1
|
Wei J, Cao Z, Li Q, Li X, Wang Q, Zhang Y, Zhang R, Wu X, Dai Q, Li X, Zhou Z, Sun F, Jiao S, Zhao B. Nuclear ubiquitination permits Hippo-YAP signal for liver development and tumorigenesis. Nat Chem Biol 2025:10.1038/s41589-025-01901-8. [PMID: 40379800 DOI: 10.1038/s41589-025-01901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/03/2025] [Indexed: 05/19/2025]
Abstract
Hippo-YAP signaling is crucial to organ development and tumorigenesis. VGLL4, which occupies TEAD to prevent YAP binding, is the main transcriptional repressor of Hippo-YAP activity. Here we identified the nuclear E3 ligase ubiquitin protein ligase E3 component n-recognin 5 (UBR5) poly-ubiquitinated VGLL4 at Lys61 for its degradation, which permits Hippo-YAP signaling for the development of the liver biliary system in mice and multiple cancers in humans. In mouse liver development, Ubr5 and Vgll4 exhibited reciprocal expression patterns spatiotemporally. Ubr5 deletion impaired cholangiocyte development and hepatocyte reprogramming, which could be efficiently rescued by restoring Hippo-YAP through ablating Vgll4. We also found that the UBR5-VGLL4-YAP axis is associated with the progression of human pan-cancers. Targeting nuclear E3 ligases in multiple types of patient-derived tumor organoids suppressed their expansion. Our identification of UBR5 as the bona fide E3 ligase of VGLL4 offers a molecular framework of nuclear Hippo-YAP regulation and suggests nuclear ubiquitination as a potential therapeutic target for YAP-dependent malignancies.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhifa Cao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Li
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingzhe Wang
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiming Zhang
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Run Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingru Wu
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Quanhui Dai
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyang Li
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Bing Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Kaveh S, Mani-Varnosfaderani A, Neiband MS. Deriving general structure-activity/selectivity relationship patterns for different subfamilies of cyclin-dependent kinase inhibitors using machine learning methods. Sci Rep 2024; 14:15315. [PMID: 38961127 PMCID: PMC11222421 DOI: 10.1038/s41598-024-66173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in regulating the cell cycle and are among the most critical targets for cancer therapy and drug discovery. The primary objective of this research is to derive general structure-activity relationship (SAR) patterns for modeling the selectivity and activity levels of CDK inhibitors using machine learning methods. To accomplish this, 8592 small molecules with different binding affinities to CDK1, CDK2, CDK4, CDK5, and CDK9 were collected from Binding DB, and a diverse set of descriptors was calculated for each molecule. The supervised Kohonen networks (SKN) and counter propagation artificial neural networks (CPANN) models were trained to predict the activity levels and therapeutic targets of the molecules. The validity of models was confirmed through tenfold cross-validation and external test sets. Using selected sets of molecular descriptors (e.g. hydrophilicity and total polar surface area) we derived activity and selectivity maps to elucidate local regions in chemical space for active and selective CDK inhibitors. The SKN models exhibited prediction accuracies ranging from 0.75 to 0.94 for the external test sets. The developed multivariate classifiers were used for ligand-based virtual screening of 2 million random molecules of the PubChem database, yielding areas under the receiver operating characteristic curves ranging from 0.72 to 1.00 for the SKN model. Considering the persistent challenge of achieving CDK selectivity, this research significantly contributes to addressing the issue and underscores the paramount importance of developing drugs with minimized side effects.
Collapse
Affiliation(s)
- Sara Kaveh
- Chemometrics and Cheminformatics Laboratory, Department of Analytical Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Mani-Varnosfaderani
- Chemometrics and Cheminformatics Laboratory, Department of Analytical Chemistry, Tarbiat Modares University, Tehran, Iran.
| | - Marzieh Sadat Neiband
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran
| |
Collapse
|
3
|
Qi H, Yu M, Fan X, Zhou Y, Zhang M, Gao X. Methionine and Leucine Promote mTOR Gene Transcription and Milk Synthesis in Mammary Epithelial Cells through the eEF1Bα-UBR5-ARID1A Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11733-11745. [PMID: 38725145 DOI: 10.1021/acs.jafc.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.
Collapse
Affiliation(s)
- Hao Qi
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Mengmemg Yu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiuqiang Fan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Yuwen Zhou
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
4
|
Song XQ, Chen BB, Jin YM, Wang CY. DNMT1-mediated epigenetic suppression of FBXO32 expression promoting cyclin dependent kinase 9 (CDK9) survival and esophageal cancer cell growth. Cell Cycle 2024; 23:262-278. [PMID: 38597826 PMCID: PMC11057636 DOI: 10.1080/15384101.2024.2309022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 04/11/2024] Open
Abstract
Esophageal cancer (EC) is a common and serious form of cancer, and while DNA methyltransferase-1 (DNMT1) promotes DNA methylation and carcinogenesis, the role of F-box protein 32 (FBXO32) in EC and its regulation by DNMT1-mediated methylation is still unclear. FBXO32 expression was examined in EC cells with high DNMT1 expression using GSE163735 dataset. RT-qPCR assessed FBXO32 expression in normal and EC cells, and impact of higher FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with EMT-related proteins. The xenograft model established by injecting EC cells transfected with FBXO32 was used to evaluate tumor growth, apoptosis, and tumor cells proliferation and metastasis. Chromatin immunoprecipitation (ChIP) assay was employed to study the interaction between DNMT1 and FBXO32. HitPredict, co-immunoprecipitation (Co-IP), and Glutathione-S-transferase (GST) pulldown assay analyzed the interaction between FBXO32 and cyclin dependent kinase 9 (CDK9). Finally, the ubiquitination assay identified CDK9 ubiquitination, and its half-life was measured using cycloheximide and confirmed through western blotting. DNMT1 negatively correlated with FBXO32 expression in esophageal cells. High FBXO32 expression was associated with better overall survival in patients. Knockdown of DNMT1 in EC cells increased FBXO32 expression and suppressed malignant phenotypes. FBXO32 repressed EC tumor growth and metastasis in mice. Enrichment of DNMT1 in FBXO32 promoter region led to increased DNA methylation and reduced transcription. Mechanistically, FBXO32 degraded CDK9 through promoting its ubiquitination.
Collapse
Affiliation(s)
- Xian-Qiang Song
- Department of Radiotherapy, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Bin-Bin Chen
- Departments of Laboratory Medicine, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Yong-Mei Jin
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Chang-Yong Wang
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| |
Collapse
|
5
|
Wang F, He Q, Zhan W, Yu Z, Finkin-Groner E, Ma X, Lin G, Li H. Structure of the human UBR5 E3 ubiquitin ligase. Structure 2023; 31:541-552.e4. [PMID: 37040767 PMCID: PMC10403316 DOI: 10.1016/j.str.2023.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
The human UBR5 is a single polypeptide chain homology to E6AP C terminus (HECT)-type E3 ubiquitin ligase essential for embryonic development in mammals. Dysregulated UBR5 functions like an oncoprotein to promote cancer growth and metastasis. Here, we report that UBR5 assembles into a dimer and a tetramer. Our cryoelectron microscopy (cryo-EM) structures reveal that two crescent-shaped UBR5 monomers assemble head to tail to form the dimer, and two dimers bind face to face to form the cage-like tetramer with all four catalytic HECT domains facing the central cavity. Importantly, the N-terminal region of one subunit and the HECT of the other form an "intermolecular jaw" in the dimer. We show the jaw-lining residues are important for function, suggesting that the intermolecular jaw functions to recruit ubiquitin-loaded E2 to UBR5. Further work is needed to understand how oligomerization regulates UBR5 ligase activity. This work provides a framework for structure-based anticancer drug development and contributes to a growing appreciation of E3 ligase diversity.
Collapse
Affiliation(s)
- Feng Wang
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Qing He
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Ziqi Yu
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Efrat Finkin-Groner
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th Street, New York, NY 10021, USA
| | - Xiaojing Ma
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
6
|
UBR5 HECT domain mutations identified in mantle cell lymphoma control maturation of B cells. Blood 2021; 136:299-312. [PMID: 32325489 DOI: 10.1182/blood.2019002102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Coordination of a number of molecular mechanisms including transcription, alternative splicing, and class switch recombination are required to facilitate development, activation, and survival of B cells. Disruption of these pathways can result in malignant transformation. Recently, next-generation sequencing has identified a number of novel mutations in mantle cell lymphoma (MCL) patients including mutations in the ubiquitin E3 ligase UBR5. Approximately 18% of MCL patients were found to have mutations in UBR5, with the majority of mutations within the HECT domain of the protein that can accept and transfer ubiquitin molecules to the substrate. Determining if UBR5 controls the maturation of B cells is important to fully understand malignant transformation to MCL. To elucidate the role of UBR5 in B-cell maturation and activation, we generated a conditional mutant disrupting UBR5's C-terminal HECT domain. Loss of the UBR5 HECT domain leads to a block in maturation of B cells in the spleen and upregulation of proteins associated with messenger RNA splicing via the spliceosome. Our studies reveal a novel role of UBR5 in B-cell maturation by stabilization of spliceosome components during B-cell development and suggests UBR5 mutations play a role in MCL transformation.
Collapse
|
7
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
8
|
Zhang Y, Hou J, Shi S, Du J, Liu Y, Huang P, Li Q, Liu L, Hu H, Ji Y, Guo L, Shi Y, Liu Y, Cui H. CSN6 promotes melanoma proliferation and metastasis by controlling the UBR5-mediated ubiquitination and degradation of CDK9. Cell Death Dis 2021; 12:118. [PMID: 33483464 PMCID: PMC7822921 DOI: 10.1038/s41419-021-03398-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
As a critical subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), CSN6 is upregulated in some human cancers and plays critical roles in tumorigenesis and progression, but its biological functions and molecular mechanisms in melanoma remain unknown. Our study showed that CSN6 expression was upregulated in melanoma patients and cells, and correlated with poor survival in melanoma patients. In melanoma cells, CSN6 knockdown remarkably inhibited cell proliferation, tumorigenicity, migration, and invasion, whereas CSN6 recovery rescued the proliferative and metastatic abilities. Notably, we identified that CSN6 stabilized CDK9 expression by reducing CDK9 ubiquitination levels, thereby activating CDK9-mediated signaling pathways. In addition, our study described a novel CSN6-interacting E3 ligase UBR5, which was negatively regulated by CSN6 and could regulate the ubiquitination and degradation of CDK9 in melanoma cells. Furthermore, in CSN6-knockdown melanoma cells, UBR5 knockdown abrogated the effects caused by CSN6 silencing, suggesting that CSN6 activates the UBR5/CDK9 pathway to promote melanoma cell proliferation and metastasis. Thus, this study illustrates the mechanism by which the CSN6-UBR5-CDK9 axis promotes melanoma development, and demonstrate that CSN6 may be a potential biomarker and anticancer target in melanoma.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Huanrong Hu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China. .,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
9
|
Ding F, Zhu X, Song X, Yuan P, Ren L, Chai C, Zhou W, Li X. UBR5 oncogene as an indicator of poor prognosis in gastric cancer. Exp Ther Med 2020; 20:7. [PMID: 32934672 PMCID: PMC7471948 DOI: 10.3892/etm.2020.9135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human ubiquitin protein ligase E3 component N-recognin 5 (UBR5) gene, which is localized to chromosome 8q22, encodes an ~10 kb mRNA and a >300 kDa protein, which can be detected in a number of cell types. UBR5 is implicated in several types of cancer, including ovarian cancer, gallbladder cancer and lymphoma; however, its role in gastric cancer is not completely understood. In the present study, the expression levels of UBR5 in human gastric cancer tissues and cell lines were examined via immunohistochemistry, reverse transcription-quantitative PCR analysis and western blotting. Furthermore, the association between UBR5 expression and clinicopathological characteristics, as well as the prognosis of patients with gastric cancer, were examined. In addition, the role of UBR5 in gastric cancer cell proliferation, invasion and migration was investigated by conducting MTS, Transwell and wound healing assays, respectively. The results indicated that the mRNA and protein expression levels of UBR5 were significantly increased in gastric cancer tissues compared with para-carcinoma tissues. High UBR5 expression levels were significantly associated with larger tumor size, advanced TNM stage and lymph node metastasis. In addition, high UBR5 expression indicated a poor prognosis in patients with gastric cancer. Furthermore, in vitro experiments demonstrated that UBR5 knockdown was associated with reduced HGC-27 gastric cancer cell proliferation, invasion and migration compared with the small interfering RNA control group. Therefore, the results indicated that UBR5 may serve a key role in gastric cancer, indicating that UBR5 may also serve as an important prognostic biomarker.
Collapse
Affiliation(s)
- Fanghui Ding
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward V, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoliang Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward V, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaojing Song
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward V, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Pei Yuan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Longfei Ren
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward V, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Changpeng Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward II, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward II, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,General Surgery Department Ward V, Lanzhou University First Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
10
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
11
|
Knapp B, Roedig J, Boldt K, Krzysko J, Horn N, Ueffing M, Wolfrum U. Affinity proteomics identifies novel functional modules related to adhesion GPCRs. Ann N Y Acad Sci 2019; 1456:144-167. [PMID: 31441075 DOI: 10.1111/nyas.14220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
Adhesion G protein-coupled receptors (ADGRs) have recently become a target of intense research. Their unique protein structure, which consists of a G protein-coupled receptor combined with long adhesive extracellular domains, suggests a dual role in cell signaling and adhesion. Despite considerable progress in the understanding of ADGR signaling over the past years, the knowledge about ADGR protein networks is still limited. For most receptors, only a few interaction partners are known thus far. We aimed to identify novel ADGR-interacting partners to shed light on cellular protein networks that rely on ADGR function. For this, we applied affinity proteomics, utilizing tandem affinity purifications combined with mass spectrometry. Analysis of the acquired proteomics data provides evidence that ADGRs not only have functional roles at synapses but also at intracellular membranes, namely at the endoplasmic reticulum, the Golgi apparatus, mitochondria, and mitochondria-associated membranes (MAMs). Specifically, we found an association of ADGRs with several scaffold proteins of the membrane-associated guanylate kinases family, elementary units of the γ-secretase complex, the outer/inner mitochondrial membrane, MAMs, and regulators of the Wnt signaling pathways. Furthermore, the nuclear localization of ADGR domains together with their physical interaction with nuclear proteins and several transcription factors suggests a role of ADGRs in gene regulation.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Jens Roedig
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Jacek Krzysko
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Nicola Horn
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research and Medical Bioanalytics, Centre for Ophthalmology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
12
|
Saez I, Gerbracht JV, Koyuncu S, Lee HJ, Horn M, Kroef V, Denzel MS, Dieterich C, Gehring NH, Vilchez D. The E3 ubiquitin ligase UBR5 interacts with the H/ACA ribonucleoprotein complex and regulates ribosomal RNA biogenesis in embryonic stem cells. FEBS Lett 2019; 594:175-188. [PMID: 31365120 DOI: 10.1002/1873-3468.13559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
UBR5 is an E3 ubiquitin ligase involved in distinct processes such as transcriptional regulation and development. UBR5 is highly upregulated in embryonic stem cells (ESCs), whereas its expression decreases with differentiation, suggesting a role for UBR5 in ESC function. However, little is known about how UBR5 regulates ESC identity. Here, we define the protein interactome of UBR5 in ESCs and find interactions with distinct components of the H/ACA ribonucleoprotein complex, which is required for proper maturation of ribosomal RNA (rRNA). Notably, loss of UBR5 induces an abnormal accumulation of rRNA processing intermediates, resulting in diminished ribosomal levels. Consequently, lack of UBR5 triggers an increase in p53 levels and a concomitant decrease in cellular proliferation rates. Thus, our results indicate a link between UBR5 and rRNA maturation.
Collapse
Affiliation(s)
- Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | | | - Seda Koyuncu
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Hyun Ju Lee
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus, Tschira Institute for Computational Cardiology, University Hospital, Heidelberg, Germany
| | - Niels H Gehring
- Institute for Genetics, Department of Biology, University of Cologne, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
13
|
Seaborne RA, Hughes DC, Turner DC, Owens DJ, Baehr LM, Gorski P, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Sutherland H, Ahmetov II, Jarvis JC, Bodine SC, Sharples AP. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J Physiol 2019; 597:3727-3749. [PMID: 31093990 DOI: 10.1113/jp278073] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.
Collapse
Affiliation(s)
- Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C Hughes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel C Turner
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Leslie M Baehr
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Piotr Gorski
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Hazel Sutherland
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jonathan C Jarvis
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| |
Collapse
|
14
|
Choi J, Busino L. E3 ubiquitin ligases in B-cell malignancies. Cell Immunol 2019; 340:103905. [PMID: 30827673 PMCID: PMC6584052 DOI: 10.1016/j.cellimm.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
Abstract
Ubiquitylation is a post-translational modification (PTM) that controls various cellular signaling pathways. It is orchestrated by a three-step enzymatic cascade know as the ubiquitin proteasome system (UPS). E3 ligases dictate the specificity to the substrates, primarily leading to proteasome-dependent degradation. Deregulation of the UPS components by various mechanisms contributes to the pathogenesis of cancer. This review focuses on E3 ligase-substrates pairings that are implicated in B-cell malignancies. Understanding the molecular mechanism of specific E3 ubiquitin ligases will present potential opportunities for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Jaewoo Choi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
TCEA1 regulates the proliferative potential of mouse myeloid cells. Exp Cell Res 2018; 370:551-560. [PMID: 30009791 DOI: 10.1016/j.yexcr.2018.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/15/2023]
Abstract
Leukemia is a malignance with complex pathogenesis and poor prognosis. Discovery of noval regulators amenable to leukemia could be of value to gain insight into the pathogenesis, diagnosis and prognosis of leukemia. Here, we conducted a large-scale shRNA library screening for functional regulators in the development of myeloid cells in primary cells. We identified eighteen candidate regulators in the primary screening. Those genes cover a wide range of cellular functions, including gene expression regulation, intracellular signaling transduction, nucleotide excision repair, cell cycle control and transcription regulation. In both primary screening and validation, shRNAs targeting Tcea1, encoding the transcription elongation factor A (SII) 1, exhibited the greatest influence on the proliferative potential of cells. Knocking down the expression of Tcea1 in the 32Dcl3 myeloid cell line led to enhanced proliferation of myeloid cells and blockage of myeloid differentiation induced by G-CSF. In addition, silence of Tcea1 inhibited apoptosis of myeloid cells. Thus, Tcea1 was identified as a gene which can influence the proliferative potential, survival and differentiation of myeloid cells. These findings have implications for how transcriptional elongation influences myeloid cell development and leukemic transformation.
Collapse
|
16
|
UBR5 Contributes to Colorectal Cancer Progression by Destabilizing the Tumor Suppressor ECRG4. Dig Dis Sci 2017; 62:2781-2789. [PMID: 28856538 DOI: 10.1007/s10620-017-4732-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The E3 ligase UBR5 is aberrantly expressed in diverse types of cancer. However, its expression pattern and biological function in colorectal cancer (CRC) remain unclear. METHODS We used RT-PCR, Western blot, and immunohistochemistry to measure UBR5 expression in CRC tissues and corresponding non-tumor tissues. The expression pattern of UBR5 in CRC tissues was determined by scoring system of immunohistochemical analysis and mRNA level by RT-PCR. The statistical analyses were applied to evaluate the associations of UBR5 expression with survival rate of patients. The UBR5 gene was overexpressed or silenced with lentiviral vectors in CRC cells. And, cell proliferation and apoptosis were measured using CCK8 assay and flow cytometry. RESULTS We found that UBR5 is abundantly overexpressed in CRC tissues than adjacent non-cancerous tissues. We also found that high UBR5 level is positively correlated with progression and poor survival in CRC patients. In addition, further multivariate analysis indicated that UBR5 and TNM stage were independent prognostic factors for overall survival in patients with CRC. Furthermore, we demonstrated that the expression of UBR5 was significantly elevated in CRC cell lines. Overexpression of UBR5 enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas silencing UBR5 suppressed growth of CRC cells. Moreover, our findings show that UBR5 promotes CRC cell proliferation by inducing cell cycle progression and suppressing cell apoptosis. Finally, we found that UBR5 directly binds to the tumor suppressor esophageal cancer-related gene 4 (ECRG4) and increased its ubiquitination to reduce the protein stability of ECRG4. CONCLUSIONS We identified a tumorigenic role of UBR5 in CRC and provided a novel therapeutic target for CRC patients.
Collapse
|
17
|
Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene 2016; 36:1698-1706. [PMID: 27721409 PMCID: PMC5447866 DOI: 10.1038/onc.2016.336] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment.
Collapse
|
18
|
BMI1-UBR5 axis regulates transcriptional repression at damaged chromatin. Proc Natl Acad Sci U S A 2016; 113:11243-11248. [PMID: 27647897 DOI: 10.1073/pnas.1610735113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BMI1 is a component of the Polycomb Repressive Complex 1 (PRC1), which plays a key role in maintaining epigenetic silencing during development. BMI1 also participates in gene silencing during DNA damage response, but the precise downstream function of BMI1 in gene silencing is unclear. Here we identified the UBR5 E3 ligase as a downstream factor of BMI1. We found that UBR5 forms damage-inducible nuclear foci in a manner dependent on the PRC1 components BMI1, RNF1 (RING1a), and RNF2 (RING1b). Whereas transcription is repressed at UV-induced lesions on chromatin, depletion of the PRC1 members or UBR5 alone derepressed transcription elongation at these sites, suggesting that UBR5 functions in a linear pathway with PRC1 in inducing gene silencing at lesions. Mass spectrometry (MS) analysis revealed that UBR5 associates with BMI1 as well as FACT components SPT16 and SSRP1. We found that UBR5 localizes to the UV-induced lesions along with SPT16. We show that UBR5 ubiquitinates SPT16, and depletion of UBR5 or BMI1 leads to an enlargement of SPT16 foci size at UV lesions, suggesting that UBR5 and BMI1 repress SPT16 enrichment at the damaged sites. Consistently, depletion of the FACT components effectively reversed the transcriptional derepression incurred in the UBR5 and BMI1 KO cells. Finally, UBR5 and BMI1 KO cells are hypersensitive to UV, which supports the notion that faulty RNA synthesis at damaged sites is harmful to the cell fitness. Altogether, these results suggest that BMI1 and UBR5 repress the polymerase II (Pol II)-mediated transcription at damaged sites, by negatively regulating the FACT-dependent Pol II elongation.
Collapse
|
19
|
Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, Zhang D, Wang J, Liu X, Ouyang G, Zhou J, Xiao W. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun 2016; 7:11057. [PMID: 27009366 PMCID: PMC4820845 DOI: 10.1038/ncomms11057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence supports that ELL (eleven-nineteen lysine-rich leukaemia) is a key regulator of transcriptional elongation, but the physiological function of Ell in mammals remains elusive. Here we show that ELL functions as an E3 ubiquitin ligase and targets c-Myc for proteasomal degradation. In addition, we identify that UbcH8 serves as a ubiquitin-conjugating enzyme in this pathway. Cysteine 595 of ELL is an active site of the enzyme; its mutation to alanine (C595A) renders the protein unable to promote the ubiquitination and degradation of c-Myc. ELL-mediated c-Myc degradation inhibits c-Myc-dependent transcriptional activity and cell proliferation, and also suppresses c-Myc-dependent xenograft tumour growth. In contrast, the ELL(C595A) mutant not only loses the ability to inhibit cell proliferation and xenograft tumour growth, but also promotes tumour metastasis. Thus, our work reveals a previously unrecognized function for ELL as an E3 ubiquitin ligase for c-Myc and a potential tumour suppressor.
Collapse
Affiliation(s)
- Yu Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Chi Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Ji
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Zhichao Mei
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Bo Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Dawei Zhang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Xing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Gang Ouyang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Jiangang Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Wuhan Xiao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| |
Collapse
|
20
|
Role of Ostm1 Cytosolic Complex with Kinesin 5B in Intracellular Dispersion and Trafficking. Mol Cell Biol 2015; 36:507-21. [PMID: 26598607 DOI: 10.1128/mcb.00656-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
In humans and in mice, mutations in the Ostm1 gene cause the most severe form of osteopetrosis, a major bone disease, and neuronal degeneration, both of which are associated with early death. To gain insight into Ostm1 function, we first investigated by sequence and biochemical analysis an immature 34-kDa type I transmembrane Ostm1 protein with a unique cytosolic tail. Mature Ostm1 is posttranslationally processed and highly N-glycosylated and has an apparent mass of ∼60 kDa. Analysis the subcellular localization of Ostm1 showed that it is within the endoplasmic reticulum, trans-Golgi network, and endosomes/lysosomes. By a wide protein screen under physiologic conditions, several novel cytosolic Ostm1 partners were identified and validated, for which a direct interaction with the kinesin 5B heavy chains was demonstrated. These results determined that Ostm1 is part of a cytosolic scaffolding multiprotein complex, imparting an adaptor function to Ostm1. Moreover, we uncovered a role for the Ostm1/KIF5B complex in intracellular trafficking and dispersion of cargos from the endoplasmic reticulum to late endosomal/lysosomal subcellular compartments. These Ostm1 molecular and cellular functions could elucidate all of the pathophysiologic mechanisms underlying the wide phenotypic spectrum of Ostm1-deficient mice.
Collapse
|
21
|
Shearer RF, Iconomou M, Watts CKW, Saunders DN. Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer. Mol Cancer Res 2015; 13:1523-32. [PMID: 26464214 DOI: 10.1158/1541-7786.mcr-15-0383] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) is an important regulator of cell signaling and proteostasis, which are essential to a variety of cellular processes. The UPS is disrupted in many diseases including cancer, and targeting the UPS for cancer therapy is gaining wide interest. E3 ubiquitin ligases occupy a key position in the hierarchical UPS enzymatic cascade, largely responsible for determining substrate specificity and ubiquitin (Ub) chain topology. The E3 ligase UBR5 (aka EDD1) is emerging as a key regulator of the UPS in cancer and development. UBR5 expression is deregulated in many cancer types and UBR5 is frequently mutated in mantle cell lymphoma. UBR5 is highly conserved in metazoans, has unique structural features, and has been implicated in regulation of DNA damage response, metabolism, transcription, and apoptosis. Hence, UBR5 is a key regulator of cell signaling relevant to broad areas of cancer biology. However, the mechanism by which UBR5 may contribute to tumor initiation and progression remains poorly defined. This review synthesizes emerging insights from genetics, biochemistry, and cell biology to inform our understanding of UBR5 in cancer. These molecular insights indicate a role for UBR5 in integrating/coordinating various cellular signaling pathways. Finally, we discuss outstanding questions in UBR5 biology and highlight the need to systematically characterize substrates, and address limitations in current animal models, to better define the role of UBR5 in cancer.
Collapse
Affiliation(s)
- Robert F Shearer
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mary Iconomou
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colin K W Watts
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Darren N Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
22
|
Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. J Biol Chem 2015. [PMID: 26224628 DOI: 10.1074/jbc.m115.672246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.
Collapse
Affiliation(s)
- Juliana Muñoz-Escobar
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Edna Matta-Camacho
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Guennadi Kozlov
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Kalle Gehring
- From the Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
23
|
Laurette P, Strub T, Koludrovic D, Keime C, Le Gras S, Seberg H, Van Otterloo E, Imrichova H, Siddaway R, Aerts S, Cornell RA, Mengus G, Davidson I. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. eLife 2015; 4. [PMID: 25803486 PMCID: PMC4407272 DOI: 10.7554/elife.06857] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.
Collapse
Affiliation(s)
- Patrick Laurette
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Thomas Strub
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Dana Koludrovic
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Céline Keime
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Stéphanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Hannah Seberg
- University of Iowa College of Medicine, Iowa City, United States
| | | | - Hana Imrichova
- Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumor Research Centre, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Stein Aerts
- Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Robert A Cornell
- University of Iowa College of Medicine, Iowa City, United States
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
24
|
Bolt MJ, Stossi F, Callison AM, Mancini MG, Dandekar R, Mancini MA. Systems level-based RNAi screening by high content analysis identifies UBR5 as a regulator of estrogen receptor-α protein levels and activity. Oncogene 2015; 34:154-64. [PMID: 24441042 PMCID: PMC4871123 DOI: 10.1038/onc.2013.550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022]
Abstract
Estrogen receptor-α (ERα) is a central transcription factor that regulates mammary gland physiology and a key driver in breast cancer. In the present study, we aimed to identify novel modulators of ERα-mediated transcriptional regulation via a custom-built siRNA library screen. This screen was directed against a variety of coregulators, transcription modifiers, signaling molecules and DNA damage response proteins. By utilizing a microscopy-based, multi-end point, estrogen responsive biosensor cell line platform, the primary screen identified a wide range of factors that altered ERα protein levels, chromatin remodeling and mRNA output. We then focused on UBR5, a ubiquitin ligase and known oncogene that modulates ERα protein levels and transcriptional output. Finally, we demonstrated that UBR5 also affects endogenous ERα target genes and E2-mediated cell proliferation in breast cancer cells. In conclusion, our multi-end point RNAi screen identified novel modulators of ERα levels and activity, and provided a robust systems level view of factors involved in mechanisms of nuclear receptor action and pathophysiology. Utilizing a high throughput RNAi screening approach we identified UBR5, a protein commonly amplified in breast cancer, as a novel regulator of ERα protein levels and transcriptional activity.
Collapse
Affiliation(s)
- M J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - F Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A M Callison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - M G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - R Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - M A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, Ren W, Liu S, Wu Y, Ray L, Lin X. Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev 2014; 133:117-25. [PMID: 24854243 DOI: 10.1016/j.mod.2014.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/14/2014] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
Hedgehog (Hh) acts as a morphogen to activate the transcription of diverse target genes via its downstream effector Cubitus interruptus (Ci). Currently, it is less understood how Ci recruits co-factors to activate transcription. Here we report that hyperplastic discs (hyd), an E3 ubiquitin ligase, can differentially regulate the transcriptional outputs of Hh signaling. We show that loss of Hyd activity caused upregulation of some, but not all of Hh target genes. Importantly, Hyd does not affect the stability of Ci. Our data suggest that Hyd differentially restrains the transcriptional activity of Ci via selective association with respective promoters.
Collapse
Affiliation(s)
- Guolun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Tang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yujie Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jun Cao
- Wenzhou Medical University, Zhejiang, China
| | | | | | - Wenyan Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
26
|
A functional genomic approach reveals the transcriptional role of EDD in the expression and function of angiogenesis regulator ACVRL1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1309-19. [PMID: 24189493 DOI: 10.1016/j.bbagrm.2013.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 11/22/2022]
Abstract
EDD (E3 isolated by differential display) was initially isolated as a progestin-regulated gene in breast cancer cells, and represents the human ortholog of the Drosophila melanogaster hyperplastic discs gene (hyd). It encodes a highly conserved and predominantly nuclear ubiquitin E3 ligase of the HECT family, with potential multifunctional roles in development and tumorigenesis. In this study, we further examined the largely uncharacterized role of EDD in transcriptional regulation by uncovering the spectrum of its direct target genes at a genome-wide level. Use of a systematic approach that integrates gene expression and chromatin binding profiling identified several candidate EDD-target genes, one of which is ACVRL1, a TGF-β receptor with functional implications in blood vessel development. Further characterization revealed a negative regulation of ACVRL1 gene expression by EDD that is exerted at the promoter. Consistent with the aberrant upregulation of ACVRL1 and downstream Smad signaling, abrogation of EDD led to deregulated vessel development and endothelial cell motility. Collectively, these results extended the known cellular roles of EDD to critical functions in transcriptional regulation as well as angiogenesis, and may provide mechanistic explanations for EDD's tumorigenic and developmental roles.
Collapse
|
27
|
Kupfer DM, White VL, Strayer DL, Crouch DJ, Burian D. Microarray characterization of gene expression changes in blood during acute ethanol exposure. BMC Med Genomics 2013; 6:26. [PMID: 23883607 PMCID: PMC3750403 DOI: 10.1186/1755-8794-6-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022] Open
Abstract
Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance.
Collapse
Affiliation(s)
- Doris M Kupfer
- Civil Aerospace Medical Institute, AAM 610, Federal Aviation Administration, Bioaeronautical Sciences Research Laboratory, Oklahoma City, OK 73169, USA.
| | | | | | | | | |
Collapse
|
28
|
Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:61-74. [PMID: 23545411 DOI: 10.1016/j.bbamcr.2013.03.024] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/18/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Members of the HECT family of E3 ubiquitin-protein ligases are characterized by a C-terminal HECT domain that catalyzes the covalent attachment of ubiquitin to substrate proteins and by N-terminal extensions of variable length and domain architecture that determine the substrate spectrum of a respective HECT E3. Since their discovery in 1995, it has become clear that deregulation of distinct HECT E3s plays an eminent role in human disease or disease-related processes including cancer, cardiovascular and neurological disorders, viral infections, and immune response. Thus, a detailed understanding of the structure-function aspects of HECT E3s as well as the identification and characterization of the substrates and regulators of HECT E3s is critical in developing new approaches in the treatment of respective diseases. In this review, we summarize what is currently known about mammalian HECT E3s, with a focus on their biological functions and roles in pathophysiology.This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
29
|
Cloutier P, Lavallée-Adam M, Faubert D, Blanchette M, Coulombe B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet 2013; 9:e1003210. [PMID: 23349634 PMCID: PMC3547847 DOI: 10.1371/journal.pgen.1003210] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/14/2012] [Indexed: 01/01/2023] Open
Abstract
Methylation is a post-translational modification that can affect numerous features of proteins, notably cellular localization, turnover, activity, and molecular interactions. Recent genome-wide analyses have considerably extended the list of human genes encoding putative methyltransferases. Studies on protein methyltransferases have revealed that the regulatory function of methylation is not limited to epigenetics, with many non-histone substrates now being discovered. We present here our findings on a novel family of distantly related putative methyltransferases. Affinity purification coupled to mass spectrometry shows a marked preference for these proteins to associate with various chaperones. Based on the spectral data, we were able to identify methylation sites in substrates, notably trimethylation of K135 of KIN/Kin17, K561 of HSPA8/Hsc70 as well as corresponding lysine residues in other Hsp70 isoforms, and K315 of VCP/p97. All modification sites were subsequently confirmed in vitro. In the case of VCP, methylation by METTL21D was stimulated by the addition of the UBX cofactor ASPSCR1, which we show directly interacts with the methyltransferase. This stimulatory effect was lost when we used VCP mutants (R155H, R159G, and R191Q) known to cause Inclusion Body Myopathy with Paget's disease of bone and Fronto-temporal Dementia (IBMPFD) and/or familial Amyotrophic Lateral Sclerosis (ALS). Lysine 315 falls in proximity to the Walker B motif of VCP's first ATPase/D1 domain. Our results indicate that methylation of this site negatively impacts its ATPase activity. Overall, this report uncovers a new role for protein methylation as a regulatory pathway for molecular chaperones and defines a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of degenerative neuromuscular diseases. Methylation, or transfer of a single or multiple methyl groups (CH3), is one of many post-translational modifications that occur on proteins. Such modifications can, in turn, affect numerous aspects of a protein, notably cellular localization, turnover, activity, and molecular interactions. In addition to post-translational modifications, the structural organization of a protein or protein complex can also have a significant impact on its function and stability. A group of factors known as “molecular chaperones” aid newly synthesized proteins in reaching their native conformation or alternating between physiologically relevant states. We present here a new family of factors that promote methylation of chaperones and show that, at least in one case, this modification translates into a modulation in the activity of the substrate chaperone. Our results not only characterize the function of previously unknown gene products, uncover a new role for protein methylation as a regulatory pathway for chaperones, and define a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of neuromuscular diseases, but also suggest the existence of a post-translational modification code that regulates molecular chaperones. Further decrypting this “chaperone code” will help understanding how the functional organization of the proteome is orchestrated.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
30
|
Miteva YV, Budayeva HG, Cristea IM. Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 2013; 85:749-68. [PMID: 23157382 PMCID: PMC3666915 DOI: 10.1021/ac3033257] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ileana M. Cristea
- Corresponding author: Ileana M. Cristea 210 Lewis Thomas Laboratory Department of Molecular Biology Princeton University Princeton, NJ 08544 Tel: 6092589417 Fax: 6092584575
| |
Collapse
|
31
|
The novel interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:21-32. [PMID: 23069210 DOI: 10.1016/j.bbamcr.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/18/2012] [Accepted: 10/04/2012] [Indexed: 11/20/2022]
Abstract
Microspherule protein Msp58 (or MCRS1) plays a role in numerous cellular processes including transcriptional regulation and cell proliferation. It is not well understood either how Msp58 mediates its myriad functions or how it is itself regulated. Here, by immunoprecipitation, we identify EDD (E3 identified by differential display) as a novel Msp58-interacting protein. EDD, also called UBR5, is a HECT-domain (homologous to E6-AP carboxy-terminus) containing ubiquitin ligase that plays a role in cell proliferation, differentiation and DNA damage response. Both in vitro and in vivo binding assays show that Msp58 directly interacts with EDD. Microscopy studies reveal that these two proteins co-localize in the nucleus. We have also found that depletion of EDD leads to an increase of Msp58 protein level and extends the half-life of Msp58, demonstrating that EDD negatively regulates Msp58's protein stability. Furthermore, we show that Msp58 is upregulated in multiple different cell lines upon the treatment with proteasome inhibitor MG132 and exogenously expressed Msp58 is ubiquitinated, suggesting that Msp58 is degraded by the ubiquitin-proteasome pathway. Finally, knockdown of either Msp58 or EDD in human lung fibroblast WI-38 cells affects the levels of cyclins B, D and E, as well as cell cycle progression. Together, these results suggest a role for the Msp58/EDD interaction in controlling cell cycle progression. Given that both Msp58 and EDD are often aberrantly expressed in various human cancers, our findings open a new direction to elucidate Msp58 and EDD's roles in cell proliferation and tumorigenesis.
Collapse
|
32
|
Matta-Camacho E, Kozlov G, Menade M, Gehring K. Structure of the HECT C-lobe of the UBR5 E3 ubiquitin ligase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1158-63. [PMID: 23027739 PMCID: PMC3497971 DOI: 10.1107/s1744309112036937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023]
Abstract
UBR5 ubiquitin ligase (also known as EDD, Rat100 or hHYD) is a member of the E3 protein family of HECT (homologous to E6-AP C-terminus) ligases as it contains a C-terminal HECT domain. In ubiquitination cascades involving E3s of the HECT class, ubiquitin is transferred from an associated E2 ubiquitin-conjugating enzyme to the acceptor cysteine of the HECT domain, which consists of structurally distinct N- and C-lobes connected by a flexible linker. Here, the high-resolution crystal structure of the C-lobe of the HECT domain of human UBR5 is presented. The structure reveals important features that are unique compared with other HECT domains. In particular, a distinct four-residue insert in the second helix elongates this helix, resulting in a strikingly different orientation of the preceding loop. This protruding loop is likely to contribute to specificity towards the E2 ubiquitin-conjugating enzyme UBCH4, which is an important functional partner of UBR5. Ubiquitination assays showed that the C-lobe of UBR5 is able to form a thioester-linked E3-ubiquitin complex, although it does not physically interact with UBCH4 in NMR experiments. This study contributes to a better understanding of UBR5 ubiquitination activity.
Collapse
Affiliation(s)
- Edna Matta-Camacho
- Groupe de Recherche axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Guennadi Kozlov
- Groupe de Recherche axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Marie Menade
- Groupe de Recherche axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kalle Gehring
- Groupe de Recherche axé sur la Structure des Protéines, Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
33
|
Abstract
The N-end rule pathway is a proteolytic system in which N-terminal residues of short-lived proteins are recognized by recognition components (N-recognins) as essential components of degrons, called N-degrons. Known N-recognins in eukaryotes mediate protein ubiquitylation and selective proteolysis by the 26S proteasome. Substrates of N-recognins can be generated when normally embedded destabilizing residues are exposed at the N terminus by proteolytic cleavage. N-degrons can also be generated through modifications of posttranslationally exposed pro-N-degrons of otherwise stable proteins; such modifications include oxidation, arginylation, leucylation, phenylalanylation, and acetylation. Although there are variations in components, degrons, and hierarchical structures, the proteolytic systems based on generation and recognition of N-degrons have been observed in all eukaryotes and prokaryotes examined thus far. The N-end rule pathway regulates homeostasis of various physiological processes, in part, through interaction with small molecules. Here, we review the biochemical mechanisms, structures, physiological functions, and small-molecule-mediated regulation of the N-end rule pathway.
Collapse
Affiliation(s)
- Takafumi Tasaki
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
34
|
Warmerdam DO. EDDiting p53 levels. Cell Cycle 2012; 11:839. [PMID: 22356749 DOI: 10.4161/cc.11.5.19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci 2011; 20:1298-345. [PMID: 21633985 PMCID: PMC3189519 DOI: 10.1002/pro.666] [Citation(s) in RCA: 559] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/12/2023]
Abstract
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(α) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac)N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Collapse
Affiliation(s)
- Alexander Varshavsky
- 1Division of Biology, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|