C5, Canada.,Department of Nutrition, Université de Montréal, Montreal, QC, H3T 1A8, Canada.,Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Université de Montréal, 3175 Ste Catherine Road, Montreal, QC, H3T 1C5, Canada. .,Department of Nutrition, Université de Montréal, Montreal, QC, H3T 1A8, Canada. .,Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
9
|
He Y, Chen L, Chen K, Sun Y. Immunohistochemical analysis of HNF4A and β-catenin expression to predict low-grade dysplasia in the colitis-neoplastic sequence. Acta Biochim Biophys Sin (Shanghai) 2021; 53:94-101. [PMID: 33300557 DOI: 10.1093/abbs/gmaa147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Animal studies indicated that P1 promoter-driven hepatocyte nuclear factor 4 alpha (HFN4A) prevents carcinogenesis in colitis. But the function of total HNF4A protein has not been fully investigated, and it was assumed to be involved in the colitis-neoplastic sequence. The aim of this study was to determine the clinical value of total P1-/P2-driven HNF4A combined with β-catenin in the colitis-neoplastic sequence. A total of 69 samples, including 4 normal colon tissues, 16 sporadic colorectal cancer (CRC) tissues, 35 inflammatory bowel disease (IBD) tissues, and 14 IBD-associated low-grade dysplasia tissues, were collected to assess P1-/P2-driven HNF4A and β-catenin expressions by immunohistochemical assay. In addition, a colonic epithelial cell line Caco2 with stable P1-/P2-driven HNF4A knockdown was constructed. β-Catenin expression and skeleton structure were determined in the transfected cells by western blot analysis and immunofluorescence assay respectively. Increased expression of nuclear P1-/P2-driven HNF4A was observed in the colitis-associated colorectal neoplasm and sporadic CRC samples, compared with that in colitis samples. The parallel alterations between cytoplasmic β-catenin and nuclear P1-/P2-driven HNF4A were also verified. Silencing of P1-/P2-driven HNF4A expression in Caco2 cells decreased β-catenin expression and F-actin formation. Our results confirmed the elevated expressions of nuclear P1-/P2-driven HNF4A and cytoplasmic β-catenin in the colitis-neoplastic sequence, and both of them may be used as potential biomarkers to predict low-grade dysplasia.
Collapse
Affiliation(s)
- Yiping He
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lezong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Chen
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Genomic Analysis of Oral Lichen Planus and Related Oral Microbiome Pathogens. Pathogens 2020; 9:pathogens9110952. [PMID: 33207582 PMCID: PMC7697643 DOI: 10.3390/pathogens9110952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease affecting the oral mucosa. The pathogenesis of OLP is incompletely understood but is thought to be related to the immune system. As the oral cavity is a major reservoir and transmission gateway for bacteria, viruses, and fungi, the microbial composition of the oral cavity could play a role in the pathogenesis of OLP. However, limited by analytic technology and knowledge of the microbial community in the oral cavity, it is not yet clear which pathogens are associated with OLP. Next generation sequencing (NGS) is a powerful tool to identify pathogens for many infectious diseases. In this study, we compared the host cell gene expression profiles and the microbial profiles between OLP patients and matched healthy individuals. We identified the activation of the hepatocyte nuclear factor alpha (HNF4A) network in OLP patients and potential pathogens, including Corynebacterium matruchotii, Fusobacterium periodonticum, Streptococcus intermedius, Streptococcus oralis, and Prevotella denticola. Prevotella denticola is capable of activating the HNF4A gene network. Our findings shed light on the previously elusive association of OLP with various diseases like hepatitis, and indicate that OLP is a T-helper type 17 (Th17) mediated mucosal inflammatory process. The identified molecular pathways and microbes could be used to inform future investigations into OLP pathogenesis and to develop novel therapeutics for OLP treatment.
Collapse
|
11
|
Glycomacropeptide Prevents Iron/Ascorbate-Induced Oxidative Stress, Inflammation and Insulin Sensitivity with an Impact on Lipoprotein Production in Intestinal Caco-2/15 Cells. Nutrients 2020; 12:nu12041175. [PMID: 32331475 PMCID: PMC7231176 DOI: 10.3390/nu12041175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background. Metabolic Syndrome (MetS), a major worldwide concern for the public health system, refers to a cluster of key metabolic components, and represents a risk factor for diabetes and cardiovascular diseases. As oxidative stress (OxS) and inflammation are the major triggers of insulin sensitivity (IS), a cardinal MetS feature, the principal aim of the present work is to determine whether glycomacropeptide (GMP), a milk-derived bioactive peptide, exerts beneficial effects on their expression. Methods. Fully differentiated intestinal Caco-2/15 cells are used to evaluate the preventive action of 2 mg/mL GMP against OxS and inflammation induced by the mixture iron-ascorbate (Fe/Asc) (200 μM:2 mM). The potency of GMP of decreasing the production of lipoproteins, including chylomicrons (CM), very-low-density lipoproteins (VLDL) and low-density lipoproteins (LDL) is also assessed. Results. The administration of GMP significantly reduces malondialdehyde, a biomarker of lipid peroxidation, and raises superoxide dismutase 2 and glutathione peroxidase via the induction of the nuclear factor erythroid 2–related factor 2, a transcription factor, which orchestrates cellular antioxidant defenses. Similarly, GMP markedly lowers the inflammatory agents tumor necrosis factor-α and cyclooxygenase-2 via abrogation of the nuclear transcription factor-kB. Moreover, GMP-treated cells show a down-regulation of Fe/Asc-induced mitogen activated protein kinase pathway, suggesting greater IS. Finally, GMP decreases the production of CM, VLDL, and LDL. Conclusions. Our results highlight the effectiveness of GMP in attenuating OxS, inflammation and lipoprotein biogenesis, as well as improving IS, the key components of MetS. Further investigation is needed to elucidate the mechanisms mediating the preventive action of GMP.
Collapse
|
12
|
Sané A, Ahmarani L, Delvin E, Auclair N, Spahis S, Levy E. SAR1B GTPase is necessary to protect intestinal cells from disorders of lipid homeostasis, oxidative stress, and inflammation. J Lipid Res 2019; 60:1755-1764. [PMID: 31409740 PMCID: PMC6795079 DOI: 10.1194/jlr.ra119000119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic defects in SAR1B GTPase inhibit chylomicron (CM) trafficking to the Golgi and result in a huge intraenterocyte lipid accumulation with a failure to release CMs and liposoluble vitamins into the blood circulation. The central aim of this study is to test the hypothesis that SAR1B deletion (SAR1B−/−) disturbs enterocyte lipid homeostasis (e.g., FA β-oxidation and lipogenesis) while promoting oxidative stress and inflammation. Another issue is to compare the impact of SAR1B−/− to that of its paralogue SAR1A−/− and combined SAR1A−/−/B−/−. To address these critical issues, we have generated Caco-2/15 cells with a knockout of SAR1A, SAR1B, or SAR1A/B genes. SAR1B−/− results in lipid homeostasis disruption, reflected by enhanced mitochondrial FA β-oxidation and diminished lipogenesis in intestinal absorptive cells via the implication of PPARα and PGC1α transcription factors. Additionally, SAR1B−/−cells, which mimicked enterocytes of CM retention disease, spontaneously disclosed inflammatory and oxidative characteristics via the implication of NF-κB and NRF2. In most conditions, SAR1A−/− cells showed a similar trend, albeit less dramatic, but synergetic effects were observed with the combined defects of the two SAR1 paralogues. In conclusion, SAR1B and its paralogue are needed not only for CM trafficking but also for lipid homeostasis, prooxidant/antioxidant balance, and protection against inflammatory processes.
Collapse
Affiliation(s)
- Alain Sané
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Lena Ahmarani
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Nikolas Auclair
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada .,Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Weizman E, Levy O. The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun Biol 2019; 2:282. [PMID: 31396562 PMCID: PMC6677750 DOI: 10.1038/s42003-019-0543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
Extreme weather events frequency and scale are altered due to climate change. Symbiosis between corals and their endosymbiotic-dinoflagellates (Symbiodinium) is susceptible to these events and can lead to what is known as bleaching. However, there is evidence for coral adaptive plasticity in the role of epigenetic that have acclimated to high-temperature environments. We have implemented ATAC-seq and RNA-seq to study the cnidarian-dinoflagellate model Exaptasia pallida (Aiptasia) and expose the role of chromatin-dynamics in response to thermal-stress. We have identified 1309 genomic sites that change their accessibility in response to thermal changes. Moreover, apo-symbiotic Aiptasia accessible sites were enriched with NFAT, ATF4, GATA3, SOX14, and PAX3 motifs and expressed genes related to immunological pathways. Symbiotic Aiptasia accessible sites were enriched with NKx3-1, HNF4A, IRF4 motifs and expressed genes related to oxidative-stress pathways. Our work opens a new path towards understanding thermal-stress gene regulation in association with gene activity and chromatin-dynamics.
Collapse
Affiliation(s)
- Eviatar Weizman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| |
Collapse
|
14
|
Development of Caco-2 cells-based gene reporter assays and evaluation of herb-drug interactions involving CYP3A4 and CYP2D6 gene expression. Chem Biol Interact 2019; 303:79-89. [PMID: 30772286 DOI: 10.1016/j.cbi.2019.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/03/2019] [Accepted: 01/25/2019] [Indexed: 01/03/2023]
Abstract
The indiscriminate use of medicinal plants and herbal medicinal products concomitantly with conventional drugs may result in herb-drug interactions that may lead to fluctuations in drug bioavailability, therapeutic failure, and/or toxic effects. CYP450 enzymes play an important role in drug biotransformation and herb-drug interactions. Thus, the aim of this study was to develop and apply Caco-2 cells-based gene reporter assays to study in vitro the potential occurrence of CYP3A4 and CYP2D6 gene expression modulation by standardized extracts of selected medicinal plants. Reporter cell lines developed showed a significant increase in CYP3A4 and CYP2D6 reporter fluorescent emission, 4 and 16-fold respectively, when compared to the controls. The standardized extracts of Cecropia glaziovii, Bauhinia forficata and Echinacea sp. significantly increased CYP3A4 reporter fluorescence, and those of Ilex paraguariensis, Bauhinia forficata and Echinacea sp. significantly decreased CYP2D6 reporter fluorescence in Caco-2 cells-based gene reporter assays. The data obtained suggest that CYP3A4 and CYP2D6 gene expression seem to be modulated by the extracts tested. In addition, the reporter cell lines developed are functional assays that could be used to study drug-drug and herb-drug interactions during the research and development of new drugs.
Collapse
|
15
|
HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide. Sci Rep 2019; 9:4200. [PMID: 30862908 PMCID: PMC6414548 DOI: 10.1038/s41598-019-41061-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 11/24/2022] Open
Abstract
Mutations in the HNF4A gene cause MODY1 and are associated with an increased risk of Type 2 diabetes mellitus. On the other hand, incretins are hormones that potentiate reductions in blood glucose levels. Given the established role of incretin-based therapy to treat diabetes and metabolic disorders, we investigated a possible regulatory link between intestinal epithelial HNF4α and glucose-dependent insulinotropic polypeptide (GIP), an incretin that is specifically produced by gut enteroendocrine cells. Conditional deletion of HNF4α in the whole intestinal epithelium was achieved by crossing Villin-Cre and Hnf4αloxP/loxP C57BL/6 mouse models. GIP expression was measured by qPCR, immunofluorescence and ELISA. Gene transcription was assessed by luciferase and electrophoretic mobility shift assays. Metabolic parameters were analyzed by indirect calorimetry and dual-energy X-ray absorptiometry. HNF4α specific deletion in the intestine led to a reduction in GIP. HNF4α was able to positively control Gip transcriptional activity in collaboration with GATA-4 transcription factor. Glucose homeostasis and glucose-stimulated insulin secretion remained unchanged in HNF4α deficient mice. Changes in GIP production in these mice did not impact nutrition or energy metabolism under normal physiology but led to a reduction of bone area and mineral content, a well described physiological consequence of GIP deficiency. Our findings point to a novel regulatory role between intestinal HNF4α and GIP with possible functional impact on bone density.
Collapse
|
16
|
Ko HL, Zhuo Z, Ren EC. HNF4α Combinatorial Isoform Heterodimers Activate Distinct Gene Targets that Differ from Their Corresponding Homodimers. Cell Rep 2019; 26:2549-2557.e3. [DOI: 10.1016/j.celrep.2019.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/11/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
|
17
|
Nuclear Receptors in the Pathogenesis and Management of Inflammatory Bowel Disease. Mediators Inflamm 2019; 2019:2624941. [PMID: 30804707 PMCID: PMC6360586 DOI: 10.1155/2019/2624941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/01/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Previous epidemiological and genetic studies have documented the association of NRs with the risk of inflammatory bowel disease (IBD). Although the mechanisms of action of NRs in IBD have not been fully established, accumulating evidence has demonstrated that NRs play complicated roles in regulating intestinal immunity, mucosal barriers, and intestinal flora. As one of the first-line medications for the treatment of IBD, 5-aminosalicylic acid (5-ASA) activates peroxisome proliferator-activated receptor gamma (PPARγ) to attenuate colitis. The protective roles of rifaximin and rifampicin partly depend on promoting pregnane X receptor (PXR) expression. The aims of this review are to discuss the roles of several important NRs, such as PPARγ, PXR, vitamin D receptor (VDR), farnesoid X receptor (FXR), and RAR-related orphan receptor gammat (RORγt), in the pathogenesis of IBD and management strategies based on targeting these receptors.
Collapse
|
18
|
The Caenorhabditis elegans Oxidative Stress Response Requires the NHR-49 Transcription Factor. G3-GENES GENOMES GENETICS 2018; 8:3857-3863. [PMID: 30297383 PMCID: PMC6288832 DOI: 10.1534/g3.118.200727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The overproduction of reactive oxygen species (ROS) in cells can lead to the development of diseases associated with aging. We have previously shown that C. elegansBRAP-2 (Brca1 associated binding protein 2) regulates phase II detoxification genes such as gst-4, by increasing SKN-1 activity. Previously, a transcription factor (TF) RNAi screen was conducted to identify potential activators that are required to induce gst-4 expression in brap-2(ok1492) mutants. The lipid metabolism regulator NHR-49/HNF4 was among 18 TFs identified. Here, we show that knockdown of nhr-49 suppresses the activation of gst-4 caused by brap-2 inactivation and that gain-of-function alleles of nhr-49 promote gst-4 expression. We also demonstrate that nhr-49 and its cofactor mdt-15 are required to express phase II detoxification enzymes upon exposure to chemicals that induce oxidative stress. Furthermore, we show that NHR-49 and MDT-15 enhance expression of skn-1a/c. These findings identify a novel role for NHR-49 in ROS detoxification by regulating expression of SKN-1C and phase II detoxification genes.
Collapse
|
19
|
Lee HJ, Georgiadou A, Walther M, Nwakanma D, Stewart LB, Levin M, Otto TD, Conway DJ, Coin LJ, Cunnington AJ. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci Transl Med 2018; 10:eaar3619. [PMID: 29950443 PMCID: PMC6326353 DOI: 10.1126/scitranslmed.aar3619] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA sequencing of blood from infected patients. We performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes, which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Coexpression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ-related genes, together with inadequate suppression of type 1 interferon signaling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying new treatments.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael Walther
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Lindsay B Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael Levin
- Section of Paediatrics, Imperial College, London W2 1PG, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
20
|
Wang S, Chen J, Jiang D, Zhang Q, You C, Tocher DR, Monroig Ó, Dong Y, Li Y. Hnf4α is involved in the regulation of vertebrate LC-PUFA biosynthesis: insights into the regulatory role of Hnf4α on expression of liver fatty acyl desaturases in the marine teleost Siganus canaliculatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:805-815. [PMID: 29352428 DOI: 10.1007/s10695-018-0470-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is an important metabolic pathway in vertebrates, especially fish, considering they are the major source of n-3 LC-PUFA in the human diet. However, most fish have only limited capability for biosynthesis of LC-PUFA. The rabbitfish (Siganus canaliculatus) is able to synthesize LC-PUFA as it has all the key enzyme activities required including Δ6Δ5 Fads2, Δ4 Fads2, Elovl5, and Elovl4. We previously reported a direct interaction between the transcription factor Hnf4α and the promoter regions of Δ4 and Δ6Δ5 Fads2, which suggested that Hnf4α was involved in the transcriptional regulation of fads2 in rabbitfish. For functionally investigating it further, a full-length cDNA of 1736-bp-encoding rabbitfish Hnf4α with 454 amino acids was cloned, which was highly expressed in intestine, followed by liver and eyes. Similar to the expression characteristics of its target genes Δ4 and Δ6Δ5 fads2, levels of hnf4α mRNA in liver and eyes were higher in fish reared at low salinity than those reared in high salinity. After the rabbitfish primary hepatocytes were, respectively, incubated with alverine, benfluorex or BI6015, which were anticipated agonists or antagonist for Hnf4α, the mRNA level of Δ6Δ5 and Δ4 fads2 displayed a similar change tendency with that of hnf4α mRNA. Furthermore, when the mRNA level of hhf4α was knocked down using siRNA, the expression of Δ6Δ5 and Δ4 fads2 also decreased. Together, these data suggest that Hnf4α is involved in the transcriptional regulation of LC-PUFA biosynthesis, specifically, by targeting Δ4 and Δ6Δ5 fads2 in rabbitfish.
Collapse
Affiliation(s)
- Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Junliang Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Danli Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Qinghao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Óscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Yewei Dong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
- School of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuanyou Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
21
|
Yu D, Chen G, Pan M, Zhang J, He W, Liu Y, Nian X, Sheng L, Xu B. High fat diet-induced oxidative stress blocks hepatocyte nuclear factor 4α and leads to hepatic steatosis in mice. J Cell Physiol 2018; 233:4770-4782. [PMID: 29150932 DOI: 10.1002/jcp.26270] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Dongsheng Yu
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Gang Chen
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - Minglin Pan
- Department of Endocrinology; The Second Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu China
| | - Jia Zhang
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Wenping He
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Yang Liu
- Department of Gastroenterology and Hepatology; Zhongda Hospital; Nanjing Jiangsu China
- Institute of Gastroenterology and Hepatology; School of Medicine; Southeast University; Nanjing Jiangsu China
| | - Xue Nian
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Liang Sheng
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Bin Xu
- Department of Internal Medicine; Division of Metabolism, Endocrinology and Diabetes; University of Michigan Medical Center; Ann Arbor Michigan
| |
Collapse
|
22
|
Lepage M, Seltana A, Thibault MP, Tremblay É, Beaulieu JF. Knockdown of laminin α5 stimulates intestinal cell differentiation. Biochem Biophys Res Commun 2018; 495:1510-1515. [PMID: 29198708 DOI: 10.1016/j.bbrc.2017.11.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/25/2023]
Abstract
Interactions between cells and the extracellular matrix regulate a wide range of cell processes such as proliferation and differentiation. Laminins are major components of the basement membrane that actively participate in most biological functions via their interactions with a variety of specific cell receptors. The α5-containing laminins (LAMA5) are one of the three main types of laminins identified at the epithelial basal lamina in the adult intestine. The aim of the present study was to investigate the role of α5-containing laminins on intestinal cell proliferation and differentiation. Using an shRNA targeting approach, the effects of knocking down the expression of LAMA5 were investigated in the enterocytic-like Caco-2/15 cell line, a well-characterized model for intestinal cell differentiation. Surprisingly, the abolition of the laminin α5 chain resulted in a drastic increase in the differentiation marker sucrase-isomaltase which was correctly expressed at the apical pole of the cells as observed by indirect immunofluorescence. Transient increases of dipeptidylpeptidase IV, villin, CDX2, HNF-1α, HNF-4α and transepithelial resistance as well as an apparent redistribution of the junctional components ZO-1 and E-cadherin were also observed at early stages of differentiation but no specific effect was observed on cell proliferation as evaluated by BrdU incorporation. Taken together, these data suggest that α5-containing laminins repress intestinal differentiation in its early stages.
Collapse
Affiliation(s)
- Manon Lepage
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Amira Seltana
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Pier Thibault
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Éric Tremblay
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
23
|
Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR, Storch J, Córsico B. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1587-1594. [PMID: 28919479 DOI: 10.1016/j.bbalip.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia María Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Lisandro Jorge Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gisela Raquel Franchini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Korošec T, Tomažin U, Horvat S, Keber R, Salobir J. The diverse effects of α- and γ-tocopherol on chicken liver transcriptome. Poult Sci 2017; 96:667-680. [PMID: 27587731 DOI: 10.3382/ps/pew296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
α-Tocopherol is the form of vitamin E with the highest biological value and is almost exclusively considered as vitamin E in feed and feed supplements. Because γ-tocopherol, the predominant form of vitamin E naturally present in chicken feed, is not considered as a source of vitamin E, its re-evaluation with newer methods might be important.Despite γ-tocopherol's lower estimated biological value, it has been shown to be effective in reducing reactive nitrogen species, regulating immune and inflammatory processes, and diminishing the risk of metabolic perturbations and associated diseases. A 30-day nutritional trial in broiler chickens (Ross 308) was conducted to investigate how specific forms of vitamin E (α- and γ-tocopherol) and their combination impact liver gene expression when oxidative susceptibility of the organism is induced by high n-3 polyunsaturated fatty acids (PUFA) intake (linseed oil). Thirty-six one-day-old male broilers were fed a diet enriched with 5% linseed oil. A control group (Cont; N = 10) was used as a reference group, Tα (N = 10) was supplemented with 67 mg/kg RRR-α-tocopherol, Tγ (N = 8) with 67 mg/kg RRR-γ-tocopherol, and Tαγ (N = 8) with a combination of 33.5 mg/kg of each tocopherol. Beside oxidative stress indicators, whole chicken genome microarray analysis was performed on liver RNA and selected differentially expressed genes were confirmed by real time quantitative PCR. α-Tocopherol alone and in combination with γ-tocopherol was able to prevent lipid oxidation, which was also supported by transcriptome analysis. The effect of γ-tocopherol was evident in the expression of genes involved in inflammatory processes and immune response, while α-tocopherol affected genes involved in lipid and cholesterol metabolism. Both isomers of vitamin E influenced the transcription of genes, which are related to improved fat oxidation and enhanced glucose sparing.
Collapse
Affiliation(s)
- Tamara Korošec
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia
| | - Urška Tomažin
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia.,National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Rok Keber
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Janez Salobir
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 1230 Domžale, Slovenia
| |
Collapse
|
25
|
Normand E, Franco A, Moreau A, Marcil V. Dipeptidyl Peptidase-4 and Adolescent Idiopathic Scoliosis: Expression in Osteoblasts. Sci Rep 2017; 7:3173. [PMID: 28600546 PMCID: PMC5466660 DOI: 10.1038/s41598-017-03310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
It has been proposed that girls with adolescent idiopathic scoliosis (AIS) tend to have a taller stature and a lower body mass index. Energy homeostasis, that is known to affect bone growth, could contribute to these characteristics. In circulation, dipeptidyl peptidase-4 (DPP-4) inactivates glucagon-like peptide-1 (GLP-1), an incretin that promotes insulin secretion and sensitivity. Our objectives were to investigate DPP-4 status in plasma and in osteoblasts of AIS subjects and controls and to evaluate the regulatory role of metabolic effectors on DPP-4 expression. DPP-4 activity was assessed in plasma of 113 girls and 62 age-matched controls. Osteoblasts were isolated from bone specimens of AIS patients and controls. Human cells were incubated with glucose, insulin, GLP-1 and butyrate. Gene and protein expressions were evaluated by RT-qPCR and Western blot. Our results showed 14% inferior plasma DPP-4 activity in AIS patients when compared to healthy controls (P = 0.0357). Similarly, osteoblasts derived from AIS subjects had lower DPP-4 gene and protein expression than controls by 90.5% and 57.1% respectively (P < 0.009). DPP-4 expression was regulated in a different manner in osteoblasts isolated from AIS participants compared to controls. Our results suggest a role for incretins in AIS development and severity.
Collapse
Affiliation(s)
- Emilie Normand
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Anita Franco
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, Quebec, H3A 1J4, Canada
| | - Valérie Marcil
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada.
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada.
| |
Collapse
|
26
|
Davison JM, Lickwar CR, Song L, Breton G, Crawford GE, Rawls JF. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res 2017; 27:1195-1206. [PMID: 28385711 PMCID: PMC5495071 DOI: 10.1101/gr.220111.116] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.
Collapse
Affiliation(s)
- James M Davison
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Houston, Texas 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
27
|
Sané A, Seidman E, Spahis S, Lamantia V, Garofalo C, Montoudis A, Marcil V, Levy E. New Insights In Intestinal Sar1B GTPase Regulation and Role in Cholesterol Homeostasis. J Cell Biochem 2016; 116:2270-82. [PMID: 25826777 DOI: 10.1002/jcb.25177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Sar1B GTPase is a key component of Coat protein complex II (COPII)-coated vesicles that bud from the endoplasmic reticulum to export newly synthesized proteins. The aims of this study were to determine whether Sar1B responds to lipid regulation and to evaluate its role in cholesterol (CHOL) homeostasis. The influence of lipids on Sar1B protein expression was analyzed in Caco-2/15 cells by Western blot. Our results showed that the presence of CHOL (200 μM) and oleic acid (0.5 mM), bound to albumin, increases Sar1B protein expression. Similarly, supplementation of the medium with micelles composed of taurocholate with monooleylglycerol or oleic acid also stimulated Sar1B expression, but the addition of CHOL (200 μM) to micelle content did not modify its regulation. On the other hand, overexpression of Sar1B impacted on CHOL transport and metabolism in view of the reduced cellular CHOL content along with elevated secretion when incubated with oleic acid-containing micelles for 24 h, thereby disclosing induced CHOL transport. This was accompanied with higher secretion of free- and esterified-CHOL within chylomicrons, which was not the case when oleic acid was replaced with monooleylglycerol or when albumin-bound CHOL was given alone. The aforementioned cellular CHOL depletion was accompanied with a low phosphorylated/non phosphorylated HMG-CoA reductase ratio, indicating elevated enzymatic activity. Combination of Sar1B overexpression with micelle incubation led to reduction in intestinal CHOL transporters (NPC1L1, SR-BI) and metabolic regulators (PCSK9 and LDLR). The present work showed that Sar1B is regulated in a time- and concentration-dependent manner by dietary lipids, suggesting an adaptation to alimentary lipid flux. Our data also suggest that Sar1B overexpression contributes to regulation of CHOL transport and metabolism by facilitating rapid uptake and transport of CHOL.
Collapse
Affiliation(s)
- Alain Sané
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Ernest Seidman
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada, H3G 1A4
| | - Schohraya Spahis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1A8
| | - Valérie Lamantia
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Carole Garofalo
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Alain Montoudis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5
| | - Valérie Marcil
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada, H3G 1A4
| | - Emile Levy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada, H3T 1C5.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada, H3T 1A8
| |
Collapse
|
28
|
Barry WE, Thummel CS. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. eLife 2016; 5. [PMID: 27185732 PMCID: PMC4869932 DOI: 10.7554/elife.11183] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal.
Collapse
Affiliation(s)
- William E Barry
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
29
|
Groth JB, Kao SY, Briët MC, Stankovic KM. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy. Dev Neurobiol 2016; 76:1374-1386. [PMID: 27112738 DOI: 10.1002/dneu.22399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 01/12/2023]
Abstract
Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016.
Collapse
Affiliation(s)
- Jane Bjerg Groth
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Shyan-Yuan Kao
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Martijn C Briët
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otorhinolaryngology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
30
|
Kleme ML, Sané AT, Garofalo C, Levy E. Targeted CFTR gene disruption with zinc-finger nucleases in human intestinal epithelial cells induces oxidative stress and inflammation. Int J Biochem Cell Biol 2016; 74:84-94. [PMID: 26923293 DOI: 10.1016/j.biocel.2016.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Cystic fibrosis (CF) is a multisystemic pathology caused by mutations of the CF transmembrane conductance regulator (CFTR) gene. OBJECTIVES As the intestine harbors the greatest number of CFTR transcripts after birth and since CFTR plays a role in glutathione transport, we hypothesized that CFTR deletion might produce oxidative stress (OxS) and inflammation in CF intestinal epithelial cell. METHODS CFTR gene was abrogated in Caco-2/15 enterocytes through the zinc-finger nuclease system. Their oxidative and inflammatory characteristics were appreciated under basal conditions and after the treatment with the pro-oxidant iron-ascorbate (Fe/Asc) complex and pro-inflammatory lipopolysaccharide (LPS). RESULTS Intestinal epithelial cells with CFTR knockout spontaneously exhibited an increased lipid peroxidation level, reflected by malondialdehyde overproduction and reduced antioxidant defense characterized by low enzymatic activities of glutathione peroxidase and catalase. CFTR silencing also resulted in elevated protein expression of pro-inflammatory tumor necrosis Factor-α, interleukin-6, cyclooxygenase-2, and the transcription factor nuclear factor-κB. Moreover, exaggerated OxS and inflammation processes occurred in CFTR(-/-) cells in response to the addition of Fe/Asc and LPS, respectively. CONCLUSIONS Intestinal Caco-2/15 cells with CFTR deletion, display innate oxidative and inflammatory features while being more sensitive to pro-oxidant and pro-inflammatory stimuli. These two pathophysiological processes could be implicated in CF-related intestinal disorders.
Collapse
Affiliation(s)
- Marie-Laure Kleme
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| | - Alain Théophile Sané
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada
| | - Carole Garofalo
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, 3175 Sainte-Catherine Road, Montreal, Quebec H3T 1C4, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada.
| |
Collapse
|
31
|
Zhang JM, Zhu YB, Li HG, Luan SM, Song CY, Deng X, Chen YX. Protection of Sophocarpine on Colonic Barrier in DSS-induced Acute Colitis in Mice by Increasing Expression of HNF4α. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Santiago JA, Potashkin JA. Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson's disease. Proc Natl Acad Sci U S A 2015; 112:2257-62. [PMID: 25646437 PMCID: PMC4343174 DOI: 10.1073/pnas.1423573112] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental and genetic factors are likely to be involved in the pathogenesis of Parkinson's disease (PD), the second most prevalent neurodegenerative disease among the elderly. Network-based metaanalysis of four independent microarray studies identified the hepatocyte nuclear factor 4 alpha (HNF4A), a transcription factor associated with gluconeogenesis and diabetes, as a central regulatory hub gene up-regulated in blood of PD patients. In parallel, the polypyrimidine tract binding protein 1 (PTBP1), involved in the stabilization and mRNA translation of insulin, was identified as the most down-regulated gene. Quantitative PCR assays revealed that HNF4A and PTBP1 mRNAs were up- and down-regulated, respectively, in blood of 51 PD patients and 45 controls nested in the Diagnostic and Prognostic Biomarkers for Parkinson's Disease. These results were confirmed in blood of 50 PD patients compared with 46 healthy controls nested in the Harvard Biomarker Study. Relative abundance of HNF4A mRNA correlated with the Hoehn and Yahr stage at baseline, suggesting its clinical utility to monitor disease severity. Using both markers, PD patients were classified with 90% sensitivity and 80% specificity. Longitudinal performance analysis demonstrated that relative abundance of HNF4A and PTBP1 mRNAs significantly decreased and increased, respectively, in PD patients during the 3-y follow-up period. The inverse regulation of HNF4A and PTBP1 provides a molecular rationale for the altered insulin signaling observed in PD patients. The longitudinally dynamic biomarkers identified in this study may be useful for monitoring disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Jose A Santiago
- Cellular and Molecular Pharmacology Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
33
|
Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin Sci (Lond) 2014; 128:197-212. [PMID: 25069567 DOI: 10.1042/cs20140210] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cranberry fruit has been reported to have high antioxidant effectiveness that is potentially linked to its richness in diversified polyphenolic content. The aim of the present study was to determine the role of cranberry polyphenolic fractions in oxidative stress (OxS), inflammation and mitochondrial functions using intestinal Caco-2/15 cells. The combination of HPLC and UltraPerformance LC®-tandem quadrupole (UPLC-TQD) techniques allowed us to characterize the profile of low, medium and high molecular mass polyphenolic compounds in cranberry extracts. The medium molecular mass fraction was enriched with flavonoids and procyanidin dimers whereas procyanidin oligomers (DP > 4) were the dominant class of polyphenols in the high molecular mass fraction. Pre-incubation of Caco-2/15 cells with these cranberry extracts prevented iron/ascorbate-mediated lipid peroxidation and counteracted lipopolysaccharide-mediated inflammation as evidenced by the decrease in pro-inflammatory cytokines (TNF-α and interleukin-6), cyclo-oxygenase-2 and prostaglandin E2. Cranberry polyphenols (CP) fractions limited both nuclear factor κB activation and Nrf2 down-regulation. Consistently, cranberry procyanidins alleviated OxS-dependent mitochondrial dysfunctions as shown by the rise in ATP production and the up-regulation of Bcl-2, as well as the decline of protein expression of cytochrome c and apoptotic-inducing factor. These mitochondrial effects were associated with a significant stimulation of peroxisome-proliferator-activated receptor γ co-activator-1-α, a central inducing factor of mitochondrial biogenesis and transcriptional co-activator of numerous downstream mediators. Finally, cranberry procyanidins forestalled the effect of iron/ascorbate on the protein expression of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2). Our findings provide evidence for the capacity of CP to reduce intestinal OxS and inflammation while improving mitochondrial dysfunction.
Collapse
|
34
|
Santiago JA, Scherzer CR, Potashkin JA. Network analysis identifies SOD2 mRNA as a potential biomarker for Parkinson's disease. PLoS One 2014; 9:e109042. [PMID: 25279756 PMCID: PMC4184821 DOI: 10.1371/journal.pone.0109042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/05/2014] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence indicates that Parkinson's disease (PD) and type 2 diabetes (T2DM) share dysregulated molecular networks. We identified 84 genes shared between PD and T2DM from curated disease-gene databases. Nitric oxide biosynthesis, lipid and carbohydrate metabolism, insulin secretion and inflammation were identified as common dysregulated pathways. A network prioritization approach was implemented to rank genes according to their distance to seed genes and their involvement in common biological pathways. Quantitative polymerase chain reaction assays revealed that a highly ranked gene, superoxide dismutase 2 (SOD2), is upregulated in PD patients compared to healthy controls in 192 whole blood samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Diagnostic and Prognostic Biomarkers in Parkinson's disease (PROBE). The results from this study reinforce the idea that shared molecular networks between PD and T2DM provides an additional source of biologically meaningful biomarkers. Evaluation of this biomarker in de novo PD patients and in a larger prospective longitudinal study is warranted.
Collapse
Affiliation(s)
- Jose A. Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Clemens R. Scherzer
- The Neurogenomics Laboratory, Harvard Medical School and Brigham and Women's Hospital, Cambridge, Massachusetts, United States of America
| | - Judith A. Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chromatin profiling reveals regulatory network shifts and a protective role for hepatocyte nuclear factor 4α during colitis. Mol Cell Biol 2014; 34:3291-304. [PMID: 24980432 DOI: 10.1128/mcb.00349-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transcriptional regulatory mechanisms likely contribute to the etiology of inflammatory bowel disease (IBD), as genetic variants associated with the disease are disproportionately found at regulatory elements. However, the transcription factors regulating colonic inflammation are unclear. To identify these transcription factors, we mapped epigenomic changes in the colonic epithelium upon inflammation. Epigenetic marks at transcriptional regulatory elements responded dynamically to inflammation and indicated a shift in epithelial transcriptional factor networks. Active enhancer chromatin structure at regulatory regions bound by the transcription factor hepatocyte nuclear factor 4α (HNF4A) was reduced during colitis. In agreement, upon an inflammatory stimulus, HNF4A was downregulated and showed a reduced ability to bind chromatin. Genetic variants that confer a predisposition to IBD map to HNF4A binding sites in the human colon cell line CaCo2, suggesting impaired HNF4A binding could underlie genetic susceptibility to IBD. Despite reduced HNF4A binding during inflammation, a temporal knockout model revealed HNF4A still actively protects against inflammatory phenotypes and promotes immune regulatory gene expression in the inflamed colonic epithelium. These findings highlight the potential for HNF4A agonists as IBD therapeutics.
Collapse
|
36
|
Ramayo-Caldas Y, Ballester M, Fortes MRS, Esteve-Codina A, Castelló A, Noguera JL, Fernández AI, Pérez-Enciso M, Reverter A, Folch JM. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genomics 2014; 15:232. [PMID: 24666776 PMCID: PMC3987146 DOI: 10.1186/1471-2164-15-232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans. Results The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression. Conclusions Our results recapitulate the known transcriptional regulation of FA metabolism, predict gene interactions that can be experimentally validated, and suggest that genetic variants mapped to EP300, FHL2, and NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Associations between PTPN2 polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a meta-analysis. Inflamm Res 2013; 63:71-9. [PMID: 24127071 DOI: 10.1007/s00011-013-0673-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Ulcerative colitis (UC) and Crohn's disease (CD) result from an interaction between genetic and environmental factors. Though several polymorphisms have been identified in PTPN2, their roles in the incidence of UC and CD are conflicting. This meta-analysis was aimed to clarify the impact of these polymorphisms on UC and CD risk. METHOD PubMed, EMBASE, Cochrane Library and CBM were searched until 23 July 2013 for eligible studies on three PTPN2 polymorphisms: rs2542151, rs1893217 and rs7234029. Data were extracted, and pooled odd ratios (ORs) as well as 95 % confidence intervals (95 % CIs) were calculated. CONCLUSION The meta-analysis indicated that rs2542151, rs1893217 and rs1893217 were associated with increased CD risk, while the former was associated with increased UC risk. The differences in age of onset and ethnic groups may influence the associations. Gene-gene and gene-environment interactions should be investigated in the future. RESULTS Seventeen studies with 18,308 cases and 20,406 controls were included. Significant associations were found between rs2542151 polymorphism and CD susceptibility (OR = 1.22, 95 % CI, 1.15-1.30, I (2) = 32 %), as well as between rs2542151 and UC susceptibility (OR = 1.16, 95 % CI, 1.07-1.25, I (2) = 39 %). A similar result was found in Caucasians, but not in Asians. Moreover, a significant increase in CD risk for all carriers of the minor allele of rs1893217 (OR = 1.45, 95 % CI, 1.23-1.70, I (2) = 0 %) and rs7234029 (OR = 1.36, 95 % CI, 1.16-1.59, I (2) = 0 %) were found. For children, the rs1893217 polymorphism appeared to confer susceptibility to CD (OR = 1.56, 95 % CI, 1.28-1.89, I (2) = 0 %).
Collapse
|
38
|
Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, Stevens C, Alikashani A, Ladouceur M, Ellinghaus D, Törkvist L, Goel G, Lagacé C, Annese V, Bitton A, Begun J, Brant SR, Bresso F, Cho JH, Duerr RH, Halfvarson J, McGovern DPB, Radford-Smith G, Schreiber S, Schumm PL, Sharma Y, Silverberg MS, Weersma RK, Quebec IBD Genetics Consortium, NIDDK IBD Genetics Consortium, International IBD Genetics Consortium, D'Amato M, Vermeire S, Franke A, Lettre G, Xavier RJ, Daly MJ, Rioux JD. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet 2013; 9:e1003723. [PMID: 24068945 PMCID: PMC3772057 DOI: 10.1371/journal.pgen.1003723] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies and follow-up meta-analyses in Crohn's disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (~14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.
Collapse
Affiliation(s)
- Mélissa Beaudoin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Ken Sin Lo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Manuel A. Rivas
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Martin Ladouceur
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Leif Törkvist
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Gautam Goel
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline Lagacé
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Vito Annese
- Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Royal Victoria Hospital, Montréal, Québec, Canada
| | - Jakob Begun
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Steve R. Brant
- Meyerhoff Inflammatory Bowel Diseases Center, Department of Medicine, Johns Hopkins University School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Francesca Bresso
- Department of Medicine of the Karolinska University Hospital, Solna, Sweden
| | - Judy H. Cho
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Richard H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, and Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Jonas Halfvarson
- Department of Internal Medicine, Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Dermot P. B. McGovern
- Cedars-Sinai F.Widjaja Inflammatory Bowel and Immunobiology Research Institute, and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Graham Radford-Smith
- Inflammatory Bowel Diseases, Genetic and Computational Biology, Queensland Institute of Medical Research, and Department of Gastroenterology, Royal Brisbane and Womens Hospital, and School of Medicine, University of Queensland, Brisbane, Australia
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Philip L. Schumm
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Yashoda Sharma
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Mark S. Silverberg
- Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Toronto, Ontario, Canada
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Severine Vermeire
- Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Andre Franke
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Guillaume Lettre
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Rioux
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
| |
Collapse
|
39
|
Yara S, Lavoie JC, Beaulieu JF, Delvin E, Amre D, Marcil V, Seidman E, Levy E. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation. PLoS One 2013; 8:e63456. [PMID: 23717425 PMCID: PMC3661745 DOI: 10.1371/journal.pone.0063456] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage. HYPOTHESIS Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system. RESULTS Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2) and diminished glutathione peroxidase (GPx) activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation. CONCLUSION Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.
Collapse
Affiliation(s)
- Sabrina Yara
- Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Lavoie
- Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Edgard Delvin
- Department of Biochemistry, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Devendra Amre
- Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Valerie Marcil
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada
| | - Ernest Seidman
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada
| | - Emile Levy
- Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
40
|
Abstract
BACKGROUND Although genome-wide association studies (GWAS) and subsequent meta-analyses have confirmed associations between the PTPN2 (protein tyrosine phosphatase, nonreceptor type 2) gene and Crohn's disease (CD), the potential causal variants remain unidentified. We aimed to dissect potential causal CD-associated PTPN2 variants, assess their functional significance, and relate PTPN2 protein expression with inflammation in CD. METHODS A 3-stage study was carried out. In stage 1, we genotyped tagging single nucleotide polymorphisms (tag-SNPs) in the PTPN2 gene in a sample of patients with CD (<20 years, n = 556) and controls (n = 602). In stage 2, we resequenced the putative promoter, target exons and introns in the PTPN2 gene, and examined associations with high-frequency variants with CD in the stage 1 cohort. In stage 3 we studied the relationship between PTPN2 protein expression and mucosal inflammation and carried out in silico analyses to study the functional characteristics of the PTPN2 CD-associated SNPs. RESULTS In stage 1, we observed associations between 5 intronic SNPs and CD including rs1893217 (P = 2 × 10⁻⁴), the SNP that is in perfect linkage disequilibrium with the lead genome-wide association studies SNP rs2542151. Resequencing revealed 2 known promoter polymorphisms. No associations between these promoter SNPs and CD were evident. In silico analyses revealed that the 5 associated intronic SNPs influenced PTPN2 expression and binding to important transcription factors. PTPN2 protein was overexpressed in inflamed intestinal tissues of patients with CD. CONCLUSIONS Our findings suggest that noncoding variation in the PTPN2 gene may represent the causal variations influencing susceptibility for CD.
Collapse
|
41
|
Denis MC, Furtos A, Dudonné S, Montoudis A, Garofalo C, Desjardins Y, Delvin E, Levy E. Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. PLoS One 2013; 8:e53725. [PMID: 23372666 PMCID: PMC3553108 DOI: 10.1371/journal.pone.0053725] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/04/2012] [Indexed: 01/29/2023] Open
Abstract
Since gastrointestinal mucosa is constantly exposed to reactive oxygen species from various sources, the presence of antioxidants may contribute to the body’s natural defenses against inflammatory diseases.
Collapse
Affiliation(s)
- Marie Claude Denis
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alexandra Furtos
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Dudonné
- Institute of Nutraceuticals and Functional foods, Université Laval, Quebec, Quebec, Canada
| | - Alain Montoudis
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Carole Garofalo
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutraceuticals and Functional foods, Université Laval, Quebec, Quebec, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutraceuticals and Functional foods, Université Laval, Quebec, Quebec, Canada
- * E-mail:
| |
Collapse
|
42
|
Précourt LP, Marcil V, Ntimbane T, Taha R, Lavoie JC, Delvin E, Seidman EG, Beaulieu JF, Levy E. Antioxidative properties of paraoxonase 2 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G623-34. [PMID: 22744335 PMCID: PMC3468556 DOI: 10.1152/ajpgi.00039.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Paraoxonase (PON) family members seem central to a wide variety of human illnesses, but appreciation of their antioxidative function in the gastrointestinal tract is in its infancy. The major objective of the present work is to highlight the role of the ubiquitously expressed PON2 in the small intestine. With use of pLKO lentiviral vector containing short hairpin RNA (shRNA) lentivirus, PON2 expression was knocked down in intestinal Caco-2/15 cells, where antioxidative status, lipid peroxidation, and degree of inflammation were evaluated. As a consequence of PON2 inactivation in the epithelial cells, we observed 1) imbalanced primary and secondary antioxidative responses, characterized by increased superoxide dismutases and decreased catalase, 2) high concentrations of H(2)O(2) and malondialdehyde, along with low glutathione-to-glutathione disulfide ratio, 3) upregulation of TNF-α, IL-6, and monocyte chemoattractant protein-1 gene expression after induction of oxidative stress, and 4) raised level of the activation of transcription factor NF-κB, which was likely implicated in exacerbation of the inflammatory activation. These results suggest that PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells.
Collapse
Affiliation(s)
- Louis-Philippe Précourt
- 1Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada;
| | - Valérie Marcil
- 2Research Institute, McGill University, Montreal, Quebec, Canada;
| | - Thierry Ntimbane
- 1Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada;
| | - Rame Taha
- 1Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada;
| | | | - Edgard Delvin
- 3Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; ,4Department of Biochemistry, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; and
| | - Ernest G. Seidman
- 2Research Institute, McGill University, Montreal, Quebec, Canada; ,5Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-François Beaulieu
- 5Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emile Levy
- 1Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; ,5Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
43
|
Abstract
Hepatocyte nuclear 4 alpha (HNF4α), involved in glucose and lipid metabolism, has been linked to intestinal inflammation and abnormal mucosal permeability. Moreover, in a genome-wide association study, the HNF4A locus has been associated with ulcerative colitis. The objective of our study was to evaluate the association between HNF4α genetic variants and Crohn's disease (CD) in two distinct Canadian pediatric cohorts. The sequencing of the HNF4A gene in 40 French Canadian patients led to the identification of 27 single nucleotide polymorphism (SNP)s with a minor allele frequency >5%. To assess the impact of these SNPs on disease susceptibility, we first conducted a case-control discovery study on 358 subjects with CD and 542 controls. We then carried out a replication study in a separate cohort of 416 cases and 1208 controls. In the discovery cohort, the genotyping of the identified SNPs revealed that six were significantly associated with CD. Among them, rs1884613 was replicated in the second CD cohort (odds ratio (OR): 1.33; P<0.012) and this association remained significant when both cohorts were combined and after correction for multiple testing (OR: 1.39; P<0.004). An 8-marker P2 promoter haplotype containing rs1884613 was also found associated with CD (P<2.09 × 10(-4) for combined cohorts). This is the first report showing that the HNF4A locus may be a common genetic determinant of childhood-onset CD. These findings highlight the importance of the intestinal epithelium and oxidative protection in the pathogenesis of CD.
Collapse
|
44
|
Zhou W, Hannoun Z, Jaffray E, Medine CN, Black JR, Greenhough S, Zhu L, Ross JA, Forbes S, Wilmut I, Iredale JP, Hay RT, Hay DC. SUMOylation of HNF4α regulates protein stability and hepatocyte function. J Cell Sci 2012; 125:3630-5. [PMID: 22505616 PMCID: PMC3445325 DOI: 10.1242/jcs.102889] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types.
Collapse
Affiliation(s)
- Wenli Zhou
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bio Quarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Current world literature. Curr Opin Lipidol 2012; 23:156-63. [PMID: 22418573 DOI: 10.1097/mol.0b013e3283521229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, Ogata H, Karin M, Struhl K, Hadzopoulou-Cladaras M, Iliopoulos D. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 2012; 147:1233-47. [PMID: 22153071 DOI: 10.1016/j.cell.2011.10.043] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/22/2011] [Accepted: 10/11/2011] [Indexed: 12/13/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is essential for liver development and hepatocyte function. Here, we show that transient inhibition of HNF4α initiates hepatocellular transformation through a microRNA-inflammatory feedback loop circuit consisting of miR-124, IL6R, STAT3, miR-24, and miR-629. Moreover, we show that, once this circuit is activated, it maintains suppression of HNF4α and sustains oncogenesis. Systemic administration of miR-124, which modulates inflammatory signaling, prevents and suppresses hepatocellular carcinogenesis by inducing tumor-specific apoptosis without toxic side effects. As we also show that this HNF4α circuit is perturbed in human hepatocellular carcinomas, our data raise the possibility that manipulation of this microRNA feedback-inflammatory loop has therapeutic potential for treating liver cancer.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|