1
|
Peng S, Long M, Chen Q, Yin Z, Zeng C, Zhang W, Wen Q, Zhang X, Ke W, Wu Y. Perspectives on cancer therapy-synthetic lethal precision medicine strategies, molecular mechanisms, therapeutic targets and current technical challenges. Cell Death Discov 2025; 11:179. [PMID: 40240755 PMCID: PMC12003663 DOI: 10.1038/s41420-025-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, synthetic lethality has become an important theme in the field of targeted cancer therapy. Synthetic lethality refers to simultaneous defects in two or more genes leading to cell death, whereas defects in any single gene do not lead to cell death. Taking advantage of the genetic vulnerability that exists within cancer cells, it theoretically has no negative impact on healthy cells and has fewer side effects than non-specific chemotherapy. Currently, targeted cancer therapies focus on inhibiting key pathways in cancer. However, it has been found that over-activation of oncogenic-related signaling pathways can also induce cancer cell death, which is a major breakthrough in the new field of targeted therapies. In this review, we summarize the conventional gene targets in synthetic lethality (PARP, ATR, ATM, WEE1, PRMT) and provide an in-depth analysis of their latest potential mechanisms. We explore the impact of over-activation of pathways such as PI3K/AKT, MAPK, and WNT on cancer cell survival, and present the technical challenges of current research. Important theoretical foundations and insights are provided for the application of synthetic lethal strategies in cancer therapy, as well as future research directions.
Collapse
Affiliation(s)
- Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Mengle Long
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Qisheng Chen
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, Hunan, 423000, China
| | - Zhijian Yin
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Chang Zeng
- Department of Pathology, Yueyang Central Hospital, Yueyang, China
| | - Wanyong Zhang
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Qingyang Wen
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Xinwen Zhang
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yongjun Wu
- Department of Pathology, Xiangtan Center Hospital, Xiangtan City, Hunan province, 411100, China.
- Department of Pathology, The Affiliated Hospital of Hunan University, Xiangtan City, Hunan Province, China.
| |
Collapse
|
2
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
3
|
Yu Z, Kuang Y, Xue L, Ma X, Li T, Yuan L, Li M, Xue G, Li Z, Tang F, Tang J, Shan J, Wang W, Tang R, Zhou F. SCR-7952, a highly selective MAT2A inhibitor, demonstrates synergistic antitumor activities in combination with the S-adenosylmethionine-competitive or the methylthioadenosine-cooperative protein arginine methyltransferase 5 inhibitors in methylthioadenosine phosphorylase-deleted tumors. MedComm (Beijing) 2024; 5:e705. [PMID: 39309689 PMCID: PMC11413503 DOI: 10.1002/mco2.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024] Open
Abstract
The metabolic enzyme methionine adenosyltransferase 2A (MAT2A) was found to elicit synthetic lethality in methylthioadenosine phosphorylase (MTAP)-deleted cancers, which occur in about 15% of all cancers. Here, we described a novel MAT2A inhibitor, SCR-7952 with potent and selective antitumor effects on MTAP-deleted cancers in both in vitro and in vivo. The cryo-EM data indicated the high binding affinity and the allosteric binding site of SCR-7952 on MAT2A. Different from AG-270, SCR-7952 exhibited little influence on metabolic enzymes and did not increase the plasma levels of bilirubin. A systematic evaluation of combination between SCR-7952 and different types of protein arginine methyltransferase 5 (PRMT5) inhibitors indicated remarkable synergistic interactions between SCR-7952 and the S-adenosylmethionine-competitive or the methylthioadenosine-cooperative PRMT5 inhibitors, but not substrate-competitive ones. The mechanism was via the aggravated inhibition of PRMT5 and FANCA splicing perturbations. These results indicated that SCR-7952 could be a potential therapeutic candidate for the treatment of MTAP-deleted cancers, both monotherapy and in combination with PRMT5 inhibitors.
Collapse
Affiliation(s)
- Zhiyong Yu
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Yi Kuang
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Liting Xue
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Xuan Ma
- Department of Thoracic SurgeryThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Tingting Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Linlin Yuan
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
| | - Mengying Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Grace Xue
- Weston High SchoolWestonMassachusettsUSA
| | - Zhen Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
| | - Jianxing Tang
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Jinwen Shan
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Weijie Wang
- Department of Thoracic SurgeryThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Feng Zhou
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| |
Collapse
|
4
|
Yang B, Lu L, Xiong T, Fan W, Wang J, Barbier-Torres L, Chhimwal J, Sinha S, Tsuchiya T, Mavila N, Tomasi ML, Cao D, Zhang J, Peng H, Mato JM, Liu T, Yang X, Kalinichenko VV, Ramani K, Han J, Seki E, Yang H, Lu SC. The role of forkhead box M1-methionine adenosyltransferase 2 A/2B axis in liver inflammation and fibrosis. Nat Commun 2024; 15:8388. [PMID: 39333125 PMCID: PMC11436801 DOI: 10.1038/s41467-024-52527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Methionine adenosyltransferase 2 A (MAT2A) and MAT2B are essential for hepatic stellate cells (HSCs) activation. Forkhead box M1 (FOXM1) transgenic mice develop liver inflammation and fibrosis. Here we examine if they crosstalk in male mice. We found FOXM1/MAT2A/2B are upregulated after bile duct ligation (BDL) and carbon tetrachloride (CCl4) treatment in hepatocytes, HSCs and Kupffer cells (KCs). FDI-6, a FOXM1 inhibitor, attenuates the development and reverses the progression of CCl4-induced fibrosis while lowering the expression of FOXM1/MAT2A/2B, which exert reciprocal positive regulation on each other transcriptionally. Knocking down any of them lowers HSCs and KCs activation. Deletion of FOXM1 in hepatocytes, HSCs, and KCs protects from BDL-mediated inflammation and fibrosis comparably. Interestingly, HSCs from Foxm1Hep-/-, hepatocytes from Foxm1HSC-/-, and HSCs and hepatocytes from Foxm1KC-/- have lower FOXM1/MAT2A/2B after BDL. This may be partly due to transfer of extracellular vesicles between different cell types. Altogether, FOXM1/MAT2A/MAT2B axis drives liver inflammation and fibrosis.
Collapse
Affiliation(s)
- Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liqing Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ting Xiong
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, 410015, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Sonal Sinha
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC LA, Los Angeles, CA, 90048, USA
| | - Jing Zhang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48120, Derio, Bizkaia, Spain
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Vladimir V Kalinichenko
- Phoenix Children's Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Jenny Han
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
- Department of Society and Genetics, UCLA LA, Los Angeles, CA, 92620, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, LA, Los Angeles, CA, 90048, USA.
| |
Collapse
|
5
|
Bray C, Balcells C, McNeish IA, Keun HC. The potential and challenges of targeting MTAP-negative cancers beyond synthetic lethality. Front Oncol 2023; 13:1264785. [PMID: 37795443 PMCID: PMC10546069 DOI: 10.3389/fonc.2023.1264785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.
Collapse
Affiliation(s)
- Chandler Bray
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Cristina Balcells
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hector C. Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Ji H, Fan Y, Gao X, Gong Y, Dai K, Wang Z, Xu B, Yu J. The Protective Effects of Water-Soluble Alginic Acid on the N-Terminal of Thymopentin. Molecules 2023; 28:6445. [PMID: 37764221 PMCID: PMC10536172 DOI: 10.3390/molecules28186445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thymopentin (TP5) has exhibited strong antitumor and immunomodulatory effects in vivo. However, the polypeptide is rapidly degraded by protease and aminopeptidase within a minute at the N-terminal of TP5, resulting in severe limitations for further practical applications. In this study, the protective effects of water-soluble alginic acid (WSAA) on the N-terminal of TP5 were investigated by establishing an H22 tumor-bearing mice model and determining thymus, spleen, and liver indices, immune cells activities, TNF-α, IFN-γ, IL-2, and IL-4 levels, and cell cycle distributions. The results demonstrated that WSAA+TP5 groups exhibited the obvious advantages of the individual treatments and showed superior antitumor effects on H22 tumor-bearing mice by effectively protecting the immune organs, activating CD4+ T cells and CD19+ B cells, and promoting immune-related cytokines secretions, finally resulting in the high apoptotic rates of H22 cells through arresting them in S phase. These data suggest that WSAA could effectively protect the N-terminal of TP5, thereby improving its antitumor and immunoregulatory activities, which indicates that WSAA has the potential to be applied in patients bearing cancer or immune deficiency diseases as a novel immunologic adjuvant.
Collapse
Affiliation(s)
- Haiyu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Yuting Fan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Xiaoji Gao
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Youshun Gong
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Keyao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Juan Yu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| |
Collapse
|
7
|
Chen X. A Tribute to Professor Jianguo Wu. Viruses 2023; 15:1720. [PMID: 37632062 PMCID: PMC10457838 DOI: 10.3390/v15081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
It has been a couple of months since Professor Jianguo Wu left us [...].
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Yang PW, Jiao JY, Chen Z, Zhu XY, Cheng CS. Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochim Biophys Acta Rev Cancer 2022; 1877:188793. [PMID: 36089205 DOI: 10.1016/j.bbcan.2022.188793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Zhu
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
10
|
Niland CN, Ghosh A, Cahill SM, Schramm VL. Mechanism and Inhibition of Human Methionine Adenosyltransferase 2A. Biochemistry 2021; 60:791-801. [PMID: 33656855 DOI: 10.1021/acs.biochem.0c00998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-Adenosyl-l-methionine (AdoMet) is synthesized by the MAT2A isozyme of methionine adenosyltransferase in most human tissues and in cancers. Its contribution to epigenetic control has made it a target for anticancer intervention. A recent kinetic isotope effect analysis of MAT2A demonstrated a loose nucleophilic transition state. Here we show that MAT2A has a sequential mechanism with a rate-limiting step of formation of AdoMet, followed by rapid hydrolysis of the β-γ bond of triphosphate, and rapid release of phosphate and pyrophosphate. MAT2A catalyzes the slow hydrolysis of both ATP and triphosphate in the absence of other reactants. Positional isotope exchange occurs with 18O as the 5'-oxygen of ATP. Loss of the triphosphate is sufficiently reversible to permit rotation and recombination of the α-phosphoryl group of ATP. Adenosine (α-β or β-γ)-imido triphosphates are slow substrates, and the respective imido triphosphates are inhibitors. The hydrolytically stable (α-β, β-γ)-diimido triphosphate (PNPNP) is a nanomolar inhibitor. The MAT2A protein structure is highly stabilized against denaturation by binding of PNPNP. A crystal structure of MAT2A with 5'-methylthioadenosine and PNPNP shows the ligands arranged appropriately in the ATP binding site. Two magnesium ions chelate the α- and γ-phosphoryl groups of PNPNP. The β-phosphoryl oxygen is in contact with an essential potassium ion. Imidophosphate derivatives provide contact models for the design of catalytic site ligands for MAT2A.
Collapse
Affiliation(s)
- Courtney N Niland
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
11
|
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020; 5:280. [PMID: 33273451 PMCID: PMC7714782 DOI: 10.1038/s41392-020-00349-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Collapse
|
12
|
Tan YL, Sou NL, Tang FY, Ko HA, Yeh WT, Peng JH, Chiang EPI. Tracing Metabolic Fate of Mitochondrial Glycine Cleavage System Derived Formate In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21228808. [PMID: 33233834 PMCID: PMC7699879 DOI: 10.3390/ijms21228808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Folate-mediated one-carbon (1C) metabolism is a major target of many therapies in human diseases. Studies have focused on the metabolism of serine 3-carbon as it serves as a major source for 1C units. The serine 3-carbon enters the mitochondria transferred by folate cofactors and eventually converted to formate and serves as a major building block for cytosolic 1C metabolism. Abnormal glycine metabolism has been reported in many human pathological conditions. The mitochondrial glycine cleavage system (GCS) catalyzes glycine degradation to CO2 and ammonium, while tetrahydrofolate (THF) is converted into 5,10-methylene-THF. GCS accounts for a substantial proportion of whole-body glycine flux in humans, yet the particular metabolic route of glycine 2-carbon recycled from GCS during mitochondria glycine decarboxylation in hepatic or bone marrow 1C metabolism is not fully investigated, due to the limited accessibility of human tissues. Labeled glycine at 2-carbon was given to humans and primary cells in previous studies for investigating its incorporations into purines, its interconversion with serine, or the CO2 production in the mitochondria. Less is known on the metabolic fate of the glycine 2-carbon recycled from the GCS; hence, a model system tracing its metabolic fate would help in this regard. We took the direct approach of isotopic labeling to further explore the in vitro and in vivo metabolic fate of the 2-carbon from [2-13C]glycine and [2-13C]serine. As the 2-carbon of glycine and serine is decarboxylated and catabolized via the GCS, the original 13C-labeled 2-carbon is transferred to THF and yield methyleneTHF in the mitochondria. In human hepatoma cell-lines, 2-carbon from glycine was found to be incorporated into deoxythymidine (dTMP, dT + 1), M + 3 species of purines (deoxyadenine, dA and deoxyguanine, dG), and methionine (Met + 1). In healthy mice, incorporation of GCS-derived formate from glycine 2-carbon was found in serine (Ser + 2 via cytosolic serine hydroxy methyl transferase), methionine, dTMP, and methylcytosine (mC + 1) in bone marrow DNA. In these experiments, labeled glycine 2-carbon directly incorporates into Ser + 1, A + 2, and G + 2 (at C2 and C8 of purine) in the cytosol. It is noteworthy that since the serine 3-carbon is unlabeled in these experiments, the isotopic enrichments in dT + 1, Ser + 2, dA + 3, dG + 3, and Met + 1 solely come from the 2-carbon of glycine/serine recycled from GCS, re-enters the cytosolic 1C metabolism as formate, and then being used for cytosolic syntheses of serine, dTMP, purine (M + 3) and methionine. Taken together, we established model systems and successfully traced the metabolic fate of mitochondrial GCS-derived formate from glycine 2-carbon in vitro and in vivo. Nutritional supply significantly alters formate generation from GCS. More GCS-derived formate was used in hepatic serine and methionine syntheses, whereas more GCS-derived formate was used in dTMP synthesis in the bone marrow, indicating that the utilization and partitioning of GCS-derived 1C unit are tissue-specific. These approaches enable better understanding concerning the utilization of 1C moiety generated from mitochondrial GCS that can help to further elucidate the role of GCS in human disease development and progression in future applications. More studies on GCS using these approaches are underway.
Collapse
Affiliation(s)
- Yee-Ling Tan
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (Y.-L.T.); (N.-L.S.); (H.-A.K.); (W.-T.Y.); (J.-H.P.)
| | - Nga-Lai Sou
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (Y.-L.T.); (N.-L.S.); (H.-A.K.); (W.-T.Y.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University (NCHU), Taichung 402, Taiwan
| | - Feng-Yao Tang
- Department of Nutrition, China Medical University, Taichung 402, Taiwan;
| | - Hsin-An Ko
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (Y.-L.T.); (N.-L.S.); (H.-A.K.); (W.-T.Y.); (J.-H.P.)
| | - Wei-Ting Yeh
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (Y.-L.T.); (N.-L.S.); (H.-A.K.); (W.-T.Y.); (J.-H.P.)
| | - Jian-Hau Peng
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (Y.-L.T.); (N.-L.S.); (H.-A.K.); (W.-T.Y.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University (NCHU), Taichung 402, Taiwan
- Microbial Genomics Ph.D. Graduate Program, National Chung Hsing University (NCHU), Taichung 402, Taiwan
| | - En-Pei Isabel Chiang
- Food Science and Biotechnology, National Chung Hsing University (NCHU), Taichung 402, Taiwan; (Y.-L.T.); (N.-L.S.); (H.-A.K.); (W.-T.Y.); (J.-H.P.)
- Department of Nutrition, China Medical University, Taichung 402, Taiwan;
- Microbial Genomics Ph.D. Graduate Program, National Chung Hsing University (NCHU), Taichung 402, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22853049; Fax: +886-4-22876211
| |
Collapse
|
13
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:2101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
14
|
Xue J, Cao Z, Cheng Y, Wang J, Liu Y, Yang R, Li H, Jiang W, Li G, Zhao W, Zhang X. Acetylation of alpha-fetoprotein promotes hepatocellular carcinoma progression. Cancer Lett 2020; 471:12-26. [PMID: 31811908 DOI: 10.1016/j.canlet.2019.11.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 01/27/2023]
Abstract
Alpha-fetoprotein (AFP) is a well-established biomarker for hepatocellular carcinoma (HCC). Here, we investigated the acetylation state of AFP in vivo. AFP acetylation was regulated by the acetyltransferase CBP and the deacetylase SIRT1. Acetylation of AFP at lysines 194, 211, and 242 increased the stability of AFP protein by decreasing its ubiquitination and proteasomal degradation. AFP acetylation promoted its oncogenic role by blocking binding to the phosphatase PTEN and the pro-apoptotic protein caspase-3, which increased signaling for proliferation, migration, and invasion and decreased apoptosis. High levels of acetylated AFP in HCC tissues were associated with HBV infection and correlated with poor prognosis and decreased patient survival. In HCC cells, hepatitis B virus X protein (HBx) and palmitic acid (PA) increased the level of acetylated AFP by disrupting SIRT1-mediated deacetylation. AFP acetylation plays an important role in HCC progression and provides a new potential prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Junhui Xue
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Zhengyi Cao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yuning Cheng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Jiyin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yujuan Liu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ruixiang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Hui Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Wei Jiang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Gang Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Wenhui Zhao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xiaowei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
15
|
Abdoli A, Nakhaie M, Feizi N, Salimi Jeda A, Ramezani A. Harmonized Autophagy Versus Full-Fledged Hepatitis B Virus: Victorious or Defeated. Viral Immunol 2019; 32:322-334. [PMID: 31483214 DOI: 10.1089/vim.2019.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a finely tuned process in the regulation of innate immunity to avoid excessive inflammatory responses and inflammasome signaling. In contrast, the results of recent studies have shown that autophagy may disease-dependently contribute to the pathogenesis of liver diseases, such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) during hepatitis B virus (HBV) infection. HBV has learned to subvert the cell's autophagic machinery to promote its replication. Given the great impact of the autophagy mechanism on the HBV infection and HCC, recognizing these factors may be offered new hope for human intervention and treatment of chronic HBV. This review focuses on recent findings viewing the dual role of autophagy plays in the pathogenesis of HBV infected hepatocytes.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Nakhaie
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Feizi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amitis Ramezani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
17
|
Öktem EK, Yazar M, Gulfidan G, Arga KY. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl (Ambystoma mexicanum) During Wound Healing. ACTA ACUST UNITED AC 2019; 23:389-405. [DOI: 10.1089/omi.2019.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elif Kubat Öktem
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
18
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
19
|
Wang K, Fang S, Liu Q, Gao J, Wang X, Zhu H, Zhu Z, Ji F, Wu J, Ma Y, Hu L, Shen X, Gao D, Zhu J, Liu P, Zhou H. TGF-β1/p65/MAT2A pathway regulates liver fibrogenesis via intracellular SAM. EBioMedicine 2019; 42:458-469. [PMID: 30926424 PMCID: PMC6491716 DOI: 10.1016/j.ebiom.2019.03.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatic stellate cell (HSC) activation induced by transforming growth factor β1 (TGF-β1) plays a pivotal role in fibrogenesis, while the complex downstream mediators of TGF-β1 in such process are largely unknown. METHODS We performed pharmacoproteomic profiling of the mice liver tissues from control, carbon tetrachloride (CCl4)-induced fibrosis and NPLC0393 administrated groups. The target gene MAT2A was overexpressed or knocked down in vivo by tail vein injection of AAV vectors. We examined NF-κB transcriptional activity on MAT2A promoter via luciferase assay. Intracellular SAM contents were analyzed by LC-MS method. FINDINGS We found that methionine adenosyltransferase 2A (MAT2A) is significantly upregulated in the CCl4-induced fibrosis mice, and application of NPLC0393, a known small molecule inhibitor of TGF-β1 signaling pathway, inhibits the upregulation of MAT2A. Mechanistically, TGF-β1 induces phosphorylation of p65, i.e., activation of NF-κB, thereby promoting mRNA transcription and protein expression of MAT2A and reduces S-adenosylmethionine (SAM) concentration in HSCs. Consistently, in vivo and in vitro knockdown of MAT2A alleviates CCl4- and TGF-β1-induced HSC activation, whereas in vivo overexpression of MAT2A facilitates hepatic fibrosis and abolishes therapeutic effect of NPLC0393. INTERPRETATION This study identifies TGF-β1/p65/MAT2A pathway that is involved in the regulation of intracellular SAM concentration and liver fibrogenesis, suggesting that this pathway is a potential therapeutic target for hepatic fibrosis. FUND: This work was supported by National Natural Science Foundation of China (No. 81500469, 81573873, 81774196 and 31800693), Zhejiang Provincial Natural Science Foundation of China (No. Y15H030004), the National Key Research and Development Program from the Ministry of Science and Technology of China (No. 2017YFC1700200) and the Key Program of National Natural Science Foundation of China (No. 8153000502).
Collapse
Affiliation(s)
- Kuifeng Wang
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, 150 Ximen Road of Linhai City, Taizhou 317000, China; Suzhou GenHouse Pharmaceutical Co., Ltd., 388 Ruoshui Road, Suzhou, Jiangsu 215123, China
| | - Shanhua Fang
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Liu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jing Gao
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaoning Wang
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhenyun Zhu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feihong Ji
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, 150 Ximen Road of Linhai City, Taizhou 317000, China; Suzhou GenHouse Pharmaceutical Co., Ltd., 388 Ruoshui Road, Suzhou, Jiangsu 215123, China
| | - Jiasheng Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Yueming Ma
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Lihong Hu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Xu Shen
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Daming Gao
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiansheng Zhu
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, 150 Ximen Road of Linhai City, Taizhou 317000, China.
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
| | - Hu Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
20
|
Peroxiredoxin 1, a Novel HBx-Interacting Protein, Interacts with Exosome Component 5 and Negatively Regulates Hepatitis B Virus (HBV) Propagation through Degradation of HBV RNA. J Virol 2019; 93:JVI.02203-18. [PMID: 30567989 DOI: 10.1128/jvi.02203-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for the development of chronic liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). A growing body of evidence suggests that HBV X protein (HBx) plays a crucial role in viral replication and HCC development. Here, we identified peroxiredoxin 1 (Prdx1), a cellular hydrogen peroxide scavenger, as a novel HBx-interacting protein. Coimmunoprecipitation analysis coupled with site-directed mutagenesis revealed that the region from amino acids 17 to 20 of the HBx, particularly HBx Cys17, is responsible for the interaction with Prdx1. Knockdown of Prdx1 by siRNA significantly increased the levels of intracellular HBV RNA, HBV antigens, and extracellular HBV DNA, whereas knockdown of Prdx1 did not increase the activities of HBV core, enhancer I (Enh1)/X, preS1, and preS2/S promoters. Kinetic analysis of HBV RNA showed that knockdown of Prdx1 inhibited HBV RNA decay, suggesting that Prdx1 reduces HBV RNA levels posttranscriptionally. The RNA coimmunoprecipitation assay revealed that Prdx1 interacted with HBV RNA. The exosome component 5 (Exosc5), a member of the RNA exosome complexes, was coimmunoprecipitated with Prdx1, suggesting its role in regulation of HBV RNA stability. Taken together, these results suggest that Prdx1 and Exosc5 play crucial roles in host defense mechanisms against HBV infection.IMPORTANCE Hepatitis B virus (HBV) infection is a major global health problem. HBx plays important roles in HBV replication and viral carcinogenesis through its interaction with host factors. In this study, we identified Prdx1 as a novel HBx-binding protein. We provide evidence suggesting that Prdx1 promotes HBV RNA decay through interaction with HBV RNA and Exosc5, leading to downregulation of HBV RNA. These results suggest that Prdx1 negatively regulates HBV propagation. Our findings may shed new light on the roles of Prdx1 and Exosc5 in host defense mechanisms in HBV infection.
Collapse
|
21
|
Liu T, Yang H, Fan W, Tu J, Li TWH, Wang J, Shen H, Yang J, Xiong T, Steggerda J, Liu Z, Noureddin M, Maldonado SS, Annamalai A, Seki E, Mato JM, Lu SC. Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer. Gastroenterology 2018; 155:557-571.e14. [PMID: 29733835 PMCID: PMC6067975 DOI: 10.1053/j.gastro.2018.04.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS MAF bZIP transcription factor G (MAFG) is activated by the farnesoid X receptor to repress bile acid synthesis. However, expression of MAFG increases during cholestatic liver injury in mice and in cholangiocarcinomas. MAFG interacts directly with methionine adenosyltransferase α1 (MATα1) and other transcription factors at the E-box element to repress transcription. We studied mechanisms of MAFG up-regulation in cholestatic tissues and the pathways by which S-adenosylmethionine (SAMe) and ursodeoxycholic acid (UDCA) prevent the increase in MAFG expression. We also investigated whether obeticholic acid (OCA), an farnesoid X receptor agonist, affects MAFG expression and how it contributes to tumor growth in mice. METHODS We obtained 7 human cholangiocarcinoma specimens and adjacent non-tumor tissues from patients that underwent surgical resection in California and 113 hepatocellular carcinoma (HCC) specimens and adjacent non-tumor tissues from China, along with clinical data from patients. Tissues were analyzed by immunohistochemistry. MAT1A, MAT2A, c-MYC, and MAFG were overexpressed or knocked down with small interfering RNAs in MzChA-1, KMCH, Hep3B, and HepG2 cells; some cells were incubated with lithocholic acid (LCA, which causes the same changes in gene expression observed during chronic cholestatic liver injury in mice), SAMe, UDCA (100 μM), or farnesoid X receptor agonists. MAFG expression and promoter activity were measured using real-time polymerase chain reaction, immunoblot, and transient transfection. We performed electrophoretic mobility shift, and chromatin immunoprecipitation assays to study proteins that occupy promoter regions. We studied mice with bile-duct ligation, orthotopic cholangiocarcinomas, cholestasis-induced cholangiocarcinoma, diethylnitrosamine-induced liver tumors, and xenograft tumors. RESULTS LCA activated expression of MAFG in HepG2 and MzChA-1 cells, which required the activator protein-1, nuclear factor-κB, and E-box sites in the MAFG promoter. LCA reduced expression of MAT1A but increased expression of MAT2A in cells. Overexpression of MAT2A increased activity of the MAFG promoter, whereas knockdown of MAT2A reduced it. MAT1A and MAT2A had opposite effects on the activator protein-1, nuclear factor-κB, and E-box-mediated promoter activity. Expression of MAFG and MAT2A increased, and expression of MAT1A decreased, in diethylnitrosamine-induced liver tumors in mice. SAMe and UDCA had shared and distinct mechanisms of preventing LCA-mediated increased expression of MAFG. OCA increased expression of MAFG, MAT2A, and c-MYC, but reduced expression of MAT1A. Incubation of human liver and biliary cancer cells lines with OCA promoted their proliferation; in nude mice given OCA, xenograft tumors were larger than in mice given vehicle. Levels of MAFG were increased in human HCC and cholangiocarcinoma tissues compared with non-tumor tissues. High levels of MAFG in HCC samples correlated with hepatitis B, vascular invasion, and shorter survival times of patients. CONCLUSIONS Expression of MAFG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC specimens; high expression levels correlate with tumor progression and reduced survival time. SAMe and UDCA reduce expression of MAFG in response to cholestasis, by shared and distinct mechanisms. OCA induces MAFG expression, cancer cell proliferation, and growth of xenograft tumors in mice.
Collapse
Affiliation(s)
- Ting Liu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA,Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China,Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Heping Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - Wei Fan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA,Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou 510180, China,State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jian Tu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA,Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
| | - Tony W. H. Li
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - Jiaohong Wang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - JinWon Yang
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - Ting Xiong
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA,Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
| | - Justin Steggerda
- Department of Surgery, Cedars-Sinai Medical Center, LA, CA 90048
| | - Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Ceter, LA, CA 90048
| | - Mazen Noureddin
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - Stephanie S. Maldonado
- The Warren Alpert Medical School of Brown University, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Alagappan Annamalai
- Department of Surgery, Cedars-Sinai Medical Center, LA, CA 90048,Comprehensive Transplant Center, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, LA, CA 90048, USA,Corresponding author: Shelly C. Lu, M.D., Cedars-Sinai Medical Center, Davis Building, Room #2097, 8700 Beverly Blvd., Los Angeles, CA, 90048. Tel: (310) 423-5692, Fax: (310) 423-0653,
| |
Collapse
|
22
|
Sviripa VM, Kril LM, Zhang W, Xie Y, Wyrebek P, Ponomareva L, Liu X, Yuan Y, Zhan CG, Watt DS, Liu C. Phenylethynyl-substituted Heterocycles Inhibit Cyclin D1 and Induce the Expression of Cyclin-dependent Kinase Inhibitor p21 Wif1/Cip1 in Colorectal Cancer Cells. MEDCHEMCOMM 2018. [PMID: 29527286 DOI: 10.1039/c7md00393e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorinated, phenylethynyl-substituted heterocycles that possessed either an N-methylamino or N,N-dimethylamino group attached to heterocycles including pyridines, indoles, 1H-indazoles, quinolines, and isoquinolines inhibited the proliferation of LS174T colon cancer cells in which the inhibition of cyclin D1 and induction of the cyclin-dependent kinase inhibitor-1 (i.e., p21Wif1/Cip1) served as a readout for antineoplastic activity at a cellular level. On a molecular level, these agents, particularly 4-((2,6-difluorophenyl)ethynyl)-N-methylisoquinolin-1-amine and 4-((2,6-difluorophenyl)ethynyl)-N,N-dimethylisoquinolin-1-amine, bound and inhibited the catalytic subunit of methionine S-adenosyltransferase-2 (MAT2A).
Collapse
Affiliation(s)
- Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596
| | - Liliia M Kril
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| | - Yanqi Xie
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| | - Przemyslaw Wyrebek
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509
| | - Larissa Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596
| | - Xifu Liu
- Epionc, Inc., P.O. Box 23436, Lexington, KY 40523
| | - Yaxia Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky 40536-0596
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky 40536-0596
| | - David S Watt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Epionc, Inc., P.O. Box 23436, Lexington, KY 40523.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| | - Chunming Liu
- Epionc, Inc., P.O. Box 23436, Lexington, KY 40523.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| |
Collapse
|
23
|
An J, Na SK, Shim JH, Park YS, Jun MJ, Lee JH, Song GW, Lee HC, Yu E. Histological expression of methionine adenosyl transferase (MAT) 2A as a post-surgical prognostic surrogate in patients with hepatocellular carcinoma. J Surg Oncol 2018; 117:892-901. [PMID: 29448301 DOI: 10.1002/jso.24994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Deregulation of methionine adenosyltransferase (MAT) is involved in hepatocarcinogenesis. This study aimed to investigate the prognostic implications of the level of histological MAT1A and MAT2A in patients with resected hepatocellular carcinoma (HCC). METHODS A total of 210 patients with HCC who underwent curative resection between 2004 and 2011 were included. The levels of MAT proteins were immunohistochemically measured. RESULTS MAT1A and MAT2A were over-expressed in 134 (63.8%) and 124 (59.1%) of the 210 tumor tissues, respectively. Up-regulation of tumoral MAT1A was independently associated with male gender, and inversely related to tumors >5 cm (adjusted odds ratios [OR] 2.59, P = 0.008, and OR 0.44, P = 0.012, respectively). Enhanced MAT2A expression was significantly related to age ≥60 years and serum AFP >200 ng/mL (OR 0.51, P = 0.030; and OR 2.65, P = 0.003; respectively). Tumoral MAT2A over-expression independently predicted an increased rate of recurrence within 1 year after hepatectomy (adjusted hazard ratio [HR] 2.45, P = 0.012), but that was not the case for MAT1A expression (HR 0.90, P = 0.744). High MAT2A was also an independent predictor of early recurrence (HR 2.54, P = 0.034) in the subset of patients without microvascular invasion (n = 155). CONCLUSIONS Over-expression of MAT2A in HCC may be a useful biomarker for predicting and monitoring tumor recurrence, especially early after hepatic resection.
Collapse
Affiliation(s)
- Jihyun An
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Kyun Na
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Soon Park
- Department of Pathology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Jung Jun
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Ho Lee
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hac Chu Lee
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsil Yu
- Department of Pathology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Yang Y, Wang X, Zhang Y, Yuan W. Hepatitis B virus X protein and proinflammatory cytokines synergize to enhance TRAIL-induced apoptosis of renal tubular cells by upregulation of DR4. Int J Biochem Cell Biol 2018; 97:62-72. [PMID: 29432906 DOI: 10.1016/j.biocel.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 01/07/2023]
Abstract
Persistent infection with hepatitis B virus (HBV) may lead to HBV-associated glomerulonephritis (HBV-GN). Presence of HBV-DNA and -RNA in renal tubular epithelial cells (RTECs) suggests direct virus-induced injury. Increase in proinflammatory cytokines is also observed under these conditions. Apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in the pathogenesis of HBV-infections. However, the effects of HBV X protein (HBx) on TRAIL-induced apoptosis of RTECs especially under certain inflammatory conditions remain obscure. Here, we show that HBx synergizes with proinflammatory cytokines to significantly increase TRAIL-induced apoptosis of RTECs. HBx markedly up-regulates death receptor-4 (DR4) expression by enhancing the activation of nuclear factor-kappa B (NF-κB) in the presence of proinflammatory cytokines. Dramatic increase in DR4 expression leads to the sensitization of RTECs to TRAIL-induced apoptosis. Furthermore, in patients with HBV-GN, DR4 expression in the kidneys is significantly elevated and is positively correlated with the HBx and proinflammatory cytokines expression. These findings provide a novel insight into the underlying mechanisms of renal tubule lesions induced by HBx in HBV-GN.
Collapse
Affiliation(s)
- Yitong Yang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuan Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yueyue Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
25
|
Maldonado LY, Arsene D, Mato JM, Lu SC. Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 2017; 243:107-117. [PMID: 29141455 DOI: 10.1177/1535370217740860] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methionine adenosyltransferase genes encode enzymes responsible for the biosynthesis of S-adenosylmethionine, the principal biological methyl donor and precursor of polyamines and glutathione. Mammalian cells express three genes - MAT1A, MAT2A, and MAT2B - with distinct expression and functions. MAT1A is mainly expressed in the liver and maintains the differentiated states of both hepatocytes and bile duct epithelial cells. Conversely, MAT2A and MAT2B are widely distributed in non-parenchymal cells of the liver and extrahepatic tissues. Increasing evidence suggests that methionine adenosyltransferases play significant roles in the development of cancers. Liver cancers, namely hepatocellular carcinoma and cholangiocarcinoma, involve dysregulation of all three methionine adenosyltransferase genes. MAT1A reduction is associated with increased oxidative stress, progenitor cell expansion, genomic instability, and other mechanisms implicated in tumorigenesis. MAT2A/MAT2B induction confers growth and survival advantage to cancerous cells, enhancing tumor migration. Highlighted examples from colon, gastric, breast, pancreas and prostate cancer studies further underscore methionine adenosyltransferase genes' role beyond the liver in cancer development. In this subset of extra-hepatic cancers, MAT2A and MAT2B are induced via different regulatory mechanisms. Understanding the role of methionine adenosyltransferase genes in tumorigenesis helps identify attributes of these genes that may serve as valuable targets for therapy. While S-adenosylmethionine, and its metabolite, methylthioadenosine, have been largely explored as therapeutic interventions, targets aimed at regulation of MAT gene expression and methionine adenosyltransferase protein-protein interactions are now surfacing as potential effective strategies for treatment and chemoprevention of cancers. Impact statement This review examines the role of methionine adenosyltransferases (MATs) in human cancer development, with a particular focus on liver cancers in which all three MAT genes are implicated in tumorigenesis. An overview of MAT genes, isoenzymes and their regulation provide context for understanding consequences of dysregulation. Highlighting examples from liver, colon, gastric, breast, pancreas and prostate cancers underscore the importance of understanding MAT's tumorigenic role in identifying future targets for cancer therapy.
Collapse
Affiliation(s)
- Lauren Y Maldonado
- 1 Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Diana Arsene
- 2 Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - José M Mato
- 3 CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Derio, Bizkaia 48160, Spain
| | - Shelly C Lu
- 4 Division of Digestive and Liver Diseases, 22494 Cedars-Sinai Medical Center , Cedars-Sinai Medical Center, LA, CA 90048, USA
| |
Collapse
|
26
|
Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 2017; 14:154. [PMID: 28768533 PMCID: PMC5541666 DOI: 10.1186/s12974-017-0928-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. Methods Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. Results In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1−/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1−/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1−/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. Conclusions Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0928-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Hans-Hermann Hoepken
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Bastian Roller
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Blas Morales-Gordo
- Department of Neurology, University Hospital San Cecilio, 18012, Granada, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Patrick N Harter
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Yang SL, Ren QG, Zhang T, Pan X, Wen L, Hu JL, Yu C, He QJ. Hepatitis B virus X protein and hypoxia‑inducible factor-1α stimulate Notch gene expression in liver cancer cells. Oncol Rep 2017; 37:348-356. [PMID: 27840976 DOI: 10.3892/or.2016.5211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence has demonstrated that Notch genes, including Notch1, Notch2, Notch3 and Notch4, are involved in carcinogenesis. However, the expression and regulation of Notch genes in hepatocellular carcinoma (HCC) tissues have not been fully investigated. In the present study, immunohistochemical and quantitative real-time PCR (qPCR) analyses were performed to examine the expression of Notch genes in normal human liver, HBV-related HCC and paired peritumoral tissues. Additionally, qPCR and western blotting were utilized to investigate the impact of hepatitis B virus X protein (HBx) and hypoxia‑inducible factor-1α (HIF-1α) on the regulation of Notch gene expression. The immunohistochemical and qPCR results showed that the expression levels of Notch1, Notch3 and Notch4 were significantly higher in HCC tissues than the levels in peritumoral and normal liver tissues. However, no significant difference in Notch2 expression was found between HCC and peritumoral tissues. Among the four Notch genes, immunohistochemical analyses found that only the increased level of Notch3 in HCC tissues was positively correlated with vascular invasion of liver cancer (P<0.05). Moreover, we found that overexpression of both HBx and HIF-1α increased the expression of Notch1, Notch3 and Notch4 in HepG2 and Bel-7404 cell lines. In summary, the present study demonstrated that Notch1, Notch3 and Notch4 were upregulated in HCC tissues and that HBx and HIF-1α may be the factors that cause the overexpression of Notch genes. Furthermore, the increased expression of Notch3 was closely related to the vascular invasiveness of HCC.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Quan-Guang Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoli Pan
- Department of Gastroenterology and Hepatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian-Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550001, P.R. China
| | - Qian-Jin He
- Department of General Surgery, Huanggang Central Hospital, Huanggang, Hubei 438000, P.R. China
| |
Collapse
|
28
|
Yang SL, Liu LP, Sun YF, Yang XR, Fan J, Ren JW, Chen GG, Lai PBS. Distinguished prognosis after hepatectomy of HBV-related hepatocellular carcinoma with or without cirrhosis: a long-term follow-up analysis. J Gastroenterol 2016; 51:722-32. [PMID: 26607653 DOI: 10.1007/s00535-015-1146-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Conflicting results have often been observed for the prognosis of hepatocellular carcinoma (HCC) patients, but few studies have attempted to explore the reasons for the conflicting results. We aimed to distinguish the prognosis of patients with HCC with cirrhosis (HCC-C) and that of patients with HCC without cirrhosis (HCC-NC). METHODS Patients with hepatitis B virus (HBV)-associated HCC treated by curative liver resection at a single institution between 1995 and 2013 were retrospectively evaluated. Kaplan-Meier and multivariate analyses were performed to identify risk factors, including tumor-related factors, hypoxia-inducible factor 1α expression, HBV X protein (HBx) expression, and HBx double mutations for overall survival and recurrence-free survival in these patients. RESULTS The long-term prognosis of HCC-NC patients is better than that of HCC-C patients. Male sex, poor differentiation, preoperative serum alanine aminotransferase level greater than 80 IU/L, and α-fetoprotein level greater than 400 ng/mL were risk factors for overall survival among HCC-NC patients but not among HCC-C patients, and age greater than 50 years was associated with poor overall survival only in cirrhotic patients. HCC-C patients benefit more from antiviral therapy following curative hepatectomy than do HCC-NC patients. The clinical value of the biomarkers hypoxia-inducible factor 1α, HBx, and HBx double mutations for predicting HCC prognosis was significantly different between these two groups. CONCLUSIONS There were differences in tumor-related prognostic factors, effectiveness of the antiviral therapy after hepatectomy, and biomarkers between HCC-C and HCC-NC patients, indicating that subgroup analysis of the prognostic factors may result in better management of HCC and that HCC patients, especially those with liver cirrhosis, should be given antiviral therapy.
Collapse
Affiliation(s)
- Sheng-Li Yang
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Yun-Fan Sun
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xing-Rong Yang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jian-Wei Ren
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
29
|
Wang J, Zhu ZH, Yang HB, Zhang Y, Zhao XN, Zhang M, Liu YB, Xu YY, Lei QY. Cullin 3 targets methionine adenosyltransferase IIα for ubiquitylation-mediated degradation and regulates colorectal cancer cell proliferation. FEBS J 2016; 283:2390-402. [PMID: 27213918 DOI: 10.1111/febs.13759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Cullin 3 (CUL3) serves as a scaffold protein and assembles a large number of ubiquitin ligase complexes. It is involved in multiple cellular processes and plays a potential role in tumor development and progression. In this study, we demonstrate that CUL3 targets methionine adenosyltransferase IIα (MAT IIα) and promotes its proteasomal degradation through the ubiquitylation-mediated pathway. MAT IIα is a key enzyme in methionine metabolism and is associated with uncontrolled cell proliferation in cancer. We presently found that CUL3 down-regulation could rescue folate deprivation-induced MAT IIα exhaustion and growth arrest in colorectal cancer (CRC) cells. Further results from human CRC samples display an inverse correlation between CUL3 and MAT IIα protein levels. Our observations reveal a novel role of CUL3 in regulating cell proliferation by controlling the stability of MAT IIα.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zi-Hua Zhu
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong-Bin Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ye Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang-Ning Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Bin Liu
- Institute of Biliary Tract Disease, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, China
| | - Ying-Ying Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Cancer Metabolism Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Kong F, You H, Zhao J, Liu W, Hu L, Luo W, Hu W, Tang R, Zheng K. The enhanced expression of death receptor 5 (DR5) mediated by HBV X protein through NF-kappaB pathway is associated with cell apoptosis induced by (TNF-α related apoptosis inducing ligand) TRAIL in hepatoma cells. Virol J 2015; 12:192. [PMID: 26577955 PMCID: PMC4650207 DOI: 10.1186/s12985-015-0416-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/03/2015] [Indexed: 01/28/2023] Open
Abstract
Background HBV X protein (HBX) is associated with cell apoptosis mediated by TNF-α related apoptosis inducing ligand (TRAIL), while the role of HBX on the expressions of TRAIL receptors death receptor 4 (DR4) and DR5 are unclear. In this study, we detected the cell apoptosis induced by TRAIL as well as gene and protein expressions of DR4 and DR5 in Huh-7 cells steadily transfected with HBX (Huh-7-HBX cells). In addition, we investigated the activation of different pathways associated with the expressions of TRAIL receptors in Huh-7-HBX cells. Methods The apoptosis of Huh-7-HBX cells induced by TRAIL was evaluated by flow cytometry analysis. The levels of DR4 and DR5 expression in cells were determined by real-time PCR and western blotting analysis. The activities of JNK pathway and NF-kappaB (NF-κB) pathway were demonstrated by western blotting assay. Results Compared to control cells, the percentage of cell apoptosis was increased in Huh-7-HBX cells. The increased expressions of DR4 and DR5 on gene and protein levels were observed in Huh-7-HBX cells. Further researches suggested that activation of JNK pathway was increased but not involved in the expression of TRAIL receptors in HBX positive cells. The activation of NF-κB pathway increased and was responsible for DR5 expression and cell apoptosis in HBX positive cells. Conclusions These results demonstrate that increased apoptosis induced by TRAIL is associated with increased expression of DR5 that mediated by HBX through NF-κB pathway. This finding provides a critical insight into the mechanism of hepatocyte apoptosis mediated by HBX in HBV infection.
Collapse
Affiliation(s)
- Fanyun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Hongjuan You
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Jinjin Zhao
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Wen Liu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Lei Hu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Wenya Luo
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Wei Hu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Renxian Tang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Kuiyang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
31
|
Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun 2015; 6:6973. [PMID: 25925782 PMCID: PMC4421817 DOI: 10.1038/ncomms7973] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
Metabolic alteration is a hallmark of cancer. Dysregulation of methionine metabolism is implicated in human liver cancer. Methionine adenosyltransferase IIα (MAT IIα) is a key enzyme in the methionine cycle, catalysing the production of S-adenosylmethionine (SAM), a key methyl donor in cellular processes, and is associated with uncontrolled cell proliferation in cancer. Here we show that P300 acetylates MAT IIα at lysine residue 81 and destabilizes MAT IIα by promoting its ubiquitylation and subsequent proteasomal degradation. Conversely, histone deacetylase-3 deacetylates and stabilizes MAT IIα by preventing its proteasomal degradation. Folate deprivation upregulates K81 acetylation and destabilizes MAT IIα to moderate cell proliferation, whereas a single mutation at K81 reverses the proliferative disadvantage of cancer cells upon folate deprivation. Moreover, MAT IIα K81 acetylation is decreased in human hepatocellular cancer. Collectively, our study reveals a novel mechanism of MAT IIα regulation by acetylation and ubiquitylation, and a direct functional link of this regulation to cancer development. Folate plays an essential role in dividing cells and is regulated by methionine adenosyltransferase (MAT), where a switch from MAT Iα to MAT IIα expression seems to promote liver cancer progression. Here the authors demonstrate that MAT IIα stability is regulated by acetylation and this regulation is important for tumour growth.
Collapse
|
32
|
Bing Y, Zhu S, Yu G, Li T, Liu W, Li C, Wang Y, Qi H, Guo T, Yuan Y, He Y, Liu Z, Liu Q. Glucocorticoid-induced S-adenosylmethionine enhances the interferon signaling pathway by restoring STAT1 protein methylation in hepatitis B virus-infected cells. J Biol Chem 2014; 289:32639-55. [PMID: 25271158 DOI: 10.1074/jbc.m114.589689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with chronic hepatitis B usually exhibit a low response to treatment with interferon α (IFN-α). An alternative approach to increase the response rate of IFN-α might be to immunologically stimulate the host with glucocorticoids (GCs) before treatment with IFN-α, but the underlying mechanism remains unclear. We hypothesized that the GCs enhance IFN signaling by inducing S-adenosylmethionine (AdoMet) when hepatitis B virus (HBV) replication was effectively suppressed by IFN-α. Here, we investigated the effect of GCs and IFN-α on AdoMet production and methionine adenosyltransferase 1A (MAT1A) expression in vitro. Furthermore, we determined whether post-transcriptional regulation is involved in HBV-repressed MAT1A expression and AdoMet production induced by dexamethasone (Dex). We found that AdoMet homeostasis was disrupted by Dex and that Dex directly regulated MAT1A expression by enhancing the binding of the glucocorticoid receptor (GR) to the glucocorticoid-response element (GRE) of the MAT1A promoter. HBV reduced AdoMet production by increasing methylation at GRE sites within the MAT1A promoter. The X protein of hepatitis B virus led to hypermethylation in the MAT1A promoter by recruiting DNA methyltransferase 1, and it inhibited GR binding to the GRE in the MAT1A promoter. Dex could increase an antiviral effect by inducing AdoMet production via a positive feedback loop when HBV is effectively suppressed by IFN-α, and the mechanism that involves Dex-induced AdoMet could increase STAT1 methylation rather than STAT1 phosphorylation. These findings provide a possible mechanism by which GC-induced AdoMet enhances the antiviral activity of IFN-α by restoring STAT1 methylation in HBV-infected cells.
Collapse
Affiliation(s)
- Yuntao Bing
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siying Zhu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guozheng Yu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ting Li
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weijun Liu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Changsheng Li
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yitao Wang
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haolong Qi
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Guo
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yufeng Yuan
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yueming He
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhisu Liu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Quanyan Liu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
33
|
Wu DH, Tai S. Molecular mechanism of hepatitis B virus X-associated hepatocarcinogenesis. Shijie Huaren Xiaohua Zazhi 2014; 22:3773-3779. [DOI: 10.11569/wcjd.v22.i25.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases and has the fourth highest mortality rate worldwide. Chronic hepatitis B virus (HBV) infection is one of the most important etiological factors for HCC. Current studies show that the hepatitis B virus X (HBX) gene plays an important role in the development of HBV-associated HCC. HBX protein is a multifunctional regulator. Though interacting with different host factors, HBX takes part in many cell physiological activities, such as signal transduction, gene transcription, cell cycle progression, apoptosis and autophagy. This review will discuss the biological role of HBX protein in the development of HCC based on the current state of knowledge on this protein.
Collapse
|
34
|
Sviripa VM, Zhang W, Balia AG, Tsodikov OV, Nickell JR, Gizard F, Yu T, Lee EY, Dwoskin LP, Liu C, Watt DS. 2',6'-Dihalostyrylanilines, pyridines, and pyrimidines for the inhibition of the catalytic subunit of methionine S-adenosyltransferase-2. J Med Chem 2014; 57:6083-91. [PMID: 24950374 PMCID: PMC4111374 DOI: 10.1021/jm5004864] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Inhibition
of the catalytic subunit of the heterodimeric methionine
S-adenosyl transferase-2 (MAT2A) with fluorinated N,N-dialkylaminostilbenes (FIDAS agents) offers a
potential avenue for the treatment of liver and colorectal cancers
where upregulation of this enzyme occurs. A study of structure–activity
relationships led to the identification of the most active compounds
as those with (1) either a 2,6-difluorostyryl or 2-chloro-6-fluorostyryl
subunit, (2) either an N-methylamino or N,N-dimethylamino group attached in a para orientation relative to the 2,6-dihalostyryl subunit, and (3) either
an N-methylaniline or a 2-(N,N-dimethylamino)pyridine ring. These modifications led to
FIDAS agents that were active in the low nanomolar range, that formed
water-soluble hydrochloride salts, and that possessed the desired
property of not inhibiting the human hERG potassium ion channel at
concentrations at which the FIDAS agents inhibit MAT2A. The active
FIDAS agents may inhibit cancer cells through alterations of methylation
reactions essential for cancer cell survival and growth.
Collapse
Affiliation(s)
- Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, ‡Department of Pharmaceutical Sciences, College of Pharmacy, §Center for Pharmaceutical Research and Innovation, and ∥Markey Cancer Center, University of Kentucky , Lexington, Kentucky 40506-0509, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Halogenated diarylacetylenes repress c-myc expression in cancer cells. Bioorg Med Chem Lett 2014; 24:3638-40. [PMID: 24930834 DOI: 10.1016/j.bmcl.2014.04.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/21/2022]
Abstract
Halogenated diarylacetylenes that possess fluorine or chlorine substituents in one aryl ring and N-methylamino or N,N-dimethylamino in the other aryl ring inhibit the proliferation of LS174T colon cancer cells through the repression of c-myc expression and induction of the cyclin-dependent kinase inhibitor-1 (i.e., p21(Wif1/Cip1)) and represent potentially useful antineoplastic agents.
Collapse
|
36
|
Liu GY, Wang W, Jia WD, Xu GL, Ma JL, Ge YS, Yu JH, Sun QK, Meng FL. Protective effect of S-adenosylmethionine on hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic HBV infection. World J Surg Oncol 2014; 12:27. [PMID: 24485003 PMCID: PMC3914845 DOI: 10.1186/1477-7819-12-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 01/18/2014] [Indexed: 12/15/2022] Open
Abstract
Background Although hepatectomy is often performed with the Pringle maneuver, the problem of hepatic ischemia-reperfusion injury (HIRI) can also be serious. Thus, the present study was designed to investigate the protective effect of S-adenosylmethionine (SAMe) on HIRI, especially for patients with hepatocellular carcinoma (HCC) associated with chronic hepatitis B virus (HBV) infection and cirrhosis. Methods Eighty-one HCC patients with chronic HBV infection, undergoing partial hepatectomy with inflow occlusion, were divided into three groups. In the pretreatment group (PR group, n = 26), patients were given SAMe two hours before surgery. In the post-treatment group (PO group, n = 25), patients were given SAMe six hours after surgery. And in the control group (control group, n = 30), patients received partial hepatectomy without any SAMe. All pre-, intra- and postoperative blood samples were collected to measure the plasma levels of transaminases, bilirubin and cytokines. The results were compared among the three groups. Results There were no statistically significant intergroup differences observed in age, gender, hepatic inflow occlusion time and the results of liver function tests. Preoperative administration of SAMe (PR group) significantly reduced the plasma levels of alanine transaminase (ALT), aspartate transferase (AST), total bilirubin (TBIL) and direct bilirubin (DBIL) as compared to the other two groups. In the PO group, TBIL and DBIL were significantly lower than in the control group. Significant differences were also seen in IL-6 and TNF-α between the PR group and the other groups. In all groups, postoperative liver reserve function in the PR group as revealed by ICGR15 (Post ICGR15) was at its best before abdominal closure. Compared to the control group, the risk of complications and the hospital stay after surgery were significantly meliorated in the PR group. Additionally, patients with cirrhosis had a more acute rate of change in ALT and AST than non-cirrhotic patients. Conclusions Taken together, our preliminary findings suggest that preoperative administration of SAMe is useful and safe for reducing the HIRI in partial hepatectomy, especially for HCC patients whose disease is associated with chronic HBV infection and cirrhosis.
Collapse
Affiliation(s)
| | | | - Wei-dong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, 17 Lujiang Road, Hefei 230001, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Bharadwaj M, Roy G, Dutta K, Misbah M, Husain M, Hussain S. Tackling hepatitis B virus-associated hepatocellular carcinoma--the future is now. Cancer Metastasis Rev 2013; 32:229-68. [PMID: 23114844 DOI: 10.1007/s10555-012-9412-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in many developing countries including India. Among the various etiological factors being implicated in the cause of HCC, the most important cause, however, is hepatitis B virus (HBV) infection. Among all HBV genes, HBx is the most critical carcinogenic component, the molecular mechanisms of which have not been completely elucidated. Despite its clinical significance, there exists a very elemental understanding of the molecular, cellular, and environmental mechanisms that drive disease pathogenesis in HCC infected with HBV. Furthermore, there are only limited therapeutic options, the clinical benefits of which are insignificant. Therefore, the quest for novel and effective therapeutic regimen against HBV-related HCC is of paramount importance. This review attempts to epitomize the current state of knowledge of this most common and dreaded liver neoplasm, highlighting the putative treatment avenues and therapeutic research strategies that need to be implemented with immediate effect for tackling HBV-related HCC that has plagued the medical and scientific fraternity for decades. Additionally, this review proposes a novel "five-point" management algorithm for HBV-related HCC apart from portraying the unmet needs, principal challenges, and scientific perspectives that are relevant to controlling this accelerating global health crisis.
Collapse
Affiliation(s)
- Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Institute of Cytology & Preventive Oncology (ICMR), Noida, India.
| | | | | | | | | | | |
Collapse
|
38
|
Rodriguez-Frias F, Buti M, Tabernero D, Homs M. Quasispecies structure, cornerstone of hepatitis B virus infection: mass sequencing approach. World J Gastroenterol 2013; 19:6995-7023. [PMID: 24222943 PMCID: PMC3819535 DOI: 10.3748/wjg.v19.i41.6995] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/23/2013] [Accepted: 09/15/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a DNA virus with complex replication, and high replication and mutation rates, leading to a heterogeneous viral population. The population is comprised of genomes that are closely related, but not identical; hence, HBV is considered a viral quasispecies. Quasispecies variability may be somewhat limited by the high degree of overlapping between the HBV coding regions, which is especially important in the P and S gene overlapping regions, but is less significant in the X and preCore/Core genes. Despite this restriction, several clinically and pathologically relevant variants have been characterized along the viral genome. Next-generation sequencing (NGS) approaches enable high-throughput analysis of thousands of clonally amplified regions and are powerful tools for characterizing genetic diversity in viral strains. In the present review, we update the information regarding HBV variability and present a summary of the various NGS approaches available for research in this virus. In addition, we provide an analysis of the clinical implications of HBV variants and their study by NGS.
Collapse
|
39
|
Abstract
NAFLD affects a large proportion of the US population and its incidence and prevalence are increasing to epidemic proportions around the world. As with other liver diseases that cause cirrhosis, NAFLD increases the risk of liver cancer, a disease with poor outcomes and limited therapeutic options. The incidences of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma are also rising, and HCC is now the leading cause of obesity-related cancer deaths in middle-aged men in the USA. In this Review, we summarize the correlations between liver cancer and NAFLD-related cirrhosis, and the role of the metabolic syndrome in the development of liver cancer from diverse aetiologies, including HCV-mediated cirrhosis. Recent advances in understanding the progression of NAFLD to HCC from preclinical models will also be discussed. Targeted genetic manipulation of certain metabolic or stress-response pathways, including one-carbon metabolism, NF-κB, PTEN and microRNAs, has been valuable in elucidating the pathways that regulate carcinogenesis in NAFLD. Although tremendous advances have occurred in the identification of diagnostic and therapeutic opportunities to reduce the progression of NAFLD, considerable gaps in our knowledge remain with regard to the mechanisms by which NAFLD and its risk factors promote liver cancer.
Collapse
Affiliation(s)
- Gregory A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 595 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710, USA
| | | | | |
Collapse
|
40
|
Hepatitis B virus inhibits apoptosis of hepatoma cells by sponging the MicroRNA 15a/16 cluster. J Virol 2013; 87:13370-8. [PMID: 24089558 DOI: 10.1128/jvi.02130-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. In this study, we found that HBV inhibited the chemotherapy drug etoposide-induced apoptosis of hepatoma cells. Further analysis revealed that HBV mRNAs possess a microRNA 15a/16 (miR-15a/16)-complementary site (HBV nucleotides [nt] 1362 to 1383) that acts as a sponge to bind and sequester endogenous miR-15a/16. Consequently, Bcl-2, known as the target of miR-15a/16, was upregulated in HBV-infected cells. The data from HBV-transgenic mice further confirmed that HBV transcripts cause the reduction of miR-15a/16 and increase of Bcl-2. More importantly, we examined the levels of HBV transcripts and miR-15a/16 in HBV-infected HCC from patients and found that the amount of HBV mRNA and the level of miR-15a/16 were negatively correlated. Consistently, the level of Bcl-2 mRNA was upregulated in HBV-infected patients. In conclusion, we identified a novel HBV mRNA-miR-15a/16-Bcl-2 regulatory pathway that is involved in inhibiting etoposide-induced apoptosis of hepatoma cells, which may contribute to facilitating chronic HBV infection and hepatoma development.
Collapse
|
41
|
Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol 2013; 59:830-41. [PMID: 23665184 DOI: 10.1016/j.jhep.2013.04.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Laboratory of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
42
|
Shen L, Zhang X, Hu D, Feng T, Li H, Lu Y, Huang J. Hepatitis B virus X (HBx) play an anti-apoptosis role in hepatic progenitor cells by activating Wnt/β-catenin pathway. Mol Cell Biochem 2013; 383:213-22. [PMID: 23934090 DOI: 10.1007/s11010-013-1769-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022]
Abstract
Increasing evidence has shown that normal stem cells may act as cancer-initiating cells and contribute to the development and progression of cancer. HBx has a close relationship with hepatocellular carcinoma, however, the role of HBx in hepatic progenitor cells (HPCs) is poorly understood. In this study, we sought to determine the role of HBx in regulating HPCs apoptosis and the underlying molecular mechanism(s) using HPCs derived from mouse fetal liver. The apoptotic ratio of HPCs infected with adenovirus-expressing HBx (Ad-HBx) was examined using flow cytometry. Results showed that the Ad-HBx treatment led to substantially decreased apoptotic ratio of HPCs, as confirmed by the Hoechst 33342 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). Possible alterations of relative proteins were examined using Western blot and real-time PCR assays. The HBx expression in HPCs increased the expression levels of Bcl2 and Mcl1 while decreasing the expression levels of Bax and cleaved caspase-9 and -3. In addition, the mRNA and protein expression levels of β-catenin were both increased. The β-catenin protein were mainly accumulated in cytoplasm and tended to transfer into cell nucleus after Ad-HBx treatment. The over-expression of β-catenin decreased the apoptotic ratio of HPCs and inhibited the expression of cleaved caspase-9 and -3 while blocking β-catenin expression resulted in the opposite results. Taken together, our results strongly suggested that the HBx protein may inhibits apoptosis of hepatic progenitor cells, at least in part by activating the WNT/β-catenin pathway. This provided a new insight into the molecular mechanism of HBx-mediated live carcinogenesis.
Collapse
Affiliation(s)
- Lihong Shen
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang J, Gong C, Bing Y, Li T, Liu Z, Liu Q. Hypermethylation-repressed methionine adenosyltransferase 1A as a potential biomarker for hepatocellular carcinoma. Hepatol Res 2013; 43:374-83. [PMID: 23072598 DOI: 10.1111/j.1872-034x.2012.01099.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 08/09/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
AIM Methionine adenosyltransferase 1A (MAT1A) is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation in hepatocarcinogenesis. However, the possible clinical impact and prognosis of this inactivation have not been investigated. METHODS We studied the methylation status of the CpG sites in the promoter region and the mRNA and protein expression of MAT1A in HCC and corresponding adjacent non-tumor tissues using methylation-specific polymerase chain reaction, reverse transcription polymerase chain reaction and immunohistochemistry techniques. RESULTS MAT1A promoter methylation was significantly higher in HCC than that in adjacent non-tumor tissues (P < 0.0001). Bisulfite sequencing showed that the four CpG sites were hypermethylated in HCC while hypomethylation was found in the corresponding adjacent non-tumor tissues. Furthermore, MAT1A methylation was significantly associated with protein expression (P = 0.022). Low expression of MAT1A was correlated with larger tumor size, higher tumor-node-metastasis stage, positive hepatitis B surface antigen status and high α-fetoprotein (AFP) serum levels (P < 0.05). MAT1A promoter methylation was also correlated with high AFP serum level (P < 0.05). In univariate survival analysis, low expression of MAT1A was significantly associated with shortened patient survival (P < 0.001). Furthermore, in multivariate analysis, MAT1A expression was found as an independent prognostic factor (P = 0.016). CONCLUSION Our observations suggest that hypermethylation of the MAT1A promoter may be one of the events in the development of HCC. Low expression of MAT1A is likely involved in the progression of the tumor and was found to be an independent factor for poor prognosis of patients with HCC.
Collapse
Affiliation(s)
- Jin Zhang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
44
|
Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 2013; 331:1-10. [DOI: 10.1016/j.canlet.2012.12.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/20/2022]
|
45
|
Hepatitis B virus X protein upregulates Lin28A/Lin28B through Sp-1/c-Myc to enhance the proliferation of hepatoma cells. Oncogene 2013; 33:449-60. [PMID: 23318446 DOI: 10.1038/onc.2012.618] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus X protein (HBx) plays critical roles in the pathogenesis of hepatocellular carcinoma (HCC). Here, we were interested in knowing whether the oncogene Lin28A and its homolog Lin28B are involved in the hepatocarcinogenesis mediated by HBx. We showed that the expression levels of Lin28A and Lin28B were increased in clinical HCC tissues, HepG2.2.15 cell line and liver tissues of p21-HBx transgenic mice. Interestingly, the expression levels of HBx were positively associated with those of Lin28A/Lin28B in clinical HCC tissues. Moreover, the overexpression of HBx resulted in the upregulation of Lin28A/Lin28B in hepatoma HepG2/H7402 cell lines by transient transfection, suggesting that HBx was able to upregulate Lin28A and Lin28B. Then, we examined the mechanism by which HBx upregulated Lin28A and Lin28B. We identified that the promoter region of Lin28A regulated by HBx was located at nt -235/-66 that contained Sp-1 binding element. Co-immunoprecipitation showed that HBx was able to interact with Sp-1 in HepG2-X cells. Moreover, chromatin immunoprecipitation (ChIP) demonstrated that HBx could bind to the promoter of Lin28A, which failed to work when Sp-1 was silenced. Electrophoretic mobility shift assay (EMSA) further identified that HBx was able to interact with Sp-1 element in Lin28A promoter via transcription factor Sp-1. In addition, we found that c-Myc was involved in the activation of Lin28B mediated by HBx. In function, Lin28A/Lin28B played important roles in HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. In conclusion, HBx activates Lin28A/Lin28B through Sp-1/c-Myc in hepatoma cells. Lin28A/Lin28B serves as key driver genes in HBx-induced hepatocarcinogenesis.
Collapse
|
46
|
Overexpression of methionine adenosyltransferase II alpha (MAT2A) in gastric cancer and induction of cell cycle arrest and apoptosis in SGC-7901 cells by shRNA-mediated silencing of MAT2A gene. Acta Histochem 2013; 115:48-55. [PMID: 22542325 DOI: 10.1016/j.acthis.2012.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/18/2022]
Abstract
The aim of this study was to clarify the methionine adenosyltransferase II alpha (MAT2A) expression pattern and to explore its potential role in gastric cancer. Quantitative real-time PCR was performed to examine MAT2A mRNA expression in 20 cases of gastric cancer tissues and corresponding non-tumor tissue samples. Immunohistochemistry was conducted to detect MAT2A protein expression in 91 gastric cancer tissues. Moreover, the stable cell lines transfected with the small hairpin RNA (shRNA) targeting MAT2A mRNA plasmids were established and the biological characteristics of these cells were examined. The expression levels of MAT2A mRNA in gastric cancer tissues were significantly higher than those in corresponding non-tumor tissues. High-level MAT2A expression was observed in 40.7% (37 of 91 cases), and correlated with tumor classification (P=0.012), lymph node metastasis (P=0.001) and poor tumor differentiation (P=0.011) of gastric cancer patients. Additionally, the MAT2A expression level was significantly decreased in the transfected cells with MAT2A specific shRNA expression plasmid pGCsi-H1-792. The stable transfected cancer cells exhibited a decrease in growth ability and an increase in the incidence of spontaneous apoptosis and the percentage of the G1 phase. Our data suggest that MAT2A plays an important role in gastric cancer development and progression.
Collapse
|
47
|
Qu J, Li J, Chen K, Qin D, Li K, Sheng Y, Zou C, Wang S, Huang A, Tang H. Hepatitis B virus regulation of Raf1 promoter activity through activation of transcription factor AP-2α. Arch Virol 2012; 158:887-94. [PMID: 23224762 DOI: 10.1007/s00705-012-1561-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/18/2012] [Indexed: 01/08/2023]
Abstract
The X protein of hepatitis B virus (HBx) is one of the important factors in the development of hepatocellular carcinoma. Raf1 kinase is a central component of many signaling pathways that are involved in normal cell growth and oncogenic transformation. We previously demonstrated that hepatitis B virus regulates Raf1 expression in HepG2.2.15 cells by enhancing its promoter activity and that HBx and HBs might play an important role in this process. However, the underlying molecular mechanisms remain unclear. In this study, we show that nucleotides -209 to -133 of the Raf1 promoter sequence constitute the core region where hepatitis B virus is regulated. This regulation was found to require the involvement of cis-regulatory element AP-2α. We further demonstrated that AP-2α expression was higher in HepG2.2.15 cells (HBV-expressing cells) than in HepG2 cells in vitro. Silencing AP-2α expression by siRNA significantly inhibited the Raf1 promoter activity in HepG2.2.15 cells. These findings indicated that HBV regulates Raf1 promoter activity, possibly through AP-2α.
Collapse
Affiliation(s)
- Jialin Qu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
49
|
Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol 2012; 57:1097-109. [PMID: 22659519 DOI: 10.1016/j.jhep.2012.04.041] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/12/2012] [Accepted: 04/15/2012] [Indexed: 12/13/2022]
Abstract
S-adenosyl-L-methionine (SAMe; AdoMet) is an important, metabolically pleiotropic molecule that participates in multiple cellular reactions as the precursor for the synthesis of glutathione and principle methyl donor required for methylation of nucleic acids, phospholipids, histones, biogenic amines, and proteins. SAMe synthesis is depressed in chronic liver disease and so there has been considerable interest in the utility of SAMe to ameliorate disease severity. Despite encouraging pre-clinical data confirming that SAMe depletion can exacerbate liver injury and supporting a hepatoprotective role for SAMe therapy, to date no large, high-quality randomised clinical trials have been performed that establish clinical utility in specific disease states. Here, we offer an in-depth review of the published scientific literature relating to the physiological and pathophysiological roles of SAMe and its therapeutic use in liver disease, critically assessing implications for clinical practice and offering recommendations for further research.
Collapse
Affiliation(s)
- Quentin M Anstee
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-Upon-Tyne NE2 4HH, UK.
| | | |
Collapse
|
50
|
Liu H, Yuan Y, Guo H, Mitchelson K, Zhang K, Xie L, Qin W, Lu Y, Wang J, Guo Y, Zhou Y, He F. Hepatitis B virus encoded X protein suppresses apoptosis by inhibition of the caspase-independent pathway. J Proteome Res 2012; 11:4803-13. [PMID: 22871131 DOI: 10.1021/pr2012297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hepatitis B virus (HBV) encoded X protein (HBx) has been implicated in apoptotic and related pathogenic events during hepatocellular carcinoma. However, the underlying molecular mechanism through which HBx acts is largely unclear. We used tandem affinity purification under mild conditions to gain insight into the HBx interactome in HBV-producing HepG2.2.15 cells and identified 49 proteins by mass spectrometry that are potentially associated with HBx. Two of the key proteins of the caspase-independent apoptosis pathway were newly identified, apoptosis-inducing factor (AIF) and the homologous AMID (AIF-homologue mitochondrion-associated inducer of death). We confirmed the interactions of HBx with AIF and with AMID by reciprocal coimmunoprecipitation experiments, respectively. We observed the expression of HBx-reduced AIF-mediated apoptosis and HBx colocalization with AIF and AMID, principally in the cytoplasm. Furthermore, the elevated cytoplasmic levels of HBx could inhibit mitochondrion-to-nucleus translocation of AIF. Here, we present the first detailed molecular evidence that HBx can repress apoptosis via inhibition of the caspase-independent apoptosis pathway. This inhibition of apoptosis involves the repression of the mitochondrion-to-nucleus translocation of AIF, although tests with AMID were not conclusive. These findings provide important insights into the new mechanism of the apoptosis inhibition by HBV.
Collapse
Affiliation(s)
- Haiying Liu
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|