1
|
Kuhn AJ, Outlaw VK, Marcink TC, Yu Z, Mears MC, Cajimat MN, Kreitler DF, Cleven PR, Mook JC, Bente DA, Porotto M, Gellman SH, Moscona A. Enhancing the solubility of SARS-CoV-2 inhibitors to increase future prospects for clinical development. J Virol 2025; 99:e0215924. [PMID: 39902960 PMCID: PMC11915835 DOI: 10.1128/jvi.02159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 02/06/2025] Open
Abstract
SARS-CoV-2 poses an ongoing threat to human health as variants continue to emerge. Several effective vaccines are available, but a diminishing number of Americans receive the updated vaccines (only 22% received the 2023 update). Public hesitancy towards vaccines and common occurrence of "breakthrough" infections (i.e., infections of vaccinated individuals) highlight the need for alternative methods to reduce viral transmission. SARS-CoV-2 enters cells by fusing its envelope with the target cell membrane in a process mediated by the viral spike protein, S. The S protein operates via a Class I fusion mechanism in which fusion between the viral envelope and host cell membrane is mediated by structural rearrangements of the S trimer. We previously reported lipopeptides derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibit fusion by SARS-CoV-2, both in vitro and in vivo. These lipopeptides bear an attached cholesterol unit to anchor them in the membrane. Here, to improve prospects for experimental development and future clinical utility, we employed structure-guided design to incorporate charged residues at specific sites in the peptide to enhance aqueous solubility. This effort resulted in two new, potent lipopeptide inhibitors. IMPORTANCE Despite the existence of vaccines for SARS-CoV-2, the constant evolution of new variants and the occurrence of breakthrough infections highlight the need for new and effective antiviral approaches. We have shown that lipopeptides designed to bind a conserved region on the SARS-CoV-2 spike protein can effectively block viral entry into cells and thereby block infection. To support the feasibility of using this approach in humans, we re-designed these lipopeptides to be more soluble, using information about the structure of the spike protein interacting with the peptides to modify the peptide chain. The new peptides are effective against both SARS-CoV-2 and MERS. The lipopeptides described here could serve as treatment for people who are unvaccinated or who experience breakthrough infections, and the approach to increasing solubility can be applied in a broad spectrum approach to treating infections with emerging viruses.
Collapse
Affiliation(s)
- Ariel J. Kuhn
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Victor K. Outlaw
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Tara C. Marcink
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Zhen Yu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Megan C. Mears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria N. Cajimat
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Dale F. Kreitler
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Payton R. Cleven
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Jee Ching Mook
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Dennis A. Bente
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Matteo Porotto
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Anne Moscona
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Geng X, Zhu Y, Gao Y, Chong H, He Y. Development of lipopeptide-based HIV-1/2 fusion inhibitors targeting the gp41 pocket site with a new design strategy. Antiviral Res 2024; 232:106042. [PMID: 39586543 DOI: 10.1016/j.antiviral.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024]
Abstract
Emerging studies demonstrate that lipid conjugation is a vital strategy for designing peptide-based viral fusion inhibitors, and the so-called lipopeptides exhibit greatly improved antiviral activity. In the design of lipopeptides, a flexible linker between the peptide sequence and lipid molecule is generally required, mostly with a short polyethylene glycol or glycine-serine sequence. Very recently, we discovered that the helix-facilitating amino acid sequence "EAAAK" as a rigid linker is a more efficient method in the design of SARS-CoV-2 fusion inhibitory lipopeptides. In this study, we comprehensively characterized the functionalities of different linkers in HIV fusion inhibitors. A short-peptide inhibitor 2P23, which mainly targets the gp41 pocket site, was used as a design template, generating a group of cholesterol-modified lipopeptides. In the inhibition of HIV-1 infection, the lipopeptide inhibitors with a rigid linker were much superior than those with the flexible linkers, as indicated by LP-37 with the "EAAAK" linker and LP-39 with the repeated "EP" amino acid sequences. Both lipopeptides were very potent inhibitors of HIV-2 and simian immunodeficiency (SIV) either. Promisingly, LP-37 displayed high α-helicity, thermostability and binding ability to a target-mimic peptide, and it was metabolically stable when treated with temperature, proteolytic enzymes or human sera. Taken together, our studies have verified a universal strategy for designing viral fusion inhibitors and offered a novel HIV fusion inhibitor for drug development.
Collapse
Affiliation(s)
- Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yue Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Hu Y, Zhu Y, Yu Y, Liu N, Ju X, Ding Q, He Y. Design and characterization of novel SARS-CoV-2 fusion inhibitors with N-terminally extended HR2 peptides. Antiviral Res 2023; 212:105571. [PMID: 36868315 PMCID: PMC9977133 DOI: 10.1016/j.antiviral.2023.105571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Development of potent and broad-spectrum antivirals against SARS-CoV-2 remains one of top priorities, especially in the case of that current vaccines cannot effectively prevent viral transmission. We previously generated a group of fusion-inhibitory lipopeptides, with one formulation being evaluated under clinical trials. In this study, we dedicated to characterize the extended N-terminal motif (residues 1161-1168) of the so-called spike (S) heptad repeat 2 (HR2) region. Alanine scanning analysis of this motif verified its critical roles in S protein-mediated cell-cell fusion. Using a panel of HR2 peptides with the N-terminal extensions, we identified a peptide termed P40, which contained four extended N-terminal residues (VDLG) and exhibited improved binding and antiviral activities, whereas the peptides with further extensions had no such effects. Then, we developed a new lipopeptide P40-LP by modifying P40 with cholesterol, which exhibited dramatically increased activities in inhibiting SARS-CoV-2 variants including divergent Omicron sublineages. Moreover, P40-LP displayed a synergistic effect with IPB24 lipopeptide that was designed containing the C-terminally extended residues, and it could effectively inhibit other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Taken together, our results have provided valuable insights for understanding the structure-function relationship of SARS-CoV-2 fusion protein and offered novel antiviral strategies to fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Wang Y, Li X, Xu Q, Niu X, Zhang S, Qu X, Chu H, Chen J, Shi Q, Zhang E, Zhang G. Characterization of Neutralizing Monoclonal Antibodies and Identification of a Novel Conserved C-Terminal Linear Epitope on the Hemagglutinin Protein of the H9N2 Avian Influenza Virus. Viruses 2022; 14:v14112530. [PMID: 36423139 PMCID: PMC9698441 DOI: 10.3390/v14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The H9N2 avian influenza virus (AIV) remains a serious threat to the global poultry industry and public health. The hemagglutinin (HA) protein is an essential protective antigen of AIVs and a major target of neutralizing antibodies and vaccines. Therefore, in this study, we used rice-derived HA protein as an immunogen to generate monoclonal antibodies (mAbs) and screened them using an immunoperoxidase monolayer assay and indirect enzyme-linked immunosorbent assay. Eight mAbs reacted well with the recombinant H9N2 AIV and HA protein, four of which exhibited potent inhibitory activity against hemagglutination, while three showed remarkable neutralization capacities. Western blotting confirmed that two mAbs bound to the HA protein. Linear epitopes were identified using the mAbs; a novel linear epitope, 480HKCDDQCM487, was identified. Structural analysis revealed that the novel linear epitope is located at the C-terminus of HA2 near the disulfide bond-linked HA1 and HA2. Alignment of the amino acid sequences showed that the epitope was highly conserved among multiple H9N2 AIV strains. The results of this study provide novel insights for refining vaccine and diagnostic strategies and expand our understanding of the immune response against AIV.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueyang Li
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianru Xu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangxiang Niu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenli Zhang
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaotian Qu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyan Chu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxuan Chen
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianqian Shi
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Erqin Zhang
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Modern Immunity Laboratory, Zhengzhou 450046, China
- Correspondence: (E.Z.); (G.Z.)
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Modern Immunity Laboratory, Zhengzhou 450046, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Correspondence: (E.Z.); (G.Z.)
| |
Collapse
|
5
|
Zhu Y, Hu Y, Liu N, Chong H, He Y. Potent inhibition of diverse Omicron sublineages by SARS-CoV-2 fusion-inhibitory lipopeptides. Antiviral Res 2022; 208:105445. [PMID: 36265805 PMCID: PMC9574594 DOI: 10.1016/j.antiviral.2022.105445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The emergence and rapid spreading of SARS-CoV-2 variants of concern (VOCs) have posed a great challenge to the efficacy of vaccines and therapeutic antibodies, calling for antivirals that can overcome viral evasion. We recently reported that SARS-CoV-2 fusion-inhibitory lipopeptides, IPB02V3 and IPB24, possessed the potent activities against divergent VOCs, including Alpha, Beta, Gamma, Delta, and the initial Omicron strain (B.1.1.529); however, multiple Omicron sublineages have emerged and BA.4/5 is now becoming predominant globally. In this study, we focused on characterizing the functionality of the spike (S) proteins derived from Omicron sublineages and their susceptibility to the inhibition of IPB02V3 and IPB24. We first found that the S proteins of BA.2, BA.2.12.1, BA.3, and BA.4/5 exhibited significantly increased cell fusion capacities compared to BA.1, whereas the pseudoviruses of BA.2.12.1, BA.3, and BA.4/5 had significantly increased infectivity relative to BA.1 or BA.2. Next, we verified that IPB02V3 and IPB24 also maintained their very high potent activities in inhibiting diverse Omicron sublineages, even with enhanced potencies relative to the inhibition on ancestral virus. Moreover, we demonstrated that evolved Omicron mutations in the inhibitor-binding heptad repeat 1 (HR1) site could impair the S protein-driven cell fusogenicity and infectivity, but none of single or combined mutations affected the antiviral activity of IPB02V3 and IPB24. Therefore, we believe that viral fusion inhibitors possess high potential to be developed as effective drugs for fighting SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Monroe MK, Wang H, Anderson CF, Jia H, Flexner C, Cui H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J Control Release 2022; 348:1028-1049. [PMID: 35752254 PMCID: PMC11022941 DOI: 10.1016/j.jconrel.2022.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Peptides and peptide-based materials have an increasing role in the treatment of viral infections through their use as active pharmaceutical ingredients, targeting moieties, excipients, carriers, or structural components in drug delivery systems. The discovery of peptide-based therapeutic compounds, coupled with the development of new stabilization and formulation strategies, has led to a resurgence of antiviral peptide therapeutics over the past two decades. The ability of peptides to bind cell receptors and to facilitate membrane penetration and subsequent intracellular trafficking enables their use in various antiviral systems for improved targeting efficiency and treatment efficacy. Importantly, the self-assembly of peptides into well-defined nanostructures provides a vast library of discrete constructs and supramolecular biomaterials for systemic and local delivery of antiviral agents. We review here the recent progress in exploiting the therapeutic, biological, and self-assembling potential of peptides, peptide conjugates, and their supramolecular assemblies in treating human viral infections, with an emphasis on the treatment strategies for Human Immunodeficiency Virus (HIV).
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Hongpeng Jia
- Department of Surgery, The Johns Hopkins University School of Medicine, United States of America
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Deptartment of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America; Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States of America.
| |
Collapse
|
8
|
Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res 2022; 207:105401. [DOI: 10.1016/j.antiviral.2022.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
9
|
Lan Q, Chan JFW, Xu W, Wang L, Jiao F, Zhang G, Pu J, Zhou J, Xia S, Lu L, Yuen KY, Jiang S, Wang Q. A Palmitic Acid-Conjugated, Peptide-Based pan-CoV Fusion Inhibitor Potently Inhibits Infection of SARS-CoV-2 Omicron and Other Variants of Concern. Viruses 2022; 14:v14030549. [PMID: 35336956 PMCID: PMC8955410 DOI: 10.3390/v14030549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus (CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid (C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs (SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well as any future emerging or re-emerging coronaviruses.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Jasper Fuk-Woo Chan
- Carol Yu Centre for Infection, State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Lijue Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Fanke Jiao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Correspondence: (K.-Y.Y.); (S.J.); (Q.W.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
- Correspondence: (K.-Y.Y.); (S.J.); (Q.W.)
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
- Correspondence: (K.-Y.Y.); (S.J.); (Q.W.)
| |
Collapse
|
10
|
Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs. Int J Mol Sci 2022; 23:ijms23042060. [PMID: 35216177 PMCID: PMC8878748 DOI: 10.3390/ijms23042060] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.
Collapse
|
11
|
Antiviral peptide engineering for targeting membrane-enveloped viruses: Recent progress and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183821. [PMID: 34808121 DOI: 10.1016/j.bbamem.2021.183821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022]
Abstract
Membrane-enveloped viruses are a major cause of global health challenges, including recent epidemics and pandemics. This mini-review covers the latest efforts to develop membrane-targeting antiviral peptides that inhibit enveloped viruses by 1) preventing virus-cell fusion or 2) disrupting the viral membrane envelope. The corresponding mechanisms of antiviral activity are discussed along with peptide engineering strategies to modulate membrane-peptide interactions in terms of potency and selectivity. Application examples are presented demonstrating how membrane-targeting antiviral peptides are useful therapeutics and prophylactics in animal models, while a stronger emphasis on biophysical concepts is proposed to refine mechanistic understanding and support potential clinical translation.
Collapse
|
12
|
Behzadipour Y, Hemmati S. Viral Prefusion Targeting Using Entry Inhibitor Peptides: The Case of SARS-CoV-2 and Influenza A virus. Int J Pept Res Ther 2022; 28:42. [PMID: 35002586 PMCID: PMC8722418 DOI: 10.1007/s10989-021-10357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
Abstract
In this study, peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated. Fusion inhibitor peptides targeting the conformational shift of the viral fusion protein were designed based on the relatively conserved sequence of HR2 from SCV2 spike protein and the conserved fusion peptide from hemagglutinin (HA) of IAV. Helical HR2 peptides bind more efficiently to HR1 trimer, while helical amphipathic anti-IAV peptides have higher cell penetration and endosomal uptake. The initial sequences were mutated by increasing the amphipathicity, using helix favoring residues, and residues likely to form salt- and disulfide-bridges. After docking against their targets, all anti-SCV2 designed peptides bonded with the HR1 3-helical bundle's hydrophobic crevice, while AntiSCV2P1, AntiSCV2P3, AntiSCV2P7, and AntiSCV2P8 expected to form coiled coils with at least one of the HR1 strands. Four of the designed anti-IAV peptides were cell-penetrating (AntiIAVP2, AntiIAVP3, AntiIAVP4, AntiIAVP7). All of them interacted with the fusion peptide of HA and some of the residues in the conserved hydrophobic pocket of HA2 in H1N1, H3N1, and H5N1 subtypes of IAV. AntiIAVP3 and AntiIAVP4 peptides had the best binding to HA2 conserved hydrophobic pocket, while, AntiIAVP2 and AntiIAVP6 showed the best binding to the fusion peptide region. According to analyses for in-vivo administration, AntiSCV2P1, AntiSCV2P7, AntiIAVP2, and AntiIAVP7 were the best candidates. AntiSCV2 and AntiIAV peptides were also conjugated using an in vivo cleavable linker sensitive to TMPRSS2 applicable as a single therapeutic in coinfections or uncertain diagnosis.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
14
|
The pH-sensitive action of cholesterol-conjugated peptide inhibitors of influenza virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183762. [PMID: 34478733 DOI: 10.1016/j.bbamem.2021.183762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Influenza viruses are major human pathogens, responsible for respiratory diseases affecting millions of people worldwide, with high morbidity and significant mortality. Infections by influenza can be controlled by vaccines and antiviral drugs. However, this virus is constantly under mutations, limiting the effectiveness of these clinical antiviral strategies. It is therefore urgent to develop new ones. Influenza hemagglutinin (HA) is involved in receptor binding and promotes the pH-dependent fusion of viral and cell endocytic membranes. HA-targeted peptides may emerge as a novel antiviral option to block this viral entry step. In this study, we evaluated three HA-derived (lipo)peptides using fluorescence spectroscopy. Peptide membrane interaction assays were performed at neutral and acidic pH to better resemble the natural conditions in which influenza fusion occurs. We found that peptide affinity towards membranes decreases upon the acidification of the environment. Therefore, the released peptides would be able to bind their complementary domain and interfere with the six-helix bundle formation necessary for viral fusion, and thus for the infection of the target cell. Our results provide new insight into molecular interactions between HA-derived peptides and cell membranes, which may contribute to the development of new influenza virus inhibitors.
Collapse
|
15
|
Yu D, Zhu Y, Jiao T, Wu T, Xiao X, Qin B, Chong H, Lei X, Ren L, Cui S, Wang J, He Y. Structure-based design and characterization of novel fusion-inhibitory lipopeptides against SARS-CoV-2 and emerging variants. Emerg Microbes Infect 2021; 10:1227-1240. [PMID: 34057039 PMCID: PMC8216258 DOI: 10.1080/22221751.2021.1937329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.
Collapse
Affiliation(s)
- Danwei Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Jiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xia Xiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Park C, Lim JW, Park G, Kim HO, Lee S, Kwon YH, Kim SE, Yeom M, Na W, Song D, Kim E, Haam S. Kinetic stability modulation of polymeric nanoparticles for enhanced detection of influenza virus via penetration of viral fusion peptides. J Mater Chem B 2021; 9:9658-9669. [PMID: 34647566 DOI: 10.1039/d1tb01847g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.
Collapse
Affiliation(s)
- Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering College of Art, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yuri H Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | | | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM, Kuehne AI, Mittler E, Jangra RK, Teruya J, Dye JM, Lai JR, Chandran K. Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Front Immunol 2021; 12:729851. [PMID: 34721393 PMCID: PMC8551868 DOI: 10.3389/fimmu.2021.729851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Teruya
- Antibody Discovery and Research group, Mapp Biopharmaceutical, San Diego, CA, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
18
|
Chiliveri SC, Louis JM, Ghirlando R, Bax A. Transient lipid-bound states of spike protein heptad repeats provide insights into SARS-CoV-2 membrane fusion. SCIENCE ADVANCES 2021; 7:eabk2226. [PMID: 34623907 PMCID: PMC8500521 DOI: 10.1126/sciadv.abk2226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Entry of SARS-CoV-2 into a host cell is mediated by spike, a class I viral fusion protein responsible for merging the viral and host cell membranes. Recent studies have revealed atomic-resolution models for both the postfusion 6-helix bundle (6HB) and the prefusion state of spike. However, a mechanistic understanding of the molecular basis for the intervening structural transition, important for the design of fusion inhibitors, has remained elusive. Using nuclear magnetic resonance spectroscopy and other biophysical methods, we demonstrate the presence of α-helical, membrane-bound, intermediate states of spike’s heptad repeat (HR1 and HR2) domains that are embedded at the lipid-water interface while in a slow dynamic equilibrium with the postfusion 6HB state. These results support a model where the HR domains lower the large energy barrier associated with membrane fusion by destabilizing the host and viral membranes, while 6HB formation actively drives their fusion by forcing physical proximity.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.C.C.); (A.B.)
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.C.C.); (A.B.)
| |
Collapse
|
19
|
Bovier FT, Rybkina K, Biswas S, Harder O, Marcink TC, Niewiesk S, Moscona A, Alabi CA, Porotto M. Inhibition of Measles Viral Fusion Is Enhanced by Targeting Multiple Domains of the Fusion Protein. ACS NANO 2021; 15:12794-12803. [PMID: 34291895 PMCID: PMC9164017 DOI: 10.1021/acsnano.1c02057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.
Collapse
Affiliation(s)
- Francesca T Bovier
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Ksenia Rybkina
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Sudipta Biswas
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tara C Marcink
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
20
|
Liu Q, Zhou J, Gao J, Zhang X, Yang J, Hu C, Chu W, Yao M. Targeting the membrane fusion event of human respiratory syncytial virus with rationally designed α-helical hairpin traps. Life Sci 2021; 280:119695. [PMID: 34111463 DOI: 10.1016/j.lfs.2021.119695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
AIMS Rational design of protein scaffolds with specific biological functions/activities has attracted much attention over the past decades. In the present study, we systematically examine the trimer-of-hairpins (TOH) motif of human respiratory syncytial virus (RSV) F protein, which plays a central role in viral membrane fusion and is a coiled-coil six-helix bundle formed by the antiparallel intermolecular interaction between three N-terminal heptad-repeat (HRN) helices and three C-terminal heptad-repeat (HRC) helices. MAIN METHODS A rational strategy that integrates dynamics simulation, thermodynamics calculation, fluorescence polarization and circular dichroism is proposed to design HRC-targeted α-helical hairpin traps based on the crystal template of HRN core. KEY FINDINGS The designed hairpin traps possess a typical helix-turn-helix scaffold that can be stabilized by stapling a disulfide bridge across its helical arms, which are highly structured (helicity >60%) and can mimic the native spatial arrangement of HRN helices in TOH motif to trap the hotspot sites of HRC with effective affinity (Kd is up to 6.4 μM). SIGNIFICANCE The designed α-helical hairpin traps can be used as lead entities for further developing TOH-disrupting agents to target RSV membrane fusion event and the proposed rational design strategy can be readily modified to apply for other type I viruses.
Collapse
Affiliation(s)
- Qiuhong Liu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinqiao Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing Gao
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaoqin Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jingrui Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunling Hu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weili Chu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengying Yao
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
21
|
Pu J, Zhou JT, Liu P, Yu F, He X, Lu L, Jiang S. Viral Entry Inhibitors Targeting Six-Helical Bundle Core Against Highly Pathogenic Enveloped Viruses with Class I Fusion Proteins. Curr Med Chem 2021; 29:700-718. [PMID: 33992055 DOI: 10.2174/0929867328666210511015808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
TypeⅠ enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis. They also initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.
Collapse
Affiliation(s)
- Jing Pu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Joey Tianyi Zhou
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Ping Liu
- Institute of High Performance Computing, The Agency for Science, Technology and Research, Singapore
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaoyang He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH/CAMS, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Zhang Q, Liang T, Nandakumar KS, Liu S. Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opin Pharmacother 2020; 22:715-728. [PMID: 33327812 DOI: 10.1080/14656566.2020.1856814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: Seasonal influenza vaccination, together with FDA-approved neuraminidase (NA) and polymerase acidic (PA) inhibitors, is the most effective way for prophylaxis and treatment of influenza infections. However, the low efficacy of prevailing vaccines to newly emerging influenza strains and increasing resistance to available drugs drives intense research to explore more effective inhibitors. Hemagglutinin (HA), one of the major surface proteins of influenza strains, represents an attractive therapeutic target to develop such new inhibitors.Areas covered: This review summarizes the current progress of HA-based influenza virus inhibitors and their mechanisms of action, which may facilitate further research in developing novel antiviral inhibitors for controlling influenza infections.Expert opinion: HA-mediated entry of influenza virus is an essential step for successful infection of the host, which makes HA a promising target for the development of antiviral drugs. Recent progress in delineating the crystal structures of HA, especially HA-inhibitors complexes, has revealed a number of key residues and conserved binding pockets within HA. This has opened up important insights for developing HA-based antiviral inhibitors that have a high resistance barrier and broad-spectrum activities.
Collapse
Affiliation(s)
- Qiao Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Kutty Selva Nandakumar
- Southern Medical University-Karolinska Institute United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China.,State Key Laboratory of Organ Failure Research, Institute of Kidney Disease of Guangdong, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
23
|
Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J Virol 2020; 94:JVI.01682-20. [PMID: 32907984 DOI: 10.1128/jvi.01682-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Numerous peptides inhibit the entry of enveloped viruses into cells. Some of these peptides have been shown to inhibit multiple unrelated viruses. We have suggested that such broad-spectrum antiviral peptides share a property called interfacial activity; they are somewhat hydrophobic and amphipathic, with a propensity to interact with the interfacial zones of lipid bilayer membranes. In this study, we further tested the hypothesis that such interfacial activity is a correlate of broad-spectrum antiviral activity. In this study, several families of peptides, selected for the ability to partition into and disrupt membrane integrity but with no known antiviral activity, were tested for the ability to inhibit multiple diverse enveloped viruses. These include Lassa pseudovirus, influenza virus, dengue virus type 2, herpes simplex virus 1, and nonenveloped human adenovirus 5. Various families of interfacially active peptides caused potent inhibition of all enveloped viruses tested at low and submicromolar concentrations, well below the range in which they are toxic to mammalian cells. These membrane-active peptides block uptake and fusion with the host cell by rapidly and directly interacting with virions, destabilizing the viral envelope, and driving virus aggregation and/or intervirion envelope fusion. We speculate that the molecular characteristics shared by these peptides can be exploited to enable the design, optimization, or molecular evolution of novel broad-spectrum antiviral therapeutics.IMPORTANCE New classes of antiviral drugs are needed to treat the ever-changing viral disease landscape. Current antiviral drugs treat only a small number of viral diseases, leaving many patients with established or emerging infections to be treated solely with supportive care. Recent antiviral peptide research has produced numerous membrane-interacting peptides that inhibit diverse enveloped viruses in vitro and in vivo Peptide therapeutics are becoming more common, with over 60 FDA-approved peptides for clinical use. Included in this class of therapeutics is enfuvirtide, a 36-residue peptide drug that inhibits HIV entry/fusion. Due to their broad-spectrum mechanism of action and enormous potential sequence diversity, peptides that inhibit virus entry could potentially fulfill the need for new antiviral therapeutics; however, a better understanding of their mechanism is needed for the optimization or evolution of sequence design to combat the wide landscape of viral disease.
Collapse
|
24
|
de Vries RD, Schmitz KS, Bovier FT, Noack D, Haagmans BL, Biswas S, Rockx B, Gellman SH, Alabi CA, de Swart RL, Moscona A, Porotto M. Intranasal fusion inhibitory lipopeptide prevents direct contact SARS-CoV-2 transmission in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.04.361154. [PMID: 33173865 PMCID: PMC7654853 DOI: 10.1101/2020.11.04.361154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. ONE-SENTENCE SUMMARY A dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo .
Collapse
Affiliation(s)
| | | | - Francesca T. Bovier
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Danny Noack
- Department Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Sudipta Biswas
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Barry Rockx
- Department Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Rik L. de Swart
- Department Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, NY, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Center for Host–Pathogen Interaction, Columbia University Medical Center, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
25
|
Outlaw VK, Bovier FT, Mears MC, Cajimat MN, Zhu Y, Lin MJ, Addetia A, Lieberman NAP, Peddu V, Xie X, Shi PY, Greninger AL, Gellman SH, Bente DA, Moscona A, Porotto M. Inhibition of Coronavirus Entry In Vitro and Ex Vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. mBio 2020; 11:e01935-20. [PMID: 33082259 PMCID: PMC7587434 DOI: 10.1128/mbio.01935-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Victor K Outlaw
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Francesca T Bovier
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| | - Megan C Mears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria N Cajimat
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yun Zhu
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Michelle J Lin
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Amin Addetia
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vikas Peddu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xuping Xie
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Dennis A Bente
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Caserta, Italy
| |
Collapse
|
26
|
Marcink TC, Wang T, des Georges A, Porotto M, Moscona A. Human parainfluenza virus fusion complex glycoproteins imaged in action on authentic viral surfaces. PLoS Pathog 2020; 16:e1008883. [PMID: 32956394 PMCID: PMC7529294 DOI: 10.1371/journal.ppat.1008883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/01/2020] [Accepted: 08/13/2020] [Indexed: 01/21/2023] Open
Abstract
Infection by human parainfluenza viruses (HPIVs) causes widespread lower respiratory diseases, including croup, bronchiolitis, and pneumonia, and there are no vaccines or effective treatments for these viruses. HPIV3 is a member of the Respirovirus species of the Paramyxoviridae family. These viruses are pleomorphic, enveloped viruses with genomes composed of single-stranded negative-sense RNA. During viral entry, the first step of infection, the viral fusion complex, comprised of the receptor-binding glycoprotein hemagglutinin-neuraminidase (HN) and the fusion glycoprotein (F), mediates fusion upon receptor binding. The HPIV3 transmembrane protein HN, like the receptor-binding proteins of other related viruses that enter host cells using membrane fusion, binds to a receptor molecule on the host cell plasma membrane, which triggers the F glycoprotein to undergo major conformational rearrangements, promoting viral entry. Subsequent fusion of the viral and host membranes allows delivery of the viral genetic material into the host cell. The intermediate states in viral entry are transient and thermodynamically unstable, making it impossible to understand these transitions using standard methods, yet understanding these transition states is important for expanding our knowledge of the viral entry process. In this study, we use cryo-electron tomography (cryo-ET) to dissect the stepwise process by which the receptor-binding protein triggers F-mediated fusion, when forming a complex with receptor-bearing membranes. Using an on-grid antibody capture method that facilitates examination of fresh, biologically active strains of virus directly from supernatant fluids and a series of biological tools that permit the capture of intermediate states in the fusion process, we visualize the series of events that occur when a pristine, authentic viral particle interacts with target receptors and proceeds from the viral entry steps of receptor engagement to membrane fusion.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
| | - Tong Wang
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, United States of America
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, United States of America
- Department of Chemistry and Biochemistry, City College of New York, New York, New York, United States of America
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
- Department of Physiology & Columbia University Vagelos College of Physicians & Surgeons, New York, New York, United States of America
| |
Collapse
|
27
|
Pattnaik GP, Chakraborty H. Entry Inhibitors: Efficient Means to Block Viral Infection. J Membr Biol 2020; 253:425-444. [PMID: 32862236 PMCID: PMC7456447 DOI: 10.1007/s00232-020-00136-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
The emerging and re-emerging viral infections are constant threats to human health and wellbeing. Several strategies have been explored to develop vaccines against these viral diseases. The main effort in the journey of development of vaccines is to neutralize the fusion protein using antibodies. However, significant efforts have been made in discovering peptides and small molecules that inhibit the fusion between virus and host cell, thereby inhibiting the entry of viruses. This class of inhibitors is called entry inhibitors, and they are extremely efficient in reducing viral infection as the entry of the virus is considered as the first step of infection. Nevertheless, these inhibitors are highly selective for a particular virus as antibody-based vaccines. The recent COVID-19 pandemic lets us ponder to shift our attention towards broad-spectrum antiviral agents from the so-called ‘one bug-one drug’ approach. This review discusses peptide and small molecule-based entry inhibitors against class I, II, and III viruses and sheds light on broad-spectrum antiviral agents.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India. .,Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
28
|
A boost to the antiviral activity: Cholesterol tagged peptides derived from glycoprotein B of Herpes Simplex virus type I. Int J Biol Macromol 2020; 162:882-893. [PMID: 32569683 DOI: 10.1016/j.ijbiomac.2020.06.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/20/2023]
Abstract
Conformational changes of viral glycoproteins govern the fusion of viral and cellular membranes in the entry of enveloped viruses. Peptides mimicking domains of viral glycoproteins are apt to interfere with the fusion event, likely hampering the conformational rearrangements from the pre- to the post-fusion structures. We previously developed a peptide sequence with a high potential to inhibit the entry of herpes simplex type 1, which was able to trap glycoprotein B at an intermediate stage, arresting fusion. We propose that similarly to other viruses, membrane targeting through cholesterol conjugation may potently block fusion. The peptide conjugated to polyethylenglycol and cholesterol interacts with viral and cell membranes thanks to the presence of cholesterol and blocks the conformational rearrangements of the glycoprotein B. Here, we also probed the effect of the linker (polyethylenglycol) length on the activity. By targeting the peptide gBh1m to the membranes where fusion occurs and by engineering sequences with increased binding affinity for gB we have enhanced the antiviral potency of our prototype inhibitors. Our results provide proof of concept for the application of cholesterol tagging to develop inhibitors of HSV-1.
Collapse
|
29
|
Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo. Antiviral Res 2019; 171:104592. [PMID: 31473342 DOI: 10.1016/j.antiviral.2019.104592] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023]
Abstract
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Collapse
|
30
|
Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion. Adv Virus Res 2019; 104:123-146. [PMID: 31439147 DOI: 10.1016/bs.aivir.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycoprotein on the surface of the virion. Due to the inherently asynchronous nature of these dynamics, there has been an increased focus on the study of single virions and single molecules. These techniques provide researchers the high precision and resolution necessary to bridge the gaps in our understanding of viral membrane fusion. This review highlights the advancement of single-molecule and single-particle fluorescence-based techniques, with a specific focus on how these techniques have been used to study the dynamic nature of the viral fusion pathway.
Collapse
|
31
|
Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. J Virol 2019; 93:JVI.00058-19. [PMID: 31189708 PMCID: PMC6694820 DOI: 10.1128/jvi.00058-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023] Open
Abstract
The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle. Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.
Collapse
|
32
|
Design and Characterization of Cholesterylated Peptide HIV-1/2 Fusion Inhibitors with Extremely Potent and Long-Lasting Antiviral Activity. J Virol 2019; 93:JVI.02312-18. [PMID: 30867304 DOI: 10.1128/jvi.02312-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
HIV infection requires lifelong treatment with multiple antiretroviral drugs in a combination, which ultimately causes cumulative toxicities and drug resistance, thus necessitating the development of novel antiviral agents. We recently found that enfuvirtide (T-20)-based lipopeptides conjugated with fatty acids have dramatically increased in vitro and in vivo anti-HIV activities. Herein, a group of cholesterol-modified fusion inhibitors were characterized with significant findings. First, novel cholesterylated inhibitors, such as LP-83 and LP-86, showed the most potent activity in inhibiting divergent human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). Second, the cholesterylated inhibitors were highly active to inhibit T-20-resistant mutants that still conferred high resistance to the fatty acid derivatives. Third, the cholesterylated inhibitors had extremely potent activity to block HIV envelope (Env)-mediated cell-cell fusion, especially a truncated minimum lipopeptide (LP-95), showing a greatly increased potency relative to its inhibition on virus infection. Fourth, the cholesterylated inhibitors efficiently bound to both the cellular and viral membranes to exert their antiviral activities. Fifth, the cholesterylated inhibitors displayed low cytotoxicity and binding capacity with human serum albumin. Sixth, we further demonstrated that LP-83 exhibited extremely potent and long-lasting anti-HIV activity in rhesus monkeys. Taken together, the present results help our understanding on the mechanism of action of lipopeptide-based viral fusion inhibitors and facilitate the development of novel anti-HIV drugs.IMPORTANCE The peptide drug enfuvirtide (T-20) remains the only membrane fusion inhibitor available for treatment of viral infection, which is used in combination therapy of HIV-1 infection; however, it exhibits relatively low antiviral activity and a genetic barrier to inducing resistance, calling for the continuous development for novel anti-HIV agents. In this study, we report cholesterylated fusion inhibitors showing the most potent and broad anti-HIV activities to date. The new inhibitors have been comprehensively characterized for their modes of action and druggability, including small size, low cytotoxicity, binding ability to human serum albumin (HSA), and, especially, extremely potent and long-lasting antiviral activity in rhesus monkeys. Therefore, the present studies have provided new drug candidates for clinical development, which can also be used as tools to probe the mechanisms of viral entry and inhibition.
Collapse
|
33
|
Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W, Zhong W, Jiang S, Liu K. De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. J Med Chem 2018; 61:8734-8745. [PMID: 30192544 PMCID: PMC7075651 DOI: 10.1021/acs.jmedchem.8b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.
Collapse
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Zhao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Tianhong Zhang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ruiyuan Cao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Yue Li
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangpeng Meng
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weicong Wang
- Department
of Clinical Trial Center, China National Clinical Research Center
for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weiguo Shi
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wu Zhong
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
- Lindsley
F. Kimball Research Institute, New York
Blood Center, New York, New York 10065, United
States
| | - Keliang Liu
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
34
|
Figueira TN, Augusto MT, Rybkina K, Stelitano D, Noval MG, Harder OE, Veiga AS, Huey D, Alabi CA, Biswas S, Niewiesk S, Moscona A, Santos NC, Castanho MARB, Porotto M. Effective in Vivo Targeting of Influenza Virus through a Cell-Penetrating/Fusion Inhibitor Tandem Peptide Anchored to the Plasma Membrane. Bioconjug Chem 2018; 29:3362-3376. [PMID: 30169965 DOI: 10.1021/acs.bioconjchem.8b00527] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of influenza virus infection is felt each year on a global scale when approximately 5-10% of adults and 20-30% of children globally are infected. While vaccination is the primary strategy for influenza prevention, there are a number of likely scenarios for which vaccination is inadequate, making the development of effective antiviral agents of utmost importance. Anti-influenza treatments with innovative mechanisms of action are critical in the face of emerging viral resistance to the existing drugs. These new antiviral agents are urgently needed to address future epidemic (or pandemic) influenza and are critical for the immune-compromised cohort who cannot be vaccinated. We have previously shown that lipid tagged peptides derived from the C-terminal region of influenza hemagglutinin (HA) were effective influenza fusion inhibitors. In this study, we modified the influenza fusion inhibitors by adding a cell penetrating peptide sequence to promote intracellular targeting. These fusion-inhibiting peptides self-assemble into ∼15-30 nm nanoparticles (NPs), target relevant infectious tissues in vivo, and reduce viral infectivity upon interaction with the cell membrane. Overall, our data show that the CPP and the lipid moiety are both required for efficient biodistribution, fusion inhibition, and efficacy in vivo.
Collapse
Affiliation(s)
- T N Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - M T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal.,Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - K Rybkina
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - D Stelitano
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - M G Noval
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States
| | - O E Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - D Huey
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - C A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - S Biswas
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States
| | - S Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine , The Ohio State University , Columbus , Ohio 43210 , United States
| | - A Moscona
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Microbiology & Immunology , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Physiology & Cellular Biophysics , Columbia University Medical Center , New York , New York 10032 , United States
| | - N C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , 1649-028 Lisbon , Portugal
| | - M Porotto
- Department of Pediatrics , Columbia University Medical Center , New York , New York 10032 , United States.,Center for Host-Pathogen Interaction , Columbia University Medical Center , New York , New York 10032 , United States.,Department of Experimental Medicine , University of Campania 'Luigi Vanvitelli' , 81100 Caserta , Caserta , Italy
| |
Collapse
|
35
|
Rational Design of the Minimal Requirement for Helix–Helix Peptide Interactions in the Trimer-of-Hairpins Motif of Pediatric Pneumonia RSV Fusion Glycoprotein. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9756-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Boonstra S, Blijleven JS, Roos WH, Onck PR, van der Giessen E, van Oijen AM. Hemagglutinin-Mediated Membrane Fusion: A Biophysical Perspective. Annu Rev Biophys 2018; 47:153-173. [PMID: 29494252 DOI: 10.1146/annurev-biophys-070317-033018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.
Collapse
Affiliation(s)
- Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Wouter H Roos
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands; , , , ,
| | - Antoine M van Oijen
- School of Chemistry; Faculty of Science, Medicine and Health; University of Wollongong, Wollongong, New South Wales 2522, Australia;
| |
Collapse
|
37
|
Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36:415-429. [PMID: 29330093 DOI: 10.1016/j.biotechadv.2018.01.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/13/2017] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Axel Hollmann
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
38
|
Wu Y, Jiang S, Ying T. Single-Domain Antibodies As Therapeutics against Human Viral Diseases. Front Immunol 2017; 8:1802. [PMID: 29326699 PMCID: PMC5733491 DOI: 10.3389/fimmu.2017.01802] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs) offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1), influenza viruses, hepatitis C virus (HCV), respiratory syncytial virus (RSV), and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Biophysical Properties and Antiviral Activities of Measles Fusion Protein Derived Peptide Conjugated with 25-Hydroxycholesterol. Molecules 2017; 22:molecules22111869. [PMID: 29088094 PMCID: PMC5775476 DOI: 10.3390/molecules22111869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Measles virus (MV) infection is re-emerging, despite the availability of an effective vaccine. The mechanism of MV entry into a target cell relies on coordinated action between the MV hemagglutinin (H) receptor binding protein and the fusion envelope glycoprotein (F) which mediates fusion between the viral and cell membranes. Peptides derived from the C-terminal heptad repeat (HRC) of F can interfere with this process, blocking MV infection. As previously described, biophysical properties of HRC-derived peptides modulate their antiviral potency. In this work, we characterized a MV peptide fusion inhibitor conjugated to 25-hydroxycholesterol (25HC), a cholesterol derivative with intrinsic antiviral activity, and evaluated its interaction with membrane model systems and human blood cells. The peptide (MV.
Collapse
|
40
|
Quinn K, Traboni C, Penchala SD, Bouliotis G, Doyle N, Libri V, Khoo S, Ashby D, Weber J, Nicosia A, Cortese R, Pessi A, Winston A. A first-in-human study of the novel HIV-fusion inhibitor C34-PEG 4-Chol. Sci Rep 2017; 7:9447. [PMID: 28842581 PMCID: PMC5572697 DOI: 10.1038/s41598-017-09230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 07/17/2017] [Indexed: 11/10/2022] Open
Abstract
Long-acting injectable antiretroviral (LA-ARV) drugs with low toxicity profiles and propensity for drug-drug interactions are a goal for future ARV regimens. C34-PEG4-Chol is a novel cholesterol tagged LA HIV-fusion-inhibitor (FI). We assessed pre-clinical toxicology and first-in-human administration of C34-PEG4-Chol. Pre-clinical toxicology was conducted in 2 species. HIV-positive men were randomised to a single subcutaneous dose of C34-PEG4-Chol at incrementing doses or placebo. Detailed clinical (including injection site reaction (ISR) grading), plasma pharmacokinetic (time-to-minimum-effective-concentration (MEC, 25 ng/mL) and pharmacodynamic (plasma HIV RNA) parameters were assessed. In both mice and dogs, no-observed-adverse effect level (NOAEL) was observed at a 12 mg/kg/dose after two weeks. Of 5 men enrolled, 3 received active drug (10 mg, 10 mg and 20 mg). In 2 individuals grade 3 ISR occurred and the study was halted. Both ISR emerged within 12 hours of active drug dosing. No systemic toxicities were observed. The time-to-MEC was >72 and >96 hours after 10 and 20 mg dose, respectively, and mean change in HIV RNA was −0.9 log10 copies/mL. These human pharmacodynamic and pharmacokinetic data, although limited to 3 subjects, of C34-PEG-4-Chol suggest continuing evaluation of this agent as a LA-ARV. However, alternative administration routes must be explored.
Collapse
Affiliation(s)
- Killian Quinn
- Department of Medicine, Imperial College London, London, W2 1NY, UK
| | | | | | | | - Nicki Doyle
- Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - Vincenzo Libri
- Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Saye Khoo
- Department of Pharmacology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Deborah Ashby
- School of Public Health, Imperial College London, London, UK
| | - Jonathan Weber
- Department of Medicine, Imperial College London, London, W2 1NY, UK
| | - Alfredo Nicosia
- JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| | - Riccardo Cortese
- JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| | - Antonello Pessi
- JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy. .,CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy. .,PeptiPharma, Viale Città D'Europa 679, 00144, Roma, Italy.
| | - Alan Winston
- Department of Medicine, Imperial College London, London, W2 1NY, UK.
| |
Collapse
|
41
|
Park JE, Gallagher T. Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides. Virology 2017; 511:9-18. [PMID: 28802158 PMCID: PMC7112077 DOI: 10.1016/j.virol.2017.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
Coronaviruses (CoVs) can cause life-threatening respiratory diseases. Their infectious entry requires viral spike (S) proteins, which attach to cell receptors, undergo proteolytic cleavage, and then refold in a process that catalyzes virus-cell membrane fusion. Fusion-inhibiting peptides bind to S proteins, interfere with refolding, and prevent infection. Here we conjugated fusion-inhibiting peptides to various lipids, expecting this to secure peptides onto cell membranes and thereby increase antiviral potencies. Cholesterol or palmitate adducts increased antiviral potencies up to 1000-fold. Antiviral effects were evident after S proteolytic cleavage, implying that lipid conjugates affixed the peptides at sites of protease-triggered fusion activation. Unlike lipid-free peptides, the lipopeptides suppressed CoV S protein-directed virus entry taking place within endosomes. Cell imaging revealed intracellular peptide aggregates, consistent with their endocytosis into compartments where CoV entry takes place. These findings suggest that lipidations localize antiviral peptides to protease-rich sites of CoV fusion, thereby protecting cells from diverse CoVs. Lipidation increases antiviral activities of CoV fusion-inhibiting peptides. Fusion-inhibiting peptides target proteolytically-triggered CoV spike proteins. Lipidated peptides suppress CoVs that are occluded within endosomes before cytosolic entry.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
42
|
Antiviral Lipopeptide-Cell Membrane Interaction Is Influenced by PEG Linker Length. Molecules 2017; 22:molecules22071190. [PMID: 28714870 PMCID: PMC5776016 DOI: 10.3390/molecules22071190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
A set of lipopeptides was recently reported for their broad-spectrum antiviral activity against viruses belonging to the Paramyxoviridae family, including human parainfluenza virus type 3 and Nipah virus. Among them, the peptide with a 24-unit PEG linker connecting it to a cholesterol moiety (VG-PEG24-Chol) was found to be the best membrane fusion inhibitory peptide. Here, we evaluated the interaction of the same set of peptides with biomembrane model systems and isolated human peripheral blood mononuclear cells (PBMC). VG-PEG24-Chol showed the highest insertion rate and it was among the peptides that induced a larger change on the surface pressure of cholesterol rich membranes. This peptide also displayed a high affinity towards PBMC membranes. These data provide new information about the dynamics of peptide-membrane interactions of a specific group of antiviral peptides, known for their potential as multipotent paramyxovirus antivirals.
Collapse
|
43
|
Yi HA, Fochtman BC, Rizzo RC, Jacobs A. Inhibition of HIV Entry by Targeting the Envelope Transmembrane Subunit gp41. Curr HIV Res 2016; 14:283-94. [PMID: 26957202 DOI: 10.2174/1570162x14999160224103908] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The transmembrane subunit of the HIV envelope protein, gp41 is a vulnerable target to inhibit HIV entry. There is one fusion inhibitor T20 (brand name: Fuzeon, generic name: enfuvirtide) available by prescription. However, it has several drawbacks such as a high level of development of drug resistance, a short-half life in vivo, rapid renal clearance, low oral bioavailability, and it is only used as a salvage therapy. Therefore, investigators have been studying a variety of different modalities to attempt to overcome these limitations. METHODS Comprehensive literature searches were performed on HIV gp41, inhibition mechanisms, and inhibitors. The latest structural information was collected, and multiple inhibition strategies targeting gp41 were reviewed. RESULTS Many of the recent advances in inhibitors were peptide-based. Several creative modification strategies have also been performed to improve inhibitory efficacy of peptides and to overcome the drawbacks of T20 treatment. Small compounds have also been an area of intense research. There is a wide variety in development from those identified by virtual screens targeting specific regions of the protein to natural products. Finally, broadly neutralizing antibodies have also been important area of research. The inaccessible nature of the target regions for antibodies is a challenge, however, extensive efforts to develop better neutralizing antibodies are ongoing. CONCLUSION The fusogenic protein, gp41 has been extensively studied as a promising target to inhibit membrane fusion between the virus and target cells. At the same time, it is a challenging target because the vulnerable conformations of the protein are exposed only transiently. However, advances in biochemical, biophysical, structural, and immunological studies are coming together to move the field closer to an understanding of gp41 structure and function that will lead to the development of novel drugs and vaccines.
Collapse
Affiliation(s)
| | | | | | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
44
|
Barriga GP, Villalón-Letelier F, Márquez CL, Bignon EA, Acuña R, Ross BH, Monasterio O, Mardones GA, Vidal SE, Tischler ND. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc. PLoS Negl Trop Dis 2016; 10:e0004799. [PMID: 27414047 PMCID: PMC4945073 DOI: 10.1371/journal.pntd.0004799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses. The infection of cells by enveloped viruses involves the fusion of membranes between viruses and cells. This process is mediated by viral fusion proteins that have been grouped into at least three structural classes. Membrane-enveloped hantaviruses are worldwide spread pathogens that can cause human disease with mortality rates reaching up to 50%, however, neither a therapeutic drug nor preventive measures are currently available. Here we show that the entrance of Andes hantavirus into target cells can be blocked by fragments derived from the Gc fusion protein that are analogous to inhibitory fragments of class II fusion proteins. The Gc fragments acted directly over the viral fusion process, preventing its late stages. Together, our data demonstrate that the hantavirus Gc protein shares not only structural, but also mechanistic similarity with class II fusion proteins, suggesting its evolution from a common or related ancestral fusion protein. Furthermore, the results outline novel approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Gonzalo P. Barriga
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | | | - Chantal L. Márquez
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Eduardo A. Bignon
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Acuña
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Breyan H. Ross
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo A. Mardones
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Simon E. Vidal
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Nicole D. Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- * E-mail:
| |
Collapse
|
45
|
Blijleven JS, Boonstra S, Onck PR, van der Giessen E, van Oijen AM. Mechanisms of influenza viral membrane fusion. Semin Cell Dev Biol 2016; 60:78-88. [PMID: 27401120 DOI: 10.1016/j.semcdb.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022]
Abstract
Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.
Collapse
Affiliation(s)
- Jelle S Blijleven
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Sander Boonstra
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Antoine M van Oijen
- School of Chemistry, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia.
| |
Collapse
|
46
|
Urbanowicz RA, Lacek K, Lahm A, Bienkowska-Szewczyk K, Ball JK, Nicosia A, Cortese R, Pessi A. Cholesterol conjugation potentiates the antiviral activity of an HIV immunoadhesin. J Pept Sci 2016; 21:743-9. [PMID: 26292842 DOI: 10.1002/psc.2802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/04/2023]
Abstract
Immunoadhesins are engineered proteins combining the constant domain (Fc) of an antibody with a ligand-binding (adhesion) domain. They have significant potential as therapeutic agents, because they maintain the favourable pharmacokinetics of antibodies with an expanded repertoire of ligand-binding domains: proteins, peptides, or small molecules. We have recently reported that the addition of a cholesterol group to two HIV antibodies can dramatically improve their antiviral potency. Cholesterol, which can be conjugated at various positions in the antibody, including the constant (Fc) domain, endows the conjugate with affinity for the membrane lipid rafts, thus increasing its concentration at the site where viral entry occurs. Here, we extend this strategy to an HIV immunoadhesin, combining a cholesterol-conjugated Fc domain with the peptide fusion inhibitor C41. The immunoadhesin C41-Fc-chol displayed high affinity for Human Embryonic Kidney (HEK) 293 cells, and when tested on a panel of HIV-1 strains, it was considerably more potent than the unconjugated C41-Fc construct. Potentiation of antiviral activity was comparable to what was previously observed for the cholesterol-conjugated HIV antibodies. Given the key role of cholesterol in lipid raft formation and viral fusion, we expect that the same strategy should be broadly applicable to enveloped viruses, for many of which it is already known the sequence of a peptide fusion inhibitor similar to C41. Moreover, the sequence of heptad repeat-derived fusion inhibitors can often be predicted from genomic information alone, opening a path to immunoadhesins against emerging viruses.
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Krzysztof Lacek
- CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,Laboratory of Virus Molecular Biology, University of Gdansk, 80-822, Gdansk, Poland
| | - Armin Lahm
- PeptiPharma, Viale Città D'Europa 679, 00144, Roma, Italy
| | | | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | - Alfredo Nicosia
- CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Napoli, Italy
| | | | - Antonello Pessi
- CEINGE, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,PeptiPharma, Viale Città D'Europa 679, 00144, Roma, Italy.,JV Bio, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|
47
|
Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016; 8:112. [PMID: 27110811 PMCID: PMC4848605 DOI: 10.3390/v8040112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Collapse
|
48
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
49
|
Wu W, Lin D, Shen X, Li F, Fang Y, Li K, Xun T, Yang G, Yang J, Liu S, He J. New influenza A Virus Entry Inhibitors Derived from the Viral Fusion Peptides. PLoS One 2015; 10:e0138426. [PMID: 26382764 PMCID: PMC4575187 DOI: 10.1371/journal.pone.0138426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
Influenza A viral (IAV) fusion peptides are known for their important role in viral-cell fusion process and membrane destabilization potential which are compatible with those of antimicrobial peptides. Thus, by replacing the negatively or neutrally charged residues of FPs with positively charged lysines, we synthesized several potent antimicrobial peptides derived from the fusogenic peptides (FPs) of hemagglutinin glycoproteins (HAs) of IAV. The biological screening identified that in addition to the potent antibacterial activities, these positively charged fusion peptides (pFPs) effectively inhibited the replication of influenza A viruses including oseltamivir-resistant strain. By employing pseudovirus-based entry inhibition assays including H5N1 influenza A virus (IAV), and VSV-G, the mechanism study indicated that the antiviral activity may be associated with the interactions between the HA2 subunit and pFP, of which, the nascent pFP exerted a strong effect to interrupt the conformational changes of HA2, thereby blocking the entry of viruses into host cells. In addition to providing new peptide “entry blockers”, these data also demonstrate a useful strategy in designing potent antibacterial agents, as well as effective viral entry inhibitors. It would be meaningful in treatment of bacterial co-infection during influenza pandemic periods, as well as in our current war against those emerging pathogenic microorganisms such as IAV and HIV.
Collapse
Affiliation(s)
- Wenjiao Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Dongguo Lin
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Xintian Shen
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Fangfang Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Yuxin Fang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Kaiqun Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Tianrong Xun
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Guang Yang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Jie Yang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
- * E-mail: (SL); (JH)
| | - Jian He
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
- * E-mail: (SL); (JH)
| |
Collapse
|
50
|
Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. J Virol 2015; 89:6093-104. [PMID: 25833045 DOI: 10.1128/jvi.00543-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. IMPORTANCE Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus priming with greater precision. Implications of these findings extend to the use of virus entry antagonists, such as protease inhibitors, which might be most effective when localized to these microdomains.
Collapse
|