1
|
Mivehchi H, Eskandari-Yaghbastlo A, Pour Bahrami P, Elhami A, Faghihinia F, Nejati ST, Kazemi KS, Nabi Afjadi M. Exploring the role of oral bacteria in oral cancer: a narrative review. Discov Oncol 2025; 16:242. [PMID: 40009328 DOI: 10.1007/s12672-025-01998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of research indicates that a wide range of cancer types may correlate with human microbiome components. On the other hand, little is known about the potential contribution of the oral microbiota to oral cancer. However, some oral microbiome components can stimulate different tumorigenic processes associated with the development of cancer. In this line, two prevalent oral infections, Porphyromonas gingivalis, and Fusobacterium nucleatum can increase tumor growth. The microbiome can impact the course of the illness through direct interactions with the human body and major modifications to the toxicity and responsiveness to different kinds of cancer therapy. Recent research has demonstrated a relationship between specific phylogenetic groupings and the results of immunotherapy treatment for particular tumor types. Conversely, there has been a recent upsurge in interest in the possibility of using microbes to treat cancer. At the moment, some species, such as Salmonella typhimurium and Clostridium spp., are being explored as possible cancer treatment vectors. Thus, understanding these microbial interactions highlights the importance of maintaining a healthy oral microbiome in preventing oral cancers. From this perspective, this review will discuss the role of the microbiome on oral cancers and their possible application in oral cancer treatment/improvement.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
3
|
Buakaew W, Krobthong S, Yingchutrakul Y, Khamto N, Sutana P, Potup P, Thongsri Y, Daowtak K, Ferrante A, Léon C, Usuwanthim K. In Vitro Investigation of the Anti-Fibrotic Effects of 1-Phenyl-2-Pentanol, Identified from Moringa oleifera Lam., on Hepatic Stellate Cells. Int J Mol Sci 2024; 25:8995. [PMID: 39201682 PMCID: PMC11354330 DOI: 10.3390/ijms25168995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Liver fibrosis, characterized by excessive extracellular matrix deposition, is driven by activated hepatic stellate cells (HSCs). Due to the limited availability of anti-fibrotic drugs, the research on therapeutic agents continues. Here we have investigated Moringa oleifera Lam. (MO), known for its various bioactive properties, for anti-fibrotic effects. This study has focused on 1-phenyl-2-pentanol (1-PHE), a compound derived from MO leaves, and its effects on LX-2 human hepatic stellate cell activation. TGF-β1-stimulated LX-2 cells were treated with MO extract or 1-PHE, and the changes in liver fibrosis markers were assessed at both gene and protein levels. Proteomic analysis and molecular docking were employed to identify potential protein targets and signaling pathways affected by 1-PHE. Treatment with 1-PHE downregulated fibrosis markers, including collagen type I alpha 1 chain (COL1A1), collagen type IV alpha 1 chain (COL4A1), mothers against decapentaplegic homologs 2 and 3 (SMAD2/3), and matrix metalloproteinase-2 (MMP2), and reduced the secretion of matrix metalloproteinase-9 (MMP-9). Proteomic analysis data showed that 1-PHE modulates the Wnt/β-catenin pathway, providing a possible mechanism for its effects. Our results suggest that 1-PHE inhibits the TGF-β1 and Wnt/β-catenin signaling pathways and HSC activation, indicating its potential as an anti-liver-fibrosis agent.
Collapse
Affiliation(s)
- Watunyoo Buakaew
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornsuda Sutana
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Antonio Ferrante
- Department of Immunopathology, South Australia (SA) Pathology, Women's and Children's Hospital, Adelaide, SA 5006, Australia
- The Adelaide Medical School, The School of Biological Science and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Catherine Léon
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, 67000 Strasbourg, France
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
4
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
6
|
Sim NS, Shin SJ, Park I, Yoon SO, Koh YW, Kim SH, Park YM. Investigation of somatic mutation profiles and tumor evolution of primary oropharyngeal cancer and sequential lymph node metastases using multiregional whole-exome sequencing. Mol Oncol 2023. [PMID: 36852664 DOI: 10.1002/1878-0261.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
Lymph node (LN) metastasis is an important factor in determining the treatment and prognosis of oropharyngeal squamous cell carcinoma (OPSCC). Here, we compared the somatic mutational profiles and clonal evolution of primary and metastatic LNs using multiregion sequencing of human papilloma virus (HPV)-positive OPSCC and HPV-negative OPSCC. We performed high-depth whole-exome sequencing (200×) of 76 samples from 18 patients with OPSCC (10 HPV-positive and 8 HPV-negative), including 18 primary tumor samples, 40 metastatic LN samples, and 18 normal tissue samples. Among 40 metastatic LNs, 22 showed extranodal extension (ENE). Mutation profiles of HPV-positive OPSCC and HPV-negative OPSCC were similar to those reported previously. Somatic mutations in CDKN2A and TP53 were frequently detected in HPV-negative OPSCC. Somatic mutations in HPV-positive OPSCC samples showed APOBEC-related signatures. Somatic mutations from metastatic LNs showed a different pattern than the primary tumor. Somatic mutations acquired in the WNT pathway during metastasis showed a significant relationship with ENE. Clonal evolution analysis of primary and metastatic LNs showed that, in some cases, each metastatic LN originated from a different primary tumor sub-clone.
Collapse
Affiliation(s)
- Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inho Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Se-Heon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Song C, Broadie K. Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome. Front Cell Dev Biol 2022; 10:934662. [PMID: 35880195 PMCID: PMC9307498 DOI: 10.3389/fcell.2022.934662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023] Open
Abstract
Drosophila models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the Drosophila FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides. We present Drosophila FXS model defects compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular junction (NMJ) synapse model, and the developing adult brain. All three of these secreted signaling pathways are strikingly altered in FXS disease models, giving new mechanistic insights into impaired cellular outcomes and neurological phenotypes. Drosophila provides a powerful genetic screening platform to expand understanding of these secretory mechanisms and to test cellular roles in both peripheral and central nervous systems. The studies demonstrate the importance of exploring broad genetic interactions and unexpected regulatory mechanisms. We discuss a number of research avenues to pursue BMP, Wnt, and insulin signaling in future FXS investigations and the development of potential therapeutics.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, School of Medicine, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Cai NN, Geng Q, Jiang Y, Zhu WQ, Yang R, Zhang BY, Xiao YF, Tang B, Zhang XM. Schisandrin A and B affect the proliferation and differentiation of neural stem cells. J Chem Neuroanat 2021; 119:102058. [PMID: 34896558 DOI: 10.1016/j.jchemneu.2021.102058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Schisandrin A and B (Sch A and B) are the important components of Asian dietary supplement and phytomedicine Schisandra chinensis (S. chinensis). They can enhance adult neurogenesis in vivo; however, these effects still need to be verified. Here NE-4 C neural stem cells (NSCs) were employed as the in vitro model and treated with Sch A and B at 0.1 μg/mL. EdU (5-Ethynyl-2'-deoxyuridine) labeling showed that both Sch A and B treatments enhanced NSC proliferation. Real-time PCR analysis showed the mRNA abundances of telomerase gene Tert and cell cycle gene Cyclin D1 were significantly up-regulated after the treatments. During the neurosphere induction, Sch B enhanced the neurosphere formation and neuronal differentiation, and increased the neurosphere semidiameters. Detection of the neuron differentiation marker Mapt indicates that both Sch A and B, especially Sch B, benefits the induced neuronal differentiation. Sch B treatment also enhanced mRNA expressions of the neurosphere-specific adhesion molecule Cdh2 and Wnt pathway-related genes including Mmp9, Cyclin D1 and β-catenin. Together, Sch A especially Sch B, promotes the proliferation, affects the survival, differentiation and neurogenesis of NSCs, which is consistent with their in vivo effects. This study provides further clue on the potential neuropharmacological effects of S. chinensis.
Collapse
Affiliation(s)
- Ning-Ning Cai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, China.
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Jiang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wen-Qian Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo-Yang Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu-Feng Xiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue-Ming Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
10
|
Pappalardo A, Herron L, Alvarez Cespedes DE, Abaci HE. Quantitative Evaluation of Human Umbilical Vein and Induced Pluripotent Stem Cell-Derived Endothelial Cells as an Alternative Cell Source to Skin-Specific Endothelial Cells in Engineered Skin Grafts. Adv Wound Care (New Rochelle) 2021; 10:490-502. [PMID: 32870778 DOI: 10.1089/wound.2020.1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective: We compared the capability of human umbilical vein endothelial cells (HUVECs), induced pluripotent stem cell (iPSC)-derived endothelial cells (iECs), and human dermal blood endothelial cells (HDBECs) to effectively vascularize engineered human skin constructs (HSCs) in vitro and on immunodeficient mice. Approach: We quantified the angiogenesis within HSCs both in vitro and in vivo through computational analyses of immunofluorescent (IF) staining. We assayed with real-time quantitative PCR (RT-qPCR) the expression of key endothelial, dermal, and epidermal genes in 2D culture and HSCs. Epidermal integrity and proliferation were also evaluated through haematoxylin and eosin staining, and IF staining. Results: IF confirmed iEC commitment to endothelial phenotype. RT-qPCR showed HUVECs and iECs immaturity compared with HDBECs. In vitro, the vascular network extension was comparable for HDBECs and HUVECs despite differences in vascular diameter, whereas iECs formed unorganized rudimentary tubular structures. In vivo, all ECs produced discrete vascular networks of varying dimensions. HUVECs and HDBECs maintained a higher proliferation of basal keratinocytes. HDBECs had the best impact on extracellular matrix expression, and epidermal proliferation and differentiation. Innovation: To our knowledge, this study represents the first direct and quantitative comparison of HDBECs, HUVECs, and iECs angiogenic performance in HSCs. Conclusions: Our data indicate that HUVECs and iECs can be an alternative cell source to HDBEC to promote the short-term viability of prevascularized engineered grafts. Nevertheless, HDBECs maintain their capillary identity and outperform other EC types in promoting the maturation of the dermis and epidermis. These intrinsic characteristics of HDBECs may influence the long-term function of skin grafts.
Collapse
Affiliation(s)
- Alberto Pappalardo
- Dermatology Department, Columbia University Medical Center, New York, New York, USA
| | - Lauren Herron
- Dermatology Department, Columbia University Medical Center, New York, New York, USA
| | | | - Hasan Erbil Abaci
- Dermatology Department, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
11
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
12
|
Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 2020; 15:803-822. [PMID: 32281421 DOI: 10.1080/17460441.2020.1746266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wnt/β-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/β-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED This review focuses on the role of Wnt/β-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION The increasing interest paid to the role of Wnt/β-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| |
Collapse
|
13
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
14
|
Barrionuevo E, Cayrol F, Cremaschi GA, Cornier PG, Boggián DB, Delpiccolo CML, Mata EG, Roguin LP, Blank VC. A Penicillin Derivative Exerts an Anti-Metastatic Activity in Melanoma Cells Through the Downregulation of Integrin αvβ3 and Wnt/β-Catenin Pathway. Front Pharmacol 2020; 11:127. [PMID: 32158394 PMCID: PMC7052307 DOI: 10.3389/fphar.2020.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
The synthetic triazolylpeptidyl penicillin derivative, named TAP7f, has been previously characterized as an effective antitumor agent in vitro and in vivo against B16-F0 melanoma cells. In this study, we investigated the anti-metastatic potential of this compound on highly metastatic murine B16-F10 and human A375 melanoma cells. We found that TAP7f inhibited cell adhesion, migration and invasion in a dose-dependent manner. Additionally, we demonstrated that TAP7f downregulated integrin αvβ3 expression and Wnt/β-catenin pathway, a signaling cascade commonly related to tumor invasion and metastasis. Thus, TAP7f reduced both the enzymatic activity and the expression levels of matrix-metalloproteinases-2 and -9 in a time dependent manner. Moreover, TAP7f inhibited the expression of the transcription factor Snail and the mesenchymal markers vimentin, and N-cadherin, and up-regulated the expression of the epithelial marker E-cadherin, suggesting that the penicillin derivative affects epithelial-mesenchymal transition. Results obtained in vitro were supported by those obtained in a B16-F10-bearing mice metastatic model, that showed a significant TAP7f inhibition of lung metastasis. These findings suggest the potential of TAP7f as a chemotherapeutic agent for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Elizabeth Barrionuevo
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Florencia Cayrol
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, Buenos Aires, Argentina
| | - Patricia G Cornier
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Dora B Boggián
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina M L Delpiccolo
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ernesto G Mata
- Laboratorio de Química Orgánica, Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leonor P Roguin
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Viviana C Blank
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Portela M, Venkataramani V, Fahey-Lozano N, Seco E, Losada-Perez M, Winkler F, Casas-Tintó S. Glioblastoma cells vampirize WNT from neurons and trigger a JNK/MMP signaling loop that enhances glioblastoma progression and neurodegeneration. PLoS Biol 2019; 17:e3000545. [PMID: 31846454 PMCID: PMC6917273 DOI: 10.1371/journal.pbio.3000545] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, β-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.
Collapse
Affiliation(s)
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
16
|
Choi KA, Park HK, Hwang I, Jeong H, Park HS, Jang AY, Namkung Y, Hyun D, Lee S, Yoo BM, Kwon HJ, Seol KC, Kim JO, Hong S. Tissue inhibitor of metalloproteinase proteins inhibit teratoma growth in mice transplanted with pluripotent stem cells. Stem Cells 2019; 38:516-529. [PMID: 31778275 DOI: 10.1002/stem.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/25/2019] [Indexed: 11/11/2022]
Abstract
Pluripotent stem cells (PSCs) can serve as an unlimited cell source for transplantation therapies for treating various devastating diseases, such as cardiovascular diseases, diabetes, and Parkinson's disease. However, PSC transplantation has some associated risks, including teratoma formation from the remaining undifferentiated PSCs. Thus, for successful clinical application, it is essential to ablate the proliferative PSCs before or after transplantation. In this study, neural stem cell-derived conditioned medium (NSC-CM) inhibited the proliferation of PSCs and PSC-derived neural precursor (NP) cells without influencing the potential of PSC-NP cells to differentiate into neurons in vitro and prevented teratoma growth in vivo. Moreover, we found that the NSC-CM remarkably decreased the expression levels of Oct4 and cyclin D1 that Oct4 directly binds to and increased the cleaved-caspase 3-positive cell death through the DNA damage response in PSCs and PSC-NPs. Interestingly, we found that NSCs distinctly secreted the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 proteins. These proteins suppressed not only the proliferation of PSCs in cell culture but also teratoma growth in mice transplanted with PSCs through inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. Taken together, these results suggest that the TIMP proteins may improve the efficacy and safety of the PSC-based transplantation therapy.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Han-Kyul Park
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Insik Hwang
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hyesun Jeong
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hang-Soo Park
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Ah-Young Jang
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Yong Namkung
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Donghun Hyun
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seulbee Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Byung Min Yoo
- Medical College of Seoul National University, Seoul, Republic of Korea
| | | | - Ki-Cheon Seol
- Institute of Stem Cell Research, Future Cell Therapy, Ahnyang, Republic of Korea
| | - Jeong-Ok Kim
- Institute of Stem Cell Research, Future Cell Therapy, Ahnyang, Republic of Korea
| | - Sunghoi Hong
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Li F, Dai L, Niu J. GPX2 silencing relieves epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer by downregulating Wnt pathway. J Cell Physiol 2019; 235:7780-7790. [PMID: 31774184 DOI: 10.1002/jcp.29391] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
Glutathione peroxidase 2 (GPX2) participates in many cancers including pancreatic cancer (PC), and overexpression of GPX2 promotes tumor growth. Herein, we identified the role of GPX2 in epithelial-mesenchymal transformation (EMT), invasion, and metastasis in PC. Bioinformatics prediction was applied to select PC-related genes. The regulatory function of GPX2 in PC was explored by treatment with short hairpin RNA against GPX2 or LiCl (activator of wingless-type MMTV integration site [Wnt] pathway) in PC cells. GPX2 level in PC tissues, the levels of GPX2, β-catenin, Vimentin, Snail, epithelial-cadherin (E-cadherin), matrix metalloproteinase 2 (MMP2), MMP9, and Wnt2 in cells were determined. Subsequently, cell proliferation, invasion, and metastasis were assayed. Bioinformatics analysis revealed that GPX2 was involved in PC development mediated by the Wnt pathway. GPX2 was highly expressed in PC tissues. GPX2 silencing downregulated levels of β-catenin, Vimentin, Snail, MMP2, MMP9, and Wnt2 but upregulated levels of E-cadherin. It was confirmed that GPX2 silencing suppressed PC cell proliferation, metastasis, and invasion. Furthermore, the trend of EMT and invasion and metastasis of PC induced by the LiCl-activated Wnt pathway was reversed when the GPX2 was silenced. GPX2 silencing could inhibit the Wnt pathway, subsequently suppress PC development.
Collapse
Affiliation(s)
- Fuzhou Li
- Department of Imaging, Linyi People's Hospital, Linyi, China
| | - Lan Dai
- Department of Gynaecology and Obstetrics, Chinese Medicine Hospital of Linyi City, Linyi, China
| | - Jixiang Niu
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
18
|
Hou L, Shi H, Wang M, Liu J, Liu G. MicroRNA-497-5p attenuates IL-1β-induced cartilage matrix degradation in chondrocytes via Wnt/β-catenin signal pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3108-3118. [PMID: 31934153 PMCID: PMC6949713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease. Degradation of extracellular matrix (ECM) in chondrocytes is closely related to joint destruction in OA progression. MicroRNAs (miRNAs) have been reported to play important roles in progression of OA. However, the roles of miR-497-5p in OA process and its underlying mechanism remain not been well established. Chondrocytes were obtained from articular cartilage and stimulated with IL-1β. The expression of miR-497-5p and Wnt3a was detected by qRT-PCR. Western blot analysis was performed to measure the proteins of Wnt3a, collagen II, aggrecan matrix metalloproteinase (MMP) 13 and ADAMTS4. Cell apoptosis was detected by flow cytometry. The putative binding sites of miR-497-5p and Wnt3a were predicted by Targetscan and verified through luciferase report assay. We found that miR-497-5p expression was reduced and Wnt3a expression was enhanced in OA cartilage and IL-1β-stimulated chondrocytes. Moreover, Wnt3a was a direct target of miR-497-5p, and expression of miR-497-5p was negatively correlated with Wnt3a level in OA cartilage. Furthermore, overexpression of miR-497-5p prominently increased the expression of cartilage matrix molecules collagen II and aggrecan, and reduced the expression of matrix-degrading enzymes MMP13 and ADAMTS4 while overexpression of Wnt3a reversed these effects, whereas addition of DKK-1attenuated the Wnt3a-mediated functions in IL-1β-stimulated chondrocytes. In conclusion, miR-497-5p attenuated IL-1β-induced cartilage matrix degradation in chondrocytes via Wnt/β-catenin signal pathway, providing a potential therapeutic target for treatment of OA.
Collapse
Affiliation(s)
- Liying Hou
- Department of Orthopeadic Surgery, The Second People’s Hospital of DongyingDongying, Shandong, China
| | - Hui Shi
- Department of Bone and Joint Surgery, Binzhou Meidical University HospitalBinzhou, Shandong, China
| | - Mingming Wang
- Department of Orthopeadic Surgery (C), The People’s Hospital of BinzhouBinzhou, Shandong, China
| | - Jinghua Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second People’s Hospital of DongyingDongying, Shandong, China
| | - Guoqiang Liu
- Department of Traumatology, The Second People’s Hospital of DongyingDongying, Shandong, China
| |
Collapse
|
19
|
Shalash MAM, Rohoma KH, Kandil NS, Abdel Mohsen MA, Taha AAF. Serum sclerostin level and its relation to subclinical atherosclerosis in subjects with type 2 diabetes. J Diabetes Complications 2019; 33:592-597. [PMID: 31129005 DOI: 10.1016/j.jdiacomp.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/18/2019] [Accepted: 04/21/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Sclerostin, a Wnt-signalling inhibitor, is an established negative regulator of bone formation. However, data regarding its potential importance in vascular disease are less clear. Common carotid artery media thickness (CIMT) assessment and plaque identification using ultrasound imaging are well-recognized tools for identifying and monitoring atherosclerosis. The aim of the present study is to examine the relationship between serum sclerostin and subclinical atherosclerosis (as evidenced by CIMT). METHODS This cross-sectional study included 50 subjects with T2DM and 20 subjects as a control group. Multivariable linear regression models were used to assess the association of sclerostin with subclinical atherosclerosis. RESULTS Serum sclerostin levels in T2DM patients were significantly higher compared to the control group (167.16 ± 63.60 versus 85.98 ± 23.74 pg/ml, P < 0.0001). A concentration of ≥162.5 pg/ml showed a sensitivity of 90% and a specificity of 86.67% to detect an increased risk of subclinical atherosclerosis. Univariate analysis revealed a significant positive correlation between serum sclerostin and CIMT (r = 0.635, P < 0.001). Sclerostin concentrations remained independently associated with CIMT (β = 63.188 [6.919-119.456], P = 0.017) after adjusting for age and gender. CONCLUSION Our data suggest a positive correlation between serum sclerostin level and subclinical atherosclerosis in subjects with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Magui Abdel Moneim Shalash
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kamel Hemida Rohoma
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Noha Said Kandil
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Aya Abdul Fattah Taha
- Department of Internal Medicine (Unit of Diabetes and Metabolism), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Kaminari A, Tsilibary EC, Tzinia A. A New Perspective in Utilizing MMP-9 as a Therapeutic Target for Alzheimer's Disease and Type 2 Diabetes Mellitus. J Alzheimers Dis 2019; 64:1-16. [PMID: 29865065 DOI: 10.3233/jad-180035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Matrix metalloprotease 9 (MMP-9) is a 92 kDa type IV collagenase and a member of the family of endopeptidases. MMP-9 is involved in the degradation of extracellular matrix components, tissue remodeling, cellular receptor stripping, and processing of various signaling molecules. In the CNS, the effects of MMP-9 are quite complex, since it exerts beneficial effects including neurogenesis, angiogenesis, myelogenesis, axonal growth, and inhibition of apoptosis, or destructive effects including apoptosis, blood-brain barrier disorder, and demyelination. Likewise, in the periphery, physiological events, as the involvement of MMP-9 in angiogenesis, for instance in wound healing, can be turned into pathological, such as in tumor metastasis, depending on the state of the organism. Alzheimer's disease is a neurodegenerative disorder, characterized by amyloid accumulation and deposition in the brain. Amyloidogenesis, however, also occurs in diseases of the periphery, such as type II diabetes mellitus, where an analogous type of amyloid, is deposited in the pancreas. Interestingly, both diseases exhibit similar pathology and disease progression, with insulin resistance being a major common denominator. Hence, combinatorial strategies searching new or existing molecules to apply for therapeutic use for both diseases are gaining momentum. MMP-9 is extensively studied due to its association with a variety of physiological and pathological processes. Consequently, meticulous design could render MMP-9 into a potential therapeutic target for Alzheimer's disease and type 2 diabetes mellitus; two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Archontia Kaminari
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Effie C Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Athina Tzinia
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
21
|
Oncolytic Ad co-expressing decorin and Wnt decoy receptor overcomes chemoresistance of desmoplastic tumor through degradation of ECM and inhibition of EMT. Cancer Lett 2019; 459:15-29. [PMID: 31150821 DOI: 10.1016/j.canlet.2019.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a highly lethal disease. Excessive accumulation of tumor extracellular matrix (ECM) and epithelial-to-mesenchymal transition (EMT) phenotype are two main contributors to drug resistance in desmoplastic pancreatic tumors. To overcome desmoplasia and chemoresistance of pancreatic cancer, we utilized an oncolytic adenovirus (Ad) co-expressing decorin and soluble Wnt decoy receptor (HEmT-DCN/sLRP6). An orthotopic pancreatic xenograft tumor model was established in athymic nude mice using Mia PaCa-2 cells, and the antimetastatic and antitumor efficacy of systemically administered HEmT-DCN/sLRP6 was evaluated. Immunohistochemical analysis of tumor tissues was performed to assess ECM degradation, induction of apoptosis, viral dispersion, and inhibition of the Wnt/β-catenin signaling pathway. HEmT-DCN/sLRP6 effectively degraded tumor ECM and inhibited EMT, leading to enhanced viral distribution, induction of apoptosis, and attenuation of tumor cell proliferation in tumor tissue. HEmT-DCN/sLRP6 prevented metastasis of pancreatic cancer. Importantly, HEmT-DCN/sLRP6 sensitized pancreatic tumor to gemcitabine treatment. Furthermore, HEmT-DCN/sLRP6 augmented drug penetration and dispersion within pancreatic tumor xenografts and patient-derived tumor spheroids. Collectively, these results illustrate that HEmT-DCN/sLRP6 can enhance the dispersion of both oncolytic Ad and a chemotherapeutic agent in chemoresistant and desmoplastic pancreatic tumor, effectively overcoming the preexisting limitations of standard treatments.
Collapse
|
22
|
Heme oxygenase-1 prevents glucocorticoid and hypoxia-induced apoptosis and necrosis of osteocyte-like cells. Med Mol Morphol 2019; 52:173-180. [PMID: 30706191 DOI: 10.1007/s00795-018-00215-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
Glucocorticoids and hypoxia is considered to promote osteocyte apoptosis and necrosis, which are observed in glucocorticoid-associated osteonecrosis and osteoporosis. Heme oxygenase-1 (HO-1) induced by hemin is reported to have cytoprotective effects in ischemic diseases. The objective of this study was to evaluate the effect of HO-1 on osteocyte death caused by glucocorticoids and hypoxia. We confirmed that hemin induced HO-1 expression in MLO-Y4 mouse osteocytes. MLO-Y4 was cultured with dexamethasone (Dex) under hypoxia (DH group). Furthermore, these cells were cultured with hemin (DH-h group) or hemin and zinc protoporphyrin IX (an HO-1 inhibitor) (DH-h-PP group). The rates of apoptosis and necrosis of these groups were analyzed by flow cytometry and compared with cells cultured under normal condition. Both apoptosis and necrosis increased in the DH group. Hemin administration significantly reduced cell death caused by glucocorticoids and hypoxia in the DH-h group, and its effect was attenuated by the HO-1 inhibitor in DH-h-PP group. Capase-3 activity significantly decreased in the DH-h group. This implied that the cell death inhibition effect due to hemin is mediated by HO-1 and caspase-3. HO-1 induction may be useful in the treatment of glucocorticoid-associated osteonecrosis and osteoporosis.
Collapse
|
23
|
Han S, Kim DH, Sung J, Yang H, Park JW, Youn I. Electrical stimulation accelerates neurite regeneration in axotomized dorsal root ganglion neurons by increasing MMP-2 expression. Biochem Biophys Res Commun 2019; 508:348-353. [PMID: 30503336 DOI: 10.1016/j.bbrc.2018.11.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 01/08/2023]
Abstract
Electrical stimulation (ES) can be useful for promoting the regeneration of injured axons, but the mechanism underlying its positive effects is largely unknown. The current study aimed to investigate whether ES could enhance the regeneration of injured neurites in dorsal root ganglion explants and regulate the MMP-2 expression level, which is correlated with regeneration. Significantly increased neurite regeneration and MMP-2 expression was observed in the ES group compared with the sham group. However, an MMP inhibitor significantly decreased this ES-induced neurite regeneration. Our data suggest that the positive effect of ES on neurite regeneration could likely be mediated by an increase in MMP-2 expression, thereby promoting the regeneration of injured neurites.
Collapse
Affiliation(s)
- Sungmin Han
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea
| | - Dong Hwee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joohwan Sung
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hwasun Yang
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea
| | - Jong Woong Park
- Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Inchan Youn
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
24
|
He Y, Guo Y, Xia Y, Guo Y, Wang R, Zhang F, Guo L, Liu Y, Yin T, Gao C, Gao E, Li C, Wang S, Zhang L, Yan W, Tao L. Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway. Am J Physiol Heart Circ Physiol 2019; 316:H233-H244. [PMID: 30412442 DOI: 10.1152/ajpheart.00457.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cell therapy is a potentially effective and promising treatment for ischemic heart disease. Resistin, a type of adipokine, has been found to bind to adipose-derived mesenchymal stem cells (ADSCs). However, the effects of resistin on cardiac homing by ADSCs and on ADSC-mediated cardioprotective effects have not been investigated. ADSCs were obtained from enhanced green fluorescent protein transgenic mice. C57BL/6J mice were subjected to myocardial ischemia-reperfusion (I/R) or sham operations. Six hours after the I/R operation, mice were intravenously injected with resistin-treated ADSCs (ADSC-resistin) or vehicle-treated ADSCs (ADSC-vehicle). Cardiac homing by ADSCs and cardiomyocyte apoptosis were investigated 3 days after I/R. Cardiac function, fibrosis, and angiogenesis were evaluated 4 wk after I/R. Cellular and molecular mechanisms were investigated in vitro using cultured ADSCs. Both immunostaining and flow cytometric experiments showed that resistin treatment promoted ADSC myocardial homing 3 days after intravenous injection. Echocardiographic experiments showed that ADSC-resistin, but not ADSC-vehicle, significantly improved left ventricular ejection fraction. ADSC-resistin transplantation significantly mitigated I/R-induced fibrosis and reduced atrial natriuretic peptide/brain natriuretic peptide mRNA expression. In addition, cardiomyocyte apoptosis was reduced, whereas angiogenesis was increased by ADSC-resistin treatment. At the cellular level, resistin promoted ADSC proliferation and migration but did not affect H2O2-induced apoptosis. Molecular experiments identified the ERK1/2-matrix metalloproteinase-9 pathway as a key component mediating the effects of resistin on ADSC proliferation and migration. These results demonstrate that resistin can promote homing of injected ADSCs into damaged heart tissue and stimulate functional recovery, an effect mediated through the ERK1/2 signaling pathway and matrix metalloproteinase-9. NEW & NOTEWORTHY First, intravenous injection of adipose-derived mesenchymal stem cells (ADSCs) treated with resistin significantly increased angiogenesis and reduced myocardial apoptosis and fibrosis in a murine model of ischemia-reperfusion, resulting in improved cardiac performance. Second, resistin treatment significantly increased myocardial homing of intravenously delivered ADSCs. Finally, the ERK1/2-matrix metalloproteinase 9 pathway contributed to the higher proliferative and migratory capacities of ADSCs treated with resistin.
Collapse
Affiliation(s)
- Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lanyan Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
25
|
Ferguson DCJ, Smerdon GR, Harries LW, Dodd NJF, Murphy MP, Curnow A, Winyard PG. Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. Free Radic Biol Med 2018; 126:322-333. [PMID: 30142453 DOI: 10.1016/j.freeradbiomed.2018.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
Abstract
In vivo, mammalian cells reside in an environment of 0.5-10% O2 (depending on the tissue location within the body), whilst standard in vitro cell culture is carried out under room air. Little is known about the effects of this hyperoxic environment on treatment-induced oxidative stress, relative to a physiological oxygen environment. In the present study we investigated the effects of long-term culture under hyperoxia (air) on photodynamic treatment. Upon photodynamic irradiation, cells which had been cultured long-term under hyperoxia generated higher concentrations of mitochondrial reactive oxygen species, compared with cells in a physioxic (2% O2) environment. However, there was no significant difference in viability between hyperoxic and physioxic cells. The expression of genes encoding key redox homeostasis proteins and the activity of key antioxidant enzymes was significantly higher after the long-term culture of hyperoxic cells compared with physioxic cells. The induction of antioxidant genes and increased antioxidant enzyme activity appear to contribute to the development of a phenotype that is resistant to oxidative stress-induced cellular damage and death when using standard cell culture conditions. The results from experiments using selective inhibitors suggested that the thioredoxin antioxidant system contributes to this phenotype. To avoid artefactual results, in vitro cellular responses should be studied in mammalian cells that have been cultured under physioxia. This investigation provides new insights into the effects of physioxic cell culture on a model of a clinically relevant photodynamic treatment and the associated cellular pathways.
Collapse
Affiliation(s)
| | - Gary R Smerdon
- University of Exeter Medical School, Exeter, Devon EX1 2LU, UK; DDRC Healthcare, Plymouth Science Park, Research Way, Plymouth, Devon PL6 8BU, UK
| | - Lorna W Harries
- University of Exeter Medical School, Exeter, Devon EX1 2LU, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alison Curnow
- University of Exeter Medical School, Truro, Cornwall TR1 3HD, UK
| | - Paul G Winyard
- University of Exeter Medical School, Exeter, Devon EX1 2LU, UK.
| |
Collapse
|
26
|
Abstract
β-Catenin is essential for embryonic development and required for cell renewal/regeneration in adult life. Cellular β-catenin exists in three different pools: membranous, cytoplasmic and nuclear. In this review, we focus on functions of the nuclear pool in relation to tumorigenesis. In the nucleus, beta-catenin functions as both activator and repressor of transcription in a context-dependent manner. It promotes cell proliferation and supports tumour growth by enhancing angiogenesis. β-Catenin-mediated signalling regulates cancer cell metabolism and is associated with tumour-initiating cells in multiple malignancies. In addition, it functions as both pro- and anti-apoptotic factor besides acting to inhibit recruitment of inflammatory anti-tumour T-cells. Thus, β-catenin appears to possess a multifaceted nuclear function that may significantly impact tumour initiation and progression.
Collapse
Affiliation(s)
- Raju Kumar
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | |
Collapse
|
27
|
Devarasetty M, Skardal A, Cowdrick K, Marini F, Soker S. Bioengineered Submucosal Organoids for In Vitro Modeling of Colorectal Cancer. Tissue Eng Part A 2018; 23:1026-1041. [PMID: 28922975 DOI: 10.1089/ten.tea.2017.0397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The physical nature of the tumor microenvironment significantly impacts tumor growth, invasion, and response to drugs. Most in vitro tumor models are designed to study the effects of extracellular matrix (ECM) stiffness on tumor cells, while not addressing the effects of ECM's specific topography. In this study, we bioengineered submucosal organoids, using primary smooth muscle cells embedded in collagen I hydrogel, which produce aligned and parallel fiber topography similar to those found in vivo. The fiber organization in the submucosal organoids induced an epithelial phenotype in spheroids of colorectal carcinoma cells (HCT-116), which were embedded within the organoids. Conversely, unorganized fibers drove a mesenchymal phenotype in the tumor cells. HCT-116 cells in organoids with aligned fibers showed no WNT signaling activation, and conversely, WNT signaling activation was observed in organoids with disrupted fibers. Consequently, HCT-116 cells in the aligned condition exhibited decreased cellular proliferation and reduced sensitivity to 5-fluorouracil chemotherapeutic treatment compared to cells in the unorganized construct. Collectively, the results establish a unique colorectal tumor organoid model to study the effects of stromal topography on cancer cell phenotype, proliferation, and ultimately, chemotherapeutic susceptibility. In the future, such organoids can utilize patient-derived cells for precision medicine applications.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Aleksander Skardal
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Kyle Cowdrick
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Frank Marini
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
28
|
Yan W, Guo Y, Tao L, Lau WB, Gan L, Yan Z, Guo R, Gao E, Wong GW, Koch WL, Wang Y, Ma XL. C1q/Tumor Necrosis Factor-Related Protein-9 Regulates the Fate of Implanted Mesenchymal Stem Cells and Mobilizes Their Protective Effects Against Ischemic Heart Injury via Multiple Novel Signaling Pathways. Circulation 2017; 136:2162-2177. [PMID: 28978553 PMCID: PMC5705403 DOI: 10.1161/circulationaha.117.029557] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection. METHODS Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9. RESULTS Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death. CONCLUSIONS We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China, 710032
| | - Yongzhen Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China, 710032
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zheyi Yan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rui Guo
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Walter L. Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
29
|
Tafrihi M, Nakhaei Sistani R. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds. Nutr Cancer 2017; 69:702-722. [PMID: 28524727 DOI: 10.1080/01635581.2017.1320415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.
Collapse
Affiliation(s)
- Majid Tafrihi
- a Molecular and Cell Biology Research Laboratory, Department of Molecular and Cell Biology, Faculty of Basic Sciences , University of Mazandaran , Babolsar , Mazandaran , Iran
| | | |
Collapse
|
30
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Liu QS, Li SR, Li K, Li X, Yin X, Pang Z. Ellagic acid improves endogenous neural stem cells proliferation and neurorestoration through Wnt/β-catenin signaling in vivo and in vitro. Mol Nutr Food Res 2016; 61. [PMID: 27794200 DOI: 10.1002/mnfr.201600587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023]
Abstract
SCOPE The aim of this study is to research the effects of the polyphenol ellagic acid (EA) on brain cells and to explore its mechanism of action, and to evaluate whether EA can be safely utilized by humans as a functional food or therapeutic agent. METHODS AND RESULTS A photothrombosis-induced model of brain injury in rats was created, and EA was administered intragastrically to rats on 7 consecutive days post-venous ischemia. An oxygen-glucose deprivation and re-perfusion model was established in neural stem cells in order to research the effects on proliferation after 2 days of EA treatment in vitro. The administration of EA improved the rats' nerve-related abilities, remedied infarct volumes and morphological changes in the brain, and enhanced the content of nestin protein in the brain semidarkness zone. The proliferation of NSCs and the expression of β-catenin and Cyclin D1 genes were also increased in primary cultured NSCs. CONCLUSIONS EA administration can improve brain injury outcomes and increase the proliferation of NSCs through the Wnt/β-catenin signaling pathway. The presented results represent new insights on the mechanisms of the brain cell protective activity of EA. Thus, EA may be used in functional foods or medicines to help treat nerve dysfunction, neurodegenerative disease and aging.
Collapse
Affiliation(s)
- Qing-Shan Liu
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Shu-Ran Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Keqin Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Xu Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Zongran Pang
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| |
Collapse
|
32
|
Yan Y, Bejoy J, Xia J, Guan J, Zhou Y, Li Y. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses. Acta Biomater 2016; 42:114-126. [PMID: 27345135 DOI: 10.1016/j.actbio.2016.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. METHODS By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. RESULTS Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. CONCLUSIONS This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. STATEMENT OF SIGNIFICANCE Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery.
Collapse
Affiliation(s)
- Yuanwei Yan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Junfei Xia
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
33
|
Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer. Cancers (Basel) 2016; 8:cancers8090080. [PMID: 27589803 PMCID: PMC5040982 DOI: 10.3390/cancers8090080] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.
Collapse
|
34
|
Pang L, Dong N, Wang D, Zhang N, Xing J. Increased Dickkopf-1 expression is correlated with poisoning severity in carbon monoxide-poisoned humans and rats. Inhal Toxicol 2016; 28:455-62. [PMID: 27353797 DOI: 10.1080/08958378.2016.1198440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Carbon monoxide (CO) poisoning results in neuronal injury. The expression of Dickkopf-1 (DKK-1) has not been investigated previously after CO poisoning. OBJECTIVE The current study aimed to investigate the DKK-1 expression levels in humans and rats with acute CO poisoning and to analyze their correlation with poisoning severity. MATERIALS AND METHODS We measured serum DKK-1 levels in patients with acute CO poisoning (n = 94) and in healthy controls (n = 90). On admission, a poisoning severity score (PSS) was determined for each patient. In addition, 36 male Sprague-Dawley rats were randomly assigned into three groups: (a) Sham group, (b) Low CO group and (c) High CO group. At 2 h after CO poisoning, DKK-1 expression and histopathological damage in the hippocampal tissues were measured. RESULTS Serum DKK-1 levels were significantly higher in the acute CO-poisoned patients, compared to the healthy controls. Serum DKK-1 levels were significantly higher in the CO-poisoned patients with a lower PSS. In rats, CO poisoning induced significant upregulation of the gene and protein expression of DKK-1 in hippocampal tissues. Moreover, there was a positive correlation between DKK-1 levels and the degree of damage in the hippocampal tissues. DISCUSSION DKK-1 induction in neurons after CO poisoning causes further neuronal injury. The severity of acute CO poisoning in rat models is associated with elevated serum DKK-1 levels and its upregulation in the brain tissue. CONCLUSION DKK-1 appears to have potential utility in providing valuable information for determining the severity and damage of CO poisoning.
Collapse
Affiliation(s)
- Li Pang
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Ning Dong
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Dawei Wang
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Nan Zhang
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| | - Jihong Xing
- a Department of Emergency , the First Hospital of Jilin University , Changchun , China
| |
Collapse
|
35
|
Wong CT, Ussyshkin N, Ahmad E, Rai-Bhogal R, Li H, Crawford DA. Prostaglandin E2promotes neural proliferation and differentiation and regulates Wnt target gene expression. J Neurosci Res 2016; 94:759-75. [DOI: 10.1002/jnr.23759] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
| | - Netta Ussyshkin
- Department of Biology; York University; Toronto Ontario Canada
| | - Eizaaz Ahmad
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| | - Hongyan Li
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto Ontario Canada
- Neuroscience Graduate Diploma Program; York University; Toronto Ontario Canada
- Department of Biology; York University; Toronto Ontario Canada
| |
Collapse
|
36
|
Kim HJ, Kang GJ, Kim EJ, Park MK, Byun HJ, Nam S, Lee H, Lee CH. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1533-43. [PMID: 27216977 DOI: 10.1016/j.bbadis.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/17/2023]
Abstract
Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gyeoung Jin Kang
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Eun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Jung Byun
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungyoon Nam
- Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam 13120, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
37
|
Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016; 139 Suppl 2:91-114. [PMID: 26525923 DOI: 10.1111/jnc.13415] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.
Collapse
|
38
|
Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep 2016; 6:21520. [PMID: 26861754 PMCID: PMC4748282 DOI: 10.1038/srep21520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/26/2016] [Indexed: 12/17/2022] Open
Abstract
Changes in cellular oxygen tension play important roles in physiological processes including development and pathological processes such as tumor promotion. The cellular adaptations to sustained hypoxia are mediated by hypoxia-inducible factors (HIFs) to regulate downstream target gene expression. With hypoxia, the stabilized HIF-α and aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-β) heterodimer bind to hypoxia response elements (HREs) and regulate expression of target genes. Here, we report that WNT11 is induced by hypoxia in many cell types, and that transcription of WNT11 is regulated primarily by HIF-1α. We observed induced WNT11 expression in the hypoxic area of allograft tumors. In addition, in mice bearing orthotopic malignant gliomas, inhibition with bevacizumab of vascular endothelial growth factor, which is an important stimulus for angiogenesis, increased nuclear HIF-1α and HIF-2α, and expression of WNT11. Gain- and loss-of-function approaches revealed that WNT11 stimulates proliferation, migration and invasion of cancer-derived cells, and increases activity of matrix metalloproteinase (MMP)-2 and 9. Since tumor hypoxia has been proposed to increase tumor aggressiveness, these data suggest WNT11 as a possible target for cancer therapies, especially for tumors treated with antiangiogenic therapy.
Collapse
|
39
|
MMP14 as a novel downstream target of VEGFR2 in migratory glioma-tropic neural stem cells. Stem Cell Res 2015; 15:598-607. [PMID: 26513555 DOI: 10.1016/j.scr.2015.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/06/2015] [Accepted: 10/13/2015] [Indexed: 12/18/2022] Open
Abstract
Neural stem cell (NSC)-based carriers have been presented as promising therapeutic tools for the treatment of infiltrative brain tumors due to their intrinsic tumor homing property. They have demonstrated the ability to migrate towards distant tumor microsatellites and effectively deliver the therapeutic payload, thus significantly improving survival in experimental animal models for brain tumor. Despite such optimistic results, the efficacy of NSC-based anti-cancer therapy has been limited due to the restricted tumor homing ability of NSCs. To examine this issue, we investigated the mechanisms of tumor-tropic migration of an FDA-approved NSC line, HB1.F3.CD, by performing a gene expression analysis. We identified vascular endothelial growth factor-A (VEGFA) and membrane-bound matrix metalloproteinase (MMP14) as molecules whose expression are significantly elevated in migratory NSCs. We observed increased expression of VEGF receptor 2 (VEGFR2) in the focal adhesion complexes of migratory NSCs, with downstream activation of VEGFR2-dependent kinases such as p-PLCγ, p-FAK, and p-Akt, a signaling cascade reported to be required for cellular migration. In an in vivo orthotopic glioma xenograft model, analysis of the migratory trail showed that NSCs maintained expression of VEGFR2 and preferentially migrated within the perivascular space. Knockdown of VEGFR2 via shRNAs led to significant downregulation of MMP14 expression, which resulted in inhibited tumor-tropic migration. Overall, our results suggest, the involvement of VEGFR2-regulated MMP14 in the tumor-tropic migratory behavior of NSCs. Our data warrant investigation of MMP14 as a target for enhancing the migratory properties of NSC carriers and optimizing the delivery of therapeutic payloads to disseminated tumor burdens.
Collapse
|
40
|
Albanna EAM, Ahmed HS. Circulating Dickkopf-1 in hypoxic ischemic neonates. J Matern Fetal Neonatal Med 2015; 29:2171-5. [DOI: 10.3109/14767058.2015.1077807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hanan S. Ahmed
- Department of Clinical Pathology, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Braunschweig L, Meyer AK, Wagenführ L, Storch A. Oxygen regulates proliferation of neural stem cells through Wnt/β-catenin signalling. Mol Cell Neurosci 2015; 67:84-92. [PMID: 26079803 DOI: 10.1016/j.mcn.2015.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022] Open
Abstract
Reduced oxygen levels (1-5% O2, named herein 'physioxia') are beneficial for stem cell cultures leading to enhanced proliferation, better survival and higher differentiation potential, but the underlying molecular mechanisms remain elusive. A potential link between physioxia and the canonical Wnt pathway was found recently, but the differential involvement of this signalling pathway for the various stem cell properties such as proliferation, stem cell maintenance, and differentiation capacity remains enigmatic. We here demonstrate increased Wnt target gene transcription and stabilised active β-catenin upon physioxic cell culture in primary tissue-specific foetal mouse neural stem cells. Knock-out of the main oxygen sensing molecule, hypoxia-inducible factor-1α (Hif-1α), had no impact on Wnt activation assuming that physioxia induces the Wnt pathway independently of Hif-1α. To determine the physiological relevance of physioxia-induced Wnt/β-catenin signalling, we examined proliferation, cell cycle kinetics, survival and stem cell maintenance upon Wnt activation and inhibition. Whereas survival and stem cell maintenance seem to be independent of the Wnt pathway, our studies provide first evidence that Wnt/β-catenin signalling positively stimulates proliferation of physioxic cells by affecting cell cycle regulation. Together, our results provide mechanistic insight into oxygen-mediated regulation of the self-renewal activity of neural stem cells.
Collapse
Affiliation(s)
- Lena Braunschweig
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne K Meyer
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Leibniz Institute for Solid State and Material Research, IFW Dresden, Institute for Integrative Nanosciences, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Lisa Wagenführ
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Centre for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany.
| |
Collapse
|
42
|
Lei M, Lai X, Bai X, Qiu W, Yang T, Liao X, Chuong CM, Yang L, Lian X, Zhong JL. Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway. Histochem Cell Biol 2015; 144:209-21. [PMID: 25995040 DOI: 10.1007/s00418-015-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/25/2023]
Abstract
Wnt10b is a signaling protein regulating skin development and homeostasis, and the expression of Wnt10b is restricted to epidermal keratinocytes in embryonic and postnatal skin. Recent studies indicate an elevated expression of Wnt10b in skin tumors. However, how Wnt10b regulates skin tumorigenesis remains largely unknown. Here we report that continuous expression of Wnt10b mediates transformation of epidermal keratinocytes through activating genes involved in EGF/MAPK signaling pathways. We first established a prolonged Wnt10b overexpression system in JB6P- cells to represent the elevated Wnt10b expression level in skin keratinocytes. Through expression assays and observations under phase-contrast microscopy, prolonged expression of Wnt10b activated Wnt/β-catenin pathway and induced morphological changes of cells showing longer protrusions and multilayer growth, indicating early-stage cell transformation. Wnt10b also increased cellular proliferation and migration according to BrdU incorporation and cell mobility assays. Furthermore, multi-doses of AdWnt10b treatment to JB6P- cells induced colony formation, stronger invasive ability in transwell system, and anchorage-independent growth in agar gel. In molecular level, AdWnt10b treatment induced increased transcriptional expressions of Egf, downstream Mapk pathway factors, and MMPs. Administration of Wnt antagonist DKK1 blocked the tumor promotion process induced by Wnt10b. Taken together, these findings clearly demonstrate that Wnt10b promotes epidermal keratinocyte transformation through induced Egf pathway.
Collapse
Affiliation(s)
- Mingxing Lei
- Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pamir N, Liu NC, Irwin A, Becker L, Peng Y, Ronsein GE, Bornfeldt KE, Duffield JS, Heinecke JW. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. J Biol Chem 2015; 290:14656-67. [PMID: 25931125 DOI: 10.1074/jbc.m115.645820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2(-/-)) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2(-/-) mice had 75% fewer CD45(+)Cd11b(+)Cd11c(+)MHCII(+) F4/80(-) DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2(-/-) mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2(-/-) mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45(+)Cd11b(+)Cd11c(+)MHCII(+)F4/80(-) DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion.
Collapse
Affiliation(s)
| | | | | | - Lev Becker
- the Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | | | | | | | - Jeremy S Duffield
- the Division of Nephrology and Lung Biology, University of Washington, Seattle, Washington 98109-8050 and
| | | |
Collapse
|
44
|
Tan SC, Gomes RSM, Yeoh KK, Perbellini F, Malandraki-Miller S, Ambrose L, Heather LC, Faggian G, Schofield CJ, Davies KE, Clarke K, Carr CA. Preconditioning of Cardiosphere-Derived Cells With Hypoxia or Prolyl-4-Hydroxylase Inhibitors Increases Stemness and Decreases Reliance on Oxidative Metabolism. Cell Transplant 2015; 25:35-53. [PMID: 25751158 PMCID: PMC6042641 DOI: 10.3727/096368915x687697] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiosphere-derived cells (CDCs), which can be isolated from heart explants, are a promising candidate cell source for infarcted myocardium regeneration. However, current protocols used to expand CDCs require at least 1 month in vitro to obtain sufficient cells for transplantation. We report that CDC culture can be optimized by preconditioning the cells under hypoxia (2% oxygen), which may reflect the physiological oxygen level of the stem cell niche. Under hypoxia, the CDC proliferation rate increased by 1.4-fold, generating 6 × 10(6) CDCs with higher expression of cardiac stem cell and pluripotency gene markers compared to normoxia. Furthermore, telomerase (TERT), cytokines/ligands involved in stem cell trafficking (SDF/CXCR-4), erythropoiesis (EPO), and angiogenesis (VEGF) were increased under hypoxia. Hypoxic preconditioning was mimicked by treatment with two types of hypoxia-inducible factor (HIF) prolyl-4-hydroxylase inhibitors (PHDIs): dimethyloxaloylglycine (DMOG) and 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetic acid (BIC). Despite the difference in specificity, both PHDIs significantly increased c-Kit expression and activated HIF, EPO, and CXCR-4. Furthermore, treatment with PHDIs for 24 h increased cell proliferation. Notably, all hypoxic and PHDI-preconditioned CDCs had decreased oxygen consumption and increased glycolytic metabolism. In conclusion, cells cultured under hypoxia could have potentially enhanced therapeutic potential, which can be mimicked, in part, by PHDIs.
Collapse
Affiliation(s)
- Suat Cheng Tan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- School of Health Science, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Renata S. M. Gomes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kar Kheng Yeoh
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- School of Chemical Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Filippo Perbellini
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Cardiac Surgery, University of Verona, Verona, Italy
| | | | - Lucy Ambrose
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lisa C. Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Giuseppe Faggian
- Department of Cardiac Surgery, University of Verona, Verona, Italy
| | | | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Carolyn A. Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Tan C, Qiao F, Wei P, Chi Y, Wang W, Ni S, Wang Q, Chen T, Sheng W, Du X, Wang L. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis. Mol Carcinog 2015; 55:397-408. [PMID: 25648220 DOI: 10.1002/mc.22290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Qiao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yayun Chi
- Cancer institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weige Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongzhen Chen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, Sharifi AM. Effect of 17β-estradiol on mediators involved in mesenchymal stromal cell trafficking in cell therapy of diabetes. Cytotherapy 2014; 17:46-57. [PMID: 25457279 DOI: 10.1016/j.jcyt.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have shown great promise for cell therapy of a wide range of diseases such as diabetes. However, insufficient viability of transplanted cells reaching to damaged tissues has limited their potential therapeutic effects. Expression of estrogen receptors on stem cells may suggest a role for 17β-estradiol (E2) in regulating some functions in these cells. There is evidence that E2 enhances homing of stem cells. Induction of hypoxia-inducible factor-1α (HIF-1α) by E2 and the profound effect of HIF-1α on migration of cells have previously been demonstrated. We investigated the effect of E2 on major mediators involved in trafficking and subsequent homing of MSCs both in vitro and in vivo in diabetic rats. METHODS E2 has been selected to improve the poor migration capacity of MSCs toward sites of injury. MSCs were incubated with different concentrations of E2 for varying periods of time to investigate whether estradiol treatment could be effective to enhance the efficiency of MSC transplantation. RESULTS E2 significantly enhanced the viability of the cells that were blocked by ICI 182,780 (estrogen receptor antagonist). E2 also increased HIF-1α, CXC chemokine receptor 4 and C-C chemokine receptor 2 protein and messenger RNA levels measured by Western blot and reverse transcription-polymerase chain reaction. The enzymatic activity of matrix metalloproteinase 2 and metalloproteinase 9 was elevated in E2-treated cells through the use of gelatin zymography. Finally, the improved migration capacity of E2-treated MSCs was evaluated with the use of a Boyden chamber and in vivo migration assays. CONCLUSIONS Our data support that conditioning of MSCs with E2 promotes migration of cells in cultured MSCs in vitro and in a diabetic rat model in vivo through regulation of major mediators of cell trafficking.
Collapse
Affiliation(s)
- Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Tunku Kamarul
- Tissue Engineering Group (TEG) and Research, National Orthopedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehrnaz Mehrabani
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminzadeh
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Pan H, Cui H, Liu S, Qian Y, Wu H, Li L, Guan Y, Guan X, Zhang L, Fan HY, Ma Y, Li R, Liu M, Li D. Lgr4 gene regulates corpus luteum maturation through modulation of the WNT-mediated EGFR-ERK signaling pathway. Endocrinology 2014; 155:3624-37. [PMID: 24877628 DOI: 10.1210/en.2013-2183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Luteal-phase insufficiency is one of the major causes of female infertility, but the molecular mechanisms are still largely unknown. Here we found that disruption of Lgr4/Gpr48, the newly identified receptor for R-spondins, greatly reduced female fertility in mice. The expression of Lgr4 was induced specifically in granulosa-lutein cells during luteinization. In Lgr4-deficient female mice, the estrous cycle was prolonged and serum progesterone levels were dramatically downregulated. In Lgr4(-/-) corpora lutea, the expression of key enzymes for steroidogenesis as well as common luteal marker genes was significantly decreased. Additionally, the activity of epidermal growth factor receptor (EGFR)-ERK signaling was attenuated in Lgr4(-/-) granulosa-lutein cells. We found that the maturation of Lgr4(-/-) cells was impaired in cultured primary granulosa cells, but the defect was partially rescued by reactivation of EGFR signaling by heparin-binding EGF-like growth factor treatment. We found that the expression of wingless-type MMTV integration site family (WNT)/catenin (cadherin associated protein), beta 1 (CTNNB1) downstream targets, including matrix metalloproteinase 9, which is a critical matrix metalloproteinase for activation of EGF-like factors, was significantly downregulated in Lgr4(-/-) ovaries. Matrix metalloproteinase 9 inhibitor treatment attenuated human chorionic gonadotropin- but not heparin-binding EGF-like growth factor-induced ERK activation and luteinization in primary granulosa cells. Together, we report that Lgr4 modulates WNT-mediated EGFR-ERK signaling to facilitate corpus luteum maturation and ovarian steroidogenesis to maintain female reproduction.
Collapse
Affiliation(s)
- Hongjie Pan
- Shanghai Key Laboratory of Regulatory Biology (H.P., H.C., S.L., Y.Q., H.W., L.L., Y.G., X.G., L.Z., M.L., D.L.), Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Commission (H.P., R.L.), Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China; Life Science Institute (H.-Y.F.), Zhejiang University, Hangzhou 310058, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research (Y.M.), Hainan Reproductive Medical Center, the Affiliated Hospital of Hainan Medical University, Haikou 570102, China; and The Institute of Biosciences and Technology (M.L.), Texas A&M University Health Science Center, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nazeri A, Ganjgahi H, Roostaei T, Nichols T, Zarei M. Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer's disease. Neuroimage 2014; 102 Pt 2:657-65. [PMID: 25173418 DOI: 10.1016/j.neuroimage.2014.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023] Open
Abstract
Proteomic and imaging markers have been widely studied as potential biomarkers for diagnosis, monitoring and prognosis of Alzheimer's disease. In this study, we used Alzheimer Disease Neuroimaging Initiative dataset and performed parallel independent component analysis on cross sectional and longitudinal proteomic and imaging data in order to identify the best proteomic model for diagnosis, monitoring and prediction of Alzheimer disease (AD). We used plasma proteins measurement and imaging data from AD and healthy controls (HC) at the baseline and 1 year follow-up. Group comparisons at baseline and changes over 1 year were calculated for proteomic and imaging data. The results were fed into parallel independent component analysis in order to identify proteins that were associated with structural brain changes cross sectionally and longitudinally. Regression model was used to find the best model that can discriminate AD from HC, monitor AD and to predict MCI converters from non-converters. We showed that five proteins are associated with structural brain changes in the brain. These proteins could discriminate AD from HC with 57% specificity and 89% sensitivity. Four proteins whose change over 1 year were associated with brain structural changes could discriminate AD from HC with sensitivity of 93%, and specificity of 92%. This model predicted MCI conversion to AD in 2 years with 94% accuracy. This model has the highest accuracy in prediction of MCI conversion to AD within the ADNI-1 dataset. This study shows that combination of selected plasma protein levels and MR imaging is a useful method in identifying potential biomarker.
Collapse
Affiliation(s)
- Arash Nazeri
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Habib Ganjgahi
- National Brain Mapping Centre, and Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran 4739, Iran; Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Tina Roostaei
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Thomas Nichols
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Mojtaba Zarei
- National Brain Mapping Centre, and Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran 4739, Iran.
| | | |
Collapse
|
49
|
Gao X, Mi Y, Ma Y, Jin W. LEF1 regulates glioblastoma cell proliferation, migration, invasion, and cancer stem-like cell self-renewal. Tumour Biol 2014; 35:11505-11. [PMID: 25128061 DOI: 10.1007/s13277-014-2466-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM; WHO grade IV) is one of the most common primary tumors of the central nervous system. This disease remains one of the incurable human malignancies because the molecular mechanism driving the GBM development and recurrence is still largely unknown. Here, we show that knockdown of lymphocyte enhancer factor-1 (LEF1), a major transcription factor of Wnt pathway, inhibits U251 cell migration, invasion, and proliferation. Furthermore, downregulation of LEF1 expression inhibits the self-renewal capacity of U251 GBM stem-like cells and decreases the expression level of the GBM stem-like cell (GSC) markers such as CD133 and nestin. Our findings reveal that LEF1 maintains the GBM cell proliferation, migration, and GBM stem-like cell self-renewal. Taken together, these results suggest that LEF1 may be a novel therapeutic target for GBM suppression.
Collapse
Affiliation(s)
- Xingchun Gao
- Institute of Basic Medicine Science, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, China,
| | | | | | | |
Collapse
|
50
|
Kim DY, Rhee I, Paik J. Metabolic circuits in neural stem cells. Cell Mol Life Sci 2014; 71:4221-41. [PMID: 25037158 DOI: 10.1007/s00018-014-1686-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, NY, 10065, USA
| | | | | |
Collapse
|