1
|
Dong Y, Elgerbi A, Xie B, Choy JS, Sivasankar S. Actomyosin forces trigger a conformational change in desmoplakin within desmosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.19.624364. [PMID: 39605443 PMCID: PMC11601634 DOI: 10.1101/2024.11.19.624364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Desmosomes are essential cell-cell adhesion organelles that enable tension-prone tissue, like the skin and heart, to withstand mechanical stress. Desmosomal anomalies are associated with numerous epidermal disorders and cardiomyopathies. Despite their critical role in maintaining tissue resilience, an understanding of how desmosomes sense and respond to mechanical stimuli is lacking. Here, we use a combination of super-resolution imaging, FRET-based tension sensors, atomistic computer simulations, and biochemical assays to demonstrate that actomyosin forces induce a conformational change in desmoplakin, a critical cytoplasmic desmosomal protein. We show that in human breast cancer MCF7 cells, actomyosin contractility reorients keratin intermediate filaments and directs force to desmoplakin along the keratin filament backbone. These forces induce a conformational change in the N-terminal plakin domain of desmoplakin, converting this domain from a folded (closed) to an extended (open) conformation. Our findings establish that desmoplakin is mechanosensitive and responds to changes in cellular load by undergoing a force-induced conformational change.
Collapse
|
2
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
3
|
Maor-Landaw K, Smirnov M, Lotan T. The Tilapia Cyst Tissue Enclosing the Proliferating Myxobolus bejeranoi Parasite Exhibits Cornified Structure and Immune Barrier Function. Int J Mol Sci 2024; 25:5683. [PMID: 38891869 PMCID: PMC11171596 DOI: 10.3390/ijms25115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Myxozoa, a unique group of obligate endoparasites within the phylum Cnidaria, can cause emerging diseases in wild and cultured fish populations. Recently, the myxozoan Myxobolus bejeranoi has been identified as a prevalent pathogen infecting the gills of cultured hybrid tilapia, leading to systemic immune suppression and considerable mortality. Here, we employed a proteomic approach to examine the impact of M. bejeranoi infection on fish gills, focusing on the structure of the granulomata, or cyst, formed around the proliferating parasite to prevent its spread to surrounding tissue. Enrichment analysis showed increased immune response and oxidative stress in infected gill tissue, most markedly in the cyst's wall. The intense immune reaction included a consortium of endopeptidase inhibitors, potentially combating the myxozoan arsenal of secreted proteases. Analysis of the cyst's proteome and histology staining indicated that keratin intermediate filaments contribute to its structural rigidity. Moreover, we uncovered skin-specific proteins, including a grainyhead-like transcription factor and a teleost-specific S100 calcium-binding protein that may play a role in epithelial morphogenesis and cysts formation. These findings deepen our understanding of the proteomic elements that grant the cyst its distinctive nature at the critical interface between the fish host and myxozoan parasite.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel;
| |
Collapse
|
4
|
Meng X, Zhou Y, Xu L, Hu L, Wang C, Tian X, Zhang X, Hao Y, Cheng B, Ma J, Wang L, Liu J, Xie R. O-GlcNAcylation Facilitates the Interaction between Keratin 18 and Isocitrate Dehydrogenases and Potentially Influencing Cholangiocarcinoma Progression. ACS CENTRAL SCIENCE 2024; 10:1065-1083. [PMID: 38799671 PMCID: PMC11117311 DOI: 10.1021/acscentsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Glycosylation plays a pivotal role in the intricate landscape of human cholangiocarcinoma (CCA), actively participating in key pathophysiological processes driving tumor progression. Among the various glycosylation modifications, O-linked β-N-acetyl-glucosamine modification (O-GlcNAcylation) emerges as a dynamic regulator influencing diverse tumor-associated biological activities. In this study, we employed a state-of-the-art chemical proteomic approach to analyze intact glycopeptides, unveiling the critical role of O-GlcNAcylation in orchestrating Keratin 18 (K18) and its interplay with tricarboxylic acid (TCA) cycle enzymes, specifically isocitrate dehydrogenases (IDHs), to propel CCA progression. Our findings shed light on the mechanistic intricacies of O-GlcNAcylation, revealing that site-specific modification of K18 on Ser 30 serves as a stabilizing factor, amplifying the expression of cell cycle checkpoints. This molecular event intricately fosters cell cycle progression and augments cellular growth in CCA. Notably, the interaction between O-GlcNAcylated K18 and IDHs orchestrates metabolic reprogramming by down-regulating citrate and isocitrate levels while elevating α-ketoglutarate (α-KG). These metabolic shifts further contribute to the overall tumorigenic potential of CCA. Our study thus expands the current understanding of protein O-GlcNAcylation and introduces a new layer of complexity to post-translational control over metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhou
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Xu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limu Hu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changjiang Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Tian
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Hao
- College
of
Chemistry and Molecular Engineering, Peking
University, Beijing 100871, China
| | - Bo Cheng
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Ma
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Collaborative
Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jialin Liu
- State
Key Laboratory of Medical Proteomics, Beijing Proteome Research Center,
National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ran Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100191, China
| |
Collapse
|
5
|
Li P, Rietscher K, Jopp H, Magin TM, Omary MB. Posttranslational modifications of keratins and their associated proteins as therapeutic targets in keratin diseases. Curr Opin Cell Biol 2023; 85:102264. [PMID: 37925932 DOI: 10.1016/j.ceb.2023.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 11/07/2023]
Abstract
The keratin cytoskeleton protects epithelia against mechanical, nonmechanical, and physical stresses, and participates in multiple signaling pathways that regulate cell integrity and resilience. Keratin gene mutations cause multiple rare monoallelic epithelial diseases termed keratinopathies, including the skin diseases Epidermolysis Bullosa Simplex (EBS) and Pachyonychia Congenita (PC), with limited available therapies. The disease-related keratin mutations trigger posttranslational modifications (PTMs) in keratins and their associated proteins that can aggravate the disease. Recent findings of drug high-throughput screening have led to the identification of compounds that may be repurposed, since they are used for other human diseases, to treat keratinopathies. These drugs target unique PTM pathways and sites, including phosphorylation and acetylation of keratins and their associated proteins, and have shed insights into keratin regulation and interactions. They also offer the prospect of testing the use of drug mixtures, with the long view of possible beneficial human use coupled with increased efficacy and lower side effects.
Collapse
Affiliation(s)
- Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Katrin Rietscher
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Henriette Jopp
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany.
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Sun J, Li P, Gui H, Rittié L, Lombard DB, Rietscher K, Magin TM, Xie Q, Liu L, Omary MB. Deacetylation via SIRT2 prevents keratin-mutation-associated injury and keratin aggregation. JCI Insight 2023; 8:e166314. [PMID: 37485877 PMCID: PMC10443796 DOI: 10.1172/jci.insight.166314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Keratin (K) and other intermediate filament (IF) protein mutations at conserved arginines disrupt keratin filaments into aggregates and cause human epidermolysis bullosa simplex (EBS; K14-R125C) or predispose to mouse liver injury (K18-R90C). The challenge for more than 70 IF-associated diseases is the lack of clinically utilized IF-targeted therapies. We used high-throughput drug screening to identify compounds that normalized mutation-triggered keratin filament disruption. Parthenolide, a plant sesquiterpene lactone, dramatically reversed keratin filament disruption and protected cells and mice expressing K18-R90C from apoptosis. K18-R90C became hyperacetylated compared with K18-WT and treatment with parthenolide normalized K18 acetylation. Parthenolide upregulated the NAD-dependent SIRT2, and increased SIRT2-keratin association. SIRT2 knockdown or pharmacologic inhibition blocked the parthenolide effect, while site-specific Lys-to-Arg mutation of keratin acetylation sites normalized K18-R90C filaments. Treatment of K18-R90C-expressing cells and mice with nicotinamide mononucleotide had a parthenolide-like protective effect. In 2 human K18 variants that associate with human fatal drug-induced liver injury, parthenolide protected K18-D89H- but not K8-K393R-induced filament disruption and cell death. Importantly, parthenolide normalized K14-R125C-mediated filament disruption in keratinocytes and inhibited dispase-triggered keratinocyte sheet fragmentation and Fas-mediated apoptosis. Therefore, keratin acetylation may provide a novel therapeutic target for some keratin-associated diseases.
Collapse
Affiliation(s)
- Jingyuan Sun
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Honglian Gui
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - David B. Lombard
- Sylvester Comprehensive Cancer Center, and Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katrin Rietscher
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Thomas M. Magin
- Division of Cell and Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M. Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Rietscher K, Jahnke HG, Rübsam M, Lin EW, Has C, Omary MB, Niessen CM, Magin TM. Kinase Inhibition by PKC412 Prevents Epithelial Sheet Damage in Autosomal Dominant Epidermolysis Bullosa Simplex through Keratin and Cell Contact Stabilization. J Invest Dermatol 2022; 142:3282-3293. [PMID: 35691363 DOI: 10.1016/j.jid.2022.05.1088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 01/05/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.
Collapse
Affiliation(s)
- Katrin Rietscher
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Leipzig, Germany.
| | - Heinz-Georg Jahnke
- Division of Molecular Biological-Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Matthias Rübsam
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Eric W Lin
- Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA; Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Carien M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department Cell Biology of the Skin, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
8
|
Yang HC, Xing ZK, Shao H, Tan XW, Wang EQ, Liao Y, Chen HJ, Wu XW, Chen XL, Zhang SJ. The expression of cytokeratin and apoptosis-related molecules in echinococcosis related liver injury. Mol Biochem Parasitol 2022; 248:111455. [PMID: 35016896 DOI: 10.1016/j.molbiopara.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 10/25/2022]
Abstract
The study aimed to investigate the expression of cytokeratin and apoptosis-related molecules in the livers of two types of hepatic echinococcosis mice models and to preliminarily explore the relationship between the expression of cytokeratin and apoptosis in echinococcosis related liver injury. We established a mouse model infected by Echinococcus granulosus and Echinococcus multilocularis and observed the expression of cytokeratin and apoptosis related proteins in the two types of hepatic echinococcosis tissues during different stages by immunohistochemical staining. A co-culture model was established using normal hepatocytes and different concentrations of E. granulosus and E. multilocularis protoscoleces. Cell Counting Kit-8 was used to detect cell proliferation, flow cytometry was used to detect hepatocyte apoptosis, and western blot was used to quantify cytokeratin and apoptosis-related proteins, such as caspase3, caspase9, Bcl-2, and Bax. Surgical specimens were obtained from patients with hepatic echinococcosis to analyze the expressions of cytokeratin, caspase3, caspase9, Bcl-2, and Bax by western blot. The expressions of cytokeratin and caspase3 were analyzed by immunohistochemistry. The qRT-PCR method was used to determine the expression of CK8 and CK18 in the liver tissues. In vivo experiments showed that compared to that in the control group, the cytokeratin and caspase3 proteins in the liver tissues of the two types of hepatic echinococcosis were strongly expressed around the lesions of liver echinococcosis; there was a difference between cytokeratin expression of the two different echinococcosis parasites in the liver. Echinococcus granulosus and Echinococcus multilocularis in the co-culture model in vitro could promote the expression of CK, caspase3, caspase9, and Bax protein, decrease the expression of Bcl-2, promote hepatocyte apoptosis, and inhibit cell proliferation; in clinical samples, we found that compared with that in the normal tissues, the expression of cytokeratin, caspase3, caspase9, and Bax in echinococcus tissues was high, but that in Bcl-2 was low. Furthermore, the expression of CK8 and CK18 mRNA were higher in echinococcus tissues than that in the normal tissues and immunohistochemistry analysis also showed that cytokeratin and caspase3 levels were higher in echinococcus tissues than that in the normal tissues. The expression of cytokeratin and apoptosis-related molecules, reflecting liver damage, is high in the liver and is caused due to hepatic echinococcosis. This study provides the first evidence of cytokeratin could be useful for evaluating liver tissue damage caused by echinococcus infection.
Collapse
Affiliation(s)
- H C Yang
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Z K Xing
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China; Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - H Shao
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X W Tan
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - E Q Wang
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - Y Liao
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - H J Chen
- School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X W Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China
| | - X L Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - S J Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, Xinjiang, China.
| |
Collapse
|
9
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
10
|
Evans CA, Corfe BM. Colorectal keratins: Integrating nutrition, metabolism and colorectal health. Semin Cell Dev Biol 2021; 128:103-111. [PMID: 34481710 DOI: 10.1016/j.semcdb.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
The colon mucosa is lined with crypts of circa 300 cells, forming a continuous barrier whose roles include absorption of water, recovery of metabolic energy sources (notably short chain fatty acids), secretion of a protective mucus barrier, and physiological signalling. There is high turnover and replenishment of cells in the mucosa, disruption of this may lead to bowel pathologies including cancer and inflammatory bowel disease. Keratins have been implicated in the processes of cell death, epithelial integrity, response to inflammation and as a result are often described as guardians of the colonic epithelium. Keratin proteins carry extensive post-translational modifications, the cofactors for kinases, acetyl transferases and other modification-regulating enzymes are themselves products of metabolism. A cluster of studies has begun to reveal a bidirectional relationship between keratin form and function and metabolism. In this paper we hypothesise a mechanistic interaction between keratins and metabolism is governed through regulation of post-translational modifications and may contribute significantly to the normal functioning of the colon, placing keratins at the centre of a nutrition-metabolism-health triangle.
Collapse
Affiliation(s)
- Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, S1 3JD Sheffield, United Kingdom
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
11
|
Bouchard D, Wang W, Yang WC, He S, Garcia A, Matunis MJ. SUMO paralogue-specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Mol Biol Cell 2021; 32:1849-1866. [PMID: 34232706 PMCID: PMC8684707 DOI: 10.1091/mbc.e21-01-0031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1–3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.
Collapse
Affiliation(s)
- Danielle Bouchard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei-Chih Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Shuying He
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Anthony Garcia
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
12
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Feng W, Liu R, Xie X, Diao L, Gao N, Cheng J, Zhang X, Li Y, Bao L. SUMOylation of α-tubulin is a novel modification regulating microtubule dynamics. J Mol Cell Biol 2021; 13:91-103. [PMID: 33394042 PMCID: PMC8104938 DOI: 10.1093/jmcb/mjaa076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are regulated by a number of known posttranslational modifications (PTMs) on α/β-tubulin to fulfill diverse cellular functions. Here, we showed that SUMOylation is a novel PTM on α-tubulin in vivo and in vitro. The SUMOylation on α-tubulin mainly occurred at Lys 96 (K96), K166, and K304 of soluble α-tubulin and could be removed by small ubiquitin-related modifier (SUMO)-specific peptidase 1. In vitro experiments showed that tubulin SUMOylation could reduce interprotofilament interaction, promote MT catastrophe, and impede MT polymerization. In cells, mutation of the SUMOylation sites on α-tubulin reduced catastrophe frequency and increased the proportion of polymerized α-tubulin, while upregulation of SUMOylation with fusion of SUMO1 reduced α-tubulin assembly into MTs. Additionally, overexpression of SUMOylation-deficient α-tubulin attenuated the neurite extension in Neuro-2a cells. Thus, SUMOylation on α-tubulin represents a new player in the regulation of MT properties.
Collapse
Affiliation(s)
- Wenfeng Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory; Shanghai Research Center for Brain Science & Brain-Inspired Intelligence, Shanghai 201210, China
| | - Rong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Xie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nannan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinke Cheng
- Discipline of Neuroscience and Department of Biochemistry, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Zhang
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory; Shanghai Research Center for Brain Science & Brain-Inspired Intelligence, Shanghai 201210, China.,Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Li
- Discipline of Neuroscience and Department of Biochemistry, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science/Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun 2020; 11:834. [PMID: 32047143 PMCID: PMC7012886 DOI: 10.1038/s41467-020-14581-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
The protein inhibitor of activated STAT1 (PIAS1) is an E3 SUMO ligase that plays important roles in various cellular pathways. Increasing evidence shows that PIAS1 is overexpressed in various human malignancies, including prostate and lung cancers. Here we used quantitative SUMO proteomics to identify potential substrates of PIAS1 in a system-wide manner. We identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was SUMOylated by PIAS1 at Lys-439 and Lys-445 residues. VIM SUMOylation was necessary for its dynamic disassembly and cells expressing a non-SUMOylatable VIM mutant showed a reduced level of migration. Our approach not only enables the identification of E3 SUMO ligase substrates but also yields valuable biological insights into the unsuspected role of PIAS1 and VIM SUMOylation on cell motility. PIAS1 is an E3 SUMO ligase involved in various cellular processes. Here, the authors use quantitative proteomics to identify potential PIAS1 substrates in human cells and elucidate the biological consequences of PIAS1-mediated SUMOylation of vimentin.
Collapse
|
15
|
Delort F, Segard BD, Hakibilen C, Bourgois-Rocha F, Cabet E, Vicart P, Huang ME, Clary G, Lilienbaum A, Agbulut O, Batonnet-Pichon S. Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies. Exp Cell Res 2019; 383:111539. [PMID: 31369751 DOI: 10.1016/j.yexcr.2019.111539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/24/2022]
Abstract
Desminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition. To improve understanding of redox balance in desminopathies, we further developed cellular models of four pathological mutants localized in 2B helical domain (the most important region for desmin polymerization) to explore desmin behavior upon oxidative stress. We show that the mutations desQ389P and desD399Y share common stress-induced aggregates, desR406W presents more scattered cytoplasmic aggregative pattern, and pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant molecule, prevents all type of aggregation. Mutants desD399Y and desR406W had delayed oxidation kinetics following H2O2 stress prevented by NAC pretreatment. Further, we used AAV-injected mouse models to confirm in vivo effects of N-acetyl-l-cysteine. AAV-desD399Y-injected muscles displayed similar physio-pathological characteristics as observed in patients. However, after 2 months of NAC treatment, they did not have reduced aggregates. Finally, in both models, stress induced some post-translational modifications changing Isoelectric Point, such as potential hyperphosphorylations, and/or molecular weight of human desmin by proteolysis. However, each mutant presented its own pattern that seemed to be post-aggregative. In conclusion, our results indicate that individual desmin mutations have unique pathological molecular mechanisms partly linked to alteration of redox homeostasis. Integrating these mutant-specific behaviors will be important when considering future therapeutics.
Collapse
Affiliation(s)
- Florence Delort
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Bertrand-David Segard
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Coralie Hakibilen
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Fany Bourgois-Rocha
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Eva Cabet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Patrick Vicart
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Guilhem Clary
- Inserm U1016, Institut Cochin, CNRS UMR8104, Université Paris-Descartes, Sorbonne Paris Cité, Plateforme Protéomique 3P5, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Sabrina Batonnet-Pichon
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France.
| |
Collapse
|
16
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S, Vaidya MM. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 2019; 44:33. [PMID: 31180046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Keratins, the epithelial-predominant members of the intermediate filament superfamily, are expressed in a pairwise, tissuespecific and differentiation-dependent manner. There are 28 type I and 26 type II keratins, which share a common structure comprising a central coiled coil α-helical rod domain flanked by two nonhelical head and tail domains. These domains harbor sites for major posttranslational modifications like phosphorylation and glycosylation, which govern keratin function and dynamics. Apart from providing structural support, keratins regulate various signaling machinery involved in cell growth, motility, apoptosis etc. However, tissue-specific functions of keratins in relation to cell proliferation and differentiation are still emerging. Altered keratin expression pattern during and after malignant transformation is reported to modulate different signaling pathways involved in tumor progression in a context-dependent fashion. The current review focuses on the literature related to the role of keratins in the regulation of cell proliferation, differentiation and transformation in different types of epithelia.
Collapse
Affiliation(s)
- Crismita Dmello
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | | | | | | | | | | |
Collapse
|
17
|
Dmello C, Srivastava SS, Tiwari R, Chaudhari PR, Sawant S, Vaidya MM. Multifaceted role of keratins in epithelial cell differentiation and transformation. J Biosci 2019. [DOI: 10.1007/s12038-019-9864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
19
|
Gujrati M, Mittal R, Ekal L, Mishra RK. SUMOylation of periplakin is critical for efficient reorganization of keratin filament network. Mol Biol Cell 2018; 30:357-369. [PMID: 30516430 PMCID: PMC6589569 DOI: 10.1091/mbc.e18-04-0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper--SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.
Collapse
Affiliation(s)
- Mansi Gujrati
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Rohit Mittal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
20
|
Baczyk D, Audette MC, Coyaud E, Raught B, Kingdom JC. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress. J Physiol 2018; 596:1587-1600. [PMID: 29468681 PMCID: PMC5924830 DOI: 10.1113/jp275288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022] Open
Abstract
Key points The post‐translational modification of target proteins by SUMOylation occurs in response to stressful stimuli in a variety of organ systems. Small ubiquitin‐like modifier (SUMO) isoforms 1–4 have recently been identified in the human placenta, and are upregulated in the major obstetrical complication of pre‐eclampsia. This is the first study to characterize the spatiotemporal distribution of SUMO isoforms and their targets during placental development across gestation and in response to stress induced by pre‐eclampsia and chorioamnionitis. Keratins were identified as major targets of placental SUMOylation. The interaction with SUMOs and cytoskeletal filaments provides evidence for SUMOylation possibly contributing to underlying dysfunctional trophoblast turnover, which is a hallmark feature of pre‐eclampsia. Further understanding the role of individual SUMO isoforms and SUMOylation underlying placental dysfunction may provide a target for a novel therapeutic candidate as an approach for treating pre‐eclampsia complicated with placental pathology.
Abstract SUMOylation is a dynamic, reversible post‐translational modification that regulates cellular protein stability and localization. SUMOylation occurs in response to various stressors, including hypoxia and inflammation, features common in the obstetrical condition of pre‐eclampsia. SUMO isoforms 1–4 have recently been identified in the human placenta, but less is known about their role in response to pre‐eclamptic stress. We hypothesized that SUMOylation components have a unique spatiotemporal distribution during placental development and that their subcellular localization can be further modulated by extra‐cellular stressors. Placental SUMO expression was examined across gestation. First‐trimester human placental explants and JAR cells were subjected to hypoxia or TNF‐α cytokine, and subcellular translocation of SUMOs was monitored. SUMOylation target proteins were elucidated using mass spectrometry and proximity ligation assay. Placental SUMO‐1 and SUMO‐4 were restricted to villous cytotrophoblast cells in first trimester and syncytium by term, while SUMO‐2/3 staining was evenly distributed throughout the trophoblast across gestation. In placental villous explants, oxidative stress induced hyperSUMOylation of SUMO‐1 and SUMO‐4 in the syncytial cytoplasm, whereas SUMO‐2/3 nuclear expression increased. Oxidative stress also upregulated cytoplasmic SUMO‐1 and SUMO‐4 protein expression (P < 0.05), similar to pre‐eclamptic placentas. Keratins were identified as major targets of placental SUMOylation. Oxidative stress increased the cytokeratin‐7 to SUMO‐1 and SUMO‐4 interactions, while inflammatory stress increased its interaction with SUMO‐2/3. Overall, SUMOs display a unique spatiotemporal distribution in normal human placental development. Our data indicate SUMOylation in pre‐eclampsia, which may impair the stability of cytoskeleton filaments and thus promote trophoblast shedding into the maternal circulation in this condition. The post‐translational modification of target proteins by SUMOylation occurs in response to stressful stimuli in a variety of organ systems. Small ubiquitin‐like modifier (SUMO) isoforms 1–4 have recently been identified in the human placenta, and are upregulated in the major obstetrical complication of pre‐eclampsia. This is the first study to characterize the spatiotemporal distribution of SUMO isoforms and their targets during placental development across gestation and in response to stress induced by pre‐eclampsia and chorioamnionitis. Keratins were identified as major targets of placental SUMOylation. The interaction with SUMOs and cytoskeletal filaments provides evidence for SUMOylation possibly contributing to underlying dysfunctional trophoblast turnover, which is a hallmark feature of pre‐eclampsia. Further understanding the role of individual SUMO isoforms and SUMOylation underlying placental dysfunction may provide a target for a novel therapeutic candidate as an approach for treating pre‐eclampsia complicated with placental pathology.
Collapse
Affiliation(s)
- Dora Baczyk
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada
| | - Melanie C Audette
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G1L7, Canada
| | - John C Kingdom
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
21
|
Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, Wilcox S, Fu N, Liu KH, Jackling FC, Davis MJ, Lindeman GJ, Smyth GK, Visvader JE. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun 2017; 8:1627. [PMID: 29158510 PMCID: PMC5696379 DOI: 10.1038/s41467-017-01560-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
The mammary epithelium comprises two primary cellular lineages, but the degree of heterogeneity within these compartments and their lineage relationships during development remain an open question. Here we report single-cell RNA profiling of mouse mammary epithelial cells spanning four developmental stages in the post-natal gland. Notably, the epithelium undergoes a large-scale shift in gene expression from a relatively homogeneous basal-like program in pre-puberty to distinct lineage-restricted programs in puberty. Interrogation of single-cell transcriptomes reveals different levels of diversity within the luminal and basal compartments, and identifies an early progenitor subset marked by CD55. Moreover, we uncover a luminal transit population and a rare mixed-lineage cluster amongst basal cells in the adult mammary gland. Together these findings point to a developmental hierarchy in which a basal-like gene expression program prevails in the early post-natal gland prior to the specification of distinct lineage signatures, and the presence of cellular intermediates that may serve as transit or lineage-primed cells.
Collapse
Affiliation(s)
- Bhupinder Pal
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yunshun Chen
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Jamieson
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anne C Rios
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen Wilcox
- Systems Biology & Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Naiyang Fu
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kevin He Liu
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Felicity C Jackling
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia.,Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, 3050, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
22
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
23
|
Brohi RD, Wang L, Hassine NB, Cao J, Talpur HS, Wu D, Huang CJ, Rehman ZU, Bhattarai D, Huo LJ. Expression, Localization of SUMO-1, and Analyses of Potential SUMOylated Proteins in Bubalus bubalis Spermatozoa. Front Physiol 2017; 8:354. [PMID: 28659810 PMCID: PMC5468435 DOI: 10.3389/fphys.2017.00354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1) in the sperm of water buffalo (Bubalus bubalis) using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function.
Collapse
Affiliation(s)
- Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | | | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Zia-Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| |
Collapse
|
24
|
Leube RE, Moch M, Windoffer R. Intracellular Motility of Intermediate Filaments. Cold Spring Harb Perspect Biol 2017; 9:9/6/a021980. [PMID: 28572456 DOI: 10.1101/cshperspect.a021980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYThe establishment and continuous cell type-specific adaptation of cytoplasmic intermediate filament (IF) networks are linked to various types of IF motility. Motor protein-driven active transport, linkage to other cellular structures, diffusion of small soluble subunits, and intrinsic network elasticity all contribute to the motile behavior of IFs. These processes are subject to regulation by multiple signaling pathways. IF motility is thereby connected to and involved in many basic cellular processes guarding the maintenance of cell and tissue integrity. Disturbances of IF motility are linked to diseases that are characterized by cytoplasmic aggregates containing IF proteins together with other cellular components.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
25
|
Battaglia RA, Kabiraj P, Willcockson HH, Lian M, Snider NT. Isolation of Intermediate Filament Proteins from Multiple Mouse Tissues to Study Aging-associated Post-translational Modifications. J Vis Exp 2017. [PMID: 28570536 DOI: 10.3791/55655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments (IFs), together with actin filaments and microtubules, form the cytoskeleton - a critical structural element of every cell. Normal functioning IFs provide cells with mechanical and stress resilience, while a dysfunctional IF cytoskeleton compromises cellular health and has been associated with many human diseases. Post-translational modifications (PTMs) critically regulate IF dynamics in response to physiological changes and under stress conditions. Therefore, the ability to monitor changes in the PTM signature of IFs can contribute to a better functional understanding, and ultimately conditioning, of the IF system as a stress responder during cellular injury. However, the large number of IF proteins, which are encoded by over 70 individual genes and expressed in a tissue-dependent manner, is a major challenge in sorting out the relative importance of different PTMs. To that end, methods that enable monitoring of PTMs on IF proteins on an organism-wide level, rather than for isolated members of the family, can accelerate research progress in this area. Here, we present biochemical methods for the isolation of the total, detergent-soluble, and detergent-resistant fraction of IF proteins from 9 different mouse tissues (brain, heart, lung, liver, small intestine, large intestine, pancreas, kidney, and spleen). We further demonstrate an optimized protocol for rapid isolation of IF proteins by using lysing matrix and automated homogenization of different mouse tissues. The automated protocol is useful for profiling IFs in experiments with high sample volume (such as in disease models involving multiple animals and experimental groups). The resulting samples can be utilized for various downstream analyses, including mass spectrometry-based PTM profiling. Utilizing these methods, we provide new data to show that IF proteins in different mouse tissues (brain and liver) undergo parallel changes with respect to their expression levels and PTMs during aging.
Collapse
Affiliation(s)
- Rachel A Battaglia
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill
| | - Parijat Kabiraj
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill
| | - Helen H Willcockson
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill
| | - Melinda Lian
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill
| | - Natasha T Snider
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill;
| |
Collapse
|
26
|
|
27
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
28
|
Kakade PS, Budnar S, Kalraiya RD, Vaidya MM. Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem 2016; 291:12003-13. [PMID: 27059955 DOI: 10.1074/jbc.m116.728717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 01/16/2023] Open
Abstract
Keratins 8/18 (K8/18) are phosphoglycoproteins and form the major intermediate filament network of simple epithelia. The three O-GlcNAcylation (Ser(29), Ser(30), and Ser(48)) and two phosphorylation (Ser(33) and Ser(52)) serine sites on K18 are well characterized. Both of these modifications have been reported to increase K18 solubility and regulate its filament organization. In this report, we investigated the site-specific interplay between these two modifications in regulating the functional properties of K18, like solubility, stability, and filament organization. An immortalized hepatocyte cell line (HHL-17) stably expressing site-specific single, double, and triple O-GlcNAc and phosphomutants of K18 were used to identify the site(s) critical for regulating these functions. Keratin 18 mutants where O-GlcNAcylation at Ser(30) was abolished (K18-S30A) exhibited reduced phosphorylation induced solubility, increased stability, defective filament architecture, and slower migration. Interestingly, K18-S30A mutants also showed loss of phosphorylation at Ser(33), a modification known to regulate the solubility of K18. Further to this, the K18 phosphomutant (K18-S33A) mimicked K18-S30A in its stability, filament organization, and cell migration. These results indicate that O-GlcNAcylation at Ser(30) promotes phosphorylation at Ser(33) to regulate the functional properties of K18 and also impact cellular processes like migration. O-GlcNAcylation and phosphorylation on the same or adjacent sites on most proteins antagonize each other in regulating protein functions. Here we report a novel, positive interplay between O-GlcNAcylation and phosphorylation at adjacent sites on K18 to regulate its fundamental properties.
Collapse
Affiliation(s)
- Poonam S Kakade
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Srikanth Budnar
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Milind M Vaidya
- From the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
29
|
Lee EJ, Park MK, Kim HJ, Kim EJ, Kang GJ, Byun HJ, Lee CH. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1157-69. [PMID: 26876307 DOI: 10.1016/j.bbamcr.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK.
Collapse
Affiliation(s)
- Eun Ji Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Gyeoung-Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
30
|
Robert A, Hookway C, Gelfand VI. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 2016; 38:232-43. [PMID: 26763143 DOI: 10.1002/bies.201500142] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical properties of vertebrate cells are largely defined by the system of intermediate filaments (IF). As part of a dense network, IF polymers are constantly rearranged and relocalized in the cell to fulfill their duty as cells change shape, migrate, or divide. With the development of new imaging technologies, such as photoconvertible proteins and super-resolution microscopy, a new appreciation for the complexity of IF dynamics has emerged. This review highlights new findings about the transport of IF, the remodeling of filaments by a process of severing and re-annealing, and the subunit exchange that occurs between filament precursors and a soluble pool of IF. We will also discuss the unique dynamic features of the keratin IF network. Finally, we will speculate about how the dynamic properties of IF are related to their functions.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
Snider NT, Omary MB. Assays for Posttranslational Modifications of Intermediate Filament Proteins. Methods Enzymol 2015; 568:113-38. [PMID: 26795469 DOI: 10.1016/bs.mie.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermediate filament (IF) proteins are known to be regulated by a number of posttranslational modifications (PTMs). Phosphorylation is the best-studied IF PTM, whereas ubiquitination, sumoylation, acetylation, glycosylation, ADP-ribosylation, farnesylation, and transamidation are less understood in functional terms but are known to regulate specific IFs under various contexts. The number and diversity of IF PTMs is certain to grow along with rapid advances in proteomic technologies. Therefore, the need for a greater understanding of the implications of PTMs to the structure, organization, and function of the IF cytoskeleton has become more apparent with the increased availability of data from global profiling studies of normal and diseased specimens. This chapter will provide information on established methods for the isolation and monitoring of IF PTMs along with the key reagents that are necessary to carry out these experiments.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Wang X, Chen P, Cui J, Yang C, Du H. Keratin 8 is a novel autoantigen of rheumatoid arthritis. Biochem Biophys Res Commun 2015; 465:665-9. [DOI: 10.1016/j.bbrc.2015.07.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
|
33
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
34
|
Robert A, Rossow MJ, Hookway C, Adam SA, Gelfand VI. Vimentin filament precursors exchange subunits in an ATP-dependent manner. Proc Natl Acad Sci U S A 2015; 112:E3505-14. [PMID: 26109569 PMCID: PMC4500282 DOI: 10.1073/pnas.1505303112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermediate filaments (IFs) are a component of the cytoskeleton capable of profound reorganization in response to specific physiological situations, such as differentiation, cell division, and motility. Various mechanisms were proposed to be responsible for this plasticity depending on the type of IF polymer and the biological context. For example, recent studies suggest that mature vimentin IFs (VIFs) undergo rearrangement by severing and reannealing, but direct subunit exchange within the filament plays little role in filament dynamics at steady state. Here, we studied the dynamics of subunit exchange in VIF precursors, called unit-length filaments (ULFs), formed by the lateral association of eight vimentin tetramers. To block vimentin assembly at the ULF stage, we used the Y117L vimentin mutant (vimentin(Y117L)). By tagging vimentin(Y117L) with a photoconvertible protein mEos3.2 and photoconverting ULFs in a limited area of the cytoplasm, we found that ULFs, unlike mature filaments, were highly dynamic. Subunit exchange among ULFs occurred within seconds and was limited by the diffusion of soluble subunits in the cytoplasm rather than by the association and dissociation of subunits from ULFs. Our data demonstrate that cells expressing vimentin(Y117L) contained a large pool of soluble vimentin tetramers that was in rapid equilibrium with ULFs. Furthermore, vimentin exchange in ULFs required ATP, and ATP depletion caused a dramatic reduction of the soluble tetramer pool. We believe that the dynamic exchange of subunits plays a role in the regulation of ULF assembly and the maintenance of a soluble vimentin pool during the reorganization of filament networks.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Molly J Rossow
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
35
|
Kim HJ, Choi WJ, Lee CH. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition. Biomol Ther (Seoul) 2015; 23:301-12. [PMID: 26157545 PMCID: PMC4489823 DOI: 10.4062/biomolther.2015.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022] Open
Abstract
Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Won Jun Choi
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
36
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
37
|
Corfe BM, Majumdar D, Assadsangabi A, Marsh AMR, Cross SS, Connolly JB, Evans CA, Lobo AJ. Inflammation decreases keratin level in ulcerative colitis; inadequate restoration associates with increased risk of colitis-associated cancer. BMJ Open Gastroenterol 2015; 2:e000024. [PMID: 26462276 PMCID: PMC4599170 DOI: 10.1136/bmjgast-2014-000024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 01/04/2015] [Indexed: 01/08/2023] Open
Abstract
Background Keratins are intermediate filament (IF) proteins, which form part of the epithelial cytoskeleton and which have been implicated pathology of inflammatory bowel diseases (IBD). Methods In this study biopsies were obtained from IBD patients grouped by disease duration and subtype into eight categories based on cancer risk and inflammatory status: quiescent recent onset (<5 years) UC (ROUC); UC with primary sclerosing cholangitis; quiescent long-standing pancolitis (20–40 years) (LSPC); active colitis and non-inflamed proximal colonic mucosa; pancolitis with dysplasia-both dysplastic lesions (DT) and distal rectal mucosa (DR); control group without pathology. Alterations in IF protein composition across the groups were determined by quantitative proteomics. Key protein changes were validated by western immunoblotting and immunohistochemical analysis. Result Acute inflammation resulted in reduced K8, K18, K19 and VIM (all p<0.05) compared to controls and non inflamed mucosa; reduced levels of if– associated proteins were also seen in DT and DR. Increased levels of keratins in LSPC was noted relative to controls or ROUC (K8, K18, K19 and VIM, p<0.05). Multiple K8 forms were noted on immunoblotting, with K8 phosphorylation reduced in progressive disease along with an increase in VIM:K8 ratio. K8 levels and phosphorylation are reduced in acute inflammation but appear restored or elevated in subjects with clinical and endoscopic remission (LSPC) but not apparent in subjects with elevated risk of cancer. Conclusions These data suggest that keratin regulation in remission may influence subsequent cancer risk.
Collapse
Affiliation(s)
- Bernard M Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Insigneo Institute for in silico Medicine, University of Sheffield , Sheffield , UK
| | - Debabrata Majumdar
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Arash Assadsangabi
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Alexandra M R Marsh
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, Faculty of Medicine, Dentistry & Health , University of Sheffield , Sheffield , UK
| | | | - Caroline A Evans
- Biological and Systems Engineering Group, Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Alan J Lobo
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| |
Collapse
|
38
|
Qinghong S, Shen G, Lina S, Yueming Z, Xiaoou L, Jianlin W, Chengyan H, Hongjun L, Haifeng Z. Comparative proteomics analysis of differential proteins in respond to doxorubicin resistance in myelogenous leukemia cell lines. Proteome Sci 2015; 13:1. [PMID: 25628518 PMCID: PMC4307195 DOI: 10.1186/s12953-014-0057-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/15/2014] [Indexed: 01/14/2023] Open
Abstract
Background Chemoresistance remains a significant challenge in chronic myelogenous leukemia (CML) management, which is one of the most critical prognostic factors. Elucidation the molecular mechanisms underlying the resistance to chemoresistance may lead to better clinical outcomes. Results In order to identify potential protein targets involved in the drug-resistant phenotype of leukemia, especially the chronic myelogenous leukemia (CML), we used a high-resolution “ultra-zoom” 2DE-based proteomics approach to characterize global protein expression patterns in doxorubicin-resistant myelogenous leukemia cells compared with parental control cells. Ultra-high resolution of 2DE was achieved by using a series of slightly overlapping narrow-range IPG strips during isoelectric focusing (IEF) separation. A total number of 44 proteins with altered abundances were detected and identified by MALDI-TOF or LC-MS/MS. Among these proteins, enolase, aldolase, HSP70 and sorcin were up-regulated in doxorubicin-resistant myelogenous leukemia cell line, whereas HSP27 was down-regulated. Some of the results have been validated by Western blotting. Both enolase and aldolase were first reported to be involved in chemoresistance, suggesting that process of glycolysis in doxorubicin-resistant myelogenous leukemia cells was accelerated to some extent to provide more energy to survive chemical stress. Possible roles of most of the identified proteins in development of chemoresistance in myelogenous leukemia cells were fully discussed. The results presented here could provide clues to further study for elucidating the mechanisms underlying drug resistance in leukemia. Conclusions As a whole, under the chemical stress, the doxorubicin-resistant myelogenous leukemia cells may employ various protective strategies to survive. These include: (i) pumping the cytotoxic drug out of the cells by P-glycoprotein, (ii) increased storage of fermentable fuel, (iii) sophisticated cellular protection by molecular chaperones, (iv) improved handling of intracellular calcium, (v) increased glucose utilization via increased rates of glycolysis. In the present study, proteomic analysis of leukemia cells and their drug resistant variants revealed multiple alterations in protein expression. Our results indicate that the development of drug resistance in doxorubicin-resistant myelogenous leukemia cells is a complex phenomenon undergoing several mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0057-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi Qinghong
- Jilin University China-Japan Union Hospital, Changchun, 130033 China
| | - Gao Shen
- Jilin University China-Japan Union Hospital, Changchun, 130033 China
| | - Song Lina
- Jilin University China-Japan Union Hospital, Changchun, 130033 China
| | - Zhao Yueming
- Jilin University China-Japan Union Hospital, Changchun, 130033 China ; Tumor Hospital of Jilin Province, Changchun, 130021 China
| | - Li Xiaoou
- Tumor Hospital of Jilin Province, Changchun, 130021 China
| | - Wu Jianlin
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - He Chengyan
- Jilin University China-Japan Union Hospital, Changchun, 130033 China
| | - Li Hongjun
- Jilin University China-Japan Union Hospital, Changchun, 130033 China
| | | |
Collapse
|
39
|
Toivola DM, Boor P, Alam C, Strnad P. Keratins in health and disease. Curr Opin Cell Biol 2015; 32:73-81. [PMID: 25599598 DOI: 10.1016/j.ceb.2014.12.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 02/01/2023]
Abstract
The cytoprotective keratins (K) compose the intermediate filaments of epithelial cells and their inherited and spontaneous mutations give rise to keratinopathies. For example, mutations in K1/K5/K10/K14 cause epidermal skin diseases whereas simple epithelial K8/K18/K19 variants predispose to development of several liver disorders. Due to their abundance, tissue- and context-specific expression, keratins constitute excellent diagnostic markers of both neoplastic and non-neoplastic diseases. During injury and in disease, keratin expression levels, cellular localization or posttranslational modifications are altered. Accumulating evidence suggests that these changes modulate multiple processes including cell migration, tumor growth/metastasis and development of infections. Therefore, our understanding of keratins is shifting from diagnostic markers to active disease modifiers.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Catharina Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
40
|
Regulation of keratin network organization. Curr Opin Cell Biol 2015; 32:56-64. [PMID: 25594948 DOI: 10.1016/j.ceb.2014.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Abstract
Keratins form the major intermediate filament cytoskeleton of epithelia and are assembled from heterodimers of 28 type I and 26 type II keratins in cell- and differentiation-dependent patterns. By virtue of their primary sequence composition, interactions with cell adhesion complexes and components of major signaling cascades, keratins act as targets and effectors of mechanical force and chemical signals to determine cell mechanics, epithelial cohesion and modulate signaling in keratin isotype-specific manners. Therefore, cell-specific keratin expression and organization impact on cell growth, migration and invasion. Here, we review the recent literature, focusing on the question how keratin networks are regulated and how the interplay of keratins with adhesion complexes affects these processes and provides a framework to understand keratins contribution to blistering and inflammatory disorders and to tumor metastasis.
Collapse
|
41
|
Leube RE, Moch M, Kölsch A, Windoffer R. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. BIOARCHITECTURE 2014; 1:39-44. [PMID: 21866261 DOI: 10.4161/bioa.1.1.14815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 01/13/2023]
Abstract
The filamentous cytoskeletal systems fulfil seemingly incompatible functions by maintaining a stable scaffolding to ensure tissue integrity and simultaneously facilitating rapid adaptation to intracellular processes and environmental stimuli. This paradox is particularly obvious for the abundant keratin intermediate filaments in epithelial tissues. The epidermal keratin cytoskeleton, for example, supports the protective and selective barrier function of the skin while enabling rapid growth and remodelling in response to physical, chemical and microbial challenges. We propose that these dynamic properties are linked to the perpetual re-cycling of keratin intermediate filaments that we observe in cultured cells. This cycle of assembly and disassembly is independent of protein biosynthesis and consists of distinct, temporally and spatially defined steps. In this way, the keratin cytoskeleton remains in constant motion but stays intact and is also able to restructure rapidly in response to specific regulatory cues as is needed, e.g., during division, differentiation and wound healing.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy; RWTH Aachen University; Aachen, Germany
| | | | | | | |
Collapse
|
42
|
|
43
|
Zupancic T, Stojan J, Lane EB, Komel R, Bedina-Zavec A, Liovic M. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease. PLoS One 2014; 9:e99398. [PMID: 24915158 PMCID: PMC4051775 DOI: 10.1371/journal.pone.0099398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022] Open
Abstract
Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.
Collapse
Affiliation(s)
- Tina Zupancic
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jure Stojan
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Radovan Komel
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mirjana Liovic
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
44
|
Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 2014; 15:163-77. [PMID: 24556839 PMCID: PMC4079540 DOI: 10.1038/nrm3753] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
45
|
Beyond expectations: novel insights into epidermal keratin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:265-306. [PMID: 24952920 DOI: 10.1016/b978-0-12-800179-0.00007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermis is a stratified epithelium that relies on its cytoskeleton and cell junctions to protect the body against mechanical injury, dehydration, and infections. Keratin intermediate filament proteins are involved in many of these functions by forming cell-specific cytoskeletal scaffolds crucial for the maintenance of cell and tissue integrity. In response to various stresses, the expression and organization of keratins are altered at transcriptional and posttranslational levels to restore tissue homeostasis. Failure to restore tissue homeostasis in the presence of keratin gene mutations results in acute and chronic skin disorders for which currently no rational therapies are available. Here, we review the recent progress on the role of keratins in cytoarchitecture, adhesion, signaling, and inflammation. By focusing on epidermal keratins, we illustrate the contribution of keratin isotypes to differentiated epithelial functions.
Collapse
|
46
|
Snider NT, Park H, Omary MB. A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 protein insolubility and filament organization. J Biol Chem 2013; 288:31329-37. [PMID: 24003221 DOI: 10.1074/jbc.m113.502724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Post-translational modifications are important functional determinants for intermediate filament (IF) proteins. Phosphorylation of IF proteins regulates filament organization, solubility, and cell-protective functions. Most known IF protein phosphorylation sites are serines localized in the variable "head" and "tail" domain regions. By contrast, little is known about site-specific tyrosine phosphorylation or its implications on IF protein function. We used available proteomic data from large scale studies to narrow down potential phospho-tyrosine sites on the simple epithelial IF protein keratin 8 (K8). Validation of the predicted sites using a pan-phosphotyrosine and a site-specific antibody, which we generated, revealed that the highly conserved Tyr-267 in the K8 "rod" domain was basally phosphorylated. The charge at this site was critically important, as demonstrated by altered filament organization of site-directed mutants, Y267F and Y267D, the latter exhibiting significantly diminished solubility. Pharmacological inhibition of the protein-tyrosine phosphatase PTP1B increased K8 Tyr-267 phosphorylation, decreased solubility, and increased K8 filament bundling, whereas PTP1B overexpression had the opposite effects. Furthermore, there was significant co-localization between K8 and a "substrate-trapping" mutant of PTP1B (D181A). Because K8 Tyr-267 is conserved in many IFs (QYE motif), we tested the effect of the paralogous Tyr in glial fibrillary acidic protein (GFAP), which is mutated in Alexander disease (Y242D). Similar to K8, Y242D GFAP exhibited highly irregular filament organization and diminished solubility. Our results implicate the rod domain QYE motif tyrosine as an important determinant of IF assembly and solubility properties that can be dynamically modulated by phosphorylation.
Collapse
Affiliation(s)
- Natasha T Snider
- From the Departments of Molecular and Integrative Physiology and
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Rebecca L Haines
- Epithelial Biology Group, Institute of Medical Biology, Immunos, Singapore
| | | |
Collapse
|
48
|
Elliott JL, Der Perng M, Prescott AR, Jansen KA, Koenderink GH, Quinlan RA. The specificity of the interaction between αB-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120375. [PMID: 23530264 PMCID: PMC3638400 DOI: 10.1098/rstb.2012.0375] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CRYAB (αB-crystallin) is expressed in many tissues and yet the R120G mutation in CRYAB causes tissue-specific pathologies, namely cardiomyopathy and cataract. Here, we present evidence to demonstrate that there is a specific functional interaction of CRYAB with desmin intermediate filaments that predisposes myocytes to disease caused by the R120G mutation. We use a variety of biochemical and biophysical techniques to show that plant, animal and ascidian small heat-shock proteins (sHSPs) can interact with intermediate filaments. Nevertheless, the mutation R120G in CRYAB does specifically change that interaction when compared with equivalent substitutions in HSP27 (R140G) and into the Caenorhabditis elegans HSP16.2 (R95G). By transient transfection, we show that R120G CRYAB specifically promotes intermediate filament aggregation in MCF7 cells. The transient transfection of R120G CRYAB alone has no significant effect upon cell viability, although bundling of the endogenous intermediate filament network occurs and the mitochondria are concentrated into the perinuclear region. The combination of R120G CRYAB co-transfected with wild-type desmin, however, causes a significant reduction in cell viability. Therefore, we suggest that while there is an innate ability of sHSPs to interact with and to bind to intermediate filaments, it is the specific combination of desmin and CRYAB that compromises cell viability and this is potentially the key to the muscle pathology caused by the R120G CRYAB.
Collapse
Affiliation(s)
- Jayne L Elliott
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | |
Collapse
|
49
|
Snider NT, Leonard JM, Kwan R, Griggs NW, Rui L, Omary MB. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. ACTA ACUST UNITED AC 2013; 200:241-7. [PMID: 23358244 PMCID: PMC3563689 DOI: 10.1083/jcb.201209028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Keratin 8 lysine acetylation, which is enhanced by hyperglycemia and reduced by SIRT2, alters filament organization and reduces solubility. Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|