1
|
Valladares-Ayerbes M, Toledano-Fonseca M, Graña B, Jimenez-Fonseca P, Pulido-Cortijo G, Gil S, Sastre J, Salud A, Rivera F, Salgado M, García-Alfonso P, López López R, Guillén-Ponce C, Rodríguez-Ariza A, Vieitez JM, Díaz-Rubio E, Aranda E. Associations of blood RNA biomarkers and circulating tumour cells in patients with previously untreated metastatic colorectal cancer. BMC Cancer 2025; 25:743. [PMID: 40259317 PMCID: PMC12013160 DOI: 10.1186/s12885-025-14098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND In patients with metastatic colorectal cancer, analysis of the number of basal circulating tumour cells (bCTCs) has been shown to be a strong prognostic indicator. In this study, we aim to explore the potential associations between whole blood mRNA and microRNA expression profiles and bCTC counts, tumour mutations and prognosis in untreated metastatic colorectal cancer patients. METHODS A total of 151 patients previously screened for inclusion in two clinical trials (VISNÚ1 and VISNÚ2) were enrolled in this study. Real-time quantitative PCR (qPCR) analyses were performed to determine the whole blood expression of selected RNAs (mRNAs and microRNAs) involved in the metastatic process. The CellSearch system was used to enumerate circulating tumour cells. The primary objective was to correlate RNA expression with the number of bCTCs, while the secondary objectives were to investigate the relationship between the levels of circulating RNA biomarkers in whole blood and the clinical, pathological, and molecular characteristics and prognosis of patients with metastatic colorectal cancer. RESULTS bCTC count was significantly associated with AGR2 mRNA in the entire cohort of 151 patients. AGR2, ADAR1 and LGR5 were associated with the number of bCTC, both in the subgroup with bCTC ≥ 3 and in the subgroup with native RAS/BRAF/PIK3 CA tumours. In patients with RAS/BRAF/PIK3 CA mutations no correlations with bCTC were detected, but an upregulation of miR-224-5p and the stemness marker LGR5 and a downregulation of immune regulatory CD274 were found. Lower levels of miR-106a-5p/miR-26a-5p were associated with shorter overall survival, with independent statistical significance in the multivariate analysis. CONCLUSIONS A correlation was identified between the levels of a subset of whole blood RNAs, including AGR2, ADAR1, and LGR5, and the number of bCTC and RAS/BRAF/PIK3 CA mutational status. Furthermore, another set of whole blood RNAs, specifically miR-106a-5p and miR-26a-5p, was found to be associated with poor prognosis. This may be helpful for risk stratification. TRIAL REGISTRATION Clinical Trials Gov. NCT01640405 and NCT01640444. Registered on 13 June 2012. https://clinicaltrials.gov/ .
Collapse
Affiliation(s)
- Manuel Valladares-Ayerbes
- Department of Medical Oncology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina (IBIS), Seville, Spain.
| | - Marta Toledano-Fonseca
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Begoña Graña
- Department of Medical Oncology, Instituto de Investigación Biomédica (INIBIC), Hospital Universitario de A Coruña, A Coruña, Spain
| | - Paula Jimenez-Fonseca
- Department of Medical Oncology, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Gema Pulido-Cortijo
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Silvia Gil
- Department of Medical Oncology, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Javier Sastre
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación (IdISSC), Universidad Complutense, Madrid, Spain
| | - Antonieta Salud
- Department of Medical Oncology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | - Fernando Rivera
- Department of Medical Oncology, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Mercedes Salgado
- Department of Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Pilar García-Alfonso
- Department of Medical Oncology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, Madrid, Spain
| | - Rafael López López
- Department of Medical Oncology and Translational Medical Oncology Group, Hospital Clínico Universitario, Instituto de Investigación Sanitaria de Santiago (IDIS), CIBERONC, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Guillén-Ponce
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Antonio Rodríguez-Ariza
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jose Mª Vieitez
- Department of Medical Oncology, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Eduardo Díaz-Rubio
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación (IdISSC), Universidad Complutense, Madrid, Spain
| | - Enrique Aranda
- Department of Medical Oncology, IMIBIC, Universidad de Córdoba, CIBERONC, Instituto de Salud Carlos III, Hospital Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
2
|
Chen P, Sun C, Wang H, Zhao W, Wu Y, Guo H, Zhou C, He Y. YAP1 expression is associated with survival and immunosuppression in small cell lung cancer. Cell Death Dis 2023; 14:636. [PMID: 37752152 PMCID: PMC10522695 DOI: 10.1038/s41419-023-06053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023]
Abstract
Immunotherapy is considered a major breakthrough in the treatment of small cell lung cancer (SCLC), although its anti-tumor efficacy is limited. With a high degree of malignancy and high heterogeneity, SCLC is difficult to treat in the clinic. A new combination strategy is urgently needed to further improve the efficacy of immunotherapy in patients with SCLC. By immunofluorescence, 100 SCLC patients in a local cohort were classified into the SCLC-A (high ASCL1 expression; n = 36), SCLC-N (high NEUROD1 expression; n = 32), SCLC-P (high POU2F3 expression; n = 14), and SCLC-Y (high YAP1 expression; n = 18) subtypes. Each SCLC molecular subtype represented different prognoses, tumor microenvironment traits, and immunotherapy sensitivities. Analysis of both the local and public cohorts suggested that the SCLC-Y subtype exhibited the worst clinical outcome (p < 0.05) when compared with other subtypes. SCLC with high YAP1 expression was characterized by high PD-L1 expression, high stromal score, T-cell functional impairment, and a close relationship with immune-related pathways. YAP1 upregulated PD-L1 expression and suppressed T cell activation, thus leading to immune evasion. In in vitro experiments, blockade of YAP1 promoted cancer cell apoptosis, immune cell proliferation, T-cell activation, and cytotoxic T-cell infiltration, thus further potentiating the efficacy of immunotherapy in patients with the SCLC-Y subtype.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Chenglong Sun
- Radiotherapy Department, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Yan Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Mui CW, Chan WN, Chen B, Cheung AHK, Yu J, Lo KW, Ke H, Kang W, To KF. Targeting YAP1/TAZ in nonsmall-cell lung carcinoma: From molecular mechanisms to precision medicine. Int J Cancer 2023; 152:558-571. [PMID: 35983734 DOI: 10.1002/ijc.34249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Accumulating evidence has underscored the importance of the Hippo-YAP1 signaling in lung tissue homeostasis, whereas its deregulation induces tumorigenesis. YAP1 and its paralog TAZ are the key downstream effectors tightly controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In solid tumors, Hippo-YAP1 crosstalks with other signaling pathways such as Wnt/β-catenin, receptor tyrosine kinase cascade, Notch and TGF-β to synergistically drive tumorigenesis. As YAP1/TAZ expression is significantly correlated with unfavorable outcomes for the patients, small molecules have been developed for targeting YAP1/TAZ to get a therapeutic effect. In this review, we summarize the recent findings on the deregulation of Hippo-YAP1 pathway in nonsmall cell lung carcinoma, discuss the molecular mechanisms of its dysregulation in leading to tumorigenesis, explore the therapeutic strategies for targeting YAP1/TAZ, and provide the research directions for deep investigation. We believe that detailed delineation of Hippo-YAP1 regulation in tumorigenesis provides novel insight for accurate therapeutic intervention.
Collapse
Affiliation(s)
- Chun Wai Mui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Huixing Ke
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
4
|
Lin CH, Chuang HN, Hsiao TH, Kumar VB, Hsu CH, Huang CY, Lee LW, Mao CL, Ko JL, Hsu CP. AGR2 expression as a predictive biomarker for therapy response in esophageal squamous cell carcinoma. PLoS One 2022; 17:e0276990. [PMID: 36327302 PMCID: PMC9632826 DOI: 10.1371/journal.pone.0276990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Despite multidisciplinary therapy, the prognosis is poor for esophageal squamous cell carcinoma (ESCC). In the locally advanced stage, neoadjuvant chemoradiotherapy (nCRT) followed by surgery could provide survival benefits to some patients. Here, we aimed to identify for tumor therapy response a biomarker based on RNA sequencing. We collected endoscopic biopsies of 32 ESCC patients, who were divided according to nCRT response, into two groups: the complete response group (n = 13) and the non-complete response group (n = 19). RNA-sequencing data showed that 464 genes were differentially expressed. Increased in non-complete response group, 4 genes increased expressions were AGR2 (anterior gradient 2), GADD45B (growth arrest and DNA damage inducible beta), PPP1R15A (protein phosphatase 1 regulatory subunit 15A) and LRG1 (leucine rich alpha-2-glycoprotein 1). The areas under the curve (AUC) of the AGR2 gene was 0.671 according to read counts of RNA-seq and therapy response of nCRT. In vitro study showed that apoptosis cell was significantly increased in the AGR2-knockdown TE-2 cell line treated with cisplatin and 5-Fluorouracil (5-FU), when compared with si-control. Results suggest that in ESCC, the AGR2 gene is a promising and predictive gene marker for the response to anti-tumor therapy.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chiung-Hung Hsu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Li-Wen Lee
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Chien-Lin Mao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (JLK); (CPH)
| | - Chung-Ping Hsu
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- * E-mail: (JLK); (CPH)
| |
Collapse
|
5
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France.
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
6
|
Li T, Liu H, Dong C, Lyu J. Application of miRNA Biomarkers in Predicting Overall Survival Outcomes for Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5249576. [PMID: 36147635 PMCID: PMC9485713 DOI: 10.1155/2022/5249576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND With the development of research, the importance of microRNAs (miRNAs) in the occurrence, metastasis, and prognosis of lung adenocarcinoma (LUAD) has attracted extensive attention. This study is aimed at predicting overall survival (OS) results through bioinformatics to identify novel miRNA biomarkers and hub genes. MATERIALS AND METHODS The data of LUAD-related miRNA and mRNA samples was downloaded from The Cancer Genome Atlas (TCGA) database. Upon screening and pretreatment of initial data, TCGA data were analyzed using R platform and a series of analytical tools to identify biomarkers with high specificity and sensitivity. RESULTS 7 miRNAs and 13 hub genes that had strong relation to the overall surviving status were identified in patients with LUAD. The expression of seven miRNAs (hsa-miR-19a-3p, hsa-miR-126-5p, hsa-miR-556-3p, hsa-miR-671-5p, hsa-miR-937-3p, hsa-miR-4664-3p, and hsa-miR-4746-5p) could apparently improve the OS rate of patient with LUAD. The 13 hub genes, namely, CCT6A, CDK5R1, CEP55, DNAJB4, EGLN3, HDGF, HOXC8, LIMD1, MKI67, PCP4L1, PPIL1, SCAI, and STK32A, showed a correlation with the OS status. CONCLUSION 7 miRNAs were identified as novel biomarkers for the prognosis of patients with LUAD. This study offered a deeper comprehension of LUAD treatment and prognosis from the molecular level and helped enhance the understanding of the pathogenesis and potential molecular events of LUAD.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacy, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Huanqing Liu
- Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunsheng Dong
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jun Lyu
- Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Bu J, Gu L, Liu X, Nan X, Zhang X, Meng L, Zheng Y, Liu F, Li J, Li Z, Sang M, Shan B. The circRNA circADAMTS6 promotes progression of ESCC and correlates with prognosis. Sci Rep 2022; 12:13757. [PMID: 35962061 PMCID: PMC9374704 DOI: 10.1038/s41598-022-17450-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of noncoding RNA, which play a vital role in the occurrence and development of esophageal squamous cell carcinoma (ESCC). While the role of novel circADAMTS6 in ESCC remains unknown. We assessed circADAMTS6 expression in ESCC tissues and cells, and the relationship between circADAMTS6 expression and overall survival of ESCC patients. Functional experiments in vitro and xenograft in vivo assay were applied to explore the functions and mechanisms of circADAMTS6 in ESCC. Results found that up-regulation of circADAMTS6 was associated with poor overall survival and may acted as an independent risk factor for ESCC prognosis. Knockdown of circADAMTS6 significantly inhibited the proliferation, migration and invasion of ESCC cells and growth of xenograft tumors in vivo. Induced AGR2 expression was able to rescue the loss of function induced by si-circADAMTS6 in KYSE150 cell. CircADAMTS6 may acts as oncogene by activating AGR2 and the Hippo signaling pathway coactivator YAP in ESCC.
Collapse
Affiliation(s)
- Jing Bu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Lina Gu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xin Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xixi Nan
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiangmei Zhang
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Lingjiao Meng
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yang Zheng
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Fei Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jiali Li
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ziyi Li
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Meixiang Sang
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China. .,Tumor Research Institute, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, Hebei, People's Republic of China.
| | - Baoen Shan
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China. .,Tumor Research Institute, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Zhang H, Li J, Tian F, Su X, Wang X, Tang D, Zhang L, Zhang T, Ni Y. QKI-6 Suppresses Cell Proliferation, Migration, and EMT in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:897553. [PMID: 35600368 PMCID: PMC9117621 DOI: 10.3389/fonc.2022.897553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein quaking homolog 6 (QKI-6) is a tumor-suppressor gene in several cancers. However, its role in non-small cell lung cancer (NSCLC) is unclear. In this study, we aimed to determine the association between QKI-6 expression and survival and clinicopathological features in patients with NSCLC and identify the related mechanisms. Western blot and immunohistochemistry (IHC) were used to detect QKI-6 expression in NSCLC. The effect of QKI-6 on NSCLC cells was determined by overexpression and knockdown assays, and label-free quantitative proteomics and Western blot were used to identify the underlying mechanisms. Low QKI-6 expression level was positively correlated with poor overall survival in patients with NSCLC. Furthermore, QKI-6 overexpression inhibited NSCLC cell proliferation and migration and induced a block in the G0/G1 phase, and QKI-6 downregulation increased proliferation and migration. QKI-6 inhibited EMT processes via EGFR/SRC/STAT3 signaling by upregulating AGR2. In conclusion, QKI-6 could be used to develop novel strategies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xuan Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinxin Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Di Tang
- Seventh Battalion, Second Cadet Regiment, Fourth Military Medical University, Xi’an, China
| | - Lei Zhang
- Department of Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
9
|
Maarouf A, Boissard A, Henry C, Leman G, Coqueret O, Guette C, Lelièvre E. Anterior gradient protein 2 is a marker of tumor aggressiveness in breast cancer and favors chemotherapy‑induced senescence escape. Int J Oncol 2021; 60:5. [PMID: 34913074 PMCID: PMC8727137 DOI: 10.3892/ijo.2021.5295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/09/2021] [Indexed: 11/05/2022] Open
Abstract
Among the different chemotherapies available, genotoxic drugs are widely used. In response to these drugs, particularly doxorubicin, tumor cells can enter into senescence. Chemotherapy‑induced senescence (CIS) is a complex response. Long described as a definitive arrest of cell proliferation, the present authors and various groups have shown that this state may not be complete and could allow certain cells to reproliferate. The mechanism could be due to the activation of new signaling pathways. In the laboratory, the proteins involved in these pathways and triggering cell proliferation were studied. The present study determined a new role for anterior gradient protein 2 (AGR2) in vivo in patients and in vitro in a senescence escape model. AGR2's implication in breast cancer patients and proliferation of senescent cells was assessed based on a SWATH‑MS proteomic study of patients' samples and RNA interference technology on cell lines. First, AGR2 was identified and it was found that its concentration is higher in the serum of patients with breast cancer and that this high concentration is associated with metastasis occurrence. An inverse correlation between intratumoral AGR2 expression and the senescence marker p16 was also observed. This observation led to the study of the role of AGR2 in the CIS escape model. In this model, it was found that AGR2 is overexpressed in cells during senescence escape and that its loss considerably reduces this phenomenon. Furthermore, it was shown that the extracellular form of AGR2 stimulated the reproliferation of senescent cells. The power of proteomic analysis based on the SWATH‑MS approach allowed the present study to highlight the mammalian target of rapamycin (mTOR)/AKT signaling pathway in the senescence escape mechanism mediated by AGR2. Analysis of the two signaling pathways revealed that AGR2 modulated RICTOR and AKT phosphorylation. All these results showed that AGR2 expression in sera and tumors of breast cancer patients is a marker of tumor progression and metastasis occurrence. They also showed that its overexpression regulates CIS escape via activation of the mTOR/AKT signaling pathway.
Collapse
Affiliation(s)
- Amine Maarouf
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Cécile Henry
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Géraldine Leman
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Eric Lelièvre
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| |
Collapse
|
10
|
Jach D, Cheng Y, Prica F, Dumartin L, Crnogorac-Jurcevic T. From development to cancer - an ever-increasing role of AGR2. Am J Cancer Res 2021; 11:5249-5262. [PMID: 34873459 PMCID: PMC8640830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Anterior gradient 2, AGR2, is a small, 20 kDa protein that plays a vital role in oxidative protein folding in the endoplasmic reticulum. AGR2 is involved in several signal transduction pathways that are essential for cell survival. It was initially discovered in the African clawed frog, Xenopus laevis, where it plays an important function in embryonic development. Akin to several other developmental genes, it is also frequently deregulated in cancer, where it plays a decisive role in tumor initiation, progression and metastasis. In this review, we have summarized currently known AGR2 functions, its expression and function in embryonic and cancer development, as well as its potential as a candidate tumor biomarker and promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Daria Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| | - Yuzhu Cheng
- Institute of Human Genetics, International Centre for Life, Newcastle UniversityNewcastle Upon Tyne, UK
| | - Filip Prica
- Medical Clinic and Polyclinic I, Basic and Translational Research, Department of Cardiology Basic and Translational ResearchMunich, Germany
| | - Laurent Dumartin
- Advanced Accelerator Applications, Novartis CompanyBoulogne-Billancourt, France
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| |
Collapse
|
11
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Carbonell M B, Zapata Cardona J, Delgado JP. Hydrogen peroxide is necessary during tail regeneration in juvenile axolotl. Dev Dyn 2021; 251:1054-1076. [PMID: 34129260 DOI: 10.1002/dvdy.386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) is a key reactive oxygen species (ROS) generated during appendage regeneration among vertebrates. However, its role during tail regeneration in axolotl as redox signaling molecule is unclear. RESULTS Treatment with exogenous H2 O2 rescues inhibitory effects of apocynin-induced growth suppression in tail blastema cells leading to cell proliferation. H2 O2 also promotes recruitment of immune cells, regulate the activation of AKT kinase and Agr2 expression during blastema formation. Additionally, ROS/H2 O2 regulates the expression and transcriptional activity of Yap1 and its target genes Ctgf and Areg. CONCLUSIONS These results show that H2 O2 is necessary and sufficient to promote tail regeneration in axolotls. Additionally, Akt signaling and Agr2 were identified as ROS targets, suggesting that ROS/H2 O2 is likely to regulate epimorphic regeneration through these signaling pathways. In addition, ROS/H2 O2 -dependent-Yap1 activity is required during tail regeneration.
Collapse
Affiliation(s)
- Belfran Carbonell M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quirón, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| |
Collapse
|
13
|
Fessart D, de Barbeyrac C, Boutin I, Grenier T, Richard E, Begueret H, Bernard D, Chevet E, Robert J, Delom F. Extracellular AGR2 triggers lung tumour cell proliferation through repression of p21 CIP1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118920. [PMID: 33278424 DOI: 10.1016/j.bbamcr.2020.118920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023]
Abstract
The human Anterior GRadient 2 (AGR2) protein is an Endoplasmic Reticulum (ER)-resident protein which belongs to the Protein-Disulfide Isomerase (PDI) superfamily and is involved to productive protein folding in the ER. As such AGR2, often found overexpressed in adenocarcinomas, contributes to tumour development by enhancing ER proteostasis. We previously demonstrated that AGR2 is secreted (extracellular AGR2 (eAGR2)) in the tumour microenvironment and plays extracellular roles independent of its ER functions. Herein, we show that eAGR2 triggers cell proliferation and characterize the underlying molecular mechanisms. We demonstrate that eAGR2 enhances tumour cell growth by repressing the tumour suppressor p21CIP1. Our findings shed light on a novel mechanism through which eAGR2 behaves as a growth factor in the tumour microenvironment, independently of its ER function, thus promoting tumour cell growth through repression of p21CIP1. Our results provide a rationale for targeting eAGR2/p21CIP1-based signalling as a potential therapeutic target to impede tumour growth.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France; INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Univ. Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Claire de Barbeyrac
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Ines Boutin
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Thomas Grenier
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Elodie Richard
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Hughes Begueret
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France; Dept of Pathology, University Hospital of Bordeaux, Hopital Haut-Lévêque, Pessac, France
| | - David Bernard
- Inserm U1052, CNRS UMR 5286, Université de Lyon & Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Eric Chevet
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Univ. Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jacques Robert
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Frederic Delom
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France.
| |
Collapse
|
14
|
Hao L, Li H, Zhang S, Yang Y, Xu Z, Zhang Y, Liu Z. Integrative Exome Sequencing Analysis in Castration-Resistant Prostate Cancer in Chinese Population. Curr Pharm Biotechnol 2020; 21:140-148. [PMID: 31580249 DOI: 10.2174/1389201019666191003142119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Castration-resistant Prostate Cancer (CRPC) is a fatal disease with rapid growth. The malignancy usually presents with metastasis and poor prognosis, and causes 100% mortality. Therefore, the treatment of CRPC is extremely challenging, and its pathogenesis need to be elucidated urgently. OBJECTIVE The high throughput sequencing technology was used to sequence the whole exome associated with CRPC, to explore the molecular mechanism of CRPC, and to find the potential therapeutic targets. METHODS We performed whole-exome sequencing of FFPE tissue from 11 Chinese adult male patients. Genomic DNA was fragmented and enriched for whole-exome sequencing using the QiAamp DNA FFPE Tissue KIT, sequenced on an Illumina HiSeq2000 platform, and the relevant genes were analyzed using biological information. Finally, immunohistochemistry method was used to detect the phosphorylation level of LATS1 in CRPC tissues of MST1 mutant and non-mutant patients. RESULTS We have screened 85 significant mutant genes with relatively high mutation rates of TP53, AR, KMT2, DMAPK1, PIK3R1, SH2B3, WHSC1, KMT2D, MST1 and MAPK1. We first found that MST1 has multiple mutations in CRPC patients, and the MST1 plays an important role in the Hippo pathway. Immunohistochemistry results showed that the phosphorylation level of LATS1 in the mutant patients was significantly lower than that in the non-mutant patients. CONCLUSION We speculate that MST1 would be a new potential target for the treatment of CRPC by regulating Hippo signaling pathway. The results provided an important clue to the molecular mechanism of CRPC.
Collapse
Affiliation(s)
- Lifang Hao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing 102206, China
| | - Su Zhang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhenzhen Xu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanfen Zhang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| |
Collapse
|
15
|
Shen T, Li Y, Zhu S, Yu J, Zhang B, Chen X, Zhang Z, Ma Y, Niu Y, Shang Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:36. [PMID: 32066485 PMCID: PMC7027236 DOI: 10.1186/s13046-020-1542-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs) are an important part of the tumour microenvironment, and their functions are of great concern. This series of experiments aimed to explore how Yes-associated protein 1 (YAP1) regulates the function of stromal cells and how the normal fibroblasts (NFs) convert into CAFs in prostate cancer (PCa). Methods The effects of conditioned media from different fibroblasts on the proliferation and invasion of epithelial cells TrampC1 were examined. We then analysed the interaction between the YAP1/TEAD1 protein complex and SRC, as well as the regulatory function of the downstream cytoskeletal proteins and actins. A transplanted tumour model was used to explore the function of YAP1 in regulating tumour growth through stromal cells. The relationship between the expression of YAP1 in tumour stromal cells and the clinical characteristics of PCa patients was analysed. Results The expression level of YAP1 was significantly upregulated in PCa stromal cells. After the expression level of YAP1 was increased, NF was transformed into CAF, enhancing the proliferation and invasion ability of epithelial cells. The YAP1/TEAD1 protein complex had the capability to influence downstream cytoskeletal proteins by regulating SRC transcription; therefore, it converts NF to CAF, and CAF can significantly promote tumour growth and metastasis. The high expression of YAP1 in the tumour stromal cells suggested a poor tumour stage and prognosis in PCa patients. Conclusion YAP1 can convert NFs into CAFs in the tumour microenvironment of PCa, thus promoting the development and metastasis of PCa. Silencing YAP1 in tumour stromal cells can effectively inhibit tumour growth.
Collapse
Affiliation(s)
- Tianyu Shen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianpeng Yu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuanrong Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zheng Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuan Ma
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
16
|
Bailey DD, Zhang Y, van Soldt BJ, Jiang M, Suresh S, Nakagawa H, Rustgi AK, Aceves SS, Cardoso WV, Que J. Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development 2019; 146:dev.178855. [PMID: 31748205 PMCID: PMC6918786 DOI: 10.1242/dev.178855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
Abstract
Balanced progenitor activities are crucial for the development and maintenance of high turn-over organs such as the esophagus. However, the molecular mechanisms regulating these progenitor activities in the esophagus remain to be elucidated. Here, we demonstrated that Yap is required for the proliferation of esophageal progenitor cells (EPCs) in the developing murine esophagus. We found that Yap deficiency reduces EPC proliferation and stratification whereas persistent Yap activation increases cell proliferation and causes aberrant stratification of the developing esophagus. We further demonstrated that the role of YAP signaling is conserved in the developing human esophagus by utilizing 3D human pluripotent stem cell (hPSC)-derived esophageal organoid culture. Taken together, our studies combining loss/gain-of-function murine models and hPSC differentiation support a key role for YAP in the self-renewal of EPCs and stratification of the esophageal epithelium.
Collapse
Affiliation(s)
- Dominique D. Bailey
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin J. van Soldt
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Supriya Suresh
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Seema S. Aceves
- Division of Allergy Immunology, Rady Children's Hospital San Diego, University of California, San Diego, CA 92093, USA
| | - Wellington V. Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Author for correspondence ()
| |
Collapse
|
17
|
Worfolk JC, Bell S, Simpson LD, Carne NA, Francis SL, Engelbertsen V, Brown AP, Walker J, Viswanath YK, Benham AM. Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC. Antioxid Redox Signal 2019; 31:1117-1132. [PMID: 31436131 DOI: 10.1089/ars.2018.7647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: AGR2 is a tissue-restricted member of the protein disulfide isomerase family that has attracted interest because it is highly expressed in a number of cancers, including gastroesophageal adenocarcinoma. The behavior of AGR2 was analyzed under oxidizing conditions, and an alkylation trapping and immunoprecipitation approach were developed to identify novel AGR2 interacting proteins. Results: The data show that AGR2 is induced in esophageal adenocarcinoma, where it participates in redox-responsive, disulfide-dependent complexes. AGR2 preferentially engages with MUC-5 as a primary client and is coexpressed with the acidic mucin in Barrett's esophagus and esophageal adenocarcinoma tissue. Innovation: New partner chaperones for AGR2 have been identified, including peroxiredoxin IV, ERp44, P5, ERp29, and Ero1α. AGR2 interacts with unexpected metabolic enzymes, including aldehyde dehydrogenase (ALDH)3A1, and engages in an alkylation-sensitive association with the autophagy receptor SQSTM1, suggesting a potential mechanism for the postendoplasmic reticulum targeting of AGR2 to mucin granules. Disulfide-driven AGR2 complex formation provides a framework for a limited number of client proteins to interact, rather than for the recruitment of multiple novel clients. Conclusion: The extended AGR2 interactome will facilitate the development of therapeutics to target AGR2/mucin pathways in esophageal cancer and other conditions, including chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jack C Worfolk
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Steven Bell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Lee D Simpson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Naomi A Carne
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Sarah L Francis
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vibecke Engelbertsen
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Julie Walker
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | | | - Adam M Benham
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
18
|
Transcriptional Response of Ovine Lung to Infection with Jaagsiekte Sheep Retrovirus. J Virol 2019; 93:JVI.00876-19. [PMID: 31434729 PMCID: PMC6803282 DOI: 10.1128/jvi.00876-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the etiologic agent of ovine pulmonary adenocarcinoma (OPA), a neoplastic lung disease of sheep. OPA is an important economic and welfare issue for sheep farmers and a valuable naturally occurring animal model for human lung adenocarcinoma. Here, we used RNA sequencing to study the transcriptional response of ovine lung tissue to infection by JSRV. We identified 1,971 ovine genes differentially expressed in JSRV-infected lung compared to noninfected lung, including many genes with roles in carcinogenesis and immunomodulation. The differential expression of selected genes was confirmed using immunohistochemistry and reverse transcription-quantitative PCR. A key finding was the activation of anterior gradient 2, yes-associated protein 1, and amphiregulin in OPA tumor cells, indicating a role for this oncogenic pathway in OPA. In addition, there was differential expression of genes related to innate immunity, including genes encoding cytokines, chemokines, and complement system proteins. In contrast, there was little evidence for the upregulation of genes involved in T-cell immunity. Many genes related to macrophage function were also differentially expressed, reflecting the increased abundance of these cells in OPA-affected lung tissue. Comparison of the genes differentially regulated in OPA with the transcriptional changes occurring in human lung cancer revealed important similarities and differences between OPA and human lung adenocarcinoma. This study provides valuable new information on the pathogenesis of OPA and strengthens the use of this naturally occurring animal model for human lung adenocarcinoma.IMPORTANCE Ovine pulmonary adenocarcinoma is a chronic respiratory disease of sheep caused by jaagsiekte sheep retrovirus (JSRV). OPA is a significant economic problem for sheep farmers in many countries and is a valuable animal model for some forms of human lung cancer. Here, we examined the changes in host gene expression that occur in the lung in response to JSRV infection. We identified a large number of genes with altered expression in infected lung, including factors with roles in cancer and immune system function. We also compared the data from OPA to previously published data from human lung adenocarcinoma and found a large degree of overlap in the genes that were dysregulated. The results of this study provide exciting new avenues for future studies of OPA and may have comparative relevance for understanding human lung cancer.
Collapse
|
19
|
Li J, Hu J, Luo Z, Zhou C, Huang L, Zhang H, Chi J, Chen Z, Li Q, Deng M, Chen J, Tao K, Wang G, Wang L, Wang Z. AGR2 is controlled by DNMT3a-centered signaling module and mediates tumor resistance to 5-Aza in colorectal cancer. Exp Cell Res 2019; 385:111644. [PMID: 31614132 DOI: 10.1016/j.yexcr.2019.111644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
Human anterior gradient-2 (AGR2), a member of protein disulfide isomerase (PDI) family, is upregulated in various human cancers and reportedly has oncogenic activities. However, the functional roles of AGR2 and its regulation in colorectal cancer (CRC) remain unclear. Here, we showed that AGR2 promoted CRC tumorigenesis and progression in vitro and in vivo and acted as an independent prognostic factor of poor outcome. AGR2 was negatively regulated by DNA methyltransferase 3a (DNMT3a) through directly methylating AGR2 promoter and by a DNMT3a-SPRY2-miR-194 axis. Moreover, AGR2 mediated the resistance to 5-Aza-2'-deoxycytidine (5-Aza) treatment. Knockdown of AGR2 improved the therapeutic effect of 5-Aza in human CRC xenograft tumor model. Thus, our work supports AGR2's oncogenic role in CRC, reveals DNMT3a-mediated epigenetic modulation on AGR2 promoter, and uncovers a new DNMT3a signaling module controlling expression of AGR2. Upregulated AGR2 offset 5-Aza mediated epigenetic therapy. This work might provide potential targets for clinical anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Hu
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Luo
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Caihong Zhou
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lifeng Huang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyan Zhang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangyang Chi
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenzhen Chen
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhou Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junhua Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, Zhang J, Young CY, Yuan H. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 2019; 38:3458-3474. [PMID: 30647455 PMCID: PMC6756021 DOI: 10.1038/s41388-019-0675-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/24/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Anterior gradient 2 (AGR2), a protein belonging to the protein disulfide isomerase (PDI) family, is overexpressed in multiple cancers and promotes angiogenesis to drive cancer progression. The mechanisms controlling AGR2 abundance in cancer remain largely unknown. Here, we observed that AGR2 expression is significantly suppressed by proteasome inhibitor MG132/bortezomib at mRNA and protein levels in lung cancer cells. MG132-mediated repression of AGR2 transcription was independent of ROS generation and ER stress induction, but partially resulted from the downregulated E2F1. Further investigation revealed that MG132 facilitated polyubiquitinated AGR2 degradation through activation of autophagy, as evidenced by predominant restoration of AGR2 level in cells genetic depletion of Atg5 and Atg7, or by autophagy inhibitors. Activation of autophagy by rapamycin noticeably reduced the AGR2 protein in cells and in the mouse tissue samples administrated with bortezomib. We also provided evidence identifying the K48-linked polyubiquitin chains conjugating onto K89 of AGR2 by an E3 ligase UBR5. In addition, an autophagy receptor NBR1 was demonstrated to be important in polyubiquitinated AGR2 clearance in response to MG132 or bortezomib. Importantly, downregulation of AGR2 by proteasome inhibition significantly enhanced antitumor activity of bevacizumab, highlighting the importance of AGR2 as a predictive marker for selection of subgroup patients in chemotherapy.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Qingqing Xu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Quan Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Mengqi Jia
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Huanmin Niu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Xiaofei Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Jinsan Zhang
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles Yf Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huiqing Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
21
|
Tiemann K, Garri C, Lee SB, Malihi PD, Park M, Alvarez RM, Yap LP, Mallick P, Katz JE, Gross ME, Kani K. Loss of ER retention motif of AGR2 can impact mTORC signaling and promote cancer metastasis. Oncogene 2018; 38:3003-3018. [PMID: 30575818 DOI: 10.1038/s41388-018-0638-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/29/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
Abstract
Anterior gradient 2 (AGR2) is a member of the protein disulfide isomerase (PDI) family, which plays a role in the regulation of protein homeostasis and the unfolded protein response pathway (UPR). AGR2 has also been characterized as a proto-oncogene and a potential cancer biomarker. Cellular localization of AGR2 is emerging as a key component for understanding the role of AGR2 as a proto-oncogene. Here, we provide evidence that extracellular AGR2 (eAGR2) promotes tumor metastasis in various in vivo models. To further characterize the role of the intracellular-resident versus extracellular protein, we performed a comprehensive protein-protein interaction screen. Based on these results, we identify AGR2 as an interacting partner of the mTORC2 pathway. Importantly, our data indicates that eAGR2 promotes increased phosphorylation of RICTOR (T1135), while intracellular AGR2 (iAGR2) antagonizes its levels and phosphorylation. Localization of AGR2 also has opposing effects on the Hippo pathway, spheroid formation, and response to chemotherapy in vitro. Collectively, our results identify disparate phenotypes predicated on AGR2 localization. Our findings also provide credence for screening of eAGR2 to guide therapeutic decisions.
Collapse
Affiliation(s)
- Katrin Tiemann
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Carolina Garri
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Sang Bok Lee
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Paymaneh D Malihi
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Mincheol Park
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Ruth M Alvarez
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Li Peng Yap
- Department of Radiology, Keck School of Medicine, Los Angeles, CA, USA
| | - Parag Mallick
- Stanford University, Department of Radiology, Los Angeles, CA, USA
| | - Jonathan E Katz
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Mitchell E Gross
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Kian Kani
- University of Southern California, Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Xie H, Wu L, Deng Z, Huo Y, Cheng Y. Emerging roles of YAP/TAZ in lung physiology and diseases. Life Sci 2018; 214:176-183. [PMID: 30385178 DOI: 10.1016/j.lfs.2018.10.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
The YAP and TAZ, as the downstream effectors of Hippo pathway, have emerged as important translational co-activators of a wide variety of biological processes. YAP/TAZ plays a crucial role in the lung development and physiology. Dysregulation of YAP/TAZ signaling pathway contributes to the development and progression of chronic lung diseases, including lung cancer, pulmonary fibrosis, pulmonary hypertension, COPD, asthma, and lung infection. Therefore, owing to its critical functions, delineation of the signaling mechanisms of YAP/TAZ in pathological conditions will shed light on developing strategies for its therapeutic targeting. Currently, the complex regulation of this pathway is under extensive investigation. In this review, we summarize and present recent findings of molecular mechanisms of YAP/TAZ in the lung physiological and pathological conditions, as well as the implications of YAP/TAZ for lung diseases treatment and regeneration.
Collapse
Affiliation(s)
- Haojun Xie
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liquan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenan Deng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yating Huo
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Zhao M, Li H, Fan L, Ma Y, Gong H, Lai W, Fang Q, Hu Z. Quantitative proteomic analysis to the first commercialized liposomal paclitaxel nano-platform Lipusu revealed the molecular mechanism of the enhanced anti-tumor effect. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S147-S155. [DOI: 10.1080/21691401.2018.1489822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Minzhi Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Haiyun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linyang Fan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - He Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Qiaojun Fang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
24
|
miR-217 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitors by targeting pro-oncogenic anterior gradient 2. Exp Hematol 2018; 68:80-88.e2. [PMID: 30195077 DOI: 10.1016/j.exphem.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022]
Abstract
BCR-ABL1-independent mechanisms had been thought to mediate drug resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myelogenous leukemia (CML). The pro-oncogenic anterior gradient 2 (AGR2) mediates drug resistance of cancer cells. In this study, we observed an increased level of AGR2 in TKI-resistant CML cells. Silence of AGR2 in dasatinib-resistant K562 (K562DR) cells led to restored sensitivity to dasatinib both in vitro and in vivo. Exposure to dasatinib induced upregulation of AGR2 in K562 cells, which indicated a probable treatment-related drug resistance. We further investigated the potential interaction between microRNA (miRNA) and AGR2 in K562DR cells and found that downregulation of miR-217 was associated with overexpression of AGR2 in K562DR cells. Luciferase reporter assay identified that miR-217 negatively regulated expression of AGR2 through binding the 3'-untranslated region of AGR2. Hypermethylation of the CpG island on the promoter region of the MIR217 gene is a probable reason for the downregulation of miR-217 in dasatinib-treated K562 cells. Forced expression of miR-217 led to decreased expression of AGR2 as well as compromised TKI-resistant potential of K562DR cells. Similarly, overexpression of miR-217 resensitized K562DR cells to dasatinib treatment in a murine xenograft transplantation model. TKI treatment-induced drug resistance is correlated with a decrease of miR-217 and upregulation of AGR2. The miR-217/AGR2 interaction might be a potential therapeutic target in treating CML patients with TKI resistance.
Collapse
|
25
|
Liu QG, Li YJ, Yao L. Knockdown of AGR2 induces cell apoptosis and reduces chemotherapy resistance of pancreatic cancer cells with the involvement of ERK/AKT axis. Pancreatology 2018; 18:678-688. [PMID: 30055941 DOI: 10.1016/j.pan.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC), an aggressive human malignancy, presents with a striking resistance to chemotherapy. Interesting, AGR2 has been found to be upregulated in various cancers and has been found to promote the dissemination of PC cells. Thereby, a series of in-vitro experiments were performed to investigate the relationship between AGR2 and the ERK/AKT axis, and to explore whether it affects PC cells. METHODS Positive expression of AGR2 protein in the PC and paracancerous tissues collected from 138 patients with PC was detected using immunohistochemistry. After treatment with FGF2 (an ERK/AKT axis agonist), siRNA against AGR2 or their combination respectively, cell viability, chemotherapy resistance, radiotherapy resistance, migration, invasion and apoptosis in PC cells were detected using CCK8 assay, MTT assay, clone formation assay, wound healing assay, Transwell assay and flow cytometry, respectively. The expressions of AGR2 and ERK/AKT axis-related genes and proteins in tissues and cells were detected using reverse transcription quantitative polymerase chain reaction and Western blot assay. RESULTS PC tissues exhibited highly-expressed AGR2 and abnormally activated ERK/AKT axis. FGF2 promoted the expression of AGR2, ERK/AKT axis activation, cell viability, chemotherapy resistance, migration and invasion, but decreased cell apoptosis in PC cells. However, knockdown of AGR2 resulted in inhibition of the ERK/AKT axis, reduced PC cell viability, chemotherapy resistance, migration and invasion but increased cell apoptosis in PC cells. CONCLUSION The findings reveal that AGR2 silencing could promote cell apoptosis and inhibit cell migration, invasion and chemotherapy resistance of PC cell with the involvement of the ERK/AKT axis.
Collapse
Affiliation(s)
- Qing-Guo Liu
- Department of Gastroenterological Surgery, Tangshan Gongren Hospital, Tangshan, 063000, PR China
| | - Yan-Ju Li
- Department of Gastroenterological Surgery, Tangshan Gongren Hospital, Tangshan, 063000, PR China.
| | - Lan Yao
- Tangshan Central Blood Station, Tangshan, 063000, PR China
| |
Collapse
|
26
|
Shibata M, Ham K, Hoque MO. A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer 2018; 143:2133-2144. [PMID: 29696628 DOI: 10.1002/ijc.31561] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
YAP1 is one of the most important effectors of the Hippo pathway and has crosstalk with other cancer promoting pathways. YAP1 contributes to cancer development in various ways that include promoting malignant phenotypes, expansion of cancer stem cells and drug resistance of cancer cells. Because pharmacologic or genetic inhibition of YAP1 suppresses tumor progression and increases the drug sensitivity, targeting YAP1 may open a fertile avenue for a novel therapeutic approach in relevant cancers. Recent enormous studies have established the efficacy of immunotherapy, and several immune checkpoint blockades are in clinical use or in the phase of development to treat various cancer types. Immunosuppression in the tumor microenvironment (TME) induced by cancer cells, immune cells and associated stromal cells promotes tumor progression and causes drug resistance. Accumulated evidences of scientific efforts from the last few years suggest that YAP1 influences macrophages, myeloid-derived suppressor cells and regulatory T-cells to facilitate immunosuppressive TME. Although the underlying mechanisms is not clearly discerned, it is evident that YAP1 activating pathways in different cellular components induce immunosuppressive TME. In this review, we summarize the evidences involved in the dual roles of YAP1 in cancer development and immunosuppression in the TME. We also discuss the possibility of YAP1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kendall Ham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Garri C, Howell S, Tiemann K, Tiffany A, Jalali-Yazdi F, Alba MM, Katz JE, Takahashi TT, Landgraf R, Gross ME, Roberts RW, Kani K. Identification, characterization and application of a new peptide against anterior gradient homolog 2 (AGR2). Oncotarget 2018; 9:27363-27379. [PMID: 29937991 PMCID: PMC6007958 DOI: 10.18632/oncotarget.25221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/02/2018] [Indexed: 01/15/2023] Open
Abstract
The cancer-associated protein Anterior Gradient 2 (AGR2) has been described, predominantly in adenocarcinomas. Increased levels of extracellular AGR2 (eAGR2) have been correlated with poor prognosis in cancer patients, making it a potential biomarker. Additionally, neutralizing AGR2 antibodies showed preclinical effectiveness in murine cancer models suggesting eAGR2 may be a therapeutic target. We set out to identify a peptide by mRNA display that would serve as a theranostic tool targeting AGR2. This method enables the selection of peptides from a complex (>1011) library and incorporates a protease incubation step that filters the selection for serum stable peptides. We performed six successive rounds of enrichment using a 10-amino acid mRNA display library and identified several AGR2 binding peptides. One of these peptides (H10), demonstrated high affinity binding to AGR2 with a binding constant (KD) of 6.4 nM. We developed an AGR2 ELISA with the H10 peptide as the capture reagent. Our H10-based ELISA detected eAGR2 from cancer cell spent media with a detection limit of (20-50 ng/ml). Furthermore, we investigated the therapeutic utility of H10 and discovered that it inhibited cell viability at IC50 (9-12 μmoles/L) in cancer cell lines. We also determined that 10 μg/ml of H10 was sufficient to inhibit cancer cell migration in breast and prostate cancer cell lines. A control peptide did not show any appreciable activity in these cells. The H10 peptide showed promise as both a novel diagnostic and a potential therapeutic peptide.
Collapse
Affiliation(s)
- Carolina Garri
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon Howell
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Katrin Tiemann
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aleczandria Tiffany
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, USA
| | - Farzad Jalali-Yazdi
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, USA
| | - Mario M Alba
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan E Katz
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Terry T Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Ralf Landgraf
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, USA
| | - Mitchell E Gross
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Richard W Roberts
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, USA
| | - Kian Kani
- Keck School of Medicine, Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
28
|
Ann P, Seagle BLL, Shilpi A, Kandpal M, Shahabi S. Association of increased primary breast tumor AGR2 with decreased disease-specific survival. Oncotarget 2018; 9:23114-23125. [PMID: 29796176 PMCID: PMC5955412 DOI: 10.18632/oncotarget.25225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Objective Tumor expression of Anterior Gradient 2 (AGR2), an endoplasmic reticulum protein disulfide isomerase, was associated with decreased breast cancer survival. We aimed to validate the association of tumor AGR2 mRNA expression with disease-specific survival (DSS) and identify differentially expressed signaling pathways between high and low AGR2 expression tumor groups. Methods Primary tumor mRNA expression data from the METABRIC study was used to evaluate AGR2 expression as a prognostic factor for DSS while adjusting for survival-determining confounders using Cox proportional-hazards regression. Differentially expressed genes and signaling pathway differences between high and low AGR2 groups were determined by modular enrichment analyses using DAVID and Ingenuity Pathway Analysis. Results Increased tumor AGR2 mRNA expression was associated with decreased DSS among 1,341 women (per each standard deviation increase of AGR2 expression: HR 1.14, 95% CI: 1.01-1.29, P = 0.03). Pathway analyses supported prior experimental studies showing that estrogen receptor 1 (ESR1) regulated AGR2 expression. Canonical signaling pathways significantly differentially represented between high and low AGR2 groups included those involved in inflammation and immunity. Conclusion Increased primary tumor AGR2 expression was associated with decreased DSS. Pathway analyses suggested that increased AGR2 was associated with endoplasmic reticular homeostasis, possibly allowing tumor cells to overcome hypoxic stress and meet the increased protein demand of tumorigenesis, thereby preventing unfolded protein response-mediated apoptosis.
Collapse
Affiliation(s)
- Phoebe Ann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Brandon-Luke L Seagle
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Arunima Shilpi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Manoj Kandpal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| | - Shohreh Shahabi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 60611 Chicago, IL, USA
| |
Collapse
|
29
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
30
|
Angiomotin regulates prostate cancer cell proliferation by signaling through the Hippo-YAP pathway. Oncotarget 2018; 8:10145-10160. [PMID: 28052036 PMCID: PMC5354648 DOI: 10.18632/oncotarget.14358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Angiomotin (AMOT) is a family of proteins found to be a component of the apical junctional complex of vertebrate epithelial cells and is recently found to play important roles in neurofibromatosis type 2 (NF-2). Whether AMOT plays a role in prostate cancer (PCa) is unknown. AMOT is expressed as two isoforms, AMOTp80 and AMOTp130, which has a 409 aa N-terminal domain that is absent in AMOTp80. Both AMOTp80 and AMOTp130 are expressed in LNCaP and C4-2B4, but at a low to undetectable level in PC3, DU145, and BPH1 cells. Further study showed that AMOTp130 and AMOTp80 have distinct functions in PCa cells. We found that AMOTp80, but not AMOT p130, functioned as a tumor promoter by enhancing PCa cell proliferation. Mechanistic studies showed that AMOTp80 signaled through the Hippo pathway by promoting nuclear translocation of YAP, resulting in an increased expression of YAP target protein BMP4. Moreover, inhibition of BMP receptor activity by LDN-193189 abrogates AMOTp80-mediated cell proliferation. Together, this study reveals a novel mechanism whereby the AMOTp80-Merlin-MST1-LATS-YAP-BMP4 pathway leads to AMOTp80-induced tumor cell proliferation.
Collapse
|
31
|
Zhou X, Su J, Feng S, Wang L, Yin X, Yan J, Wang Z. Antitumor activity of curcumin is involved in down-regulation of YAP/TAZ expression in pancreatic cancer cells. Oncotarget 2018; 7:79076-79088. [PMID: 27738325 PMCID: PMC5346699 DOI: 10.18632/oncotarget.12596] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive human malignancies worldwide and is the fourth leading cause of cancer-related deaths. Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Certain studies have demonstrated that curcumin exerts its anti-tumor function in a variety of human cancers including PC, via targeting multiple therapeutically important cancer signaling pathways. However, the detailed molecular mechanisms are not fully understood. Two transcriptional co-activators, YAP (Yes-associated protein) and its close paralog TAZ (transcriptional coactivator with PDZ-binding motif) exert oncogenic activities in various cancers. Therefore, in this study we aimed to determine the molecular basis of curcumin-induced cell proliferation inhibition in PC cells. First, we detected the anti-tumor effects of curcumin on PC cell lines using CTG assay, Flow cytometry, clonogenic assay, wound healing assay and Transwell invasion assay. We found that curcumin significantly suppressed cell growth, weakened clonogenic potential, inhibited migration and invasion, and induced apoptosis and cell cycle arrest in PC cells. We further measured that overexpression of YAP enhanced cell proliferation and abrogated the cytotoxic effects of curcumin on PC cells. Moreover, we found that curcumin markedly down-regulated YAP and TAZ expression and subsequently suppressed Notch-1 expression. Collectively, these findings suggest that pharmacological inhibition of YAP and TAZ activity may be a promising anticancer strategy for the treatment of PC patients.
Collapse
Affiliation(s)
- Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Shaoyan Feng
- Department of Otolaryngology, The fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519020, China
| | - Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Jingzhe Yan
- Department of Abdominal Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, 130012, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Anterior Gradient 2 is Correlated with EGFR Mutation in Lung Adenocarcinoma Tissues. Int J Biol Markers 2018; 30:e234-42. [PMID: 25634032 DOI: 10.5301/jbm.5000131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 11/20/2022]
Abstract
Background Epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor (TKI) has demonstrated a promising therapeutic response in lung adenocarcinoma patients with EGFR gene mutations. However, the predictive factors for this therapy have not been established, except for the EGFR gene mutation status of carcinoma cells. Methods We first performed microarray analysis in EGFR-TKI–sensitive lung adenocarcinoma cell lines. The results indicated anterior gradient 2 (AGR2) as a potential surrogate marker of EGFR-TKI. Therefore, we then evaluated the correlation between the status of AGR2 immunoreactivity and clinicopathological factors including overall survival (OS), progression-free survival (PFS) and clinical response to EGFR-TKI, in 147 cases of surgically resected lung adenocarcinoma. The biological significance of AGR2 was further evaluated by transfecting small interfering RNA (siRNA) against AGR2 in these cells. Results The status of AGR2 immunoreactivity was significantly higher in lung adenocarcinoma cases with EGFR gene mutations than in those with the wild type (p<0.0001), but there were no significant differences in OS, PFS and response of EGFR-TKI between the AGR2 high and low carcinoma cases. Knockdown of AGR2 gene expression following siRNA transfection resulted in a significantly lower response to EGFR-TKI in EGFR-mutated PC-3. Conclusions AGR2 could serve as an adjunctive surrogate protein marker possibly reflecting EGFR gene mutations in lung adenocarcinoma patients. Results from in vitro analysis indicated that AGR2 could be a potential clinical biomarker of EGFR-TKI therapeutic sensitivity in lung adenocarcinoma cells.
Collapse
|
33
|
Zhu Q, Mangukiya HB, Mashausi DS, Guo H, Negi H, Merugu SB, Wu Z, Li D. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain. FEBS J 2017; 284:2856-2869. [PMID: 28665039 DOI: 10.1111/febs.14155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds.
Collapse
Affiliation(s)
- Qi Zhu
- School of Pharmacy, Shanghai Jiao Tong University, China
| | | | | | - Hao Guo
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, China
| | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, China.,Engineering Research Center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, China
| |
Collapse
|
34
|
Kani K, Garri C, Tiemann K, Malihi PD, Punj V, Nguyen AL, Lee J, Hughes LD, Alvarez RM, Wood DM, Joo AY, Katz JE, Agus DB, Mallick P. JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Mol Cancer Ther 2017; 16:1645-1657. [PMID: 28566434 DOI: 10.1158/1535-7163.mct-16-0564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022]
Abstract
Mutations or deletions in exons 18-21 in the EGFR) are present in approximately 15% of tumors in patients with non-small cell lung cancer (NSCLC). They lead to activation of the EGFR kinase domain and sensitivity to molecularly targeted therapeutics aimed at this domain (gefitinib or erlotinib). These drugs have demonstrated objective clinical response in many of these patients; however, invariably, all patients acquire resistance. To examine the molecular origins of resistance, we derived a set of gefitinib-resistant cells by exposing lung adenocarcinoma cell line, HCC827, with an activating mutation in the EGFR tyrosine kinase domain, to increasing gefitinib concentrations. Gefitinib-resistant cells acquired an increased expression and activation of JUN, a known oncogene involved in cancer progression. Ectopic overexpression of JUN in HCC827 cells increased gefitinib IC50 from 49 nmol/L to 8 μmol/L (P < 0.001). Downregulation of JUN expression through shRNA resensitized HCC827 cells to gefitinib (IC50 from 49 nmol/L to 2 nmol/L; P < 0.01). Inhibitors targeting JUN were 3-fold more effective in the gefitinib-resistant cells than in the parental cell line (P < 0.01). Analysis of gene expression in patient tumors with EGFR-activating mutations and poor response to erlotinib revealed a similar pattern as the top 260 differentially expressed genes in the gefitinib-resistant cells (Spearman correlation coefficient of 0.78, P < 0.01). These findings suggest that increased JUN expression and activity may contribute to gefitinib resistance in NSCLC and that JUN pathway therapeutics merit investigation as an alternate treatment strategy. Mol Cancer Ther; 16(8); 1645-57. ©2017 AACR.
Collapse
Affiliation(s)
- Kian Kani
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Carolina Garri
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Katrin Tiemann
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Paymaneh D Malihi
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Division of Hematology, Department of Medicine, University of Southern California, Los Angeles, California
| | - Anthony L Nguyen
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Janet Lee
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lindsey D Hughes
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ruth M Alvarez
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Damien M Wood
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ah Young Joo
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jonathan E Katz
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David B Agus
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Parag Mallick
- Lawrence J. Ellison Institute for Transformative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
35
|
Wodziak D, Dong A, Basin MF, Lowe AW. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration. PLoS One 2016; 11:e0164968. [PMID: 27764193 PMCID: PMC5072742 DOI: 10.1371/journal.pone.0164968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/-null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/-null mouse. AG1478-treated and AGR2-/-null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis.
Collapse
Affiliation(s)
- Dariusz Wodziak
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Aiwen Dong
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael F. Basin
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Anson W. Lowe
- Department of Medicine, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Vitello EA, Quek SI, Kincaid H, Fuchs T, Crichton DJ, Troisch P, Liu AY. Cancer-secreted AGR2 induces programmed cell death in normal cells. Oncotarget 2016; 7:49425-49434. [PMID: 27283903 PMCID: PMC5226518 DOI: 10.18632/oncotarget.9921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
Anterior Gradient 2 (AGR2) is a protein expressed in many solid tumor types including prostate, pancreatic, breast and lung. AGR2 functions as a protein disulfide isomerase in the endoplasmic reticulum. However, AGR2 is secreted by cancer cells that overexpress this molecule. Secretion of AGR2 was also found in salamander limb regeneration. Due to its ubiquity, tumor secretion of AGR2 must serve an important role in cancer, yet its molecular function is largely unknown. This study examined the effect of cancer-secreted AGR2 on normal cells. Prostate stromal cells were cultured, and tissue digestion media containing AGR2 prepared from prostate primary cancer 10-076 CP and adenocarcinoma LuCaP 70CR xenograft were added. The control were tissue digestion media containing no AGR2 prepared from benign prostate 10-076 NP and small cell carcinoma LuCaP 145.1 xenograft. In the presence of tumor-secreted AGR2, the stromal cells were found to undergo programmed cell death (PCD) characterized by formation of cellular blebs, cell shrinkage, and DNA fragmentation as seen when the stromal cells were UV irradiated or treated by a pro-apoptotic drug. PCD could be prevented with the addition of the monoclonal AGR2-neutralizing antibody P3A5. DNA microarray analysis of LuCaP 70CR media-treated vs. LuCaP 145.1 media-treated cells showed downregulation of the gene SAT1 as a major change in cells exposed to AGR2. RT-PCR analysis confirmed the array result. SAT1 encodes spermidine/spermine N1-acetyltransferase, which maintains intracellular polyamine levels. Abnormal polyamine metabolism as a result of altered SAT1 activity has an adverse effect on cells through the induction of PCD.
Collapse
Affiliation(s)
- Elizabeth A. Vitello
- Department of Urology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sue-Ing Quek
- Department of Urology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Present address: Singapore Polytechnic, Center for Biomedical and Life Sciences, Singapore
| | - Heather Kincaid
- EDRN Informatics Center and NASA Jet Propulsion Laboratory, Pasadena, CA, USA
| | - Thomas Fuchs
- EDRN Informatics Center and NASA Jet Propulsion Laboratory, Pasadena, CA, USA
| | - Daniel J. Crichton
- EDRN Informatics Center and NASA Jet Propulsion Laboratory, Pasadena, CA, USA
| | | | - Alvin Y. Liu
- Department of Urology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Foxa2 and Hif1ab regulate maturation of intestinal goblet cells by modulating agr2 expression in zebrafish embryos. Biochem J 2016; 473:2205-18. [PMID: 27222589 DOI: 10.1042/bcj20160392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Mammalian anterior gradient 2 (AGR2), an endoplasmic reticulum (ER) protein disulfide-isomerase (PDI), is involved in cancer cell growth and metastasis, asthma and inflammatory bowel disease (IBD). Mice lacking Agr2 exhibit decreased Muc2 protein in intestinal goblet cells, abnormal Paneth cell development, ileitis and colitis. Despite its importance in cancer biology and inflammatory diseases, the mechanisms regulating agr2 expression in the gastrointestinal tract remain unclear. In the present study, we investigated the mechanisms that control agr2 expression in the pharynx and intestine of zebrafish by transient/stable transgenesis, coupled with motif mutation, morpholino knockdown, mRNA rescue and ChIP. A 350 bp DNA sequence with a hypoxia-inducible response element (HRE) and forkhead-response element (FHRE) within a region -4.5 to -4.2 kbp upstream of agr2 directed EGFP expression specifically in the pharynx and intestine. No EGFP expression was detected in the intestinal goblet cells of Tg(HREM:EGFP) or Tg(FHREM:EGFP) embryos with mutated HRE or FHRE, whereas EGFP was expressed in the pharynx of Tg(HREM:EGFP), but not Tg(FHREM:EGFP), embryos. Morpholino knockdown of foxa1 (forkhead box A1) reduced agr2 levels in the pharynx, whereas knockdown of foxa2 or hif1ab decreased intestinal agr2 expression and affected the differentiation and maturation of intestinal goblet cells. These results demonstrate that Foxa1 regulates agr2 expression in the pharynx, whereas both Foxa2 and Hif1ab control agr2 expression in intestinal goblet cells to regulate maturation of these cells.
Collapse
|
38
|
Clarke DJ, Murray E, Faktor J, Mohtar A, Vojtesek B, MacKay CL, Smith PL, Hupp TR. Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:551-61. [DOI: 10.1016/j.bbapap.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
39
|
Grassme KS, Garza-Garcia A, Delgado JP, Godwin JW, Kumar A, Gates PB, Driscoll PC, Brockes JP. Mechanism of Action of Secreted Newt Anterior Gradient Protein. PLoS One 2016; 11:e0154176. [PMID: 27100463 PMCID: PMC4839744 DOI: 10.1371/journal.pone.0154176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/08/2016] [Indexed: 12/02/2022] Open
Abstract
Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.
Collapse
Affiliation(s)
- Kathrin S. Grassme
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Acely Garza-Garcia
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Jean-Paul Delgado
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - James W. Godwin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Anoop Kumar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Phillip B. Gates
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul C. Driscoll
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Jeremy P. Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
40
|
Amphiregulin enhances alpha6beta1 integrin expression and cell motility in human chondrosarcoma cells through Ras/Raf/MEK/ERK/AP-1 pathway. Oncotarget 2016; 6:11434-46. [PMID: 25825984 PMCID: PMC4484467 DOI: 10.18632/oncotarget.3397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 12/17/2022] Open
Abstract
Chondrosarcoma is a malignant tumor that produces cartilage matrix. The most lethal aspect is its metastatic property. We demonstrated that amphiregulin (AR) is significantly upregulated in highly aggressive cells. AR silencing markedly suppressed cell migration. Exogenous AR markedly increased cell migration by transactivation of α6β1 integrin expression. A neutralizing α6β1 integrin antibody can abolish AR-induced cell motility. Knockdown of AR inhibits metastasis of cells to the lung in vivo. Furthermore, elevated AR expression is positively correlated with α6β1 integrin levels and higher grades in patients. These findings can potentially serve as biomarker and therapeutic approach for controlling chondrosarcoma metastasis.
Collapse
|
41
|
Anterior gradient protein 2 expression in high grade head and neck squamous cell carcinoma correlated with cancer stem cell and epithelial mesenchymal transition. Oncotarget 2016; 6:8807-21. [PMID: 25871396 PMCID: PMC4496185 DOI: 10.18632/oncotarget.3556] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 12/20/2022] Open
Abstract
Anterior gradient protein 2 (AGR2) is a novel biomarker with potential oncogenic role. We sought to investigate the diagnostic and prognostic role of AGR2 on head and neck squamous cell carcinoma (HNSCC) with an emphasis on its correlation of cancer stemloid cells (CSC) and epithelial mesenchymal transition (EMT). We found that AGR2 protein levels were higher in HNSCC than in normal oral mucosa. High levels of AGR2 were associated with the T category, pathological grade and lymph node metastasis of HNSCC. Expression of AGR2 increased in recurring HNSCC after radiotherapy and in post cisplatin-based chemotherapeutic tissues. In HNSCC cell lines, knock-down of AGR2 induced apoptosis, reduced sphere formation, and down-regulated Survivin, Cyclin D1, Bcl2, Bcl2l1, Slug, Snail, Nanog and Oct4. In addition, over-expressed AGR2 in transgenic mice with spontaneous HNSCC was associated with lost function of Tgfbr1 and/or lost function of Pten. In vitro knockdown TGFBR1 in HNSCC cell lines increased AGR2 expression. These results suggest that AGR2 is involved in EMT and self-renewal of CSC and may present a potential therapeutic target (oncotarget) for HNSCC.
Collapse
|
42
|
Kang W, Cheng ASL, Yu J, To KF. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J Gastroenterol 2016; 22:1279-1288. [PMID: 26811664 PMCID: PMC4716037 DOI: 10.3748/wjg.v22.i3.1279] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
More evidence has underscored the importance of Hippo signaling pathway in gastrointestinal tissue homeostasis, whereas its deregulation induces tumorigenesis. Yes-associated protein 1 (YAP1) and its close paralog TAZ, transcriptional co-activator with a PDZ-binding motif, function as key effectors negatively controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In various cancers, Hippo pathway cross-talks with pro- or anti-tumorigenic pathways such as GPCR, Wnt/β-catenin, Notch and TGF-β signaling and is deregulated by multiple factors including cell density/junction and microRNAs. As YAP1 expression is significantly associated with poor prognosis of gastric and other gastrointestinal cancers, detailed delineation of Hippo regulation in tumorigenesis provides novel insight for therapeutic intervention. In current review, we summarized the recent research progresses on the deregulation of Hippo pathway in the gastrointestinal tract including stomach and discuss the molecular consequences leading to tumorigenesis.
Collapse
|
43
|
Brychtova V, Mohtar A, Vojtesek B, Hupp TR. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin Cancer Biol 2015; 33:16-24. [PMID: 25937245 DOI: 10.1016/j.semcancer.2015.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.
Collapse
Affiliation(s)
- Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Aiman Mohtar
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Ted R Hupp
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
44
|
Hayashi S, Yokoyama H, Tamura K. Roles of Hippo signaling pathway in size control of organ regeneration. Dev Growth Differ 2015; 57:341-51. [PMID: 25867864 DOI: 10.1111/dgd.12212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/21/2015] [Accepted: 03/07/2015] [Indexed: 01/10/2023]
Abstract
Animals have an intrinsic regeneration ability for injured tissues and organs. Species that have high regeneration ability such as newts can regenerate an organ with exactly the same size and shape as those of the original one. It has been unclear how a regenerating organ grows and ceases growth at an appropriate size. Organ size control in regeneration is seen in various organs of various species that have high regeneration ability. In animal species that do not have sufficient regeneration ability, a wound heals (the injury is closed, but lost parts are not regenerated), but an organ cannot be restored to its original size. On the other hand, perturbation of regeneration sometimes results in oversized or extra structures. In this sense, organ size control plays essential roles in proper regeneration. In this article, we introduce the concept of size control in organ regeneration regulated by the Hippo signaling pathway. We focused on the transcriptional regulator Yap, which shuttles between the nuclei and cytoplasm to exert a regulatory function in a context-dependent manner. The Yap-mediated Hippo pathway is thought to sense cell density, extracellular matrix (ECM) contact and cell position and to regulate gene expression for control of organ size. This mechanism can reasonably explain size control of organ regeneration.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
45
|
Song S, Honjo S, Jin J, Chang SS, Scott AW, Chen Q, Kalhor N, Correa AM, Hofstetter WL, Albarracin CT, Wu TT, Johnson RL, Hung MC, Ajani JA. The Hippo Coactivator YAP1 Mediates EGFR Overexpression and Confers Chemoresistance in Esophageal Cancer. Clin Cancer Res 2015; 21:2580-90. [PMID: 25739674 DOI: 10.1158/1078-0432.ccr-14-2191] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/13/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Esophageal cancer is an aggressive malignancy and often resistant to therapy. Overexpression of EGFR has been associated with poor prognosis of patients with esophageal cancer. However, clinical trials using EGFR inhibitors have not provided benefit for patients with esophageal cancer. Failure of EGFR inhibition may be due to crosstalk with other oncogenic pathways. EXPERIMENTAL DESIGN In this study, expression of YAP1 and EGFR were examined in EAC-resistant tumor tissues versus sensitive tissues by IHC. Western blot analysis, immunofluorescence, real-time PCR, promoter analysis, site-directed mutagenesis, and in vitro and in vivo functional assays were performed to elucidate the YAP1-mediated EGFR expression and transcription and the relationship with chemoresistance in esophageal cancer. RESULTS We demonstrate that Hippo pathway coactivator YAP1 can induce EGFR expression and transcription in multiple cell systems. Both YAP1 and EGFR are overexpressed in resistant esophageal cancer tissues compared with sensitive esophageal cancer tissues. Furthermore, we found that YAP1 increases EGFR expression at the level of transcription requiring an intact TEAD-binding site in the EGFR promoter. Most importantly, exogenous induction of YAP1 induces resistance to 5-fluorouracil and docetaxcel, whereas knockdown of YAP1 sensitizes esophageal cancer cells to these cytotoxics. Verteporfin, a YAP1 inhibitor, effectively inhibits both YAP1 and EGFR expression and sensitizes cells to cytotoxics. CONCLUSIONS Our data provide evidence that YAP1 upregulation of EGFR plays an important role in conferring therapy resistance in esophageal cancer cells. Targeting YAP1-EGFR axis may be more efficacious than targeting EGFR alone in esophageal cancer.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Soichiro Honjo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qiongrong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neda Kalhor
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Arlene M Correa
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Constance T Albarracin
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Tsung-Teh Wu
- Department of Pathology, Mayo Clinic, Rochester, Minnesota
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
Yeung B, Yu J, Yang X. Roles of the Hippo pathway in lung development and tumorigenesis. Int J Cancer 2015; 138:533-9. [PMID: 25644176 DOI: 10.1002/ijc.29457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Lung cancer is the most commonly diagnosed cancer and accounts for one fifth of all cancer deaths worldwide. Although significant progress has been made toward our understanding of the causes of lung cancer, the 5-year survival is still lower than 15%. Therefore, there is an urgent need for novel lung cancer biomarkers and drug targets. The Hippo signaling pathway is an emerging signaling pathway that regulates various biological processes. Recently, increasing evidence suggests that the Hippo pathway may play important roles in not only lung development but also lung tumorigenesis. In this review article, we will summarize the most recent advances and predict future directions on this new cancer research field.
Collapse
Affiliation(s)
- Benjamin Yeung
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jihang Yu
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
47
|
Dong A, Wodziak D, Lowe AW. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J Biol Chem 2015; 290:8016-27. [PMID: 25666625 DOI: 10.1074/jbc.m114.623207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a well characterized receptor-tyrosine kinase that functions in development and serves a vital role in many human cancers. Understanding EGFR regulatory mechanisms, and hence approaches for clinical intervention, has focused on ligand-receptor interactions and tyrosine kinase activity. Here, we show using the NCI-H460 lung and A431 epidermoid human cancer cell lines that EGFR binding to anterior gradient homolog 2 (AGR2) in the endoplasmic reticulum is required for receptor delivery to the plasma membrane and thus EGFR signaling. Reduced AGR2 protein levels or mutation of an essential cysteine in the active site result in decreased cell surface EGFR and a concomitant decrease in signaling as reflected by AREG, EGR1, and FOS expression. Similar to previously described EGFR nulls, an AGR2 null also resulted in embryonic lethality. Consistent with its role in regulating EGFR-mediated signaling, AGR2 expression is also enhanced in many human cancers and promotes the transformed phenotype. Furthermore, EGFR-mediated signaling in NCI-H460 cells, which are resistant to the tyrosine kinase inhibitor AG1478, is also disrupted with reduced AGR2 expression. The results provide insights into why cancer prognosis or response to therapy often does not correlate with EGFR protein or RNA levels because they do not reflect delivery to the cell surface where signaling is initiated. AGR2, therefore, represents a novel post-translational regulator of EGFR-mediated signaling and a promising target for treating human cancers.
Collapse
Affiliation(s)
- Aiwen Dong
- From the Department of Medicine, Stanford University, Stanford, California 94305
| | - Dariusz Wodziak
- From the Department of Medicine, Stanford University, Stanford, California 94305
| | - Anson W Lowe
- From the Department of Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
48
|
Hayashi S, Ochi H, Ogino H, Kawasumi A, Kamei Y, Tamura K, Yokoyama H. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Dev Biol 2014; 396:31-41. [DOI: 10.1016/j.ydbio.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/06/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
|
49
|
Xia Y, Zhang YL, Yu C, Chang T, Fan HY. YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells. PLoS One 2014; 9:e109575. [PMID: 25369529 PMCID: PMC4219672 DOI: 10.1371/journal.pone.0109575] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
Recent evidence suggests that some solid tumors, including ovarian cancer, contain distinct populations of stem cells that are responsible for tumor initiation, growth, chemo-resistance, and recurrence. The Hippo pathway has attracted considerable attention and some investigators have focused on YAP functions for maintaining stemness and cell differentiation. In this study, we successfully isolated the ovarian cancer initiating cells (OCICs) and demonstrated YAP promoted self-renewal of ovarian cancer initiated cell (OCIC) through its downstream co-activator TEAD. YAP and TEAD families were required for maintaining the expression of specific genes that may be involved in OCICs' stemness and chemoresistance. Taken together, our data first indicate that YAP/TEAD co-activator regulated ovarian cancer initiated cell pluripotency and chemo-resistance. It proposed a new mechanism on the drug resistance in cancer stem cell that Hippo-YAP signal pathway might serve as therapeutic targets for ovarian cancer treatment in clinical.
Collapse
Affiliation(s)
- Yan Xia
- Assisted Reproductive Centre, Shaanxi Maternal and Child Care Service Hospital, Xi′an, China
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi′an, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
50
|
Bergström JH, Berg KA, Rodríguez-Piñeiro AM, Stecher B, Johansson MEV, Hansson GC. AGR2, an endoplasmic reticulum protein, is secreted into the gastrointestinal mucus. PLoS One 2014; 9:e104186. [PMID: 25111734 PMCID: PMC4128659 DOI: 10.1371/journal.pone.0104186] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022] Open
Abstract
The MUC2 mucin is the major constituent of the two mucus layers in colon. Mice lacking the disulfide isomerase-like protein Agr2 have been shown to be more susceptible to colon inflammation. The Agr2−/− mice have less filled goblet cells and were now shown to have a poorly developed inner colon mucus layer. We could not show AGR2 covalently bound to recombinant MUC2 N- and C-termini as have previously been suggested. We found relatively high concentrations of Agr2 in secreted mucus throughout the murine gastrointestinal tract, suggesting that Agr2 may play extracellular roles. In tissue culture (CHO-K1) cells, AGR2 is normally not secreted. Replacement of the single Cys in AGR2 with Ser (C81S) allowed secretion, suggesting that modification of this Cys might provide a mechanism for circumventing the KTEL endoplasmic reticulum retention signal. In conclusion, these results suggest that AGR2 has both intracellular and extracellular effects in the intestine.
Collapse
Affiliation(s)
- Joakim H. Bergström
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Katarina A. Berg
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Bärbel Stecher
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, LMU Munich, Munich, Germany
| | | | - Gunnar C. Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|