1
|
Tao X, Tao R, Wang K, Wu L. Anti-inflammatory mechanism of Apolipoprotein A-I. Front Immunol 2024; 15:1417270. [PMID: 39040119 PMCID: PMC11260610 DOI: 10.3389/fimmu.2024.1417270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Apolipoprotein A-I(ApoA-I) is a member of blood apolipoproteins, it is the main component of High density lipoprotein(HDL). ApoA-I undergoes a series of complex processes from its generation to its composition as spherical HDL. It not only has a cholesterol reversal transport function, but also has a function in modulating the inflammatory response. ApoA-I exerts its anti-inflammatory effects mainly by regulating the functions of immune cells, such as monocytes/macrophages, dendritic cells, neutrophils, and T lymphocytes. It also modulates the function of vascular endothelial cells and adipocytes. Additionally, ApoA-I directly exerts anti-inflammatory effects against pathogenic microorganisms or their products. Intensive research on ApoA-I will hopefully lead to better diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Kaiyang Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | | |
Collapse
|
2
|
Zanotti I. High-Density Lipoproteins in Non-Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169413. [PMID: 36012681 PMCID: PMC9408873 DOI: 10.3390/ijms23169413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, 42124 Parma, Italy
| |
Collapse
|
3
|
Chen L, Zhao ZW, Zeng PH, Zhou YJ, Yin WJ. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022; 21:1121-1139. [PMID: 35192423 PMCID: PMC9103275 DOI: 10.1080/15384101.2022.2042777] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of cellular cholesterol homeostasis is essential for normal cell function and viability. Excessive cholesterol accumulation is detrimental to cells and serves as the molecular basis of many diseases, such as atherosclerosis, Alzheimer's disease, and diabetes mellitus. The peripheral cells do not have the ability to degrade cholesterol. Cholesterol efflux is therefore the only pathway to eliminate excessive cholesterol from these cells. This process is predominantly mediated by ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein. ABCA1 is known to transfer intracellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating nascent high-density lipoprotein (nHDL) particles. nHDL can accept more free cholesterol from peripheral cells. Free cholesterol is then converted to cholesteryl ester by lecithin:cholesterol acyltransferase to form mature HDL. HDL-bound cholesterol enters the liver for biliary secretion and fecal excretion. Although how cholesterol is transported by ABCA1 to apoA-I remains incompletely understood, nine models have been proposed to explain this effect. In this review, we focus on the current view of the mechanisms underlying ABCA1-mediated cholesterol efflux to provide an important framework for future investigation and lipid-lowering therapy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying-Jie Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,CONTACT Wen-Jun Yin Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
4
|
Duan M, Chen H, Yin L, Zhu X, Novák P, Lv Y, Zhao G, Yin K. Mitochondrial apolipoprotein A-I binding protein alleviates atherosclerosis by regulating mitophagy and macrophage polarization. Cell Commun Signal 2022; 20:60. [PMID: 35525979 PMCID: PMC9077873 DOI: 10.1186/s12964-022-00858-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/05/2022] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein A-I binding protein (AIBP), a secreted protein, has been shown to play a pivotal role in the development of atherosclerosis. The function of intracellular AIBP, however, is not yet well characterized. Here, we found that AIBP is abundantly expressed within human and mouse atherosclerotic lesions and exhibits a distinct localization in the inner membrane of mitochondria in macrophages. Bone marrow-specific AIBP deficiency promotes the progression of atherosclerosis and increases macrophage infiltration and inflammation in low-density lipoprotein receptor-deficient (LDLR-/-) mice. Specifically, the lack of mitochondrial AIBP leads to mitochondrial metabolic disorders, thereby reducing the formation of mitophagy by promoting the cleavage of PTEN-induced putative kinase 1 (PINK1). With the reduction in mitochondrial autophagy, macrophages polarize to the M1 proinflammatory phenotype, which further promotes the development of atherosclerosis. Based on these results, mitochondrial AIBP in macrophages performs an antiatherosclerotic role by regulating of PINK1-dependent mitophagy and M1/M2 polarization. Video Abstract.
Collapse
Affiliation(s)
- Meng Duan
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541100 Guangxi China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Linjie Yin
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, 511518 Guangdong China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541100 Guangxi China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med 2021; 32:525-533. [PMID: 34492295 DOI: 10.1016/j.tcm.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Mounting scientific evidence over decades has established that atherosclerosis is a chronic inflammatory disorder. Among the potentially critical sources of vascular inflammation during atherosclerosis are the components of pathogenic bacteria, especially lipopolysaccharide (LPS). Toll-like receptor (TLR)-4, expressed on different inflammatory cells involved with the recognition of bacterial LPS, has been recognized to have mutations that are prevalent in a number of ethnic groups. Such mutations have been associated with a decreased risk of atherosclerosis. In addition, epidemiological investigations have proposed that LPS confers a risk factor for the development of atherosclerosis. Gram-negative bacteria are the major source of LPS in an individual's serum, which may be generated during subclinical infections. The major cell receptors on inflammatory cells involved in the pathogenesis of atherosclerosis, like macrophages, monocytes, and dendritic cells (DCs), are CD14, MD-2, and LPS binding protein (LBP). These receptors have been blamed for the development of atherosclerosis through dysregulated activation following LPS recognition. Lipoproteins may also play a role in modulating the LPS-induced inflammatory events during atherosclerosis development. In this review article, we attempt to clarify the role of LPS in the initiation and progression of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Tanyanskiy DA, Trulioff AS, Ageeva EV, Nikitin AA, Shavva VS, Orlov SV. The Influence of Adiponectin on Production of Apolipoproteins A-1 and E by Human Macrophages. Mol Biol 2021. [DOI: 10.1134/s0026893321030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
8
|
Jafarizade M, Kahe F, Sharfaei S, Momenzadeh K, Pitliya A, Zahedi Tajrishi F, Singh P, Chi G. The Role of Interleukin-27 in Atherosclerosis: A Contemporary Review. Cardiology 2021; 146:517-530. [PMID: 34010834 DOI: 10.1159/000515359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a chronic inflammation characterized by an imbalance between inhibitors and stimulators of the inflammatory system that leads to the formation of atherosclerotic plaques in the vessel walls. Interleukin (IL)-27 is one of the recently discovered cytokines that have an immunomodulatory role in autoimmune and inflammatory diseases. However, the definite role of IL-27 in the pathogenesis of atherosclerosis remains unclear. Recent studies on cardiomyocytes and vascular endothelium have demonstrated mechanisms through which IL-27 could potentially modulate atherosclerosis. Upregulation of the IL-27 receptor was also observed in the atherosclerotic plaques. In addition, circulatory IL-27 levels were increased in patients with acute coronary syndrome and myocardial infarction. A regenerative, neovascularization, and cardioprotective role of IL-27 has also been implicated. Future studies are warranted to elucidate the biologic function and clinical significance of IL-27 in atherosclerosis.
Collapse
Affiliation(s)
| | - Farima Kahe
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sadaf Sharfaei
- Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | - Kaveh Momenzadeh
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anmol Pitliya
- West Virginia University College of Medicine/Camden Clark Medical Center, Parkersburg, West Virginia, USA
| | | | - Preeti Singh
- Mass General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald Chi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
10
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, Clair DKS, Butterfield DA. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"). Oncotarget 2018; 9:30324-30339. [PMID: 30100992 PMCID: PMC6084398 DOI: 10.18632/oncotarget.25718] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice both with and without MESNA. MESNA ameliorated Dox-induced oxidative protein damage in plasma, confirming our prior studies, and in a new finding led to decreased oxidative stress in brain. This study also provides further functional and biochemical evidence of the mechanisms of CICI. Using novel object recognition (NOR), we demonstrated the Dox administration resulted in memory deficits, an effect that was rescued by MESNA. Using hydrogen magnetic resonance imaging spectroscopy (H1-MRS) techniques, we demonstrated that Dox administration led to a dramatic decrease in choline-containing compounds assessed by (Cho)/creatine ratios in the hippocampus in mice. To better elucidate a potential mechanism for this MRS observation, we tested the activities of the phospholipase enzymes known to act on phosphatidylcholine (PtdCho), a key component of phospholipid membranes and a source of choline for the neurotransmitter, acetylcholine (ACh). The activities of both phosphatidylcholine-specific phospholipase C (PC-PLC) and phospholipase D were severely diminished following Dox administration. The activity of PC-PLC was preserved when MESNA was co-administered with Dox; however, PLD activity was not protected. This study is the first to demonstrate the protective effects of MESNA on Dox-related protein oxidation, cognitive decline, phosphocholine (PCho) levels, and PC-PLC activity in brain and suggests novel potential therapeutic targets and strategies to mitigate CICI.
Collapse
Affiliation(s)
| | - Xiaojia Ren
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Govind Warrier
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Teresa Noel
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - David K. Powell
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Jennifer M. Brelsfoard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40502, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40502, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40502, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Affiliation(s)
- Hainan Chen
- Research Lab for Clinical & Translational Medicine, Medical School, and Institute of Cardiovascular Disease, Key Laboratory Atherosclerology of Hunan Province; University of South China; Hengyang 421001, China
| | - Kai Yin
- Research Lab for Clinical & Translational Medicine, Medical School, and Institute of Cardiovascular Disease, Key Laboratory Atherosclerology of Hunan Province; University of South China; Hengyang 421001, China
| |
Collapse
|
13
|
Chengmao X, Li L, Yan L, Jie Y, Xiaoju W, Xiaohui C, Huimin G. ABCA1 affects placental function via trophoblast and macrophage. Life Sci 2017; 191:150-156. [DOI: 10.1016/j.lfs.2017.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
14
|
Xiao J, Chen Q, Tang D, Ou W, Wang J, Mo Z, Tang C, Peng L, Wang D. Activation of liver X receptors promotes inflammatory cytokine mRNA degradation by upregulation of tristetraprolin. Acta Biochim Biophys Sin (Shanghai) 2017; 49:277-283. [PMID: 28119310 DOI: 10.1093/abbs/gmw136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 01/10/2023] Open
Abstract
Liver X receptors (LXRs) have anti-inflammatory properties. Whether LXRs play a role in post-transcriptional control of inflammatory cytokine expression is not clear. Here, we firstly identified that the synthetic LXR agonist T0901317 promoted IL-1β, IL-6 and TNFα mRNA degradation. Moreover, T0901317 destabilized TNFα mRNA through its 3'-untranslated region. In addition, T0901317 increased the expression of tristetraprolin (TTP), while antagonizing TTP with siRNA abrogated T0901317-mediated inflammatory cytokine mRNA decay. Interestingly, T0901317 repressed LPS-induced phosphorylation of ERK1/2 and p38 mitogen-activated protein kinase (MAPK) in THP-1 macrophages. The evidence presented here confirms that LXR activation with T0901317 inhibits the phosphorylation of ERK1/2 and p38 MAPK, likely resulting in the increased expression of TTP and the decay of LPS-induce inflammatory cytokine mRNAs.
Collapse
Affiliation(s)
- Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Quan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Dan Tang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Weiwei Ou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jiazheng Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, University of South China, Hengyang 421001, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang 421001, China
| | - Liangyu Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang 421001, China
| | - Deming Wang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Dysregulation of cytokine mediated chemotherapy induced cognitive impairment. Pharmacol Res 2017; 117:267-273. [DOI: 10.1016/j.phrs.2017.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
|
16
|
Lv YC, Tang YY, Zhang P, Wan W, Yao F, He PP, Xie W, Mo ZC, Shi JF, Wu JF, Peng J, Liu D, Cayabyab FS, Zheng XL, Tang XY, Ouyang XP, Tang CK. Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis. PLoS One 2016; 11:e0157265. [PMID: 27295295 PMCID: PMC4905646 DOI: 10.1371/journal.pone.0157265] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays a critical role in maintaining cellular cholesterol homeostasis. The purpose of this study is to identify the molecular mechanism(s) underlying ABCA1 epigenetic modification and determine its potential impact on ABCA1 expression in macrophage-derived foam cell formation and atherosclerosis development. DNA methylation induced foam cell formation from macrophages and promoted atherosclerosis in apolipoprotein E-deficient (apoE−/−) mice. Bioinformatics analyses revealed a large CpG island (CGI) located in the promoter region of ABCA1. Histone methyltransferase enhancer of zeste homolog 2 (EZH2) downregulated ABCA1 mRNA and protein expression in THP-1 and RAW264.7 macrophage-derived foam cells. Pharmacological inhibition of DNA methyltransferase 1 (DNMT1) with 5-Aza-dC or knockdown of DNMT1 prevented the downregulation of macrophage ABCA1 expression, suggesting a role of DNA methylation in ABCA1 expression. Polycomb protein EZH2 induced DNMT1 expression and methyl-CpG-binding protein-2 (MeCP2) recruitment, and stimulated the binding of DNMT1 and MeCP2 to ABCA1 promoter, thereby promoting ABCA1 gene DNA methylation and atherosclerosis. Knockdown of DNMT1 inhibited EZH2-induced downregulation of ABCA1 in macrophages. Conversely, EZH2 overexpression stimulated DNMT1-induced ABCA1 gene promoter methylation and atherosclerosis. EZH2-induced downregulation of ABCA1 gene expression promotes foam cell formation and the development of atherosclerosis by DNA methylation of ABCA1 gene promoter.
Collapse
Affiliation(s)
- Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
- Laboratory of Clinical Anatomy, University of South China, Hengyang, 421001, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410013, China
| | - Ping Zhang
- School of Electronics and Information Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, China
- School of Information Science and Engineering, Central South University, Changsha, Hunan, 410000, China
| | - Wei Wan
- Laboratory of Clinical Anatomy, University of South China, Hengyang, 421001, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Zhong-Cheng Mo
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Jin-Feng Shi
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Jian-Feng Wu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Francisco S. Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Xiang-Yang Tang
- Laboratory of Clinical Anatomy, University of South China, Hengyang, 421001, China
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, WCI Suite C5018, 1701 Uppergate Drive, Atlanta, GA, 30322, United States of America
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
- * E-mail: (CKT); (XPOY)
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
- * E-mail: (CKT); (XPOY)
| |
Collapse
|
17
|
Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Öörni K, Navab M, Fogelman AM, Jauhiainen M, Lee-Rueckert M, Kovanen PT. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2015; 36:274-84. [PMID: 26681753 PMCID: PMC4725095 DOI: 10.1161/atvbaha.115.306827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. APPROACH AND RESULTS Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. CONCLUSIONS The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.
Collapse
Affiliation(s)
- Su Duy Nguyen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Maaninka
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Jani Lappalainen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Nurmi
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Jari Metso
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Öörni
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Mohamad Navab
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Alan M Fogelman
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Petri T Kovanen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.).
| |
Collapse
|
18
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
19
|
Graham A, Allen AM. Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses. World J Cardiol 2015; 7:277-286. [PMID: 26015858 PMCID: PMC4438467 DOI: 10.4330/wjc.v7.i5.277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis. Macrophage generation of oxysterol activators of liver X receptors (LXRs), via sterol 27-hydroxylase, is regulated by the rate of flux of cholesterol to the inner mitochondrial membrane, via a complex of cholesterol trafficking proteins. Oxysterols are key signalling molecules, regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production, key features influencing the impact of these cells within atherosclerotic lesions. The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate, but may include steroidogenic acute regulatory protein and translocator protein. There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters (ABCA1, ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages. Thus, molecules which can sustain or improve mitochondrial structure, the function of the electron transport chain, or increase the activity of components of the protein complex involved in cholesterol transfer, may therefore have utility in limiting or regressing atheroma development, reducing the incidence of coronary heart disease and myocardial infarction.
Collapse
|
20
|
Abstract
Numerous epidemiologic studies revealed that high-density lipoprotein (HDL) is an important risk factor for coronary heart disease. There are several well-documented HDL functions such as reversed cholesterol transport, inhibition of inflammation, or inhibition of platelet activation that may account for the atheroprotective effects of this lipoprotein. Mechanistically, these functions are carried out by a direct interaction of HDL particle or its components with receptors localized on the cell surface followed by generation of intracellular signals. Several HDL-associated receptor ligands such as apolipoprotein A-I (apoA-I) or sphingosine-1-phosphate (S1P) have been identified in addition to HDL holoparticles, which interact with surface receptors such as ATP-binding cassette transporter A1 (ABCA1); S1P receptor types 1, 2, and 3 (S1P1, S1P2, and S1P3); or scavenger receptor type I (SR-BI) and activate intracellular signaling cascades encompassing kinases, phospholipases, trimeric and small G-proteins, and cytoskeletal proteins such as actin or junctional protein such as connexin43. In addition, depletion of plasma cell cholesterol mediated by ABCA1, ATP-binding cassette transporter G1 (ABCG1), or SR-BI was demonstrated to indirectly inhibit signaling over proinflammatory or proliferation-stimulating receptors such as Toll-like or growth factor receptors. The present review summarizes the current knowledge regarding the HDL-induced signal transduction and its relevance to athero- and cardioprotective effects as well as other physiological effects exerted by HDL.
Collapse
|
21
|
Fu H, Tang YY, Ouyang XP, Tang SL, Su H, Li X, Huang LP, He M, Lv YC, He PP, Yao F, Tan YL, Xie W, Zhang M, Wu J, Li Y, Chen K, Liu D, Lan G, Zeng MY, Zheng XL, Tang CK. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun 2014; 452:881-7. [PMID: 25194807 DOI: 10.1016/j.bbrc.2014.08.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to determine whether IL-27 regulates macrophage ABCA1 expression, foam cell formation, and also explore the underlying mechanisms. Here, we revealed that IL-27 decreased lipid accumulation in THP-1 derived macrophages through markedly enhancing cholesterol efflux and increasing ABCA1 expression at both protein and mRNA levels. Our study further demonstrated that IL-27 increased ABCA1 level via activation of signal transducer and activator of transcription 3 (STAT3). Inhibition of Janus kinase 2, (JAK2)/STAT3 suppressed the stimulatory effects of IL-27 on ABCA1 expression. The present study concluded that IL-27 reduces lipid accumulation of foam cell by upregulating ABCA1 expression via JAK2/STAT3. Therefore, targeting IL-27 may offer a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Hui Fu
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Shi-Lin Tang
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Hua Su
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Xiaotao Li
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Li-Ping Huang
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Miao He
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Jianfeng Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Kong Chen
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Meng-Ya Zeng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
22
|
Yin K, Agrawal DK. High-density lipoprotein: a novel target for antirestenosis therapy. Clin Transl Sci 2014; 7:500-11. [PMID: 25043950 DOI: 10.1111/cts.12186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Restenosis is an integral pathological process central to the recurrent vessel narrowing after interventional procedures. Although the mechanisms for restenosis are diverse in different pathological conditions, endothelial dysfunction, inflammation, vascular smooth muscle cell (SMC) proliferation, and myofibroblasts transition have been thought to play crucial role in the development of restenosis. Indeed, there is an inverse relationship between high-density lipoprotein (HDL) levels and risk for coronary heart disease (CHD). However, relatively studies on the direct assessment of HDL effect on restenosis are limited. In addition to involvement in the cholesterol reverse transport, many vascular protective effects of HDL, including protection of endothelium, antiinflammation, antithrombus actions, inhibition of SMC proliferation, and regulation by adventitial effects may contribute to the inhibition of restenosis, though the exact relationships between HDL and restenosis remain to be elucidated. This review summarizes the vascular protective effects of HDL, emphasizing the potential role of HDL in intimal hyperplasia and vascular remodeling, which may provide novel prophylactic and therapeutic strategies for antirestenosis.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
23
|
Abstract
Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
24
|
Hu YW, Hu YR, Zhao JY, Li SF, Ma X, Wu SG, Lu JB, Qiu YR, Sha YH, Wang YC, Gao JJ, Zheng L, Wang Q. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS One 2014; 9:e94997. [PMID: 24733347 PMCID: PMC3986368 DOI: 10.1371/journal.pone.0094997] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
Aims ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to lipid-poor apolipoproteins, which then form nascent HDL, a key step in the mechanism of reverse cholesterol transport (RCT). While a series of microRNAs (miRNAs) have been identified as potent post-transcriptional regulators of lipid metabolism, their effects on ABCA1 function and associated mechanisms remain unclear. Methods and Results ABCA1 was identified as a potential target of miR-144-3p, based on the results of bioinformatic analysis and the luciferase reporter assay, and downregulated after transfection of cells with miR-144-3p mimics, as observed with real-time PCR and western blot. Moreover, miR-144-3p mimics (agomir) enhanced the expression of inflammatory factors, including IL-1β, IL-6 and TNF-α, in vivo and in vitro, inhibited cholesterol efflux in THP-1 macrophage-derived foam cells, decreased HDL-C circulation and impaired RCT in vivo, resulting in accelerated pathological progression of atherosclerosis in apoE−/− mice. Clinical studies additionally revealed a positive correlation of circulating miR-144-3p with serum CK, CK-MB, LDH and AST in subjects with AMI. Conclusions Our findings clearly indicate that miR-144-3p is essential for the regulation of cholesterol homeostasis and inflammatory reactions, supporting its utility as a potential therapeutic target of atherosclerosis and a promising diagnostic biomarker of AMI.
Collapse
Affiliation(s)
- Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ya-Rong Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Yi Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shao-Guo Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Hua Sha
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Chao Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ji-Juan Gao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (QW); (LZ)
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (QW); (LZ)
| |
Collapse
|
25
|
MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 2014; 234:54-64. [PMID: 24608080 DOI: 10.1016/j.atherosclerosis.2014.02.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/19/2014] [Accepted: 02/09/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Macrophage cholesterol homeostasis maintenance is the result of a balance between influx, endogenous synthesis, esterification/hydrolysis and efflux. Excessive accumulation of cholesterol leads to foam cell formation, which is the major pathology of atherosclerosis. Previous studies have shown that miR-27 (miR-27a and miR-27b) may play a key role in the progression of atherosclerosis. OBJECTIVE We set out to investigate the molecular mechanisms of miR-27a/b in intracellular cholesterol homeostasis. METHODS AND RESULTS In the present study, our results have shown that the miR-27 family is highly conserved during evolution, present in mammals and directly targets the 3' UTR of ABCA1, LPL, and ACAT1. apoA1, ABCG1 and SR-B1 lacking miR-27 bind sites should not be influenced by miR-27 directly. miR-27a and miR-27b directly regulated the expression of endogenous ABCA1 in different cells. Treatment with miR-27a and miR-27b mimics reduced apoA1-mediated cholesterol efflux by 33.08% and 44.61% in THP-1 cells, respectively. miR-27a/b also regulated HDL-mediated cholesterol efflux in THP-1 macrophages and affected the expression of apoA1 in HepG2 cells. However, miR-27a/b had no effect on total cellular cholesterol accumulation, but regulated the levels of cellular free cholesterol and cholesterol ester. We further found that miR-27a/b regulated the expression of LPL and CD36, and then affected the ability of THP-1 macrophages to uptake Dil-oxLDL. Finally, we identified that miR-27a/b regulated cholesterol ester formation by targeting ACAT1 in THP-1 macrophages. CONCLUSION These findings indicate that miR-27a/b affects the efflux, influx, esterification and hydrolysis of cellular cholesterol by regulating the expression of ABCA1, apoA1, LPL, CD36 and ACAT1.
Collapse
|
26
|
Tian GP, Tang YY, He PP, Lv YC, Ouyang XP, Zhao GJ, Tang SL, Wu JF, Wang JL, Peng J, Zhang M, Li Y, Cayabyab FS, Zheng XL, Zhang DW, Yin WD, Tang CK. The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice. Biochem Biophys Res Commun 2013; 443:428-34. [PMID: 24309104 DOI: 10.1016/j.bbrc.2013.11.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a lipid disorder disease characterized by chronic blood vessel wall inflammation driven by the subendothelial accumulation of macrophages. Studies have shown that lipoprotein lipase (LPL) participates in lipid metabolism, but it is not yet known whether post-transcriptional regulation of LPL gene expression by microRNAs (miRNAs) occurs in vivo. Here, we tested that miR-467b provides protection against atherosclerosis by regulating the target gene LPL which leads to reductions in LPL expression, lipid accumulation, progression of atherosclerosis and production of inflammatory cytokines in apolipoprotein E knockout (apoE(-/-)) mice. Treatment of apoE(-/-) mice with intra-peritoneal injection of miR-467b agomir led to decreased blood plasma levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1 (MCP-1). Using Western blots and real time PCR, we determined that LPL expression in aorta and abdominal cavity macrophages were significantly down-regulated in the miR-467b agomir group. Furthermore, systemic treatment with miR-467b antagomir accelerated the progression of atherosclerosis in the aorta of apoE(-/-) mice. The present study showed that miR-467b protects apoE(-/-) mice from atherosclerosis by reducing lipid accumulation and inflammatory cytokine secretion via downregulation of LPL expression. Therefore, targeting miR-467b may offer a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Guo-Ping Tian
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China; School of Nursing, University of South China, Hengyang 421001, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Xin-Pin Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Shi-Lin Tang
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jian-Feng Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China; Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Jia-Lin Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Juan Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China
| | - Francisco S Cayabyab
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
27
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
28
|
Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One 2013; 8:e74782. [PMID: 24086374 PMCID: PMC3783495 DOI: 10.1371/journal.pone.0074782] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/06/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. The purpose of this study was to investigate the effects of betulinic acid (BA), a pentacyclic triterpenoid, on ABCA1 expression and cholesterol efflux, and to further determine the underlying mechanism. BA promoted ABCA1 expression and cholesterol efflux, decreased cellular cholesterol and cholesterol ester content in LPS-treated macrophages. Furthermore, we found that BA promoted ABCA1 expression via down-regulation of miR-33s. The inhibition of LPS-induced NF-κB activation further decreased miR-33s expression and enhanced ABCA1 expression and cholesterol efflux when compared with BA only treatment. In addition, BA suppressed IκB phosphorylation, p65 phosphorylation and nuclear translocation, and the transcription of NF-κB-dependent related gene. Moreover, BA reduced atherosclerotic lesion size, miR-33s levels and NF-κB activation, and promoted ABCA1 expression in apoE−/− mice. Taken together, these results reveal a novel mechanism for the BA-mediated ABCA1 expression, which may provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Department of Histology and Embryology, University of South China, Hengyang, Hunan, China
| | - Shi-Lin Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- School of Nursing, University of South China, Hengyang, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Qian Lu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- * E-mail: (KY); (C-KT)
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- * E-mail: (KY); (C-KT)
| |
Collapse
|
29
|
Kaysen GA, Dalrymple LS, Grimes B, Chertow GM, Kornak J, Johansen KL. Changes in serum inflammatory markers are associated with changes in apolipoprotein A1 but not B after the initiation of dialysis. Nephrol Dial Transplant 2013; 29:430-7. [PMID: 24009290 DOI: 10.1093/ndt/gft370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have examined the changes in lipoproteins over time and how inflammation is associated with lipoprotein concentrations among patients with end-stage renal disease on dialysis. One possible explanation for the association of low LDL cholesterol concentration and adverse outcomes is that inflammation reduces selected apolipoprotein concentrations. METHODS Serum samples were collected from a subsample of patients enrolled into the Comprehensive Dialysis Study every 3 months for up to 1 year. We examined the relation between temporal patterns in levels of inflammatory markers and changes in apolipoproteins (apo) A1 and B and the apo B/A1 ratio using linear mixed effects modeling and adjusting for potential confounders. RESULTS We enrolled 266 participants from 56 dialysis facilities. The mean age was 62 years, 45% were women and 26% were black. Apo A1 was lower among patients with higher Quetelet's (body mass) index (BMI), diabetes mellitus and atherosclerosis. Apo B was lower among older patients, patients with higher serum creatinine and patients with lower BMI. Over the course of a year, apo A1 changed inversely with serum concentrations of the acute phase proteins C-reactive protein (CRP) and α1 acid glycoprotein (α1AG), while apo B did not. Changes in α1AG were more strongly associated with changes in apolipoprotein concentrations than were changes in CRP; increases in α1AG were associated with decreases in apo A1 and increases in the apo B/A1 ratio. CONCLUSIONS Changes in inflammatory markers were associated with changes in apo A1, but not apo B over 1 year, suggesting that reductions in high-density lipoprotein cholesterol are associated with inflammation, either of which could mediate cardiovascular risk, but not supporting a hypothesis linking increased risk of low levels of apo B containing lipoproteins to the risk associated with inflammation.
Collapse
Affiliation(s)
- George A Kaysen
- Department of Medicine, University of California Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 2013; 18:8083-94. [PMID: 23839113 PMCID: PMC6270260 DOI: 10.3390/molecules18078083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023] Open
Abstract
Luteolin (Lut) is a common dietary flavonoid present in Chinese herbal medicines that has been reported to have important anti-inflammatory properties. The purposes of this study were to observe the inhibition of lipopolysaccharide (LPS)-induced inflammatory responses in bone marrow macrophages (BMM) by Lut, and to examine whether this inhibition involves p38/MK2/TTP-mediated mRNA stability. Lut suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner according to enzyme-linked immunosorbent assay (ELISA) analysis. Lut also shortened the half-lives of the TNF-α and IL-6 mRNAs according to real-time PCR analysis. Western blots were performed to assess the activation of p38 and MK2 as well as the expression of TTP. The results indicated that Lut inhibited p38 and MK2 phosphorylation while promoting TTP expression. These results suggest that the anti-inflammatory effects of Lut are partially mediated through p38/MK2/TTP-regulated mRNA stability.
Collapse
|
31
|
Yin K, Tang SL, Yu XH, Tu GH, He RF, Li JF, Xie D, Gui QJ, Fu YC, Jiang ZS, Tu J, Tang CK. Apolipoprotein A-I inhibits LPS-induced atherosclerosis in ApoE(-/-) mice possibly via activated STAT3-mediated upregulation of tristetraprolin. Acta Pharmacol Sin 2013; 34:837-46. [PMID: 23564081 DOI: 10.1038/aps.2013.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM To investigate the effects of the major component of high-density lipoprotein apolipoprotein A-I (apoA-I) on the development of atherosclerosis in LPS-challenged ApoE(-/-) mice and the underlying mechanisms. METHODS Male ApoE-KO mice were daily injected with LPS (25 μg, sc) or PBS for 4 weeks. The LPS-challenged mice were intravenously injected with rAAV-apoA-I-GFP or rAAV-GFP. After the animals were killed, blood, livers and aortas were collected for biochemical and histological analyses. For ex vivo experiments, the abdominal cavity macrophages were harvested from each treatment group of mice, and cultured with autologous serum, then treated with LPS. RESULTS Chronic administration of LPS in ApoE(-/-) mice significantly increased the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1), increased infiltration of inflammatory cells, and enhanced the development of atherosclerosis. In LPS-challenged mice injected with rAAV-apoA-I-GFP, viral particles and human apoA-I were detected in the livers, total plasma human apoA-I levels were grammatically increased; HDL-cholesterol level was significantly increased, TG and TC were slightly increased. Furthermore, overexpression of apoA-I significantly suppressed the expression of proinflammatory cytokines, reduced the infiltration of inflammatory cells, and decreased the extent of atherosclerotic lesions. Moreover, overexpression of apoA-I significantly increased the expression of the cytokine mRNA-destabilizing protein tristetraprolin (TTP), and phosphorylation of JAK2 and STAT3 in aortas. In ex vivo mouse macrophages, the serum from mice overexpressing apoA-I significantly increased the expression of TTP, accompanied by accelerated decay of mRNAs of the inflammatory cytokines. CONCLUSION ApoA-I potently suppresses LPS-induced atherosclerosis by inhibiting the inflammatory response possibly via activation of STAT3 and upregulation of TTP.
Collapse
|
32
|
MicroRNA-33 in atherosclerosis etiology and pathophysiology. Atherosclerosis 2013; 227:201-8. [DOI: 10.1016/j.atherosclerosis.2012.11.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022]
|
33
|
Keeney JTR, Swomley AM, Förster S, Harris JL, Sultana R, Butterfield DA. Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration. Proteomics Clin Appl 2013; 7:109-22. [PMID: 23027708 PMCID: PMC3760000 DOI: 10.1002/prca.201200087] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/03/2012] [Indexed: 01/03/2023]
Abstract
Proteomics has a wide range of applications, including determination of differences in the proteome in terms of expression and post-translational protein modifications. Redox proteomics allows the identification of specific targets of protein oxidation in a biological sample. Using proteomic techniques, apolipoprotein A-I (ApoA-I) has been found at decreased levels in subjects with a variety of neurodegenerative disorders including in the serum and cerebrospinal fluid (CSF) of Alzheimer disease (AD), Parkinson disease (PD), and Down syndrome (DS) with gout subjects. ApoA-I plays roles in cholesterol transport and regulation of inflammation. Redox proteomics further showed ApoA-I to be highly oxidatively modified and particularly susceptible to modification by 4-hydroxy-2-trans-nonenal (HNE), a lipid peroxidation product. In the current review, we discuss the consequences of oxidation of ApoA-I in terms of neurodegeneration. ROS-associated chemotherapy related ApoA-I oxidation leads to elevation of peripheral levels of tumor necrosis factor-α (TNF-α) that can cross the blood-brain barrier (BBB) causing a signaling cascade that can contribute to neuronal death, likely a contributor to what patients refer to as "chemobrain." Current evidence suggests ApoA-I to be a promising diagnostic marker as well as a potential target for therapeutic strategies in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeriel T. R. Keeney
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Aaron M. Swomley
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Sarah Förster
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Institute of Animal Sciences, Department of Biochemistry, University of Bonn, 53115 Bonn, Germany
| | - Jessica L. Harris
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
34
|
Jiang H, Stabler SP, Allen RH, Maclean KN. Altered expression of apoA-I, apoA-IV and PON-1 activity in CBS deficient homocystinuria in the presence and absence of treatment: possible implications for cardiovascular outcomes. Mol Genet Metab 2012; 107:55-65. [PMID: 22633282 DOI: 10.1016/j.ymgme.2012.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 04/28/2012] [Indexed: 12/26/2022]
Abstract
Classical homocystinuria (HCU) is caused by mutations in cystathionine beta-synthase (CBS) which, if untreated, typically results in cognitive impairment, thromboembolic complications and connective tissue disturbances. Paraoxonase-1 (PON1) and apolipoprotein apoA-I are both synthesized in the liver and contribute to much of the cardioprotective effects of high density lipoprotein. Additionally, apoA-I exerts significant neuro-protective effects that act to preserve cognition. Previous work in a Cbs null mouse model that incurs significant liver injury, reported that HCU dramatically decreases PON1 expression. Conflicting reports exist in the literature concerning the relative influence of homocysteine and cysteine upon apoA-I expression. We investigated expression of PON1 and apoA-I in the presence and absence of homocysteine lowering therapy, in both the HO mouse model of HCU and human subjects with this disorder. We observed no significant change in plasma PON1 paraoxonase activity in either mice or humans with HCU indicating that this enzyme is unlikely to contribute to the cardiovascular sequelae of HCU. Plasma levels of apoA-I were unchanged in mice with mildly elevated homocysteine due to CBS deficiency but were significantly diminished in both mice and humans with HCU. Subsequent experiments revealed that HCU acts to dramatically decrease apoA-I levels in the brain. Cysteine supplementation in HO mice had no discernible effect on plasma levels of apoA-I while treatment to lower homocysteine normalized plasma levels of this lipoprotein in both HO mice and humans with HCU. Our results indicate that plasma apoA-I levels in HCU are inversely related to homocysteine and are consistent with a plausible role for decreased expression of apoA-I as a contributory factor for both cardiovascular disease and cognitive impairment in HCU.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA
| | | | | | | |
Collapse
|
35
|
Iwaki S, Yamamura S, Asai M, Sobel BE, Fujii S. Posttranscriptional regulation of expression of plasminogen activator inhibitor type-1 by sphingosine 1-phosphate in HepG2 liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1132-41. [PMID: 22819712 DOI: 10.1016/j.bbagrm.2012.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 11/26/2022]
Abstract
Altered expression of plasminogen activator inhibitor type-1 (PAI-1), a major physiologic inhibitor of fibrinolysis, is implicated in the progression of atherosclerosis. Sphingosine 1-phosphate (S1P) regulates expression of diverse genes and alters expression of PAI-1 in several types of cells. However, the nature of posttranscriptional regulation of expression of PAI-1 by S1P has not yet been thoroughly elucidated. The present study was undertaken to determine whether S1P has important effects on the posttranscriptional regulation of PAI-1 expression. To evaluate this possibility, we determined promoter activity, mRNA levels, 3'-untranslated region (UTR) activity, and protein levels of PAI-1 in HepG2 cells. S1P increased PAI-1 promoter activity and the expression of PAI-1 mRNA within 4h of exposure. It decreased the expression of PAI-1 mRNA and the accumulation of PAI-1 protein into the media in 24h. Human PAI-1 mRNA exists in two subspecies (3.2 and 2.2kb). S1P decreased the baseline luciferase activity of the 1kb fragment of the 3' terminus (+2177 to 3176nt) of the 3'-UTR of the 3.2kb PAI-1 mRNA [3'-UTR (+2177-3176)]. S1P decreased expression of PAI-1 protein, presumably by regulating PAI-1 expression at the posttranscriptional level thereby affecting mRNA stability. SERPINE1 mRNA binding protein (SERBP1) and ARE3 in the 3'-UTR were involved in the posttranscriptional regulation by S1P. Our data suggest that S1P can destabilize 3.2kb PAI-1 mRNA through specific effects on the 3'-UTR. These effects appear to involve SERBP1 leading to decreased expression of PAI-1 protein.
Collapse
Affiliation(s)
- Soichiro Iwaki
- Department of Molecular and Cellular Pathobiology and Therapeutics, Nagoya City University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
36
|
Tang Z, Jiang L, Peng J, Ren Z, Wei D, Wu C, Pan L, Jiang Z, Liu L. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-κB activation in THP-1-derived macrophages. Int J Mol Med 2012; 30:931-8. [PMID: 22825241 DOI: 10.3892/ijmm.2012.1072] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 01/17/2023] Open
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9), a member of the protein-converting enzyme family, is highly expressed in adult hepatocytes and small intestinal enterocytes. To our knowledge, in this study, we demonstrate for the first time that PCSK9 is upregulated in a dose-dependent manner via oxidized low-density lipoprotein (oxLDL) stimulation in THP-1-derived macrophages. PCSK9 small interfering RNA (siRNA) suppresses the oxLDL-induced inflammatory cytokine expression in THP-1-derived macrophages. The exposure of macrophages to oxLDL markedly increased the expression of NF-κB protein in the nucleus. However, this effect was significantly attenuated by PCSK9 siRNA. These findings indicate that PCSK9 expression is induced by oxLDL, and that PCSK9 siRNA protects against inflammation via the inhibition of NF-κB activation in oxLDL-stimulated THP-1-derived macrophages. Our results suggest that PCSK9 may be used as a therapeutic target for the treatment of atherosclerosis since PCSK9 siRNA suppresses oxLDL-induced IκB-α degradation and NF-κB nuclear translocation into THP-1-derived macrophages.
Collapse
Affiliation(s)
- Zhihan Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
High-density lipoprotein (HDL) levels are inversely associated with coronary heart disease due to HDL's ability to transport excess cholesterol in arterial macrophages to the liver for excretion [i.e., reverse cholesterol transport (RCT)]. However, recent advances highlight additional atheroprotective roles for HDL beyond bulk cholesterol removal from cells through RCT. By promoting cellular free cholesterol (FC) efflux, HDL and its apolipoproteins (apoA-I and apoE) decrease plasma membrane FC and lipid raft content in immune and hematopoietic stem cells, decreasing inflammatory and cell proliferation signaling pathways. HDL and apoA-I also dampen inflammatory signaling pathways independent of cellular FC efflux. In addition, HDL lipid and protein cargo provide protection against parasitic and bacterial infection, endothelial damage, and oxidant toxicity. Here, current knowledge is reviewed regarding the role of HDL and its apolipoproteins in regulating cellular cholesterol homeostasis, highlighting recent advances on novel functions and mechanisms by which HDLs regulate inflammation and hematopoiesis.
Collapse
Affiliation(s)
- Xuewei Zhu
- Department of Pathology-Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
38
|
Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab 2012; 23:169-78. [PMID: 22406271 PMCID: PMC3338129 DOI: 10.1016/j.tem.2012.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
Abstract
Although lipid metabolism and host defense are widely considered to be very divergent disciplines, compelling evidence suggests that host cell handling of self- and microbe-derived (e.g. lipopolysaccharide, LPS) lipids may have common evolutionary roots, and that they indeed may be inseparable processes. The innate immune response and the homeostatic network controlling cellular sterol levels are now known to regulate each other reciprocally, with important implications for several common diseases, including atherosclerosis. In the present review we discuss recent discoveries that provide new insight into the bidirectional crosstalk between reverse cholesterol transport and innate immunity, and highlight the broader implications of these findings for the development of therapeutics.
Collapse
Affiliation(s)
- Kathleen M Azzam
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
39
|
Zhao GJ, Yin K, Fu YC, Tang CK. The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Mol Med 2012; 18:149-58. [PMID: 22064972 DOI: 10.2119/molmed.2011.00183] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/01/2011] [Indexed: 12/17/2022] Open
Abstract
Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca²⁺, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.
Collapse
Affiliation(s)
- Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | | | |
Collapse
|
40
|
Yu X, Li X, Zhao G, Xiao J, Mo Z, Yin K, Jiang Z, Fu Y, Zha X, Tang C. OxLDL up-regulates Niemann-Pick type C1 expression through ERK1/2/COX-2/PPARα-signaling pathway in macrophages. Acta Biochim Biophys Sin (Shanghai) 2012; 44:119-28. [PMID: 22232299 DOI: 10.1093/abbs/gmr119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Niemann-Pick type C1 (NPC1) is located mainly in the membranes of the late endosome/lysosome and controls the intracellular cholesterol trafficking from the late endosome/lysosome to the plasma membrane. It has been reported that oxidized low-density lipoprotein (oxLDL) can up-regulate NPC1 expression. However, the detailed mechanisms are not fully understood. In this study, we investigated the effect of oxLDL stimulation on NPC1 expression in THP-1 macrophages. Our results showed that oxLDL up-regulated NPC1 expression at both mRNA and protein levels in a dose-dependent and time-dependent manner. In addition, oxLDL also induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Treatment with oxLDL significantly increased cyclooxygenase-2 (COX-2) mRNA and protein expression in the macrophages, and these increases were suppressed by the ERK1/2 inhibitor PD98059 or ERK1/2 small interfering RNA (siRNA) treatment. OxLDL up-regulated the expression of peroxisome proliferator-activated receptor α (PPARα) at the mRNA and protein levels, which could be abolished by COX-2 siRNA or COX-2 inhibitor NS398 treatment in these macrophages. OxLDL dramatically elevated cellular cholesterol efflux, which was abrogated by inhibiting ERK1/2 and/or COX-2. In addition, oxLDL-induced NPC1 expression and cellular cholesterol efflux were reversed by PPARα siRNA or GW6471, an antagonist of PPARα. Taken together, these results provide the evidence that oxLDL can up-regulate the expression of the NPC1 through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.
Collapse
Affiliation(s)
- Xiaohua Yu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis 2012; 222:314-23. [PMID: 22307089 DOI: 10.1016/j.atherosclerosis.2012.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/19/2022]
Abstract
Atherosclerosis (As) is now widely appreciated to represent a chronic inflammatory reaction of the vascular wall in response to dyslipidemia and endothelial distress involving the inflammatory recruitment of leukocytes and the activation of resident vascular cells. MicroRNAs (miRNAs) are a group of endogenous, small (~22 nucleotides in length) non-coding RNA molecules, which function specifically by base pairing with mRNA of genes, thereby induce translation repressions of the genes within metazoan cells. Recently, the function of miR-27, one of the miRNAs, in the initiation and progression of atherosclerosis has been identified. In vivo and in vitro studies suggest that miR-27 may serve as a diagnostic and prognostic marker for atherosclerosis. More recently, studies have identified important roles for miR-27 in angiogenesis, adipogenesis, inflammation, lipid metabolism, oxidative stress, insulin resistance and type 2 diabetes, etc. In this review, we focus on the role of miR-27 in the development of vulnerable atherosclerotic plaques, potential as a disease biomarker and novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wu-Jun Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | | | | | | | | |
Collapse
|
42
|
Inflammation, lipid metabolism dysfunction, and hypertension: Active research fields in atherosclerosis-related cardiovascular disease in China. SCIENCE CHINA-LIFE SCIENCES 2011; 54:976-9. [DOI: 10.1007/s11427-011-4225-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 09/07/2011] [Indexed: 11/25/2022]
|
43
|
Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type). Atherosclerosis 2011; 220:72-7. [PMID: 22030095 DOI: 10.1016/j.atherosclerosis.2011.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects of HDL(Milano) and HDL(wild-type), on regression and stabilization of atherosclerosis. METHODS Atherosclerotic New Zealand White rabbits received 2 infusions, 4 days apart, of HDL(Milano) (75mg/kg of apoA-I(Milano)), HDL(wild-type) (75mg/kg apoA-I(wild-type)) or placebo. Pre- and post-treatment plaque volume was assessed by MRI. Markers of plaque vulnerability and inflammation were evaluated. Liver and aortic cholesterol content, aortic ABCA-1 and liver SR-BI were quantified. The effect of apoA-I Milano and wild-type proteins on MCP-1 and COX-2 expression by macrophages was evaluated in vitro. RESULTS Both forms of HDL induced aortic plaque regression (-4.1% and -2.6% vs. pre-treatment in HDL(Milano) and HDL(wild-type) respectively, p<0.001 and p=0.009). A similar reduction in cholesterol content of aorta and liver was observed with both treatments vs. placebo. The expression of aortic ABCA-1 and hepatic SR-BI was significantly higher in both treated groups vs. placebo. A significantly reduced plaque macrophage density was observed in the HDL(Milano) vs. both HDL(wild-type) and placebo groups. Plaque levels of COX-2, MCP-1, Caspase-3 antigen and MMP-2 activity were significantly reduced in the HDL(Milano) vs. both HDL(wild-type) and placebo groups. In vitro studies showed that apoA-I(Milano) protein significantly reduced expression of COX-2 and MCP-1 in oxLDL loaded macrophages vs. apoA-I(wild-type). CONCLUSIONS Despite a similar effect on acute plaque regression, the infusion of HDL(Milano) exerts superior anti-inflammatory and plaque stabilizing effects than HDL(wild-type) in the short term.
Collapse
|
44
|
Liu Y, Tang C. Regulation of ABCA1 functions by signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:522-9. [PMID: 21920460 DOI: 10.1016/j.bbalip.2011.08.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/02/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell membrane protein that protects cardiovascular disease by at least two mechanisms: by export of excess cholesterol from cells and by suppression of inflammation. ABCA1 exports cholesterol and phospholipids from cells by multiple steps that involve forming cell surface lipid domains, binding of apolipoproteins to ABCA1, activating signaling pathways, and solubilizing these lipids by apolipoproteins. ABCA1 executes its anti-inflammatory effect by modifying cell membrane lipid rafts and directly activating signaling pathways. The interaction of apolipoproteins with ABCA1 activates multiple signaling pathways, including Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), protein kinase A, Rho family G protein CDC42 and protein kinase C. Activating protein kinase A and Rho family G protein CDC42 regulates ABCA1-mediated lipid efflux, activating PKC stabilizes ABCA1 protein, and activating JAK2/STAT3 regulates both ABCA1-mediated lipid efflux and anti-inflammation. Thus, ABCA1 behaves both as a lipid exporter and a signaling receptor. Targeting ABCA1 receptor-like property using agonists for ABCA1 protein could become a promising new therapeutic target for increasing ABCA1 function and treating cardiovascular disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Yuhua Liu
- Deparment of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA 98195-8055, USA
| | | |
Collapse
|
45
|
Murphy AJ, Westerterp M, Yvan-Charvet L, Tall AR. Anti-atherogenic mechanisms of high density lipoprotein: effects on myeloid cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:513-21. [PMID: 21864714 DOI: 10.1016/j.bbalip.2011.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 08/09/2011] [Indexed: 02/08/2023]
Abstract
In some settings increasing high density lipoprotein (HDL) levels has been associated with a reduction in experimental atherosclerosis. This has been most clearly seen in apolipoprotein A-I (apoA-I) transgenic mice or in animals infused with HDL or its apolipoproteins. A major mechanism by which these treatments are thought to delay progression or cause regression of atherosclerosis is by promoting efflux of cholesterol from macrophage foam cells. In addition, HDL has been described as having anti-inflammatory and other beneficial effects. Some recent research has linked anti-inflammatory effects to cholesterol efflux pathways but likely multiple mechanisms are involved. Macrophage cholesterol efflux may have a role in facilitating emigration of macrophages from lesions during regression. While macrophages can mediate cholesterol efflux by several pathways, studies in knockout mice or cells point to the importance of active efflux mediated by ATP binding cassette transporter (ABC) A1 and G1. In addition to traditional roles in macrophages, these transporters have been implicated in the control of hematopoietic stem cell proliferation, monocytosis and neutrophilia, as well as activation of monocytes and neutrophils. Thus, HDL and cholesterol efflux pathways may have important anti-atherogenic effects at all stages of the myeloid cell/monocyte/dendritic cell/macrophage lifecycle. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Andrew J Murphy
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
46
|
Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman MJ, Huby T, Guerin M, Le Goff W. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J Biol Chem 2011; 286:30926-30936. [PMID: 21757719 DOI: 10.1074/jbc.m111.264325] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cholesterol-laden monocyte-derived macrophages are phagocytic cells characteristic of early and advanced atherosclerotic lesions. Interleukin-6 (IL-6) is a macrophage secretory product that is abundantly expressed in atherosclerotic plaques but whose precise role in atherogenesis is unclear. The capacity of macrophages to clear apoptotic cells, through the efferocytosis mechanism, as well as to reduce cellular cholesterol accumulation contributes to prevent plaque progression and instability. By virtue of its capacity to promote cellular cholesterol efflux from phagocyte-macrophages, ABCA1 was reported to reduce atherosclerosis. We demonstrated that lipid loading in human macrophages was accompanied by a strong increase of IL-6 secretion. Interestingly, IL-6 markedly induced ABCA1 expression and enhanced ABCA1-mediated cholesterol efflux from human macrophages to apoAI. Stimulation of ABCA1-mediated cholesterol efflux by IL-6 was, however, abolished by selective inhibition of the Jak-2/Stat3 signaling pathway. In addition, we observed that the expression of molecules described to promote efferocytosis, i.e. c-mer proto-oncogene-tyrosine kinase, thrombospondin-1, and transglutaminase 2, was significantly induced in human macrophages upon treatment with IL-6. Consistent with these findings, IL-6 enhanced the capacity of human macrophages to phagocytose apoptotic cells; moreover, we observed that IL-6 stimulates the ABCA1-mediated efflux of cholesterol derived from the ingestion of free cholesterol-loaded apoptotic macrophages. Finally, the treatment of human macrophages with IL-6 led to the establishment of an anti-inflammatory cytokine profile, characterized by an increased secretion of IL-4 and IL-10 together with a decrease of that of IL-1β. Taken together, our results indicate that IL-6 favors the elimination of excess cholesterol in human macrophages and phagocytes by stimulation of ABCA1-mediated cellular free cholesterol efflux and attenuates the macrophage proinflammatory phenotype. Thus, high amounts of IL-6 secreted by lipid laden human macrophages may constitute a protective response from macrophages to prevent accumulation of cytotoxic-free cholesterol. Such a cellular recycling of free cholesterol may contribute to reduce both foam cell formation and the accumulation of apoptotic bodies as well as intraplaque inflammation in atherosclerotic lesions.
Collapse
Affiliation(s)
- Eric Frisdal
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - Philippe Lesnik
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - Maryline Olivier
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - Paul Robillard
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - M John Chapman
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - Thierry Huby
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - Maryse Guerin
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France
| | - Wilfried Le Goff
- INSERM, UMR_S939, Dyslipidemia, Inflammation, and Atherosclerosis in Metabolic Diseases, and the ICAN Institute of CardioMetabolism and Nutrition F-75013 and the Université Pierre et Marie Curie Paris 06, UMR_S939, F-75005, Paris, France.
| |
Collapse
|