1
|
Bai X, Shang J, Cao X, Li M, Yu H, Wu C, Yang M, Yue X. Proteomic and phosphoproteomic reveal immune-related function of milk fat globule membrane in bovine milk of different lactation periods. Food Chem 2024; 451:139295. [PMID: 38729042 DOI: 10.1016/j.foodchem.2024.139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
2
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
3
|
Jin D, Yu X, Wang Q, Chen X, Xiao M, Wang H, Cui Y, Lu W, Ge L, Yao Y, Zhou X, Wu J, Jian S, Yang H, Tao Y, Shen Q. A study of the effect of hypothyroidism during pregnancy on human milk quality based on rheological properties. J Dairy Sci 2024; 107:3400-3412. [PMID: 38135045 DOI: 10.3168/jds.2023-23900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Hypothyroidism has been found to have an effect on the nutritional composition of human milk during pregnancy. This study aims to explore the combined influence of rheological properties, macronutrient content, particle size, and the zeta potential of milk fat globules, as well as the composition of milk fat globule membrane (MFGM) proteins on the quality of human milk in gestational hypothyroidism. The study revealed that human milk from the group with hypothyroidism during pregnancy (AHM) was less viscoelastic and stable when compared with normal pregnancy group human milk (NHM). Furthermore, the particle size and macronutrient content of NHM were found to be larger than that of AHM. In contrast, the zeta potential of AHM was greater than that of NHM. The sodium dodecyl sulfate-PAGE results disclosed that the composition of MFGM proteins in these 2 groups were generally the same, but the content of AHM was lower than that of NHM. In conclusion, this study confirms that hypothyroidism during pregnancy can have a significant effect on the quality of human milk.
Collapse
Affiliation(s)
- Danping Jin
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xinyue Yu
- Alberta Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Xi Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Xiao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Yao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Xiaoli Zhou
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Jiahui Wu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China.
| | - Ye Tao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Qing Shen
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
4
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
5
|
Monks J, Orlicky DJ, Libby AE, Dzieciatkowska M, Ladinsky MS, McManaman JL. Perilipin-2 promotes lipid droplet-plasma membrane interactions that facilitate apocrine lipid secretion in secretory epithelial cells of the mouse mammary gland. Front Cell Dev Biol 2022; 10:958566. [PMID: 36158190 PMCID: PMC9500548 DOI: 10.3389/fcell.2022.958566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Secretory epithelial cells (sMEC) in mammary glands of lactating animals secrete lipids by a novel apocrine mechanism in which cytoplasmic lipid droplets (LD) contact and are enveloped by elements of the apical plasma membrane (APM) before being released into the lumen of the gland as membrane bound structures. The molecular properties of LD-APM contacts and the mechanisms regulating LD membrane envelopment and secretion are not fully understood. Perilipin-2 (Plin2) is a constitutive LD protein that has been proposed to tether LD to the APM through formation of a complex with the transmembrane protein, butyrophilin1a1 (BTN) and the redox enzyme, xanthine oxidoreductase (XOR). Using mice lacking Plin2 and physiological inhibition of apocrine lipid secretion, we demonstrate that LD-APM contact and envelopment are mechanistically distinct steps that they are differentially regulated by Plin2 and independent of LD secretion. We find that Plin2 is not required for formation of LD-APM contacts. However, it increases the percentage of LD that contact the APM and mediates enlargement of the LD-APM contact zone as LD undergo membrane envelopment. The effects of Plin2 LD-APM interactions are associated with increased abundances of BTN, XOR and Cidea, which are implicated as mediators of LD-APM contact formation, on membranes surrounding secreted LD, and with promotion of glycocalyx remodeling at LD-APM contact sites. We propose that Plin2 does not directly mediate contact between LD and the APM but acts by enhancing molecular interactions that stabilize LD-APM contacts and govern membrane envelopment of LD during apocrine lipid secretion. Plin2 does not appear to significantly affect the lipid content of milk in fully lactating animals, but it does increase lipid secretion at the onset of lactation in primaparous dams, which suggest a role in facilitating apocrine lipid secretion in sMEC during their initial transition to a secretory phenotype.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew E. Libby
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monica Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - James L. McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Graduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Lu Y, Zhou T, Xu C, Wang R, Feng D, Li J, Wang X, Kong Y, Hu G, Kong X, Lu P. Occludin is a target of Src kinase and promotes lipid secretion by binding to BTN1a1 and XOR. PLoS Biol 2022; 20:e3001518. [PMID: 35041644 PMCID: PMC8797263 DOI: 10.1371/journal.pbio.3001518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/28/2022] [Accepted: 12/19/2021] [Indexed: 11/29/2022] Open
Abstract
Lipid droplets (LDs) have increasingly been recognized as an essential organelle for eukaryotes. Although the biochemistry of lipid synthesis and degradation is well characterized, the regulation of LD dynamics, including its formation, maintenance, and secretion, is poorly understood. Here, we report that mice lacking Occludin (Ocln) show defective lipid metabolism. We show that LDs were larger than normal along its biogenesis and secretion pathway in Ocln null mammary cells. This defect in LD size control did not result from abnormal lipid synthesis or degradation; rather, it was because of secretion failure during the lactation stage. We found that OCLN was located on the LD membrane and was bound to essential regulators of lipid secretion, including BTN1a1 and XOR, in a C-terminus–dependent manner. Finally, OCLN was a phosphorylation target of Src kinase, whose loss causes lactation failure. Together, we demonstrate that Ocln is a downstream target of Src kinase and promotes LD secretion by binding to BTN1a1 and XOR. Lipid droplets are an essential eukaryotic organelle, but how they are secreted has remained unclear. This study shows that the tight junction protein Occludin is a phosphorylation target of Src kinase; Occludin binds to BTN1A1 and XOR to facilitate lipid droplet secretion in mammary epithelial cells.
Collapse
Affiliation(s)
- Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- Molecular Imaging Core Facility, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Deyi Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiyong Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xu Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Kong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
7
|
Ma X, Zhi Z, Zhang S, Zhou C, Mechler A, Liu P. Validating an artificial organelle: Studies of lipid droplet-specific proteins on adiposome platform. iScience 2021; 24:102834. [PMID: 34368652 PMCID: PMC8326204 DOI: 10.1016/j.isci.2021.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 10/25/2022] Open
Abstract
New strategies are urgently needed to characterize the functions of the lipid droplet (LD). Here, adiposome, an artificial LD mimetic platform, was validated by comparative in vitro bioassays. Scatchard analysis found that the binding of perilipin 2 (PLIN2) to the adiposome surface was saturable. Phosphatidylinositol (PtdIns) was found to inhibit PLIN2 binding while it did not impede perilipin 3 (PLIN3). Structural analysis combined with mutagenesis revealed that the 73rd glutamic acid of PLIN2 is significant for the effect of PtdIns on the PLIN2 binding. Furthermore, adiposome was also found to be an ideal platform for in situ enzymatic activity measurement of adipose triglyceride lipase (ATGL). The significant serine mutants of ATGL were found to cause the loss of lipase activity. Our study demonstrates the adiposome as a powerful, manipulatable model system that mimics the function of LD for binding and enzymatic activity studies of LD proteins in vitro.
Collapse
Affiliation(s)
- Xuejing Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zelun Zhi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 2021; 10:e66393. [PMID: 34387191 PMCID: PMC8460263 DOI: 10.7554/elife.66393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.
Collapse
Affiliation(s)
- Meredith H Wilson
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Steven A Farber
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
- Johns Hopkins University Department of BiologyBaltimoreUnited States
| |
Collapse
|
9
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Meng X, Sun R, Wang W, Zhang N, Cao S, Liu B, Fang P, Deng S, Yang S. ADFP promotes cell proliferation in lung adenocarcinoma via Akt phosphorylation. J Cell Mol Med 2020; 25:827-839. [PMID: 33249703 PMCID: PMC7812254 DOI: 10.1111/jcmm.16136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Previously, we identified differentially expressed proteins, including ADFP, between lung adenocarcinoma (LAC) tissue and paired normal bronchioloalveolar epithelium. In this study, we investigated the role of ADFP in LAC. ADFP levels in the serum of patients with lung cancer and benign diseases were measured by enzyme‐linked immunosorbent assays (ELISA). shRNA was used to knock‐down or overexpress ADFP in A549 and NCI‐H1299 cells. The biological function of ADFP and its underlying mechanisms was evaluated in vivo and in vitro. ADFP was highly expressed in the serum of lung cancer patients, especially those with LAC. ADFP promoted cell proliferation and up‐regulated the p‐Akt/Akt ratio in A549 and NCI‐H1299 cells in vitro. Furthermore, in nude mice, ADFP promoted tumour formation with high levels of p‐Akt/Akt, Ki67 and proliferating cell nuclear antigen (PCNA). Similar to the effect of ADFP knock‐down, MK‐2206 (a phosphorylation inhibitor of Akt) reduced A549 and NCI‐H1299 cell proliferation. In ADFP‐overexpressing A549 and NCI‐H1299 cells, proliferation was suppressed by MK‐2206 and returned to the control level. ADFP did not regulate invasion, migration or adhesion in LAC cells. Together, these results suggest that ADFP promotes LAC cell proliferation in vitro and in vivo by increasing Akt phosphorylation level.
Collapse
Affiliation(s)
- Xia Meng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Ruiying Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Zhang
- Department of Pathology, The Second Affiliated Hospital, Xi'an JiaoTong University, Xi'an, Shaanxi, China
| | - Shiguang Cao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Boxuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ping Fang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shanshan Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Abstract
Milk-secreting epithelial cells of the mammary gland are functionally specialized for the synthesis and secretion of large quantities of neutral lipids, a major macronutrient in milk from most mammals. Milk lipid synthesis and secretion are hormonally regulated and secretion occurs by a unique apocrine mechanism. Neutral lipids are synthesized and packaged into perilipin-2 (PLIN2) coated cytoplasmic lipid droplets within specialized cisternal domains of rough endoplasmic reticulum (ER). Continued lipid synthesis by ER membrane enzymes and lipid droplet fusion contribute to the large size of these cytoplasmic lipid droplets (5–15 μm in diameter). Lipid droplets are directionally trafficked within the epithelial cell to the apical plasma membrane. Upon contact, a molecular docking complex assembles to tether the droplet to the plasma membrane and facilitate its membrane envelopment. This docking complex consists of the transmembrane protein, butyrophilin, the cytoplasmic housekeeping protein, xanthine dehydrogenase/oxidoreductase, the lipid droplet coat proteins, PLIN2, and cell death-inducing DFFA-like effector A. Interactions of mitochondria, Golgi, and secretory vesicles with docked lipid droplets have also been reported and may supply membrane phospholipids, energy, or scaffold cytoskeleton for apocrine secretion of the lipid droplet. Final secretion of lipid droplets into the milk occurs in response to oxytocin-stimulated contraction of myoepithelial cells that surround milk-secreting epithelial cells. The mechanistic details of lipid droplet release are unknown at this time. The final secreted milk fat globule consists of a triglyceride core coated with a phospholipid monolayer and various coat proteins, fully encased in a membrane bilayer.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark S Ladinsky
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Ladinsky MS, Mardones GA, Orlicky DJ, Howell KE, McManaman JL. Electron Tomography Revels that Milk Lipids Originate from Endoplasmic Reticulum Domains with Novel Structural Features. J Mammary Gland Biol Neoplasia 2019; 24:293-304. [PMID: 31709487 PMCID: PMC7976053 DOI: 10.1007/s10911-019-09438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets (LD) are dynamically-regulated organelles that originate from the endoplasmic reticulum (ER), and function in the storage, trafficking and metabolism of neutral lipids. In mammary epithelial cells (MEC) of lactating animals, intact LD are secreted intact into milk to form milk lipids by a novel apocrine mechanism. The secretion of intact LD and the relatively large amounts of lipid secreted by lactating MEC increase demands on the cellular processes responsible for lipid synthesis and LD formation. As yet these processes are poorly defined due to limited understanding of LD-ER interactions. To overcome these limitations, we used rapid-freezing and freeze-substitution methods in conjunction with 3D electron tomography and high resolution immunolocalization to define interactions between LD with ER in MEC of pregnant and lactating rats. Using these approaches, we identified distinct ER domains that contribute to lipid droplet formation and stabilization and which possess unique features previously unrecognized or not fully appreciated. Our results show nascent lipid droplets within the ER lumen and the association of both forming and mature droplets with structurally unique regions of ER cisternae, characterized by the presence of perilipin-2, a protein implicated in lipid droplet formation, and enzymes involved in lipid synthesis. These data demonstrate that milk lipids originate from LD-ER domains with novel structural features and suggest a mechanism for initial droplet formation in the ER lumen and subsequent maturation of the droplets in association with ER cisternae.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO, 80309, USA
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Gonzalo A Mardones
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Instituto de Fisiologia, Universidad Austral de Chile, Valdiva, Chile
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn E Howell
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James L McManaman
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Redwan EM, Alkarim SA, El-Hanafy AA, Saad YM, Almehdar HA, Uversky VN. Disorder in milk proteins: adipophilin and TIP47, important constituents of the milk fat globule membrane. J Biomol Struct Dyn 2019; 38:1214-1229. [PMID: 30896308 DOI: 10.1080/07391102.2019.1592027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Milk fat globules (MFGs), which are secreted by the epithelial cells of the lactating mammary glands, account for the most of the nutritional value of milk. They are enveloped by the milk fat globule membrane (MFGM), a complex structure consisting of three phospholipid membrane monolayers and containing various lipids. Depending on the origin of milk, specific proteins accounts for 5-70% of the MFGM mass. Proteome of MFGMs includes hundreds of proteins, with nine major components being adipophilin, butyrophilin, cluster of differentiation 36, fatty acid binding protein, lactadherin, mucin 1, mucin 15, tail-interacting protein 47 (TIP47), and xanthine oxidoreductase. Two of the MFGM components, adipophilin and TIP47, belong to the five-member perilipin family of lipid droplet proteins. Adipophilin is involved in the formation of cytoplasmic lipid droplets and secretion of MFGs. This protein is also related to the formation of other lipid droplets that exist in most cell types, playing an important role in the transport of lipids from ER to the surface of lipid droplets. TIP47 acts as a cytoplasmic sorting factor for mannose 6-phosphate receptors and is recruited to the MFGM. Therefore, both adipophilin and TIP47 are moonlighting proteins, each possessing several unrelated functions. This review focuses on the main functions and specific structural features of adipophilin and TIP47, analyzes similarities and differences of these proteins among different species, and describes these proteins in the context of other members of the perilipin family.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Saleh A Alkarim
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr A El-Hanafy
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research & Technology Applications, Borg EL-Arab, Alexandria, Egypt
| | - Yasser M Saad
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Hussein A Almehdar
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Russia Moscow Region.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Ajjaji D, Ben M'barek K, Mimmack ML, England C, Herscovitz H, Dong L, Kay RG, Patel S, Saudek V, Small DM, Savage DB, Thiam AR. Dual binding motifs underpin the hierarchical association of perilipins1-3 with lipid droplets. Mol Biol Cell 2019; 30:703-716. [PMID: 30649995 PMCID: PMC6589688 DOI: 10.1091/mbc.e18-08-0534] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/03/2023] Open
Abstract
Lipid droplets (LDs) in all eukaryotic cells are coated with at least one of the perilipin (Plin) family of proteins. They all regulate key intracellular lipases but do so to significantly different extents. Where more than one Plin is expressed in a cell, they associate with LDs in a hierarchical manner. In vivo, this means that lipid flux control in a particular cell or tissue type is heavily influenced by the specific Plins present on its LDs. Despite their early discovery, exactly how Plins target LDs and why they displace each other in a "hierarchical" manner remains unclear. They all share an amino-terminal 11-mer repeat (11mr) amphipathic region suggested to be involved in LD targeting. Here, we show that, in vivo, this domain functions as a primary highly reversible LD targeting motif in Plin1-3, and, in vitro, we document reversible and competitive binding between a wild-type purified Plin1 11mr peptide and a mutant with reduced binding affinity to both "naked" and phospholipid-coated oil-water interfaces. We also present data suggesting that a second carboxy-terminal 4-helix bundle domain stabilizes LD binding in Plin1 more effectively than in Plin2, whereas it weakens binding in Plin3. These findings suggest that dual amphipathic helical regions mediate LD targeting and underpin the hierarchical binding of Plin1-3 to LDs.
Collapse
Affiliation(s)
- Dalila Ajjaji
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Kalthoum Ben M'barek
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Michael L. Mimmack
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Cheryl England
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Haya Herscovitz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Liang Dong
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Richard G. Kay
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Satish Patel
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Donald M. Small
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - David B. Savage
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front Pediatr 2018; 6:313. [PMID: 30460213 PMCID: PMC6232911 DOI: 10.3389/fped.2018.00313] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Emily Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jules Larke
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mariana Parenti
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Honvo-Houéto E, Henry C, Chat S, Layani S, Truchet S. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane. Mol Biol Cell 2016; 27:2946-64. [PMID: 27535430 PMCID: PMC5042581 DOI: 10.1091/mbc.e16-06-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/03/2016] [Indexed: 12/28/2022] Open
Abstract
The endoplasmic reticulum and the secretory vesicles contribute to the formation of the milk fat globule membrane. In addition, lipid raft microdomains may play a role in the transport and/or secretion of the milk fat globule, and SNARE proteins appear to coordinate membrane exchanges during milk product secretion. During lactation, mammary epithelial cells secrete huge amounts of milk from their apical side. The current view is that caseins are secreted by exocytosis, whereas milk fat globules are released by budding, enwrapped by the plasma membrane. Owing to the number and large size of milk fat globules, the membrane surface needed for their release might exceed that of the apical plasma membrane. A large-scale proteomics analysis of both cytoplasmic lipid droplets and secreted milk fat globule membranes was used to decipher the cellular origins of the milk fat globule membrane. Surprisingly, differential analysis of protein profiles of these two organelles strongly suggest that, in addition to the plasma membrane, the endoplasmic reticulum and the secretory vesicles contribute to the milk fat globule membrane. Analysis of membrane-associated and raft microdomain proteins reinforces this possibility and also points to a role for lipid rafts in milk product secretion. Our results provide evidence for a significant contribution of the endoplasmic reticulum to the milk fat globule membrane and a role for SNAREs in membrane dynamics during milk secretion. These novel aspects point to a more complex model for milk secretion than currently envisioned.
Collapse
Affiliation(s)
- Edith Honvo-Houéto
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Céline Henry
- INRA, UMR1319, MICALIS, PAPPSO, F-78352 Jouy-en-Josas Cedex, France
| | - Sophie Chat
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Sarah Layani
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| | - Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, F-78352 Jouy-en-Josas Cedex, France
| |
Collapse
|
18
|
Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I, Ouberai MM, Thiam AR, Patel S, Saudek V, Siniossoglou S, Savage DB. Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1-3. J Biol Chem 2016; 291:6664-78. [PMID: 26742848 PMCID: PMC4807253 DOI: 10.1074/jbc.m115.691048] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs inSaccharomyces cerevisiae,demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targetingin vivoandin vitro Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.
Collapse
Affiliation(s)
- Emily R Rowe
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Michael L Mimmack
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Antonio D Barbosa
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Afreen Haider
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Iona Isaac
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Myriam M Ouberai
- the Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom, and
| | - Abdou Rachid Thiam
- the Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Satish Patel
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Symeon Siniossoglou
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David B Savage
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom,
| |
Collapse
|
19
|
Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. Trends Cell Biol 2016; 26:535-546. [PMID: 26995697 DOI: 10.1016/j.tcb.2016.02.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
How proteins specifically localize to the phospholipid monolayer surface of lipid droplets (LDs) is being unraveled. We review here the major known pathways of protein targeting to LDs and suggest a classification framework based on the localization origin for the protein. Class I proteins often have a membrane-embedded, hydrophobic 'hairpin' motif, and access LDs from the endoplasmic reticulum (ER) either during LD formation or after formation via ER-LD membrane bridges. Class II proteins access the LD surface from the cytosol and bind through amphipathic helices or other hydrophobic domains. Other proteins require lipid modifications or protein-protein interactions to bind to LDs. We summarize knowledge for targeting and removal of the different classes, and highlight areas needing investigation.
Collapse
|
20
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
21
|
Henry C, Saadaoui B, Bouvier F, Cebo C. Phosphoproteomics of the goat milk fat globule membrane: New insights into lipid droplet secretion from the mammary epithelial cell. Proteomics 2015; 15:2307-17. [PMID: 25737190 DOI: 10.1002/pmic.201400245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/26/2015] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
Mechanisms of milk lipid secretion are highly controversial. Analyzing the fine protein composition of the "milk fat globule membrane" (MFGM), the triple-layered membrane surrounding milk lipid droplets (LDs) can provide mechanistic clues to better understand LD biosynthesis and secretion pathways in mammary epithelial cells (MECs). We therefore combined a high-sensitive Q-Exactive LC-MS/MS analysis of MFGM-derived peptides to the use of an in-house database intended to improve protein identification in the goat species. Using this approach, we performed the identification of 442 functional groups of proteins in the MFGM from goat milk. To get a more dynamic view of intracellular mechanisms driving LD dynamics in the MECs, we decided to investigate for the first time whether MFGM proteins were phosphorylated. MFGM proteins were sequentially digested by lysine-C and trypsin proteases and the resulting peptides were fractionated by a strong cation exchange chromatography. Titanium beads were used to enrich phosphopeptides from strong cation exchange chromatography eluted fractions. This approach lets us pinpoint 271 sites of phosphorylation on 124 unique goat MFGM proteins. Enriched GO terms associated with phosphorylated MFGM proteins were protein transport and actin cytoskeleton organization. Gained data are discussed with regard to lipid secretory mechanisms in the MECs. All MS data have been deposited in the ProteomeXchange with identifier PXD001039 (http://proteomecentral.proteomexchange.org/dataset/PXD001039).
Collapse
Affiliation(s)
- Céline Henry
- INRA, UMR1319, MICALIS, Plateforme PAPSSO (Plateforme d'Analyse Protéomique Paris Sud Ouest), Jouy-en-Josas, France
| | - Besma Saadaoui
- Faculté des Sciences de Gabès, Université de Gabès, cité Erriadh Zrig, Tunisia
| | | | - Christelle Cebo
- INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, Equipe Génomique Fonctionnelle et Physiologie de la Glande Mammaire (GFP-GM), Jouy-en-Josas, France
| |
Collapse
|
22
|
Najt CP, Lwande JS, McIntosh AL, Senthivinayagam S, Gupta S, Kuhn LA, Atshaves BP. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry 2014; 53:7051-66. [PMID: 25338003 PMCID: PMC4238800 DOI: 10.1021/bi500918m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Indexed: 12/18/2022]
Abstract
Although perilipin 2 (Plin2) has been shown to bind lipids with high affinity, the Plin2 lipid binding site has yet to be defined. This is of interest since Plin2's affinity for lipids has been suggested to be important for lipid droplet biogenesis and intracellular triacylglycerol accumulation. To define these regions, mouse Plin2 and several deletion mutants expressed as recombinant proteins and in mammalian cells were assessed by molecular modeling, fluorescence binding, circular dichroic, and fluorescence resonance energy transfer techniques to identify the structural and functional requirements for lipid binding. Major findings of this study indicate (1) the N-terminal PAT domain does not bind cholesterol or stearic acid; (2) Plin2 residues 119-251, containing helix α4, the α-β domain, and part of helix α6 form a Plin3-like cleft found to be important for highest affinity lipid binding; (3) both stearic acid and cholesterol interact favorably with the Plin2 cleft formed by conserved residues in helix α6 and adjacent strands, which is common to all the active lipid-binding constructs; and (4) discrete targeting of the Plin2 mutants to lipid droplets supports Plin2 containing two independent, nonoverlapping lipid droplet targeting domains in its central and C-terminal sequences. Thus, the current work reveals specific domains responsible for Plin2-lipid interactions that involves the protein's lipid binding and targeting functions.
Collapse
Affiliation(s)
- Charles P. Najt
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joel S. Lwande
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Avery L. McIntosh
- Physiology and Pharmacology, Texas A&M
University, TVMC College Station, Texas 77843-4466, United States
| | - Subramanian Senthivinayagam
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shipra Gupta
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Leslie A. Kuhn
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Barbara P. Atshaves
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Saben JL, Bales ES, Jackman MR, Orlicky D, MacLean PS, McManaman JL. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS One 2014; 9:e98066. [PMID: 24849657 PMCID: PMC4029960 DOI: 10.1371/journal.pone.0098066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.
Collapse
Affiliation(s)
- Jessica L. Saben
- Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Graduate Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew R. Jackman
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James L. McManaman
- Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Graduate Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mitrova K, Karpisek M, Durilova M, Dragusin LG, Nevoral J, Bronsky J. Development of high-sensitive ELISA method for detection of adipophilin levels in human colostrum and breast milk. J Clin Lab Anal 2014; 28:255-60. [PMID: 24577896 DOI: 10.1002/jcla.21675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 07/31/2013] [Indexed: 11/11/2022] Open
Abstract
AIM To develop and validate high-sensitive (hs) ELISA method for detection of adipophilin (adipose differentiation-related protein, ADRP) in human breast milk (BM) and to analyze adipophilin levels in BM during 12 months of lactation. METHODS ADRP levels were determined using hsELISA method (Biovendor-Laboratory Medicine, Inc.) in colostrum (D0) and BM of 72 mothers was collected 1, 3, 6, and 12 months following delivery (M1, 3, 6, 12). RESULTS ADRP was detectable in BM up to 12 months of lactation. Mean levels at D0 were 1.98 ± 0.12; M1, 2.83 ± 0.21; M3, 2.39 ± 0.17; M6, 2.57 ± 0.16; and at M12 3.25 ± 0.21 μg/ml. Significantly higher levels of ADRP were found in M1 and M12 when compared to D0 and in M12 when compared to M3 (overall P = 0.0001). No significant correlation was seen between ADRP levels in BM and adiponectin, body weight of infants, their birth length, body weight gain during the first year of life, or BMI of mothers before pregnancy. CONCLUSIONS We developed and validated hsELISA for detection of ADRP in human BM. ADRP was detectable in human BM during the whole 12 months of lactation period and its levels were intraindividually well-conserved.
Collapse
Affiliation(s)
- Katarina Mitrova
- Department of Paediatrics, 2nd Faculty of Medicine and University Hospital Motol, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
Lemay DG, Hovey RC, Hartono SR, Hinde K, Smilowitz JT, Ventimiglia F, Schmidt KA, Lee JWS, Islas-Trejo A, Silva PI, Korf I, Medrano JF, Barry PA, German JB. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics 2013; 14:872. [PMID: 24330573 PMCID: PMC3871720 DOI: 10.1186/1471-2164-14-872] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies of normal human mammary gland development and function have mostly relied on cell culture, limited surgical specimens, and rodent models. Although RNA extracted from human milk has been used to assay the mammary transcriptome non-invasively, this assay has not been adequately validated in primates. Thus, the objectives of the current study were to assess the suitability of lactating rhesus macaques as a model for lactating humans and to determine whether RNA extracted from milk fractions is representative of RNA extracted from mammary tissue for the purpose of studying the transcriptome of milk-producing cells. RESULTS We confirmed that macaque milk contains cytoplasmic crescents and that ample high-quality RNA can be obtained for sequencing. Using RNA sequencing, RNA extracted from macaque milk fat and milk cell fractions more accurately represented RNA from mammary epithelial cells (cells that produce milk) than did RNA from whole mammary tissue. Mammary epithelium-specific transcripts were more abundant in macaque milk fat, whereas adipose or stroma-specific transcripts were more abundant in mammary tissue. Functional analyses confirmed the validity of milk as a source of RNA from milk-producing mammary epithelial cells. CONCLUSIONS RNA extracted from the milk fat during lactation accurately portrayed the RNA profile of milk-producing mammary epithelial cells in a non-human primate. However, this sample type clearly requires protocols that minimize RNA degradation. Overall, we validated the use of RNA extracted from human and macaque milk and provided evidence to support the use of lactating macaques as a model for human lactation.
Collapse
Affiliation(s)
- Danielle G Lemay
- Genome Center, University of California Davis, 451 Health Sciences Dr, Davis, CA 95616, USA
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Stella R Hartono
- Genome Center, University of California Davis, 451 Health Sciences Dr, Davis, CA 95616, USA
| | - Katie Hinde
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, MA 02138, USA
- California National Primate Research Center, University of California Davis, Road 98 and Hutchison Drive, Davis, CA, USA
| | - Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Frank Ventimiglia
- California National Primate Research Center, University of California Davis, Road 98 and Hutchison Drive, Davis, CA, USA
| | - Kimberli A Schmidt
- Center for Comparative Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Joyce WS Lee
- California National Primate Research Center, University of California Davis, Road 98 and Hutchison Drive, Davis, CA, USA
| | - Alma Islas-Trejo
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Pedro Ivo Silva
- Genome Center, University of California Davis, 451 Health Sciences Dr, Davis, CA 95616, USA
| | - Ian Korf
- Genome Center, University of California Davis, 451 Health Sciences Dr, Davis, CA 95616, USA
| | - Juan F Medrano
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Peter A Barry
- Center for Comparative Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - J Bruce German
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
26
|
Vindigni JD, Wien F, Giuliani A, Erpapazoglou Z, Tache R, Jagic F, Chardot T, Gohon Y, Froissard M. Fold of an oleosin targeted to cellular oil bodies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1881-8. [DOI: 10.1016/j.bbamem.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/26/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
|
27
|
Crunk AE, Monks J, Murakami A, Jackman M, MacLean PS, Ladinsky M, Bales ES, Cain S, Orlicky DJ, McManaman JL. Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 2013; 8:e67631. [PMID: 23874434 PMCID: PMC3708958 DOI: 10.1371/journal.pone.0067631] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.
Collapse
Affiliation(s)
- Amanda E. Crunk
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jenifer Monks
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Aya Murakami
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Matthew Jackman
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mark Ladinsky
- The Boulder Laboratory for 3D Electron Microscopy, University of Colorado Boulder, Boulder Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Cain
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James L. McManaman
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jeong J, Lisinski I, Kadegowda AKG, Shin H, Wooding FBP, Daniels BR, Schaack J, Mather IH. A test of current models for the mechanism of milk-lipid droplet secretion. Traffic 2013; 14:974-86. [PMID: 23738536 DOI: 10.1111/tra.12087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022]
Abstract
Milk lipid is secreted by a unique process, during which triacylglycerol droplets bud from mammary cells coated with an outer bilayer of apical membrane. In all current schemes, the integral protein butyrophilin 1A1 (BTN) is postulated to serve as a transmembrane scaffold, which interacts either with itself or with the peripheral proteins, xanthine oxidoreductase (XOR) and possibly perilipin-2 (PLIN2), to form an immobile bridging complex between the droplet and apical surface. In one such scheme, BTN on the surface of cytoplasmic lipid droplets interacts directly with BTN in the apical membrane without binding to either XOR or PLIN2. We tested these models using both biochemical and morphological approaches. BTN was concentrated in the apical membrane in all species examined and contained mature N-linked glycans. We found no evidence for the association of unprocessed BTN with intracellular lipid droplets. BTN-enhanced green fluorescent protein was highly mobile in areas of mouse milk-lipid droplets that had not undergone post-secretion changes, and endogenous mouse BTN comprised only 0.5-0.7% (w/w) of the total protein, i.e. over 50-fold less than in the milk-lipid droplets of cow and other species. These data are incompatible with models of milk-lipid secretion in which BTN is the major component of an immobile global adhesive complex and suggest that interactions between BTN and other proteins at the time of secretion are more transient than previously predicted. The high mobility of BTN in lipid droplets marks it as a potential mobile signaling molecule in milk.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Magné J, Aminoff A, Perman Sundelin J, Mannila MN, Gustafsson P, Hultenby K, Wernerson A, Bauer G, Listenberger L, Neville MJ, Karpe F, Borén J, Ehrenborg E. The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. FASEB J 2013; 27:3090-9. [PMID: 23603836 DOI: 10.1096/fj.13-228759] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Perilipin 2 (PLIN2) is the most abundant lipid droplet (LD)-associated protein in nonadipose tissue, and its expression correlates with intracellular lipid accumulation. Here we identified a missense polymorphism, Ser251Pro, that has major effect on protein structure and function, along with an influence on human plasma triglyceride concentration. The evolutionarily conserved Ser251Pro polymorphism was identified with the ClustalW program. Structure modeling using 3D-JigSaw and the Chimera package revealed that the Pro251 allele disrupts a predicted α-helix in PLIN2. Analyses of macrophages from individuals carrying Ser251Pro variants and human embryonic kidney 293 (HEK293) cells stably transfected with either of the alleles demonstrated that the Pro251 variant causes increased lipid accumulation and decreased lipolysis. Analysis of LD size distribution in stably transfected cells showed that the minor Pro251 allele resulted in an increased number of small LDs per cell and increased perilipin 3 protein expression levels as compared with cells carrying the major Ser251 allele. Genotyping of 2113 individuals indicated that the Pro251 variant is associated with decreased plasma triglyceride and very low-density lipoprotein concentrations. Altogether, these data provide the first evidence of a polymorphism in PLIN2 that affects PLIN2 function and may influence the development of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Joëlle Magné
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Skinner JR, Harris LAL, Shew TM, Abumrad NA, Wolins NE. Perilipin 1 moves between the fat droplet and the endoplasmic reticulum. Adipocyte 2013; 2:80-6. [PMID: 23805403 PMCID: PMC3661117 DOI: 10.4161/adip.22864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 11/19/2022] Open
Abstract
Perilipin 1, unlike the other perilipins, is thought to be restricted to the fat droplet. We reassessed its cellular distribution using the fat droplet marker CGI-58 in OP9 and 3T3-L1 adipocyte lines and in brown adipose tissue (BAT). As expected, we found perilipin 1 in the fat droplet-enriched floating fraction from centrifuged adipocyte or BAT homogenates. However, about half of perilipin 1 was suspended in the cytosol/infranate or pelleted with cellular membranes. In these fractionations, most of the fat droplet-associated protein CGI-58 was in the floating fraction. In BAT and OP9 adipocytes about a third of perilipin 1 pellets, compared with a much smaller fraction of CGI-58. Co-imaging perilipin 1 and smooth endoplasmic reticulum (ER) markers reveals both ER and fat droplet associated perilipin 1 in OP9 adipocytes. Consistent with these observations, perilipin 1 overexpressed in COS7 cells mostly fractionates with cellular membranes and imaging shows it on the ER. In 3T3-L1 adipocytes almost half of perilipin 1 floats, half is suspended as infranate and small amounts pellet. Finally, driving rapid fat droplet synthesis in OP9 adipocytes increases the intensity of perilipin 1 on fat droplets, while decreasing non-fat droplet immunolabeling. Confirming the morphological findings, fractionation shows perilipin 1 moving from the pelleted to the floated fractions. In conclusion, this study documents an expanded intracellular distribution for perilipin 1 and its movement from ER to fat droplet during lipid synthesis.
Collapse
|
31
|
Abstract
Neonates of most species depend on milk lipids for calories, fat-soluble vitamins, and bioactive lipid components for growth and development during the postnatal period. To meet neonatal nutrition and development needs, the mammary gland has evolved efficient mechanisms for synthesizing and secreting large quantities of lipid during lactation. Although the biochemical steps involved in milk lipid synthesis are understood, the identities of the genes mediating these steps and the molecular physiology of milk lipid production and secretion have only recently begun to be understood in detail through advances in mouse genetics, gene expression analysis, protein structural properties, and the cell biology of lipid metabolism. This review discusses emerging data about the molecular, cellular, and structural determinants of milk lipid synthesis and secretion within the context of physiological functions.
Collapse
Affiliation(s)
- James L McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Graduate Programs in Cell Biology, Stem Cells and Development, Molecular Biology and Reproductive Sciences, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
33
|
Yang L, Ding Y, Chen Y, Zhang S, Huo C, Wang Y, Yu J, Zhang P, Na H, Zhang H, Ma Y, Liu P. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res 2012; 53:1245-53. [PMID: 22534641 DOI: 10.1194/jlr.r024117] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle.
Collapse
Affiliation(s)
- Li Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gandotra S, Lim K, Girousse A, Saudek V, O'Rahilly S, Savage DB. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem 2011; 286:34998-5006. [PMID: 21757733 PMCID: PMC3186430 DOI: 10.1074/jbc.m111.278853] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Indexed: 01/03/2023] Open
Abstract
Perilipin (PLIN1) is a constitutive adipocyte lipid droplet coat protein. N-terminal amphipathic helices and central hydrophobic stretches are thought to anchor it on the lipid droplet, where it appears to function as a scaffold protein regulating lipase activity. We recently identified two different C-terminal PLIN1 frame shift mutations (Leu-404fs and Val-398fs) in patients with a novel subtype of partial lipodystrophy, hypertriglyceridemia, severe insulin resistance, and type 2 diabetes (Gandotra, S., Le Dour, C., Bottomley, W., Cervera, P., Giral, P., Reznik, Y., Charpentier, G., Auclair, M., Delépine, M., Barroso, I., Semple, R. K., Lathrop, M., Lascols, O., Capeau, J., O'Rahilly, S., Magré, J., Savage, D. B., and Vigouroux, C. (2011) N. Engl. J. Med. 364, 740-748.) When overexpressed in preadipocytes, both mutants fail to inhibit basal lipolysis. Here we used bimolecular fluorescence complementation assays to show that the mutants fail to bind ABHD5, permitting its constitutive coactivation of ATGL, resulting in increased basal lipolysis. siRNA-mediated knockdown of either ABHD5 or ATGL expression in the stably transfected cells expressing mutant PLIN1 reduced basal lipolysis. These insights from naturally occurring human variants suggest that the C terminus sequesters ABHD5 and thus inhibits basal ATGL activity. The data also suggest that pharmacological inhibition of ATGL could have therapeutic potential in patients with this rare but metabolically serious disorder.
Collapse
Affiliation(s)
- Sheetal Gandotra
- From the Institute of Metabolic Science Metabolic Research Laboratories (IMS MRL) and the Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Koini Lim
- From the Institute of Metabolic Science Metabolic Research Laboratories (IMS MRL) and the Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Amandine Girousse
- From the Institute of Metabolic Science Metabolic Research Laboratories (IMS MRL) and the Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- From the Institute of Metabolic Science Metabolic Research Laboratories (IMS MRL) and the Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- From the Institute of Metabolic Science Metabolic Research Laboratories (IMS MRL) and the Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - David B. Savage
- From the Institute of Metabolic Science Metabolic Research Laboratories (IMS MRL) and the Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
35
|
Russell TD, Schaack J, Orlicky DJ, Palmer C, Chang BHJ, Chan L, McManaman JL. Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. J Cell Sci 2011; 124:3247-53. [PMID: 21878492 DOI: 10.1242/jcs.082974] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Milk lipids originate by secretion of triglyceride-rich cytoplasmic lipid droplets (CLDs) from mammary epithelial cells. Adipophilin (ADPH)/Plin2, a member of the perilipin family of CLD binding proteins, is hypothesized to regulate CLD production in these cells during differentiation of the mammary gland into a secretory organ. We tested this hypothesis by comparing CLD accumulation in differentiating mammary glands of wild-type and ADPH-deficient mice. ADPH deficiency did not prevent CLD formation; however, it disrupted the increase in CLD size that normally occurs in differentiating mammary epithelial cells. Failure to form large CLDs in ADPH-deficient mice correlated with localization of adipose triglyceride lipase (ATGL) to the CLD surface, suggesting that ADPH promotes CLD growth by inhibiting lipolytic activity. Significantly, mammary alveoli also failed to mature in ADPH-deficient mice, and pups born to these mice failed to survive. The possibility that CLD accumulation and alveolar maturation defects in ADPH-deficient mice are functionally related was tested by in vivo rescue experiments. Transduction of mammary glands of pregnant ADPH-deficient mice with adenovirus encoding ADPH as an N-terminal GFP fusion protein prevented ATGL from localizing to CLDs and rescued CLD size and alveolar maturation defects. Collectively, these data provide direct in vivo evidence that ADPH inhibition of ATGL-dependent lipolysis is required for normal CLD accumulation and alveolar maturation during mammary gland differentiation. We speculate that impairing CLD accumulation interferes with alveolar maturation and lactation by disrupting triglyceride homeostasis in mammary epithelial cells.
Collapse
Affiliation(s)
- Tanya D Russell
- Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Chong BM, Reigan P, Mayle-Combs KD, Orlicky DJ, McManaman JL. Determinants of adipophilin function in milk lipid formation and secretion. Trends Endocrinol Metab 2011; 22:211-7. [PMID: 21592818 PMCID: PMC3118920 DOI: 10.1016/j.tem.2011.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/16/2022]
Abstract
In many species the lactating mammary gland is one of the most lipogenic organs of the body. The majority of the lipid produced during lactation is secreted into milk by a novel process of membrane envelopment of cytoplasmic lipid droplets (CLDs). Adipophilin (ADRP/ADPH/PLIN2), a member of the perilipin (PAT) family of lipid droplet proteins, is hypothesized to play a pivotal role in both formation and secretion of milk lipids. Production of milk lipids is the only known example of CLD secretion, and the only process in which PAT family members undergo secretion. This review discusses emerging data on the structural and functional properties of adipophilin that determine its physiological actions and mediate its effects on milk lipid formation and secretion.
Collapse
Affiliation(s)
- Brandi M. Chong
- Graduate Program in Molecular Biology, University of Colorado, Anschutz Medical Campus
- Division of Basic Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus
| | - Kasey D. Mayle-Combs
- University of Colorado Denver Lab Coats Program, University of Colorado, Anschutz Medical Campus
| | - David J. Orlicky
- Department of Pathology, University of Colorado, Anschutz Medical Campus
| | - James L. McManaman
- Graduate Program in Molecular Biology, University of Colorado, Anschutz Medical Campus
- Division of Basic Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus
| |
Collapse
|