1
|
Navarro-Ledesma S. Frozen Shoulder as a Metabolic and Immune Disorder: Potential Roles of Leptin Resistance, JAK-STAT Dysregulation, and Fibrosis. J Clin Med 2025; 14:1780. [PMID: 40095902 PMCID: PMC11901274 DOI: 10.3390/jcm14051780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Frozen shoulder (FS) is a complex and multifactorial condition characterized by persistent inflammation, fibrosis, and metabolic dysregulation. Despite extensive research, the underlying drivers of FS remain poorly understood. Recent findings indicate the coexistence of pro-inflammatory and fibrosis-resolving macrophages within affected tissues, suggesting a dysregulated immune response influenced by metabolic and neuroendocrine factors. This review proposes that leptin resistance, a hallmark of metabolic syndrome and chronic inflammation, may play a central role in FS pathogenesis by impairing macrophage polarization, perpetuating inflammation, and disrupting fibrosis resolution. The JAK-STAT signaling pathway, critically modulated by leptin resistance, may further contribute to immune dysregulation by sustaining inflammatory macrophage activation and interfering with tissue remodeling. Additionally, FS shares pathogenic features with fibrotic diseases driven by TGF-β signaling, mitochondrial dysfunction, and circadian disruption, further linking systemic metabolic dysfunction to localized fibrotic pathology. Beyond immune and metabolic regulation, alterations in gut microbiota, bacterial translocation, and chronic psychosocial stress may further exacerbate systemic inflammation and neuroendocrine imbalances, intensifying JAK-STAT dysregulation and leptin resistance. By examining the intricate interplay between metabolism, immune function, and fibrotic remodeling, this review highlights targeting leptin sensitivity, JAK-STAT modulation, and mitochondrial restoration as novel therapeutic strategies for FS treatment. Future research should explore these interconnections to develop integrative interventions that address both the metabolic and immune dysregulation underlying FS, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain
| |
Collapse
|
2
|
Zhang W, Lu J, Feng L, Xue H, Shen S, Lai S, Li P, Li P, Kuang J, Yang Z, Xu X. Sonic hedgehog-heat shock protein 90β axis promotes the development of nonalcoholic steatohepatitis in mice. Nat Commun 2024; 15:1280. [PMID: 38342927 PMCID: PMC10859387 DOI: 10.1038/s41467-024-45520-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
Sonic hedgehog (SHH) and heat shock protein 90β (HSP90β) have been implicated in nonalcoholic steatohepatitis (NASH) but their molecular mechanisms of action remain elusive. We find that HSP90β is a key SHH downstream molecule for promoting NASH process. In hepatocytes, SHH reduces HSP90β ubiquitylation through deubiquitylase USP31, thus preventing HSP90β degradation and promoting hepatic lipid synthesis. HSP90β significantly increases in NASH mouse model, leading to secretion of exosomes enriched with miR-28-5p. miR-28-5p directly targetes and decreases Rap1b levels, which in turn promotes NF-κB transcriptional activity in macrophages and stimulates the expression of inflammatory factors. Genetic deletion, pharmacological inhibition of the SHH-HSP90β axis, or delivery of miR-28-5p to macrophages in the male mice liver, impairs NASH symptomatic development. Importantly, there is a markedly higher abundance of miR-28-5p in NASH patient sera. Taken together, the SHH-HSP90β-miR-28-5p axis offers promising therapeutic targets against NASH, and serum miR-28-5p may serve as a NASH diagnostic biomarker.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Junfeng Lu
- First Department of Liver Disease, Beijing You'An Hospital, Capital Medical University, Beijing, 100069, China
| | - Lianshun Feng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hanyue Xue
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Shuiqing Lai
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - PingPing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jian Kuang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing, 100021, PR China.
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhou Z, Zhang R, Li X, Zhang W, Zhan Y, Lang Z, Tao Q, Yu J, Yu S, Yu Z, Zheng J. Circular RNA cVIM promotes hepatic stellate cell activation in liver fibrosis via miR-122-5p/miR-9-5p-mediated TGF-β signaling cascade. Commun Biol 2024; 7:113. [PMID: 38243118 PMCID: PMC10798957 DOI: 10.1038/s42003-024-05797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Hepatic stellate cell (HSC) activation is considered as a central driver of liver fibrosis and effective suppression of HSC activation contributes to the treatment of liver fibrosis. Circular RNAs (circRNAs) have been reported to be important in tumor progression. However, the contributions of circRNAs in liver fibrosis remain largely unclear. The liver fibrosis-specific circRNA was explored by a circRNA microarray and cVIM (a circRNA derived from exons 4 to 8 of the vimentin gene mmu_circ_32994) was selected as the research object. Further studies revealed that cVIM, mainly expressed in the cytoplasm, may act as a sponge for miR-122-5p and miR-9-5p to enhance expression of type I TGF-β receptor (TGFBR1) and TGFBR2 and promotes activation of the TGF-β/Smad pathway, thereby accelerating the progression of liver fibrosis. Our results demonstrate a vital role for cVIM in promoting liver fibrosis progression and provide a fresh perspective on circRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jinglu Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Manka P, Coombes JD, Sydor S, Swiderska-Syn MK, Best J, Gauthier K, van Grunsven LA, Oo YH, Wang C, Diehl AM, Hönes GS, Moeller LC, Figge A, Boosman RJ, Faber KN, Tannapfel A, Goetze O, Aspichueta P, Lange CM, Canbay A, Syn WK. Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells. Liver Int 2024; 44:125-138. [PMID: 37872645 DOI: 10.1111/liv.15759] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.
Collapse
Affiliation(s)
- Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason D Coombes
- Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Marzena K Swiderska-Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jan Best
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Barnard Lyon, Lyon, France
| | - Leo A van Grunsven
- Department of Basic (Bio-)medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ye H Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, Birmingham Advanced Cell Therapy Facility, University of Birmingham, Birmingham, UK
| | - Cindy Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Georg S Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Figge
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - René J Boosman
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas N Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Oliver Goetze
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - Christian M Lange
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Vizcaya, Spain
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
6
|
Zheng W, Bian S, Qiu S, Bishop CE, Wan M, Xu N, Sun X, Sequeira RC, Atala A, Gu Z, Zhao W. Placenta mesenchymal stem cell-derived extracellular vesicles alleviate liver fibrosis by inactivating hepatic stellate cells through a miR-378c/SKP2 axis. Inflamm Regen 2023; 43:47. [PMID: 37798761 PMCID: PMC10557276 DOI: 10.1186/s41232-023-00297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-β1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS TGF-β1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-β1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION Pd-MSCs-EVs ameliorated TGF-β1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Saiyan Bian
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shi Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Meimei Wan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Nuo Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xieyin Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
7
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
8
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
9
|
Jia X, Xu F, Lu S, Jie H, Guan W, Zhou Y. An unusual signal transducer GIV/Girdin engages in the roles of adipocyte-derived hormone leptin in liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166797. [PMID: 37478565 DOI: 10.1016/j.bbadis.2023.166797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Obese patients usually have hyperleptinemia and are prone to develop liver fibrosis. Leptin is intimately linked to liver fibrogenesis, a multi-receptor-driven disease. Gα-Interacting Vesicle-associated protein (GIV) functions as a multimodular signal transducer and a guanine nucleotide exchange factor for Gi controling key signalings downstream of diverse receptors. This study aimed to examine the roles of GIV in leptin-caused liver fibrosis and employed the culture-activated hepatic stellate cells (HSCs) and leptin-deficient mice, respectively. Results indicated that leptin upregulated GIV expression in HSCs. GIV was involved in leptin-induced HSC activation and liver fibrosis. GIV mediated leptin regulation of TIMP1, MMP9, PDGFβ receptor and TGFβ receptor and was required for leptin stimulating the pathways of Erk1/2, Akt1, and Smad3. GIV was also a mediator for leptin-regulation of Cyclin D1 and Caspase-3 activity but GIV reduced Caspase-3 level independently of leptin in vivo. Erk1/2 signaling, Egr1 and c-Jun were associated with the effect of leptin on GIV expression in HSCs. Leptin-induced Erk1/2 signaling increased Egr1 and p-c-Jun levels and promoted their binding to GIV promoter at the sites between -190 bp and -180 bp and between -382 bp and - 376 bp, respectively. Egr1 knockdown lessened leptin-upregulation of GIV in vitro and in vivo. In human cirrhotic livers, the increase in GIV protein level parallelled with the elevated p-Erk1/2 and Egr1 levels in HSCs. In summary, the unusual signal transducer GIV was identified as an important mediator in leptin-induced liver fibrosis. GIV may have significant implications in liver fibrosis progression of obese patients with hyperleptinaemia.
Collapse
Affiliation(s)
- Xin Jia
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), 500 Yonghe Road, Nantong 226011, Jiangsu, China
| | - Sidan Lu
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Huang Jie
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical School, Nantong University, Qi xiou Road 19, Nantong 226001, Jiangsu, China.
| |
Collapse
|
10
|
Abstract
The understanding of the mechanisms of liver fibrosis has been dominated by models in which chronic hepatocellular injury is the initiating step as is seen with viral infections. The increased prevalence of the metabolic syndrome, and the increases in liver fibrosis due to metabolic syndrome driven non-alcoholic steatohepatitis (NASH), has made it a priority to understand how this type of liver fibrosis is similar to, and different from, pure hepatocellular injury driven liver fibrosis. Both types of liver fibrosis have the transformation of the hepatic stellate cell (HSC) into a myofibroblast as a key step. In metabolic syndrome, there is little evidence that metabolite changes such as high levels of glucose and free fatty acids are directly inducing HSC transdifferentiation, however, metabolite changes may lead to reductions in immunomodulatory and hepatoprotective molecules such as lipoxins, resolvins and Interleukin (IL)-22. Cells of the innate immune system are known to be important intermediaries between hepatocellular damage and HSC transdifferentiation, primarily by producing cytokines such as transforming growth factor-β (TGF-β) and platelet derived growth factor (PDGF). Resident and infiltrating macrophages are the dominant innate immune cells, but others (dendritic cells, neutrophils, natural killer T cells and mucosal-associated invariant T cells) also have important roles in inducing and resolving liver fibrosis. CD8+ and CD4+ T cells of the adaptive immune system have been identified to have greater profibrotic roles than previously realised by inducing hepatocyte death (auto-aggressive CD8+T) cells and cytokines producing (TH17 producing CD4+T) cells. Finally, the cellular networks present in NASH fibrosis are being identified and suggest that once fibrosis has developed cell-to-cell communication is dominated by myofibroblasts autocrine signalling followed by communication with cholangiocytes and endothelial cells, with myofibroblast-hepatocyte, and myofibroblast-macrophage signalling having minor roles. Such information is essential to the development of antifibrotic strategies for different stages of fibrosis.
Collapse
Affiliation(s)
- Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Amens JN, Bahçecioğlu G, Dwyer K, Yue XS, Stack MS, Hilliard TS, Zorlutuna P. Maternal obesity driven changes in collagen linearity of breast extracellular matrix induces invasive mammary epithelial cell phenotype. Biomaterials 2023; 297:122110. [PMID: 37062214 PMCID: PMC10192205 DOI: 10.1016/j.biomaterials.2023.122110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/31/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Obesity has been linked with numerous health issues as well as an increased risk of breast cancer. Although effects of direct obesity in patient outcomes is widely studied, effects of exposure to obesity-related systemic influences in utero have been overlooked. In this study, we investigated the effect of multigenerational obesity on epithelial cell migration and invasion using decellularized breast tissues explanted from normal female mouse pups from a diet induced multigenerational obesity mouse model. We first studied the effect of multigenerational diet on the mechanical properties, adipocyte size, and collagen structure of these mouse breast tissues, and then, examined the migration and invasion behavior of normal (KTB-21) and cancerous (MDA-MB-231) human mammary epithelial cells on the decellularized matrices from each diet group. Breast tissues of mice whose dams had been fed with high-fat diet exhibited larger adipocytes and thicker and curvier collagen fibers, but only slightly elevated elastic modulus and inflammatory cytokine levels. MDA-MB-231 cancer cell motility and invasion were significantly greater on the decellularized matrices from mice whose dams were fed with high-fat diet. A similar trend was observed with normal KTB-21 cells. Our results showed that the collagen curvature was the dominating factor on this enhanced motility and stretching the matrices to equalize the collagen fiber linearity of the matrices ameliorated the observed increase in cell migration and invasion in the mice that were exposed to a high-fat diet in utero. Previous studies indicated an increase in serum leptin concentration for those children born to an obese mother. We generated extracellular matrices using primary fibroblasts exposed to various concentrations of leptin. This produced curvier ECM and increased breast cancer cell motility for cells seeded on the decellularized ECM generated with increasing leptin concentration. Our study shows that exposure to obesity in utero is influential in determining the extracellular matrix structure, and that the resultant change in collagen curvature is a critical factor in regulating the migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Jensen N Amens
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gökhan Bahçecioğlu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kiera Dwyer
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaoshan S Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tyvette S Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
12
|
Gart E, van Duyvenvoorde W, Snabel JM, de Ruiter C, Attema J, Caspers MPM, Lek S, van Heuven BJ, Speksnijder AGCL, Giera M, Menke A, Salic K, Bence KK, Tesz GJ, Keijer J, Kleemann R, Morrison MC. Translational characterization of the temporal dynamics of metabolic dysfunctions in liver, adipose tissue and the gut during diet-induced NASH development in Ldlr-/-.Leiden mice. Heliyon 2023; 9:e13985. [PMID: 36915476 PMCID: PMC10006542 DOI: 10.1016/j.heliyon.2023.e13985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood. Methods High-fat-diet (HFD)-fed Ldlr-/-.Leiden mice were compared to chow-fed controls. At t = 0, 8, 16, 28 and 38w mice were euthanized, and liver, WAT depots and gut were analyzed biochemically, histologically and by lipidomics and transcriptomics together with circulating factors to investigate the sequence of pathogenic events and organ cross-talk during NAFLD development. Results HFD-induced obesity was associated with an increase in visceral fat, plasma lipids and hyperinsulinemia at t = 8w, along with increased liver steatosis and circulating liver damage biomarkers. In parallel, upstream regulator analysis predicted that lipid catabolism regulators were deactivated and lipid synthesis regulators were activated. Subsequently, hepatocyte hypertrophy, oxidative stress and hepatic inflammation developed. Hepatic collagen accumulated from t = 16 w and became pronounced at t = 28-38 w. Epididymal WAT was maximally hypertrophic from t = 8 w, which coincided with inflammation development. Mesenteric and subcutaneous WAT hypertrophy developed slower and did not appear to reach a maximum, with minimal inflammation. In gut, HFD significantly increased permeability, induced a shift in microbiota composition from t = 8 w and changed circulating gut-derived metabolites. Conclusion HFD-fed Ldlr-/-.Leiden mice develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NAFLD patients, underlining their translational value. We demonstrate that marked epididymal-WAT inflammation, and gut permeability and dysbiosis precede the development of NAFLD stressing the importance of a multiple-organ approach in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Jessica M Snabel
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Kendra K Bence
- Pfizer Worldwide Research, Development & Medical, Internal Medicine Research Unit, Cambridge, MA, USA
| | - Gregory J Tesz
- Pfizer Worldwide Research, Development & Medical, Internal Medicine Research Unit, Cambridge, MA, USA
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| |
Collapse
|
13
|
Zhang R, Li X, Gao Y, Tao Q, Lang Z, Zhan Y, Li C, Zheng J. Ginsenoside Rg1 Epigenetically Modulates Smad7 Expression in Liver Fibrosis via MicroRNA-152. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
14
|
Hao S, Ming L, Li Y, Lv H, Li L, Jambal T, Ji R. Modulatory effect of camel milk on intestinal microbiota of mice with non-alcoholic fatty liver disease. Front Nutr 2022; 9:1072133. [PMID: 36532537 PMCID: PMC9751322 DOI: 10.3389/fnut.2022.1072133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 08/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease of life, usually caused by unhealthy diet and lifestyle. Compared to normal individuals, the structure of the intestinal flora of NAFLD patients is altered accordingly. This study investigates the effect of camel milk on the regulation of intestinal flora structure in mice with high-fat diet-induced NAFLD. NAFLD model was established by feeding C57BL/6J mice a high-fat diet for 12 weeks, meanwhile camel milk (3.0 g/kg/d), cow milk (3.0 g/kg/d), and silymarin (200 mg/kg/d) were administered by gavage, respectively. Food intake and changes of physiological indexes in mice were observed and recorded. The 16S rRNA gene V3-V4 region was sequenced and the intestinal flora diversity and gene function were predicted in the colon contents of mice from different group. The results showed that camel milk enhanced glucolipid metabolism by downregulate the levels of blood glucose and triglyceride (TG) in serum, reduced lipid accumulation by downregulate the level of TG in the liver and improved liver tissue structure in NAFLD mice (p < 0.05). Meanwhile, camel milk had a positive modulatory effect on the intestinal flora of NAFLD mice, increasing the relative abundance of beneficial bacteria and decreasing the relative abundance of harmful bacteria in the intestinal flora of NAFLD mice, and silymarin had a similar modulatory effect. At the genus level, camel milk increased the relative abundance of Bacteroides, norank_f_Muribaculaceae and Alloprevotella and decreased the relative abundance of Dubosiella and Coriobacteriaceae_UCG-002 (p < 0.05). Camel milk also enhanced Carbohydrate metabolism, Amino acid metabolism, Energy metabolism, Metabolism of cofactors and vitamins and Lipid metabolism in NAFLD mice, thus reducing the degree of hepatic lipid accumulation in NAFLD mice and maintaining the normal structure of the liver. In conclusion, camel milk can improve the structure and diversity of intestinal flora and enhance the levels of substance and energy metabolism in NAFLD mice, which has a positive effect on alleviating NAFLD and improving the structure of intestinal flora.
Collapse
Affiliation(s)
- Shiqi Hao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Liang Ming
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Yafei Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Haodi Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Tuyatsetseg Jambal
- China-Mongolia Joint Laboratory for Biomacromolecule Research, Ulaanbaatar, Mongolia
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
16
|
Song JX, An JR, Chen Q, Yang XY, Jia CL, Xu S, Zhao YS, Ji ES. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice. Bioengineered 2022; 13:8334-8348. [PMID: 35311455 PMCID: PMC9161873 DOI: 10.1080/21655979.2022.2051858] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Liver pathological changes are as high as 21%-78% in diabetic patients, and treatment options are lacking. Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor that is widely used in the clinic and is approved to treat obesity and diabetes. However, the specific protection mechanism needs to be clarified. In the present study, db/db mice were used to simulate Type 2 diabetes mellitus (T2DM), and they were intraperitoneally injected daily with liraglutide (200 μg/kg/d) for 5 weeks. Hepatic function, pathologic changes, oxidative stress, iron levels, and ferroptosis were evaluated. First, liraglutide decreased serum AST and ALT levels, and suppressed liver fibrosis in db/db mice. Second, liraglutide inhibited the ROS production by upregulating SOD, GSH-PX, and GSH activity as well as by downregulating MDA, 4-HNE, and NOX4 expression in db/db mice. Furthermore, liraglutide attenuated iron deposition by decreasing TfR1 expression and increasing FPN1 expression. At the same time, liraglutide decreased ferroptosis by elevating the expression of SLC7A11 and the Nrf2/HO-1/GPX4 signaling pathway in the livers of db/db mice. In addition, liraglutide decreased the high level of labile iron pools (LIPs) and intracellular lipid ROS induced by high glucose in vitro. Therefore, we speculated that liraglutide played a crucial role in reducing iron accumulation, oxidative damage and ferroptosis in db/db mice.
Collapse
Affiliation(s)
- Ji-Xian Song
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China.,First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Lioaning, China
| | - Qi Chen
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xin-Yue Yang
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Cui-Ling Jia
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shan Xu
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ya-Shuo Zhao
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China
| | - En-Sheng Ji
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
18
|
Tao J, Chen Y, Zhuang Y, Wei R, Getachew A, Pan T, Yang F, Li Y. Inhibition of Hedgehog Delays Liver Regeneration through Disrupting the Cell Cycle. Curr Issues Mol Biol 2022; 44:470-482. [PMID: 35723318 PMCID: PMC8928988 DOI: 10.3390/cimb44020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Liver regeneration is a complicated biological process orchestrated by various liver resident cells. Hepatic cell proliferation and reconstruction of the hepatic architecture involve multiple signaling pathways. It has been reported that the Hh signal is involved in liver regeneration. However, the signal transduction pathways and cell types involved are ill studied. This study aimed to investigate hedgehog signal response cell types and the specific molecular mechanism involved in the process of liver regeneration. Partial hepatectomy (PH) of 70% was performed on ICR (Institute of Cancer Research) mice to study the process of liver regeneration. We found that the hedgehog signal was activated significantly after PH, including hedgehog ligands, receptors and intracellular signaling molecules. Ligand signals were mainly expressed in bile duct cells and non-parenchymal hepatic cells, while receptors were expressed in hepatocytes and some non-parenchymal cells. Inhibition of the hedgehog signal treated with vismodegib reduced the liver regeneration rate after partial hepatectomy, including inhibition of hepatic cell proliferation by decreasing Cyclin D expression and disturbing the cell cycle through the accumulation of Cyclin B. The current study reveals the important role of the hedgehog signal and its participation in the regulation of hepatic cell proliferation and the cell cycle during liver regeneration. It provides new insight into the recovery of the liver after liver resection.
Collapse
Affiliation(s)
- Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Ruzhi Wei
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China;
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (J.T.); (Y.C.); (Y.Z.); (R.W.); (A.G.); (T.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou 510530, China
- Correspondence: ; Tel.: +86-(020)-3201-5207
| |
Collapse
|
19
|
Gart E, van Duyvenvoorde W, Toet K, Caspers MPM, Verschuren L, Nielsen MJ, Leeming DJ, Souto Lima E, Menke A, Hanemaaijer R, Keijer J, Salic K, Kleemann R, Morrison MC. Butyrate Protects against Diet-Induced NASH and Liver Fibrosis and Suppresses Specific Non-Canonical TGF-β Signaling Pathways in Human Hepatic Stellate Cells. Biomedicines 2021; 9:biomedicines9121954. [PMID: 34944770 PMCID: PMC8698820 DOI: 10.3390/biomedicines9121954] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
In obesity-associated non-alcoholic steatohepatitis (NASH), persistent hepatocellular damage and inflammation are key drivers of fibrosis, which is the main determinant of NASH-associated mortality. The short-chain fatty acid butyrate can exert metabolic improvements and anti-inflammatory activities in NASH. However, its effects on NASH-associated liver fibrosis remain unclear. Putative antifibrotic effects of butyrate were studied in Ldlr-/-.Leiden mice fed an obesogenic diet (HFD) containing 2.5% (w/w) butyrate for 38 weeks and compared with a HFD-control group. Antifibrotic mechanisms of butyrate were further investigated in TGF-β-stimulated primary human hepatic stellate cells (HSC). HFD-fed mice developed obesity, insulin resistance, increased plasma leptin levels, adipose tissue inflammation, gut permeability, dysbiosis, and NASH-associated fibrosis. Butyrate corrected hyperinsulinemia, lowered plasma leptin levels, and attenuated adipose tissue inflammation, without affecting gut permeability or microbiota composition. Butyrate lowered plasma ALT and CK-18M30 levels and attenuated hepatic steatosis and inflammation. Butyrate inhibited fibrosis development as demonstrated by decreased hepatic collagen content and Sirius-red-positive area. In TGF-β-stimulated HSC, butyrate dose-dependently reduced collagen deposition and decreased procollagen1α1 and PAI1 protein expression. Transcriptomic analysis and subsequent pathway and upstream regulator analysis revealed deactivation of specific non-canonical TGF-β signaling pathways Rho-like GTPases and PI3K/AKT and other important pro-fibrotic regulators (e.g., YAP/TAZ, MYC) by butyrate, providing a potential rationale for its antifibrotic effects. In conclusion, butyrate protects against obesity development, insulin resistance-associated NASH, and liver fibrosis. These antifibrotic effects are at least partly attributable to a direct effect of butyrate on collagen production in hepatic stellate cells, involving inhibition of non-canonical TGF-β signaling pathways.
Collapse
Affiliation(s)
- Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands;
- Correspondence:
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| | - Karin Toet
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, TNO, 3704 HE Zeist, The Netherlands; (M.P.M.C.); (L.V.); (E.S.L.)
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, TNO, 3704 HE Zeist, The Netherlands; (M.P.M.C.); (L.V.); (E.S.L.)
| | - Mette Juul Nielsen
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark; (M.J.N.); (D.J.L.)
| | - Diana Julie Leeming
- Nordic Bioscience, Biomarkers and Research, 2730 Herlev, Denmark; (M.J.N.); (D.J.L.)
| | - Everton Souto Lima
- Department of Microbiology and Systems Biology, TNO, 3704 HE Zeist, The Netherlands; (M.P.M.C.); (L.V.); (E.S.L.)
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands;
| | - Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands; (W.v.D.); (K.T.); (A.M.); (R.H.); (K.S.); (R.K.); (M.C.M.)
| |
Collapse
|
20
|
The Hepatic Sinusoid in Chronic Liver Disease: The Optimal Milieu for Cancer. Cancers (Basel) 2021; 13:cancers13225719. [PMID: 34830874 PMCID: PMC8616349 DOI: 10.3390/cancers13225719] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development of chronic liver disease, the hepatic sinusoid undergoes major changes that further compromise the hepatic function, inducing persistent inflammation and the formation of scar tissue, together with alterations in liver hemodynamics. This diseased background may induce the formation and development of hepatocellular carcinoma (HCC), which is the most common form of primary liver cancer and a major cause of mortality. In this review, we describe the ways in which the dysregulation of hepatic sinusoidal cells—including liver sinusoidal cells, Kupffer cells, and hepatic stellate cells—may have an important role in the development of HCC. Our review summarizes all of the known sinusoidal processes in both health and disease, and possible treatments focusing on the dysregulation of the sinusoid; finally, we discuss how some of these alterations occurring during chronic injury are shared with the pathology of HCC and may contribute to its development. Abstract The liver sinusoids are a unique type of microvascular beds. The specialized phenotype of sinusoidal cells is essential for their communication, and for the function of all hepatic cell types, including hepatocytes. Liver sinusoidal endothelial cells (LSECs) conform the inner layer of the sinusoids, which is permeable due to the fenestrae across the cytoplasm; hepatic stellate cells (HSCs) surround LSECs, regulate the vascular tone, and synthetize the extracellular matrix, and Kupffer cells (KCs) are the liver-resident macrophages. Upon injury, the harmonic equilibrium in sinusoidal communication is disrupted, leading to phenotypic alterations that may affect the function of the whole liver if the damage persists. Understanding how the specialized sinusoidal cells work in coordination with each other in healthy livers and chronic liver disease is of the utmost importance for the discovery of new therapeutic targets and the design of novel pharmacological strategies. In this manuscript, we summarize the current knowledge on the role of sinusoidal cells and their communication both in health and chronic liver diseases, and their potential pharmacologic modulation. Finally, we discuss how alterations occurring during chronic injury may contribute to the development of hepatocellular carcinoma, which is usually developed in the background of chronic liver disease.
Collapse
|
21
|
Deng Y, Li J, Zhou M, Liang Z, Zhao L. c-Myc affects hedgehog pathway via KCNQ1OT1/RAC1: A new mechanism for regulating HSC proliferation and epithelial-mesenchymal transition. Dig Liver Dis 2021; 53:1458-1467. [PMID: 33451909 DOI: 10.1016/j.dld.2020.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aimed to probe into the potential mechanism of KCNQ1OT1 in liver fibrosis. METHODS The pathological changes in liver tissues were observed by Masson and hematoxylin-eosin (HE) staining. The proliferation or cell cycle of hepatic stellate cells (HSCs) was analyzed by MTT or flow cytometry. The expressions of epithelial markers E-cadherin, interstitial markers Snail and Vimentin, and hedgehog signaling pathway-related molecules Hhip, Shh, and Gli2 were detected by Western blot. The interaction or binding of c-Myc with the KCNQ1OT1 promoter was analyzed by dual-luciferase reporter gene or Chromatin immunoprecipitation (ChIP)-qPCR, and the interaction between KCNQ1OT1 and RAC1 was assessed by RNA immunoprecipitation and RNA pull-down. Moreover, the stability of RAC1 protein was detected by cycloheximide-chase and ubiquitination. RESULTS c-Myc and KCNQ1OT1 were up-regulated in liver fibrosis tissues and cells. After the interference with c-Myc in primary-1-Day HSCs, the down-regulated KCNQ1OT1 restrained HSC proliferation and EMT by down-regulating RAC1 expression and restraining the hedgehog pathway. CONCLUSION Our results indicated that the interference with c-Myc down-regulated RAC1 expression and restrained the hedgehog pathway by down-regulating KCNQ1OT1, thus restraining HSC proliferation and EMT in liver fibrosis.
Collapse
Affiliation(s)
- Yilei Deng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jian Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Menghao Zhou
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhiwei Liang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Longshuan Zhao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
22
|
Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol 2021; 19:344-352. [PMID: 32005637 DOI: 10.1016/j.aohep.2020.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Cirrhosis is a primary cause of liver-related mortality and morbidity. The basic process driving chronic liver disease to cirrhosis is accelerated fibrogenesis. Although the pathogenesis of liver cirrhosis is a multifactorial process, the essential step in the evolution of liver fibrosis is the activation of hepatic stellate cells, which are the main source of collagen produced in the extracellular matrix. This activation process is mediated by multiple growth factors, cytokines, and chemokines. One of the hepatic stellate cell-activating signaling molecules (and also one associated with cell injury and fibrosis) is osteopontin (OPN). OPN concentration in the plasma has been found to be predictive of liver fibrosis in various liver diseases. OPN concentrations correlate significantly with the stage of fibrosis, liver insufficiency, portal hypertension, and the presence of hepatocellular cancer. However, due to its versatile signaling functions, OPN not only contributes to the development of liver cirrhosis, but is also implicated in the pathogenesis of other chronic hepatic diseases such as viral hepatitis, both alcoholic and non-alcoholic steatohepatitis, drug-induced liver injury, and hepatocellular cancer. Thus, the targeting of OPN pathways seems to be a promising approach in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Radan Bruha
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, 4th Department of Internal Medicine, U Nemocnice 2, Prague, Czech Republic.
| | - Libor Vitek
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Institute of Medical Biochemistry and Laboratory Diagnostics, U Nemocnice 2, Prague, Czech Republic
| | - Vaclav Smid
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, 4th Department of Internal Medicine, U Nemocnice 2, Prague, Czech Republic
| |
Collapse
|
23
|
Arif E, Wang C, Swiderska-Syn MK, Solanki AK, Rahman B, Manka PP, Coombes JD, Canbay A, Papa S, Nihalani D, Aspichueta P, Lipschutz JH, Syn WK. Targeting myosin 1c inhibits murine hepatic fibrogenesis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1044-G1053. [PMID: 33908271 PMCID: PMC8285590 DOI: 10.1152/ajpgi.00105.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myosin 1c (Myo1c) is an unconventional myosin that modulates signaling pathways involved in tissue injury and repair. In this study, we observed that Myo1c expression is significantly upregulated in human chronic liver disease such as nonalcoholic steatohepatitis (NASH) and in animal models of liver fibrosis. High throughput data from the GEO-database identified similar Myo1c upregulation in mice and human liver fibrosis. Notably, transforming growth factor-β1 (TGF-β1) stimulation to hepatic stellate cells (HSCs), the liver pericyte and key cell type responsible for the deposition of extracellular matrix, upregulates Myo1c expression, whereas genetic depletion or pharmacological inhibition of Myo1c blunted TGF-β-induced fibrogenic responses, resulting in repression of α-smooth muscle actin (α-SMA) and collagen type I α 1 chain (Col1α1) mRNA. Myo1c deletion also decreased fibrogenic processes such as cell proliferation, wound healing response, and contractility when compared with vehicle-treated HSCs. Importantly, phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) and mothers against decapentaplegic homolog 3 (SMAD3) were significantly blunted upon Myo1c inhibition in GRX cells as well as Myo1c knockout (Myo1c-KO) mouse embryonic fibroblasts (MEFs) upon TGF-β stimulation. Using the genetic Myo1c-KO mice, we confirmed that Myo1c is critical for fibrogenesis, as Myo1c-KO mice were resistant to carbon tetrachloride (CCl4)-induced liver fibrosis. Histological and immunostaining analysis of liver sections showed that deposition of collagen fibers and α-SMA expression were significantly reduced in Myo1c-KO mice upon liver injury. Collectively, these results demonstrate that Myo1c mediates hepatic fibrogenesis by modulating TGF-β signaling and suggest that inhibiting this process may have clinical application in treating liver fibrosis.NEW & NOTEWORTHY The incidences of liver fibrosis are growing at a rapid pace and have become one of the leading causes of end-stage liver disease. Although TGF-β1 is known to play a prominent role in transforming cells to produce excessive extracellular matrix that lead to hepatic fibrosis, the therapies targeting TGF-β1 have achieved very limited clinical impact. This study highlights motor protein myosin-1c-mediated mechanisms that serve as novel regulators of TGF-β1 signaling and fibrosis.
Collapse
Affiliation(s)
- Ehtesham Arif
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina,2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina
| | - Cindy Wang
- 2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina
| | - Marzena K. Swiderska-Syn
- 3Department of Pediatrics, Darby Children’s Research Institute,
Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ashish K. Solanki
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina
| | - Bushra Rahman
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina
| | - Paul P. Manka
- 2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina,4Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Jason D. Coombes
- 5Institute of Hepatology, Foundation for Liver Research, London, United Kingdom,6School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Ali Canbay
- 4Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Salvatore Papa
- 7Leeds Institute of Medical Research at St. James’s, Faculty of
Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Deepak Nihalani
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina,8Division of Kidney, Urologic and Hematologic Diseases, National Institutes of Health, Bethesda, Maryland
| | - Patricia Aspichueta
- 9Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Joshua H. Lipschutz
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina,10Section of Nephrology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Wing-Kin Syn
- 2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina,9Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain,11Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
24
|
Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Non-alcoholic fatty liver disease: An overview of risk factors, pathophysiological mechanisms, diagnostic procedures, and therapeutic interventions. Life Sci 2021; 271:119220. [PMID: 33592199 DOI: 10.1016/j.lfs.2021.119220] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder of excessive fat accumulation in the liver, known as steatosis, without alcohol overconsumption. NAFLD can either manifest as simple steatosis or steatohepatitis, known as non-alcoholic steatohepatitis (NASH), which is accompanied by inflammation and possibly fibrosis. Furthermore, NASH might progress to hepatocellular carcinoma. NAFLD and NASH prevalence is in a continuous state of growth, and by 2018, NAFLD became a devastating metabolic disease with a global pandemic prevalence. The pathophysiology of NAFLD and NASH is not fully elucidated, but is known to involve the complex interplay between different metabolic, environmental, and genetic factors. In addition, unhealthy dietary habits and pre-existing metabolic disturbances together with other risk factors predispose NAFLD development and progression from simple steatosis to steatohepatitis, and eventually to fibrosis. Despite their growing worldwide prevalence, to date, there is no FDA-approved treatment for NAFLD and NASH. Several off-label medications are used to target disease risk factors such as obesity and insulin resistance, and some medications are used for their hepatoprotective effects. Unfortunately, currently used medications are not sufficiently effective, and research is ongoing to investigate the beneficial effects of different drugs and phytochemicals in NASH. In this review article, we outline the different risk factors and pathophysiological mechanisms involved in NAFLD, diagnostic procedures, and currently used management techniques.
Collapse
Affiliation(s)
- Samar H Gerges
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt.
| |
Collapse
|
25
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
MIRLET7BHG promotes hepatocellular carcinoma progression by activating hepatic stellate cells through exosomal SMO to trigger Hedgehog pathway. Cell Death Dis 2021; 12:326. [PMID: 33771969 PMCID: PMC7997896 DOI: 10.1038/s41419-021-03494-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC), commonly caused by liver fibrosis, is a global challenge with high morbidity. Activation of hepatic stellate cells (HSCs) contributes to hepatic fibrosis. Exosomes are small vesicles that play a significant role in cell-to-cell communication. Smoothened (SMO) is the key signal transducer for Hedgehog pathway. This study was designed to study the function and underlying mechanism of SMO in HSC activation. Functional assays including 5-Ethynyl-2´-deoxyuridine, colony formation, wound healing, transwell, and sphere formation assays disclosed the function of SMO. Western blot analysis of exosome biomarkers, immunofluorescence staining assay, electron microscope, and flow cytometry revealed the existence of exosomes. Bioinformatics analyses and mechanistic assays uncovered the interplays between RNAs. Nude mice xenograft model was established to evaluate HCC tumor growth. We uncovered that SMO was an oncogene in HCC cells and was low-expressed in quiescent HSCs. Then, SMO was upregulated in HSCs cultured with HCC cells-conditioned medium. Next, it was revealed that HCC cells-derived exosomes activated HSCs by transmitting SMO to HSCs. Subsequently, we recognized that microRNA let-7b host gene (MIRLET7BHG) served as the competing endogenous RNA against miR-330-5p to upregulate SMO. In turn, SMO induced hedgehog pathway to promote GLI family zinc finger 1 (Gli1), leading to transcriptional activation of MIRLET7BHG in activated HSCs. In summary, this study demonstrated that Gli1-induced MIRLET7BHG facilitated HCC by activating HSCs through exosomal SMO to stimulate hedgehog pathway, providing a new road for HCC treatment.
Collapse
|
27
|
Wu Z, Huang S, Zheng X, Gu S, Xu Q, Gong Y, Zhang J, Fu B, Tang L. Regulatory long non-coding RNAs of hepatic stellate cells in liver fibrosis (Review). Exp Ther Med 2021; 21:351. [PMID: 33732324 PMCID: PMC7903415 DOI: 10.3892/etm.2021.9782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis (LF) is a continuous wound healing process caused by numerous chronic hepatic diseases and poses a major threat to human health. Activation of hepatic stellate cells (HSCs) is a critical event in the development of hepatic fibrosis. Long non-coding RNAs (lncRNAs) that are involved in HSC activation, participate in the development of LF and are likely to be therapeutic targets for LF. In the present review, the cellular signaling pathways of LF with respect to HSCs were discussed. In particular, this present review highlighted the current knowledge on the role of lncRNAs in activating or inhibiting LF, revealing lncRNAs that are likely to be biomarkers or therapeutic targets for LF. Additional studies should be performed to elucidate the potential of lncRNAs in the diagnosis and prognosis of LF and to provide novel therapeutic approaches for the reversion of LF.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoqin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yiwen Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiaying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
28
|
Aramchol downregulates stearoyl CoA-desaturase 1 in hepatic stellate cells to attenuate cellular fibrogenesis. JHEP Rep 2021; 3:100237. [PMID: 34151243 PMCID: PMC8189934 DOI: 10.1016/j.jhepr.2021.100237] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Aramchol is a fatty acid-bile acid conjugate that reduces liver fat content and is being evaluated in a phase III clinical trial for non-alcoholic steatohepatitis (NASH). Aramchol attenuates NASH in mouse models and decreases steatosis by downregulating the fatty acid synthetic enzyme stearoyl CoA desaturase 1 (SCD1) in hepatocytes. Although hepatic stellate cells (HSCs) also store lipids as retinyl esters, the impact of Aramchol in this cell type is unknown. Methods We investigated the effects of Aramchol on a human HSC line (LX-2), primary human HSCs (phHSCs), and primary human hepatocytes (phHeps). Results In LX-2 and phHSCs, 10 μM Aramchol significantly reduced SCD1 mRNA while inducing PPARG (PPARγ) mRNA, with parallel changes in the 2 proteins; ACTA2, COL1A1, β-PDGFR (bPDGFR) mRNAs were also significantly reduced in LX-2. Secretion of collagen 1 (Col1α1) was inhibited by 10 μM Aramchol. SCD1 knockdown in LX-2 cells phenocopied the effect of Aramchol by reducing fibrogenesis, and addition of Aramchol to these cells did not rescue fibrogenic gene expression. Conversely, in LX-2 overexpressing SCD1, Aramchol no longer suppressed fibrogenic gene expression. The drug also induced genes in LX-2 that promote cholesterol efflux and inhibited ACAT2, which catalyses cholesterol synthesis. In phHeps, Aramchol also reduced SCD1 and increased PPARG mRNA expression. Conclusions Aramchol downregulates SCD1 and elevates PPARG in HSCs, reducing COL1A1 and ACTA2 mRNAs and COL1A1 secretion. These data suggest a direct inhibitory effect of Aramchol in HSCs through SCD1 inhibition, as part of a broader impact on both fibrogenic genes as well as mediators of cholesterol homeostasis. These findings illustrate novel mechanisms of Aramchol activity, including potential antifibrotic activity in patients with NASH and fibrosis. Lay summary In this study, we have explored the potential activity of Aramchol, a drug currently in clinical trials for fatty liver disease, in blocking fibrosis, or scarring, by hepatic stellate cells, the principal collagen-producing (i.e. fibrogenic) cell type in liver injury. In both isolated human hepatic stellate cells and in a human hepatic stellate cell line, the drug suppresses the key fat-producing enzyme, stearoyl CoA desaturase 1 (SCD1), which leads to reduced expression of genes and proteins associated with hepatic fibrosis, while inducing the protective gene, PPARγ. The drug loses activity when SCD1 is already reduced by gene knockdown, reinforcing the idea that inhibition of SCD1 is a main mode of activity for Aramchol. These findings strengthen the rationale for testing Aramchol in patients with NASH. The antifibrotic activity of Aramchol was assessed in human hepatic stellate cells (HSCs). Aramchol reduces fibrogenic gene expression by inhibiting SCD1 and inducing PPARγ. Aramchol inhibits pathways that increase HSC cholesterol content. The antifibrotic activity of Aramchol reinforces its potential efficacy in human NASH.
Collapse
Key Words
- ABCA1, ATP-binding cassette transporter 1
- EMT, epithelial-mesenchymal-transition
- Fatty liver disease
- Fibrosis
- GSEA, gene set enrichment analysis
- GSH, glutathione
- GSSG, glutathione disulfide
- HRP, horse radish peroxidase
- HSC, hepatic stellate cell
- Hepatic fibrosis
- Hh, Hedgehog
- MCD, methionine-choline depleted diet
- MMP-2, matrix metalloproteinase 2
- MUFAs, monounsaturated fatty acids
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic steatohepatitis
- PDMS, polydimethylsiloxane
- PPAR, peroxisome proliferator-activated receptor
- SCD1, stearoyl CoA-desaturase 1
- SMA, smooth muscle actin
- TAA, thioacetamide
- phHSCs, primary human hepatic stellate cells
- phHeps, primary human hepatocytes
- siRNA, small inhibitory RNA
Collapse
|
29
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is caused by the accumulation of fat in over 5% of hepatocytes in the absence of alcohol consumption. NAFLD is considered the hepatic manifestation of metabolic syndrome (MS). Recently, an expert consensus suggested as more appropriate the term MAFLD (metabolic-associated fatty liver disease). Insulin resistance (IR) plays a key role in the development of NAFLD, as it causes an increase in hepatic lipogenesis and an inhibition of adipose tissue lipolysis. Beyond the imbalance of adipokine levels, the increase in the mass of visceral adipose tissue also determines an increase in free fatty acid (FFA) levels. In turn, an excess of FFA is able to determine IR through the inhibition of the post-receptor insulin signal. Adipocytes secrete chemokines, which are able to enroll macrophages inside the adipose tissue, responsible, in turn, for the increased levels of TNF-α. The latter, as well as resistin and other pro-inflammatory cytokines such as IL-6, enhances insulin resistance and correlates with endothelial dysfunction and an increased cardiovascular (CV) risk. In this review, the role of diet, intestinal microbiota, genetic and epigenetic factors, low-degree chronic systemic inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress on NAFLD have been addressed. Finally, the clinical impact of NAFLD on cardiovascular and renal outcomes, and its direct link with type 2 diabetes have been discussed.
Collapse
|
30
|
Liang Z, Li J, Zhao L, Deng Y. miR‑375 affects the hedgehog signaling pathway by downregulating RAC1 to inhibit hepatic stellate cell viability and epithelial‑mesenchymal transition. Mol Med Rep 2021; 23:182. [PMID: 33398380 PMCID: PMC7809903 DOI: 10.3892/mmr.2020.11821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of non-coding RNAs that serve crucial roles in liver cancer and other liver injury diseases. However, the expression profile and mechanisms underlying miRNAs in liver fibrosis are not completely understood. The present study identified the novel miR-375/Rac family small GTPase 1 (RAC1) regulatory axis in liver fibrosis. Reverse transcription-quantitative PCR was performed to detect miR-375 expression levels. MTT, flow cytometry and western blotting were performed to explore the in vitro roles of miR-375. The dual-luciferase reporter gene assay was performed to determine the potential mechanism underlying miR-375 in liver fibrosis. miR-375 expression was significantly downregulated in liver fibrosis tissues and cells compared with healthy control tissues and hepatocytes, respectively. Compared with the pre-negative control group, miR-375 overexpression inhibited mouse hepatic stellate cell (HSC) viability and epithelial-mesenchymal transition, and alleviated liver fibrosis. The dual-luciferase reporter assay results demonstrated that miR-375 bound to RAC1. Moreover, the results indicated that miR-375 regulated the hedgehog signaling pathway via RAC1 to restrain HSC viability and EMT, thus exerting its anti-liver fibrosis function. The present study identified the miR-375/RAC1 axis as a novel regulatory axis associated with the development of liver fibrosis.
Collapse
Affiliation(s)
- Zhiwei Liang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jian Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Longshuan Zhao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yilei Deng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
31
|
Sasson A, Kristoferson E, Batista R, McClung JA, Abraham NG, Peterson SJ. The pivotal role of heme Oxygenase-1 in reversing the pathophysiology and systemic complications of NAFLD. Arch Biochem Biophys 2020; 697:108679. [PMID: 33248947 DOI: 10.1016/j.abb.2020.108679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.
Collapse
Affiliation(s)
- Ariel Sasson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Eva Kristoferson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Rogerio Batista
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA.
| |
Collapse
|
32
|
Bruschi FV, Tardelli M, Einwallner E, Claudel T, Trauner M. PNPLA3 I148M Up-Regulates Hedgehog and Yap Signaling in Human Hepatic Stellate Cells. Int J Mol Sci 2020; 21:E8711. [PMID: 33218077 PMCID: PMC7698885 DOI: 10.3390/ijms21228711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Liver fibrosis represents the wound healing response to sustained hepatic injury with activation of hepatic stellate cells (HSCs). The I148M variant of the PNPLA3 gene represents a risk factor for development of severe liver fibrosis. Activated HSCs carrying the I148M variant display exacerbated pro-inflammatory and pro-fibrogenic features. We aimed to examine whether the I148M variant may impair Hedgehog and Yap signaling, as key pathways implicated in the control of energy expenditure and maintenance of myofibroblastic traits. First, we show that TGF-β rapidly up-regulated the PNPLA3 transcript and protein and Yap/Hedgehog target gene expression. In addition, HSCs overexpressing PNPLA3 I148M boosted anaerobic glycolysis, as supported by higher lactate release and decreased phosphorylation of the energy sensor AMPK. These cells displayed higher Yap and Hedgehog signaling, due to accumulation of total Yap protein, Yap promoter activity and increased downstream targets expression, compared to WT cells. HSCs exposed to TGF-β and leptin rapidly increased total Yap, together with a reduction in its inhibited form, phosphorylated Yap. In line, Yap-specific inhibitor Verteporfin strongly abolished Yap-mediated genes expression, at baseline as well as after TGF-β and leptin treatments in HSCs with I148M PNPLA3. Finally, Yap transcriptional activity was strongly reduced by a combination of Verteporfin and Rosiglitazone, a PPARγ synthetic agonist. In conclusion, HSCs carrying the PNPLA3 variant show activated Yap/Hedgehog pathways, resulting in altered anaerobic glycolysis and enhanced synthesis of Hedgehog markers and sustained Yap signaling. TGF-β and leptin exacerbate Yap/Hedgehog-related fibrogenic genes expression, while Yap inhibitors and PPARγ agonists abrogate these effects in PNPLA3 I148M carrying HSCs.
Collapse
Affiliation(s)
- Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (F.V.B.); (M.T.); (T.C.)
| | - Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (F.V.B.); (M.T.); (T.C.)
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Elisa Einwallner
- Department of Laboratory Medicine, Center of Translational Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (F.V.B.); (M.T.); (T.C.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (F.V.B.); (M.T.); (T.C.)
| |
Collapse
|
33
|
Geng W, Li C, Zhan Y, Zhang R, Zheng J. Thymoquinone alleviates liver fibrosis via miR-30a-mediated epithelial-mesenchymal transition. J Cell Physiol 2020; 236:3629-3640. [PMID: 33090549 DOI: 10.1002/jcp.30097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Thymoquinone (TQ), the main active constituent of Nigella sativa seeds, has been shown to play a role in antioxidation, anti-inflammation, and antitumor. Recent studies have demonstrated that TQ contributes to the suppression of liver fibrosis. Abnormal activated epithelial-mesenchymal transition (EMT) promotes the activation of hepatic stellate cells (HSCs). However, whether the antifibrotic effects of TQ occur through inhibiting EMT is largely unknown. In this study, it was found that TQ ameliorated liver fibrosis and collagen accumulation in carbon tetrachloride (CCl4) mice. In vitro, TQ inhibited HSC activation including reduced proliferation, α-smooth muscle actin, and collagen. In addition, TQ markedly suppressed the EMT process, with enhanced E-cadherin and reduced desmin. Notably, snail family transcriptional repressor 1 (Snai1), the EMT master transcription factor, was obviously inhibited by TQ in vivo and in vitro. Further studies demonstrated that Snai1 was a target of microRNA-30a (miR-30a), which was upregulated by TQ. Interestingly, the effects of TQ on HSC activation and EMT were almost inhibited by miR-30a inhibitor. Collectively, we demonstrate that TQ inhibits HSC activation, at least in part, via regulation of miR-30a and Snai1. TQ upregulates miR-30a expression, resulting in a reduced Snai1 level as well as EMT process inactivation, which contributes to the inhibition of HSC activation. TQ may be a potential therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Abstract
Hepatic fibrosis is a complex mechanism defined by the net deposition of the extracellular matrix (ECM) owing to liver injury caused by multiple etiologies such as viral hepatitis and nonalcoholic fatty liver disease. Many cell types are implicated in liver fibrosis development and progression. In general, liver fibrosis starts with the recruitment of inflammatory immune cells to generate cytokines, growth factors, and other activator molecules. Such chemical mediators drive the hepatic stellate cells (HSCs) to activate the production of the ECM component. The activation of HSC is thus a crucial event in the fibrosis initiation, and a significant contributor to collagen deposition (specifically type I). This review explores the causes and mechanisms of hepatic fibrosis and focuses on the roles of key molecules involved in liver fibro genesis, some of which are potential targets for therapeutics to hamper liver fibro genesis.
Collapse
Affiliation(s)
- Reham M Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
35
|
Zhu X, Jia X, Cheng F, Tian H, Zhou Y. c‐Jun
acts downstream of
PI3K
/
AKT
signaling to mediate the effect of leptin on methionine adenosyltransferase
2B
in hepatic stellate cells
in vitro
and
in vivo. J Pathol 2020; 252:423-432. [DOI: 10.1002/path.5536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaofei Zhu
- Department of Biochemistry & Molecular Biology, Medical College Nantong University Nantong PR China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical College Nantong University Nantong PR China
| | - Fangyun Cheng
- Department of Biochemistry & Molecular Biology, Medical College Nantong University Nantong PR China
| | - Haimeng Tian
- Department of Biochemistry & Molecular Biology, Medical College Nantong University Nantong PR China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical College Nantong University Nantong PR China
| |
Collapse
|
36
|
Ntandja Wandji LC, Gnemmi V, Mathurin P, Louvet A. Combined alcoholic and non-alcoholic steatohepatitis. JHEP Rep 2020; 2:100101. [PMID: 32514497 PMCID: PMC7267467 DOI: 10.1016/j.jhepr.2020.100101] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
While metabolic syndrome and alcohol consumption are the two main causes of chronic liver disease, one of the two conditions is often predominant, with the other acting as a cofactor of morbimortality. It has been shown that obesity and alcohol act synergistically to increase the risk of fibrosis progression, hepatic carcinogenesis and mortality, while genetic polymorphisms can strongly influence disease progression. Based on common pathogenic pathways, there are several potential targets that could be used to treat both diseases; based on the prevalence and incidence of these diseases, new therapies and clinical trials are needed urgently.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- ALD
- ALD, alcohol-related liver disease
- ASH
- ASH, alcohol-related steatohepatitis
- ASK-1, apoptosis signal-regulating kinase 1
- Alcohol
- BMI, body mass index
- CLD, chronic liver disease
- CPT, carnitine palmitoyltransferase
- DNL, de novo lipogenesis
- EASL, European Association for the Study of the Liver
- ER, endoplasmic reticulum
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL, interleukin
- LPS, lipopolysaccharide
- MBOAT7, membrane bound O-acyl transferase 7
- MELD, model for end-stage liver disease
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- OR, odds ratio
- PAMP, pathogen-associated molecular pattern
- PI3K, phosphatidylinositol-3-kinase
- PIP3, phosphatidylinositol 3,4,5-triphosphate
- PNPLA3, palatin-like phospholipase domain-containing 3
- PRKCE, protein kinase C Epsilon
- ROS, reactive oxygen species
- SREBP-1c, sterol regulatory element binding protein-1c
- TLR, Toll-like receptor
- TM6SF2, transmembrane 6 superfamily member 2
- TNF-α, tumour necrosis factor-α
- WHO, World Health Organization
- diabetes
- metabolic syndrome
- obesity
Collapse
Affiliation(s)
- Line Carolle Ntandja Wandji
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM 995, Lille, France
| | | | - Philippe Mathurin
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM 995, Lille, France
| | - Alexandre Louvet
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM 995, Lille, France
- Corresponding author. Address: Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille Cedex, France. Tel.: +33 320445597; fax: +33 320445564.
| |
Collapse
|
37
|
Yin B, Jiang H, Liu X, Guo SW. Enriched Environment Decelerates the Development of Endometriosis in Mouse. Reprod Sci 2020; 27:1423-1435. [PMID: 32318984 DOI: 10.1007/s43032-019-00117-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
We tested the hypothesis that enriched environment (EE), consisting of enlarged space, and increased physical activity and social interactions, hinders the development of endometriosis through attenuated adrenergic signaling, enhanced autophagy, and reduced leptin levels. Two mouse experiments were performed. In Experiment 1, 40 female Balb/C mice were randomly divided into four equal-sized groups, the SE (standard environment), EE, p-EE (EE instituted after endometriosis induction), and the d-EE (SE housing but received uterine fragments from EE donors) groups. Housing intervention was initiated 3 weeks before the induction of endometriosis and continued for 3 weeks after induction. In Experiment 2, 20 female mice were randomly divided into SE and EE groups, and the plasma leptin levels were measured. We measured lesion weight and hotplate latency and performed Masson trichrome staining as well as immunohistochemistry analysis of β2 adrenergic receptor (ADRB2), dopamine receptor D2 (DRD2), vascular endothelial growth factor (VEGF), and microtubule-associated protein light chain 3 (LC3). We found that EE reduced the lesion weight by 40.8% as compared with SE mice, but the reduction in p-EE and d-EE mice did not reach statistical significance. EE significantly reduced staining levels of ADRB2 and VEGF as well as the extent of lesional fibrosis but increased staining levels of LC3 and DRD2 in lesions as compared with the SE group. EE mice had reduced plasma leptin levels as compared with SE mice. Thus, EE decelerates the development of endometriosis and fibrogenesis and improved generalized hyperalgesia, possibly through increased DRD2 expression but decreased expression of ADRB2 and VEGF as well as enhanced autophagy and reduced leptin level.
Collapse
Affiliation(s)
- Bo Yin
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Hongyuan Jiang
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Cheng F, Su S, Zhu X, Jia X, Tian H, Zhai X, Guan W, Zhou Y. Leptin promotes methionine adenosyltransferase 2A expression in hepatic stellate cells by the downregulation of E2F-4 via the β-catenin pathway. FASEB J 2020; 34:5578-5589. [PMID: 32108965 DOI: 10.1096/fj.201903021rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 01/18/2023]
Abstract
Most obese patients develop hyperleptinaemia. Leptin, mainly produced by adipocytes, demonstrates a promotional role in liver fibrosis. Hepatic stellate cell (HSC) activation, a key step in liver fibrogenesis, requires global reprogramming of gene expression. The remodeling of DNA methylation is a mechanism of the epigenetic regulation of gene expression. The biosynthesis of S-adenosylmethionine, a principle biological methyl donor, is catalyzed by methionine adenosyltransferase (MAT) such as MATⅡ which has been shown to promote HSC activation in vitro. This study was mainly aimed to determine the effect of leptin on MAT2A expression (the catalytic subunit of MATⅡ) in HSCs. Results showed that MAT2A knockdown reduced leptin-induced HSC activation and liver fibrosis in the leptin-deficient mouse model. Leptin promoted MAT2A expression in HSCs and increased MAT2A promoter activity. The axis of the β-catenin pathway/E2F-4 mediated the effect of leptin on MAT2A expression. Leptin-induced β-catenin signaling reduced E2F-4 expression and thus abated E2F-4 binding to MAT2A promoter at a site around -2779 bp, leading to an increase in the MAT2A promoter activity. These data might shed more light on the mechanisms responsible for liver fibrogenesis in obese patients with hyperleptinaemia.
Collapse
Affiliation(s)
- Fangyun Cheng
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, China
| | - Shengyan Su
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, China
| | - Xiaofei Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Xin Jia
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, China
| | - Haimeng Tian
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, China
| | - Xuguang Zhai
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yajun Zhou
- Department of Biochemistry & Molecular Biology, Medical College, Nantong University, Nantong, China
| |
Collapse
|
39
|
Golbabapour S, Bagheri-Lankarani K, Ghavami S, Geramizadeh B. Autoimmune Hepatitis and Stellate Cells: An Insight into the Role of Autophagy. Curr Med Chem 2020; 27:6073-6095. [PMID: 30947648 DOI: 10.2174/0929867326666190402120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis is a necroinflammatory process of liver, featuring interface hepatitis by T cells, macrophages and plasma cells that invade to periportal parenchyma. In this process, a variety of cytokines are secreted and liver tissues undergo fibrogenesis, resulting in the apoptosis of hepatocytes. Autophagy is a complementary mechanism for restraining intracellular pathogens to which the innate immune system does not provide efficient endocytosis. Hepatocytes with their particular regenerative features are normally in a quiescent state, and, autophagy controls the accumulation of excess products, therefore the liver serves as a basic model for the study of autophagy. Impairment of autophagy in the liver causes the accumulation of damaged organelles, misfolded proteins and exceeded lipids in hepatocytes as seen in metabolic diseases. In this review, we introduce autoimmune hepatitis in association with autophagy signaling. We also discuss some genes and proteins of autophagy, their regulatory roles in the activation of hepatic stellate cells and the importance of lipophagy and tyrosine kinase in hepatic fibrogenesis. In order to provide a comprehensive overview of the regulatory role of autophagy in autoimmune hepatitis, the pathway analysis of autophagy in autoimmune hepatitis is also included in this article.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen
Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Kamran Bagheri-Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Bita Geramizadeh
- Department of Pathology, Medical school of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Centre, Shiraz University of medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
MicroRNA-29a Suppresses CD36 to Ameliorate High Fat Diet-Induced Steatohepatitis and Liver Fibrosis in Mice. Cells 2019; 8:cells8101298. [PMID: 31652636 PMCID: PMC6830328 DOI: 10.3390/cells8101298] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-29 (miR-29) has been shown to play a critical role in reducing inflammation and fibrosis following liver injury. Non-alcoholic fatty liver disease (NAFLD) occurs when fat is deposited (steatosis) in the liver due to causes other than excessive alcohol use and is associated with liver fibrosis. In this study, we asked whether miR-29a could reduce experimental high fat diet (HFD)-induced obesity and liver fibrosis in mice. We performed systematical expression analyses of miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates subjected to HFD-induced NAFLD. The results demonstrated that increased miR-29a not only alleviated HFD-induced body weight gain but also subcutaneous, visceral, and intestinal fat accumulation and hepatocellular steatosis in mice. Furthermore, hepatic tissue in the miR-29aTg mice displayed a weak fibrotic matrix concomitant with low fibrotic collagen1α1 expression within the affected tissues compared to the wild-type (WT) mice fed the HFD diet. Increased miR-29a signaling also resulted in the downregulation of expression of the epithelial mesenchymal transition-executing transcription factor snail, mesenchymal markers vimentin, and such pro-inflammation markers as il6 and mcp1 within the liver tissue. Meanwhile, miR-29aTg-HFD mice exhibited significantly lower levels of peroxisome proliferator-activated receptor γ (PPARγ), mitochondrial transcription factor A TFAM, and mitochondria DNA content in the liver than the WT-HFD mice. An in vitro luciferase reporter assay further confirmed that miR-29a mimic transfection reduced fatty acid translocase CD36 expression in HepG2 cells. Conclusion: Our data provide new insights that miR-29a can improve HDF-induced obesity, hepatocellular steatosis, and fibrosis, as well as highlight the role of miR-29a in regulation of NAFLD.
Collapse
|
41
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
42
|
Tsai CF, Chen JH, Wu CT, Chang PC, Wang SL, Yeh WL. Induction of osteoclast-like cell formation by leptin-induced soluble intercellular adhesion molecule secreted from cancer cells. Ther Adv Med Oncol 2019; 11:1758835919846806. [PMID: 31205504 PMCID: PMC6535721 DOI: 10.1177/1758835919846806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Leptin is considered a tumorigenic adipokine, suggested to promote tumorigenesis and progression in many cancers. On the other hand, intercellular adhesion molecule-1 (ICAM-1) shows altered expression in a variety of benign and malignant diseases. Histologically, ICAM-1 expression is reported as proportional to cancer stage and considered as a potential diagnosis biomarker. The altered expressions of ICAM-1 and its soluble form in malignant diseases have gained interests in recent years. Material and methods: The expression of ICAM-1 and its regulatory signaling were examined by Western blot or flow cytometry. The effect of soluble ICAM-1 on osteoclast formation was investigated by tartrate-resistance acid phosphatase staining of RAW cells and tumor-induced osteolysis in vivo. Results: In our study, we found that leptin enhanced soluble ICAM-1 production but not surface ICAM-1 expression in lung and breast cancer cells, and this effect was regulated through leptin receptor (ObR), while silencing ObR abrogated leptin-induced soluble ICAM-1 expression. In addition, we revealed that leptin administration provoked the JAK1/2, STAT3, FAK, ERK, and GSK3αβ signaling cascade, leading to the elevation of ICAM-1 expression. Moreover, soluble ICAM-1 secreted by leptin-stimulated cancer cells synergize with the receptor activator of nuclear factor kappa-B ligand (RANKL) in inducing osteoclast formation. Soluble ICAM also enhanced tumor-induced osteolysis in vivo. Conclusion: These findings suggest that soluble ICAM-1 produced under leptin treatment enhances osteoclast formation and is involved in tumor-induced osteolysis. Leptin plays an important role in physiology in health and diseases. Leptin affects immune responses that may induce inflammation and carcinogenesis. Leptin is also considered as a tumorigenic adipokine suggested to promote tumorigenesis and progression in many cancers. On the other hand, intercellular adhesion molecule-1 (ICAM-1) shows altered expression in a variety of benign and malignant diseases. Histologically, ICAM-1 expression is reported to be proportional to cancer stage and considered as a potential diagnosis biomarker. It has been reported that soluble ICAM-1 allows tumor cells to escape from immune recognition and stimulates angiogenesis and tumor growth. The altered expressions of ICAM-1 and its soluble form in malignant diseases have gained interests in recent years. In our study, we found that leptin enhanced soluble ICAM-1 production but not surface ICAM-1 expression in lung and breast cancer cells, and this effect was regulated through leptin receptor (ObR), while silencing ObR abrogated leptin-induced soluble ICAM-1 expression. In addition, we revealed that leptin administration provoked the JAK1/2, STAT3, FAK, ERK, and GSK3αβ signaling cascade, leading to the elevation of ICAM-1 expression. Moreover, soluble ICAM-1 secreted by leptin-stimulated cancer cells synergize with receptor activator of nuclear factor-kappa B ligand in inducing osteoclast formation. Soluble ICAM also enhanced tumor-induced osteolysis in vivo. These findings suggest that soluble ICAM-1 produced under leptin treatment is possibly involved in lung and breast cancer bone metastasis.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, China
| | - Jia-Hong Chen
- Department of General Surgery, Buddhist Tzu Chi Medical Foundation, Taichung, China
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, China
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, China
| | - Shu-Lin Wang
- Institute of New Drug Development, China Medical University, Taichung, China
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402 China
| |
Collapse
|
43
|
Wang J, Ge J, Cao H, Zhang X, Guo Y, Li X, Xia B, Yang G, Shi X. Leptin Promotes White Adipocyte Browning by Inhibiting the Hh Signaling Pathway. Cells 2019; 8:cells8040372. [PMID: 31022919 PMCID: PMC6523697 DOI: 10.3390/cells8040372] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023] Open
Abstract
Leptin is an important secretory protein that regulates the body’s intake and energy consumption, and the functions of the Hh signaling pathway related to white adipocyte browning are controversial. It has been reported that leptin plays a critical role in adipogenesis by regulating the Hh signaling pathway, but whether there is a functional relationship between leptin, the Hh signaling pathway, and adipocyte browning is not clear. In this research, mouse white pre-adipocytes were isolated to explore the influence of the Hh signal pathway and leptin during the process described above. This showed that leptin decreased high fat diet-induced obese mice body weight and inhibited the Hh signaling pathway, which suggested that leptin and the Hh signaling pathway have an important role in obesity. After activation of the Hh signaling pathway, significantly decreased browning fat-relative gene expression levels were recorded, whereas inhibition of the Hh signaling pathway significantly up-regulated the expression of these genes. Similarly, leptin also up-regulated the expression of these genes, and increased mitochondrial DNA content, but decreased the expression of Gli, the key transcription factors of the Hh signaling pathway. In short, the results show that leptin promotes white adipocyte browning through inhibiting the Hh signaling pathway. Overall, these results demonstrate that leptin serves as a potential intervention to decrease obesity by inhibiting the Hh signaling pathway.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jing Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haigang Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaoyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuan Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
44
|
Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. J Hepatol 2019; 70:294-304. [PMID: 30658730 DOI: 10.1016/j.jhep.2018.12.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Histological fibrosis stage is one of the most important prognostic factors in compensated and decompensated alcohol-related liver disease (ALD). Morphological assessment of fibrosis is useful for patient stratification, enabling individualised management, and for evaluation of treatment effects in clinical studies. In contrast to most chronic liver diseases where fibrosis is portal-based, fatty liver disease (FLD) of alcoholic or non-alcoholic aetiology (NAFLD) is associated with a centrilobular pattern of injury which leads to perivenular fibrosis and/or pericellular fibrosis. Progression of FLD drives expansive pericellular fibrosis, linking vascular structures and paving the way for the development of cirrhosis. At the cirrhotic stage, ongoing tissue damage leads to increasing fibrosis severity due to parenchymal loss and proliferation of fibrous scars. Histologic fibrosis staging systems have been devised, based on topography and the extent of fibrosis, for most chronic liver diseases. The utility of histological staging is reflected in different risks associated with individual fibrosis stages which cannot be reliably distinguished by non-invasive fibrosis assessment. In contrast to NAFLD, ALD-specific staging systems that enable the standardised prognostication required for clinical management and trials are lacking. Although morphological similarities between NAFLD and ALD exist, differences in clinical and histological features may substantially limit the utility of established NAFLD-specific staging systems for prognostication in ALD. This review summarises morphological features of fibrosis in ALD and compares them to other chronic liver diseases, particularly NAFLD. ALD-related fibrosis is examined in the context of pathogenetic mechanisms of fibrosis progression, regression and clinical settings that need to be considered in future prognostically relevant ALD staging approaches.
Collapse
Affiliation(s)
- Carolin Lackner
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Dina Tiniakos
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Dept of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Vas. Sofias Avenue 76, Athens 11528, Greece
| |
Collapse
|
45
|
The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD. J Immunol Res 2019; 2019:3954890. [PMID: 30719457 PMCID: PMC6335683 DOI: 10.1155/2019/3954890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/11/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The liver is well known as the center of glucose and lipid metabolism in the human body. It also functions as an immune organ. Previous studies have suggested that liver nonparenchymal cells are crucial in the progression of NAFLD. In recent years, NAFLD's threat to human health has been becoming a global issue. And by far, there is no effective treatment for NAFLD. Liver nonparenchymal cells are stimulated by lipid antigens, adipokines, or other factors, and secreted immune factors can alter the expression of key proteins such as SREBP-1c, ChREBP, and PPARγ to regulate lipid metabolism, thus affecting the pathological process of NAFLD. Interestingly, some ncRNAs (including miRNAs and lncRNAs) participate in the pathological process of NAFLD by changing body fat homeostasis. And even some ncRNAs could regulate the activity of HSCs, thereby affecting the progression of inflammation and fibrosis in the course of NAFLD. In conclusion, immunotherapy could be an effective way to treat NAFLD.
Collapse
|
46
|
Cai CX, Carlos S, Solaimani P, Trivedi BJ, Tran C, Castelino-Prabhu S. Nutritional and Dietary Interventions for Nonalcoholic Fatty Liver Disease. DIETARY INTERVENTIONS IN LIVER DISEASE 2019:357-372. [DOI: 10.1016/b978-0-12-814466-4.00029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Peng H, Wan LY, Liang JJ, Zhang YQ, Ai WB, Wu JF. The roles of lncRNA in hepatic fibrosis. Cell Biosci 2018; 8:63. [PMID: 30534359 PMCID: PMC6282372 DOI: 10.1186/s13578-018-0259-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) regulate gene or protein expression; however, their function in the progression of hepatic fibrosis remains unclear. Hepatic fibrosis is a continuous wound-healing process caused by numerous chronic hepatic diseases, and the activation of hepatic stellate cells (HSCs) is generally considered to be a pivotal step in hepatic fibrosis. In the process of hepatic fibrosis, some lncRNAs regulates diverse cellular processes. Here are several examples: the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and liver fibrosis-associated lncRNA1 (lnc-LFAR1) promote HSC activation in the progression of hepatic fibrosis via the transforming growth factor-β signaling pathway; the lncRNA HIF 1 alpha-antisense RNA 1 (HIF1A-AS1) and Maternally expressed gene 3 reduce HSC activation which are associated with DNA methylation; the lncRNA plasmacytoma variant translocation 1, Homeobox (HOX) transcript antisense RNA and MALAT1 promote HSC activation as competing endogenous RNAs (ceRNAs); the long intergenic non-coding RNA-p21 (lncRNA-p21) and Growth arrest-specific transcript 5 reduce HSC activation as ceRNAs. As we get to know more about the function of lncRNAs in hepatic fibrosis, more and more ideas for the molecular targeted therapy in hepatic fibrosis will be put forward.
Collapse
Affiliation(s)
- Hu Peng
- 1Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,3Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,4Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Lin-Yan Wan
- 1Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,2Digestive Medicine, The People's Hospital of China Three Gorges University, 31 Huti Subdistrict, Xi Ling District, Yichang, 443000 Hubei China.,3Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Jia-Jie Liang
- 1Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,3Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,4Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Yan-Qiong Zhang
- 1Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,3Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,4Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang, 443100 Hubei China
| | - Jiang-Feng Wu
- 1Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,2Digestive Medicine, The People's Hospital of China Three Gorges University, 31 Huti Subdistrict, Xi Ling District, Yichang, 443000 Hubei China.,3Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,4Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang, 443100 Hubei China
| |
Collapse
|
48
|
Wang Y, Chen W, Han C, Zhang J, Song K, Kwon H, Dash S, Yao L, Wu T. Adult Hepatocytes Are Hedgehog-Responsive Cells in the Setting of Liver Injury: Evidence for Smoothened-Mediated Activation of NF-κB/Epidermal Growth Factor Receptor/Akt in Hepatocytes that Counteract Fas-Induced Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2605-2616. [PMID: 30366594 PMCID: PMC6207910 DOI: 10.1016/j.ajpath.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Although hedgehog (Hh) signaling pathway is inactive in adult healthy liver, it becomes activated during acute and chronic liver injury and, thus, modulates the reparative process and disease progression. We developed a novel mouse model with liver-specific knockout of Smoothened (Smo LKO), and animals were subjected to Fas-induced liver injury in vivo. Results showed that Smo deletion in hepatocytes enhances Fas-induced liver injury. Activation of Hh signaling in hepatocytes in the setting of Fas-induced injury was indicated by the fact that Jo2 treatment enhanced hepatic expression of Ptch1, Smo, and its downstream target Gli1 in control but not Smo LKO mice. Primary hepatocytes from control mice showed increased Hh signaling activation in response to Jo2 treatment in vitro. On the other hand, the Smo KO hepatocytes were devoid of Hh activation and were more susceptible to Jo2-induced apoptosis. The levels of NF-κB and related signaling molecules, including epidermal growth factor receptor and Akt, were lower in Smo KO livers/hepatocytes than in control livers/hepatocytes. Accordingly, hydrodynamic gene delivery of active NK-κB prevented Jo2-induced liver injury in the Smo LKO mice. Our findings provide important evidence that adult hepatocytes become responsive to Hh signaling through up-regulation of Smo in the setting of Fas-induced liver injury and that such alteration leads to activation of NF-κB/epidermal growth factor receptor/Akt, which counteracts Fas-induced hepatocyte apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana; Department of Gastroenterology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lu Yao
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
49
|
Yu F, Geng W, Dong P, Huang Z, Zheng J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 2018; 9:1014. [PMID: 30282972 PMCID: PMC6170498 DOI: 10.1038/s41419-018-1068-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
Activation of hepatic stellate cells (HSCs), a pivotal event in liver fibrosis, is considered as an epithelial–mesenchymal transition (EMT) process. Deregulation of long noncoding RNAs (lncRNAs) has been reported to be involved in a series of human diseases. LncRNA-maternally expressed gene 3 (MEG3) functions as a tumor suppressor in cancers and has been shown to play a vital role in EMT process. However, the biological role of MEG3 in liver fibrosis is largely unknown. In this study, MEG3 was reduced in vivo and in vitro during liver fibrosis. Restoring of MEG3 expression led to the suppression of liver fibrosis, with a reduction in α-SMA and type I collagen. Notably, MEG3 overexpression inhibited HSC activation through EMT, associated with an increase in epithelial markers and a reduction in mesenchymal markers. Further studies showed that Hedgehog (Hh) pathway-mediated EMT process was involved in the effects of MEG3 on HSC activation. Smoothened (SMO) is a member of Hh pathway. Using bioinformatic analysis, an interaction between MEG3 and SMO protein was predicted. This interaction was confirmed by the results of RNA immunoprecipitation and deletion-mapping analysis. Furthermore, MEG3 was confirmed as a target of microRNA-212 (miR-212). miR-212 was partly responsible for the effects of MEG3 on EMT process. Interestingly, MEG3 was also reduced in chronic hepatitis B (CHB) patients with liver fibrosis when compared with healthy controls. MEG3 negatively correlated with fibrosis stage in CHB patients. In conclusion, we demonstrate that MEG3 inhibits Hh-mediated EMT process in liver fibrosis via SMO protein and miR-212.
Collapse
Affiliation(s)
- Fujun Yu
- Departments of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhiming Huang
- Departments of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
50
|
Nowak A, Dziegiel P. Implications of nestin in breast cancer pathogenesis (Review). Int J Oncol 2018; 53:477-487. [PMID: 29901100 DOI: 10.3892/ijo.2018.4441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present review was to summarize the current knowledge of the involvement of nestin in breast cancer (BC) pathogenesis. Nestin is a member of the class VI family of intermediate filament proteins, originally identified as a marker of neural stem cells and subsequently demonstrated to be expressed in BC and other cancer types. In normal breast tissue, nestin is expressed in the basal/myoepithelial cells of the mammary gland. In BC, nestin identifies basal-like tumours and predicts aggressive behaviour and poor prognosis. Nestin expression has also been detected in BC stem cells and newly-formed tumour vessels, being a factor in promoting invasion and metastasis. The present review provides an up-to-date overview of the involvement of nestin in processes facilitating BC pathogenesis and progression.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|