1
|
Singh R, Kushwaha V, Rastogi SK, Rai P, Kumar S, Khandelwal N, Gupta S, Bisen AC, Varshney S, Singh A, Balaramnavar VM, Bhatta RS, Kumar R, Gaikwad AN, Sinha AK. Design, synthesis, and biological evaluation of novel quinoline carboxylic acid based styryl/alkyne hybrid molecule as a potent anti-adipogenic and antidyslipidemic agent via activation of Wnt/β-catenin pathway. Eur J Med Chem 2025; 288:117346. [PMID: 39954348 DOI: 10.1016/j.ejmech.2025.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
Obesity has emerged as the root cause for various metabolic disorders worldwide and hence demands for urgent attention. In the same stride, a series of quinoline carboxylic acid-based styryl/alkyne hybrids were designed, synthesized, and evaluated for their anti-adipogenic activity. Based on the structure-activity relationship, functional groups and essential substituents to potentiate the anti-adipogenic activity were identified. The potent compound (E)-6-fluoro-2-(4-(4-methylstyryl)phenyl)quinoline-4-carboxylic acid (5m) suppresses the adipogenesis with IC50 value of 0.330 μM. In vitro studies in 3T3-L1 preadipocytes cell line show that compound 5m prevents adipogenesis by stopping the cell cycle at the early phase of differentiation, which is caused by stimulation of the Wnt3a/β-catenin pathway. Further compound 5m improves the blood lipid profile and reduces adipogenic marker proteins in the epididymal white adipose tissue (eWAT) of dyslipidemic hamster at 100 mg/kg/day oral dose. Treatment with compound 5m reduces the hypertrophied adipose tissue along with the decrease in the levels of adipogenic marker proteins such as PPARγ and CEBPα. The pharmacokinetic result establishes the molecule 5m to be stable with significant oral bioavailability. Henceforth, the present study provides a unique insight into the anti-adipogenic/anti-dyslipidemic properties of a novel styryl-quinoline carboxylic acid scaffold with a scope to enhance the anti-adipogenic potency for therapeutic intervention of obesity.
Collapse
Affiliation(s)
- Richa Singh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Vinita Kushwaha
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Sumit K Rastogi
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Prashant Rai
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India; Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Astha Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Vishal M Balaramnavar
- Sanskriti University, School of Pharmacy and Research Center, 28 KM. Stone, Mathura-Delhi Highway, Chhata, Mathura, Uttar Pradesh (UP), 281401, India.
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India; Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| | - Arun K Sinha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
2
|
Rajan RK. Piceatannol-Can It Be Used to Treat Hyperpigmentation of the Skin? Pigment Cell Melanoma Res 2025; 38:e70008. [PMID: 40091271 DOI: 10.1111/pcmr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Over the years, the cosmetic industry has shifted its focus from synthtic to natural compounds. This change is driven not only by the safety profile of natural ingredients but also by increased consumer awareness about the products they use. As a result, many natural skincare products have been launched in recent years. Hyperpigmentation disorders, such as melasma, age spots (solar lentigines), post-inflammatory hyperpigmentation, freckles, and acanthosis nigricans, are significant concerns. These conditions not only pose pathological issues but also affect individuals' self-esteem. Consequently, treating hyperpigmentation by reducing melanogenesis has become a key area of interest in cosmetology. Among various natural compounds, piceatannol (PCT) shows great potential in treating hyperpigmentation. The primary mechanism previously explored is the inhibition of the tyrosinase enzyme, which is one of the most researched strategies for combating melanogenesis. Additionally, PCT has been shown to downregulate MITF expression, a key gene responsible for the transcription of various melanogenic proteins and enzymes. However, beyond these two mechanisms, little is known about how PCT may inhibit melanogenesis. In this review, we aim to bridge that gap. We will explore and speculate on the possible upstream signaling pathways to MITF, such as Nrf, FOXO3a, CREB, MAPK signaling, etc., where PCT could potentially act to inhibit melanogenesis. This review will not only pave the way for future research related to PCT and hyperpigmentation but also highlight pathways that could be targeted for developing cosmetics and treatments for hyperpigmentation disorders.
Collapse
|
3
|
Pichetkun V, Khine HEE, Srifa S, Nukulkit S, Nuengchamnong N, Hansapaiboon S, Saenmuangchin R, Chaotham C, Chansriniyom C. Diverse effects of a Cyperus rotundus extract on glucose uptake in myotubes and adipocytes and its suppression on adipocyte maturation. Sci Rep 2024; 14:9018. [PMID: 38641685 PMCID: PMC11031566 DOI: 10.1038/s41598-024-59357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
Cyperus rotundus rhizomes have been used in longevity remedies in Thailand for nourishing good health, which led us to investigate the effect on energy homeostasis, especially glucose utilization in myotubes and adipocytes, and on inhibition of lipogenesis in adipocytes. The results showed that an ethyl acetate extract of C. rotundus rhizomes (ECR) containing 1.61%w/w piceatannol, with a half-maximal concentration of 17.76 ± 0.03 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, caused upregulation and cell-membrane translocation of glucose transporters GLUT4 and 1 in L6 myotubes but downregulation and cytoplasmic localization of GLUT4 expression in 3T3-L1 adipocytes and was related to the p-Akt/Akt ratio in both cells, especially at 100 μg/mL. Moreover, ECR (25-100 μg/mL) significantly inhibited lipid accumulation via Adenosine Monophosphate-Activated Protein Kinase (AMPK), Acetyl CoA Carboxylase (ACC), and Glycogen Synthase Kinase (GSK) pathways. Its immunoblot showed increased expression of p-AMPKα/AMPKα and p-ACC/ACC but decreased expression of p-Akt/Akt and p-GSK3β/GSK3β in 3T3-L1 adipocytes. Moreover, the decreased expression of the adipogenic effectors, perilipin1 and lipoprotein lipase, in ECR-incubated adipocytes (50 and 100 μg/mL) indicated reduced de novo lipogenesis. Our study elucidated mechanisms of C. rotundus that help attenuate glucose tolerance in skeletal muscle and inhibit lipid droplet accumulation in adipose tissue.
Collapse
Affiliation(s)
- Vipawee Pichetkun
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products and Nanoparticles (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Srifa
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasiwimon Nukulkit
- Center of Excellence in Natural Products and Nanoparticles (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Center, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supakarn Hansapaiboon
- Pharmaceutical Research Instrument Center of the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rattaporn Saenmuangchin
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Phahonyothin Rd., Klongluang, Pathumthani, 12120, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chaisak Chansriniyom
- Center of Excellence in Natural Products and Nanoparticles (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Gandhi H, Mahant S, Sharma AK, Kumar D, Dua K, Chellappan DK, Singh SK, Gupta G, Aljabali AAA, Tambuwala MM, Kapoor DN. Exploring the therapeutic potential of naturally occurring piceatannol in non-communicable diseases. Biofactors 2024; 50:232-249. [PMID: 37702264 DOI: 10.1002/biof.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Piceatannol is a naturally occurring hydroxylated resveratrol analogue that can be found in a variety of fruits and vegetables. It has been documented to have a wide range of beneficial effects, including anti-inflammatory, antioxidant, anti-aging, anti-allergic, antidiabetic, neuroprotective, cardioprotective, and chemopreventive properties. Piceatannol has significantly higher antioxidant activity than resveratrol. Piceatannol has been shown in preclinical studies to have the ability to inhibit or reduce the growth of cancers in various organs such as the brain, breast, lung, colon, cervical, liver, prostate, and skin. However, the bioavailability of Piceatannol is comparatively lower than resveratrol and other stilbenes. Several approaches have been reported in recent years to enhance its bioavailability and biological activity, and clinical trials are required to validate these findings. This review focuses on several aspects of natural stilbene Piceatannol, its chemistry, and its mechanism of action, and its promising therapeutic potential for the prevention and treatment of a wide variety of complex human diseases.
Collapse
Affiliation(s)
- Himanshu Gandhi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Shikha Mahant
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
5
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
6
|
Arisawa K, Matsuoka A, Ozawa N, Ishikawa T, Ichi I, Fujiwara Y. GPER/PKA-Dependent Enhancement of Hormone-Sensitive Lipase Phosphorylation in 3T3-L1 Adipocytes by Piceatannol. Nutrients 2023; 16:38. [PMID: 38201867 PMCID: PMC10781143 DOI: 10.3390/nu16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that piceatannol (PIC) had an anti-obesity effect only in ovariectomized (OVX) postmenopausal obesity mice. PIC was found to induce the phosphorylation of hormone-sensitive lipase (pHSL) in OVX mice. To elucidate the mechanism by which PIC activates HSL, we investigated the effect of PIC using 3T3-L1 adipocytes. PIC induced HSL phosphorylation at Ser563 in 3T3-L1 cells, as in vivo experiments showed. pHSL (Ser563) is believed to be activated through the β-adrenergic receptor (β-AR) and protein kinase A (PKA) pathways; however, the addition of a selective inhibitor of β-AR did not inhibit the effect of PIC. The addition of a PKA inhibitor with PIC blocked pHSL (Ser563), suggesting that the effects are mediated by PKA in a different pathway than β-AR. The addition of G15, a selective inhibitor of the G protein-coupled estrogen receptor (GPER), reduced the activation of HSL by PIC. Furthermore, PIC inhibited insulin signaling and did not induce pHSL (Ser565), which represents its inactive form. These results suggest that PIC acts as a phytoestrogen and phosphorylates HSL through a novel pathway that activates GPER and its downstream PKA, which may be one of the inhibitory actions of PIC on fat accumulation in estrogen deficiency.
Collapse
Affiliation(s)
- Kotoko Arisawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan;
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
| | - Ayumi Matsuoka
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
| | - Natsuki Ozawa
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
| | - Tomoko Ishikawa
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan; (T.I.); (I.I.)
- Department of Human Nutrition, Seitoku University, Chiba 271-8555, Japan
| | - Ikuyo Ichi
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan; (T.I.); (I.I.)
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoko Fujiwara
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan; (A.M.); (N.O.)
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan; (T.I.); (I.I.)
| |
Collapse
|
7
|
Menezes ACG, Brandão LSR, Portugal LC, Matsubara LM, Maia EMA, Sakoda JN, Providelo GA, Navarezi AG, Santos KCND, Guimarães RDECA, Souza ASDE, Souza MIL. Lipid profile and reproductive performance of female offspring of SWISS mouse females supplemented with resveratrol or canjiqueira (Byrsonima cydoniifolia A Juss) during gestation. AN ACAD BRAS CIENC 2023; 95:e20190804. [PMID: 38088694 DOI: 10.1590/0001-3765202320190804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2023] Open
Abstract
This study aimed to resveratrol supplementation (at 5 or 10 mg/kg) and a hydroethanolic extract of canjiqueira fruits (150 mg/kg) on female SWISS mice. Total cholesterol, high-density lipoprotein (HDL), triglyceride levels, gestation rates, and embryonic implantation rates in their female Offspring was evaluated. In conclusion, the consumption of canjiqueira fruit extract altered the lipid profile of their female offspring, and did not impact their reproductive performance. Supplementing female SWISS mice with 10 mg/kg of resveratrol increased total cholesterol, triglycerides, and HDL levels, thereby enhancing the reproductive efficiency of their offspring.
Collapse
Affiliation(s)
- Adriana C Guercio Menezes
- Mato Grosso do Sul Federal University, Animal Science Graduate Program, Senador Filinto Müller Ave., 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
- Mato Grosso do Sul Federal University, Central Vivarium, Senador Filinto Müller Ave., 1555, Vila Ipiranga, 79070-900 Campo Grande, MS, Brazil
| | - Lorena S R Brandão
- Mato Grosso do Sul Federal University, Animal Science Graduate Program, Senador Filinto Müller Ave., 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Luciane C Portugal
- Mato Grosso do Sul Federal University, Bioscience Institute, Cidade Universitária, 79002-970 Campo Grande, MS, Brazil
| | - Lidia M Matsubara
- Animal Care Veterinary, Leonardo Vilas Boas Ave., 314, Vila Nova, 18608-227 Botucatu, SP, Brazil
| | - Elaine Maria A Maia
- Animal Care Veterinary, Leonardo Vilas Boas Ave., 314, Vila Nova, 18608-227 Botucatu, SP, Brazil
| | - Jhessica N Sakoda
- Animal Care Veterinary, Leonardo Vilas Boas Ave., 314, Vila Nova, 18608-227 Botucatu, SP, Brazil
| | - Gilson A Providelo
- Animal Care Veterinary, Leonardo Vilas Boas Ave., 314, Vila Nova, 18608-227 Botucatu, SP, Brazil
| | - Amanda G Navarezi
- Mato Grosso do Sul Federal University, Bioscience Institute, Cidade Universitária, 79002-970 Campo Grande, MS, Brazil
| | - Kely Cristina N Dos Santos
- Mato Grosso do Sul Federal University, Bioscience Institute, Cidade Universitária, 79002-970 Campo Grande, MS, Brazil
| | - Rita DE Cássia A Guimarães
- Mato Grosso do Sul Federal University, Pharmaceutical Sciences, Food and Nutrition Faculty, University City, 79070-900 Campo Grande, MS, Brazil
| | - Albert S DE Souza
- Mato Grosso do Sul Federal University, Bioscience Institute, Cidade Universitária, 79002-970 Campo Grande, MS, Brazil
| | - Maria Inês L Souza
- Mato Grosso do Sul Federal University, Animal Science Graduate Program, Senador Filinto Müller Ave., 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
- Mato Grosso do Sul Federal University, Bioscience Institute, Cidade Universitária, 79002-970 Campo Grande, MS, Brazil
| |
Collapse
|
8
|
Molonia MS, Salamone FL, Muscarà C, Costa G, Vento G, Saija A, Speciale A, Cimino F. Regulation of mitotic clonal expansion and thermogenic pathway are involved in the antiadipogenic effects of cyanidin-3-O-glucoside. Front Pharmacol 2023; 14:1225586. [PMID: 37614314 PMCID: PMC10442822 DOI: 10.3389/fphar.2023.1225586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Obesity is a metabolic disease with an increase both in cell size (hypertrophy) and in cell number (hyperplasia) following differentiation of new adipocytes. Adipogenesis is a well-orchestrated program in which mitotic clonal expansion (MCE) occurs in the early step followed by the late terminal differentiation one. Methods: Aim of the study was to evaluate the in vitro effects of cyanidin-3-O-glucoside (C3G), an anthocyanin present in many fruits and vegetables, in the early or late phase of 3T3-L1 preadipocytes differentiation. Results: C3G exposure in the early phase of adipogenesis process induced a more marked reduction of CCAAT/enhancer-binding protein-β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPAR-ɣ) and fatty acid synthase (Fasn) expression than late phase exposure and these effects were associated to a reduced MCE with cell cycle arrest at G0/G1 phase via p21 expression. Furthermore, C3G exposure during the early phase activated AMP-activated protein kinase (AMPK) pathway better than in the late phase promoting the enhancement of beige-like adipocytes. In fact, C3G induced thermogenic biomarkers uncoupling protein-1 (Ucp1) and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (Pgc1) and these effects were more evident during early phase exposure. Conclusion: Our data demonstrate that C3G reduces the terminal adipogenic process affecting the early phase of differentiation and inducing a thermogenic program.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- “Prof Antonio Imbesi” Foundation, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gregorio Costa
- Department of Human and Pediatric Pathology “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Antonella Saija
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Sie YY, Chen LC, Li CJ, Yuan YH, Hsiao SH, Lee MH, Wang CC, Hou WC. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2023; 12:1362. [PMID: 37507902 PMCID: PMC10376691 DOI: 10.3390/antiox12071362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-β peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 μM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-β were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 μM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Hung Hsiao
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
10
|
Rakib A, Mandal M, Showkat A, Kiran S, Mazumdar S, Singla B, Bajwa A, Kumar S, Park F, Singh UP. Piceatannol induces regulatory T cells and modulates the inflammatory response and adipogenesis. Biomed Pharmacother 2023; 161:114514. [PMID: 36921534 PMCID: PMC10071559 DOI: 10.1016/j.biopha.2023.114514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The beneficial effects of the polyphenolic compound piceatannol (PC) has been reported for metabolic diseases, antiproliferative, antioxidant, and anti-cancer properties. Despite its beneficial effects on inflammatory diseases, little is known about how PC regulates inflammatory responses and adipogenesis. Therefore, this study was designed to determine the effects of PC on the inflammatory response and adipogenesis. The effect of PC on splenocytes, 3T3-L1 adipocytes, and RAW264.7 macrophages was analyzed by flow cytometry, qRT-PCR, morphometry, and western blot analysis. PC induced apoptosis in activated T cells in a dose-dependent manner using stimulated splenocytes and reduced the activation of T cells, altered T cell frequency, and interestingly induced the frequency of regulatory T (Treg) cells as compared to controls. PC suppressed the expression of TNF-α, iNOS, IL-6R, and NF-κB activation in RAW264.7 macrophages after lipopolysaccharides (LPS)-induction as compared to the control. Interestingly, PC altered the cell morphology of 3T3-L1 adipocytes with a concomitant decrease in cell volume, lipid deposition, and TNF-α expression, but upregulation of leptin and IL-1β. Our findings suggested that PC induced apoptosis in activated T cells, decreased immune cell activation and inflammatory response, and hindered adipogenesis. This new set of data provides promising hope as a new therapeutic to treat both inflammatory disease and obesity.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anaum Showkat
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Soumi Mazumdar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aman Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Kershaw JC, Elzey BD, Guo XX, Kim KH. Piceatannol, a Dietary Polyphenol, Alleviates Adipose Tissue Loss in Pre-Clinical Model of Cancer-Associated Cachexia via Lipolysis Inhibition. Nutrients 2022; 14:nu14112306. [PMID: 35684106 PMCID: PMC9183120 DOI: 10.3390/nu14112306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia (CAC) is the nutrition-independent loss of lean muscle and adipose tissues, and results in reduced chemotherapy effectiveness and increased mortality. Preventing adipose loss is considered a key target in the early stages of cachexia. Lipolysis is considered the central driver of adipose loss in CAC. We recently found that piceatannol, but not its analogue resveratrol, exhibits an inhibitory effect on lipolysis. The objective of this study was to investigate the role of piceatannol in cancer-associated lipolysis and cachexia-induced weight loss. Cancer cell-induced lipolysis in adipocytes was stimulated using cancer-conditioned media (CCM) or co-culture with human pancreatic cancer cells and the cachexia-associated cytokines TNF-α and interleukin-6 in 3T3-L1 adipocytes. C26 colon carcinoma-bearing mice were modeled using CAC in vivo. Piceatannol reduced cancer-associated lipolysis by at least 50% in both CCM and cytokine-induced lipolysis in vitro. Further gene and protein analysis confirmed that piceatannol modulated the stability of lipolytic proteins. Moreover, piceatannol protected tumor-bearing mice against weight-loss in early stages of CAC largely through preserving adipose tissue, with no effect on survival. This study demonstrates the use of a dietary compound to preserve adipose in models of early stage CAC and provides groundwork for further investigation of piceatannol or piceatannol-rich foods as alternative medicine in the preservation of body fat mass and future CAC therapy.
Collapse
Affiliation(s)
- Jonathan C. Kershaw
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Bennett D. Elzey
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Xiao-Xuan Guo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: ; Tel.: +1-765-496-2330
| |
Collapse
|
12
|
Liudvytska O, Kolodziejczyk-Czepas J. A Review on Rhubarb-Derived Substances as Modulators of Cardiovascular Risk Factors—A Special Emphasis on Anti-Obesity Action. Nutrients 2022; 14:nu14102053. [PMID: 35631194 PMCID: PMC9144273 DOI: 10.3390/nu14102053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The currently available anti-obesity therapies encounter many associated risks and side effects often causing the ineffectiveness of treatment. Therefore, various plant-derived substances have been extensively studied as a promising support or even an alternative for existing anti-obesity therapies. This review is dealing with the anti-obesity potential of edible and ethnomedicinal rhubarb species and emerging possible role of the rhubarb-derived extracts or individual compounds in the prevention of obesity and perspectives for their use in an anti-obesity treatment. A special emphasis is put on the most popular edible specimens, i.e., Rheum rhabarbarum L. (garden rhubarb) and Rheum rhaponticum L. (rhapontic rhubarb, Siberian rhubarb); however, the anti-obesity potential of other rhubarb species (e.g., R. officinale, R. palmatum, and R. emodi) is presented as well. The significance of rhubarb-derived extracts and low-molecular specialized rhubarb metabolites of diversified chemical background, e.g., anthraquinones and stilbenes, as potential modulators of human metabolism is highlighted, including the context of cardiovascular disease prevention. The available reports present multiple encouraging rhubarb properties starting from the anti-lipidemic action of rhubarb fibre or its use as purgative medicines, through various actions of rhubarb-derived extracts and their individual compounds: inhibition of enzymes of cholesterol and lipid metabolism, targeting of key molecular regulators of adipogenesis, regulators of cell energy metabolism, the ability to inhibit pro-inflammatory signalling pathways and to regulate glucose and lipid homeostasis contributing to overall in vivo and clinical anti-obesity effects.
Collapse
|
13
|
Lee CH, Yang H, Park JHY, Kim JE, Lee KW. Piceatannol, a metabolite of resveratrol, attenuates atopic dermatitis by targeting Janus kinase 1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153981. [PMID: 35235887 DOI: 10.1016/j.phymed.2022.153981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Piceatannol is a resveratrol metabolite commonly found in red wine, grapes. Several studies have investigated the immune-modulating effects of piceatannol on processes related to allergic reactions. However, the relationship between piceatannol and atopic dermatitis (AD) has not yet been reported. This study sought to investigate the effects of piceatannol in animal and cell line models. METHODS AD-like symptoms and skin lesions were triggered by repeated topical treatment of Dermatophagoides farinae extract (DFE) on the skin of NC/Nga mice. The molecular mechanism of piceatannol was studied in the TNFα/IFNγ-induced HaCaT cell line. RESULTS Piceatannol attenuated DFE-induced AD-like symptoms, as shown by skin thickness, dermatitis score, scratching time, and skin water loss. Histopathological analysis showed that piceatannol suppressed DFE-induced immune cell infiltration into the skin. These results occurred concomitantly with the downregulation of inflammatory markers, including serum and skin TARC and MDC. Piceatannol decreased phosphorylation of JAK-STAT protein in the TNFα/IFNγ-induced HaCaT cell line. A molecular docking study showed that piceatannol strongly interacts with JAK1, suggesting a possible mode of action. CONCLUSION The study results showed that piceatannol, a metabolite of resveratrol, attenuates atopic dermatitis and provide important implication of development of piceatannol as functional ingredients or therapeutic agents.
Collapse
Affiliation(s)
- Chang Hyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee Yang
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| |
Collapse
|
14
|
John CM, Arockiasamy S. Sinapic acid prevents adipogenesis by regulating transcription factors and exerts an anti-ROS effect by modifying the intracellular anti-oxidant system in 3T3-L1 adipocytes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:611-620. [PMID: 35911638 PMCID: PMC9282747 DOI: 10.22038/ijbms.2022.62590.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
Objectives In this study, we tested the hypothesis that sinapic acid (SA), a naturally occurring hydroxycinnamic acid found in vegetables, cereal grains, and oilseed crops with various biological activities suppresses adipogenesis in 3T3-L1 adipocytes by down-regulating adipogenesis transcription factor. Materials and Methods 3T3-L1 adipocytes were treated with SA and evaluated by Oil Red O staining, triglyceride estimation, lipolysis, and reverse transcription-polymerase chain reaction. 3T3-L1 adipocytes were treated with various concentrations of SA (100 to 1000 μmol) during differentiation. Results SA prevented an increase in adipocytes by reducing preadipocyte clonal expansion. ORO staining analyses revealed that SA reduced cytoplasmic lipid droplet accumulation in 3T3-L1 by 57% at the highest concentration of 1000 μmol without affecting cell viability. Furthermore, SA down-regulated the expression of peroxisome proliferator-activated receptor-gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein 1c, and fatty acid synthase. ROS generated during adipogenesis was also attenuated by SA treatment by increasing antioxidant enzymes superoxide dismutase, catalase, and the cellular antioxidant glutathione. SA demonstrated no in vivo toxicity in the Drosophila melanogaster model. Conclusion These results suggest that SA exerts anti-oxidant and anti-adipogenic effects and could be used as a functional nutraceutical ingredient in combatting obesity-related diseases.
Collapse
Affiliation(s)
- Cordelia Mano John
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai – 600116, Tamil Nadu, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai – 600116, Tamil Nadu, India,Corresponding author: Sumathy Arockiasamy. Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology Sri Ramachandra Institute of Higher Education and Research Porur, Chennai – 600116 Tamil Nadu. Tel: 044 – 24768027/29; Extn:8760;
| |
Collapse
|
15
|
Piceatannol Antagonizes Lipolysis by Promoting Autophagy-Lysosome-Dependent Degradation of Lipolytic Protein Clusters in Adipocytes. J Nutr Biochem 2022; 105:108998. [PMID: 35346829 DOI: 10.1016/j.jnutbio.2022.108998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Overly elevated circulating non-esterified fatty acids (NEFAs) is an emerging health concern of obesity-associated energy disorders. However, methods to reduce circulating NEFAs remain elusive. The present study determined the effect of piceatannol, a naturally occurring stilbene, on adipocyte lipolysis and its underlying mechanism. Differentiated 3T3-L1 adipocytes and brown adipocytes and isolated white adipose tissue were treated with various concentrations of piceatannol for 1.5-hr both in the basal and stimulated lipolysis conditions. Piceatannol significantly inhibited NEFAs and glycerol release with a concomitant reduction of ATGL, CGI-58 and PLIN1 expression in adipocytes. Using a series of inhibitor assays, piceatannol-induced degradation of these proteins was found to be mediated by upregulation of the autophagy-lysosome pathway. Moreover, we demonstrated that piceatannol is capable of stimulating autophagy in vitro. Importantly, piceatannol administration tended to lower fasting-induced serum glycerol levels in healthy mice. Furthermore, piceatannol administration lowered lipolysis, central adiposity and hyperinsulinemia in diet-induced obese mice. Our study provides profound evidence of a novel inhibitory role of piceatannol in lipolysis through autophagy-lysosome-dependent degradation of the key lipolytic proteins in adipocytes. This study offers a mechanistic foundation for investigating the potential of piceatannol-containing foods in reducing lipolysis and its associated metabolic disorders.
Collapse
|
16
|
Gao X, Kang X, Lu H, Xue E, Chen R, Pan J, Ma J. Piceatannol suppresses inflammation and promotes apoptosis in rheumatoid arthritis‑fibroblast‑like synoviocytes by inhibiting the NF‑κB and MAPK signaling pathways. Mol Med Rep 2022; 25:180. [PMID: 35322865 PMCID: PMC8972314 DOI: 10.3892/mmr.2022.12696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that mainly targets the synovial membrane, thus causing stiffness, deformity and dysfunction of joints. To date, no effective anti-inflammatory treatments are available for RA. Piceatannol (PIC) is a natural derivative of resveratrol, which has been reported to attenuate the inflammatory response. To evaluate the effect of PIC on RA and to determine the underlying molecular target of PIC, both in vitro and in vivo experiments were performed in the present study. A CIA rat model was established to evaluate the therapeutic effects of PIC. TNF-α, IL-1β and IL-6 levels in blood were measured by ELISA. Western blotting, immunofluorescence analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to analyze the expression levels of protein and mRNA. In vitro, RA-fibroblast-like synoviocytes (FLSs) were pretreated with PIC and subsequently stimulated with TNF-α. The results revealed that PIC significantly upregulated the expression levels of proapoptotic proteins such as Bax and cleaved caspase-3. PIC also significantly reduced the production of proinflammatory cytokines, including PGE2, IL-6 and IL-1β, and significantly downregulated the expression of cyclooxygenase-2 at both the mRNA and protein expression levels. Furthermore, PIC downregulated the expression of MMP-3 and MMP-13, which have been found to be highly expressed in the synovium of patients with RA. Mechanistically, PIC was capable of significantly downregulating the expression levels of proteins involved in the NF-κB and MAPK signaling pathways. The results of the in vivo experiments using a rat collagen-induced arthritis model demonstrated that PIC decreased the arthritis score and exerted beneficial effects in cartilage and significantly reduced the expression of MMP-13. In conclusion, the findings of the present study revealed that PIC could suppress the inflammatory response, promote apoptosis, and exert a significant regulatory effect on the NF-κB and MAPK signaling pathways in RA-FLSs. Therefore, PIC may represent a potential drug for the future treatment of RA.
Collapse
Affiliation(s)
- Xuezhong Gao
- Department of Cardiovascular Disease, People's Hospital of Aksu, Aksu, Xinjiang 843000, P.R. China
| | - Xiaodiao Kang
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hongwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Enxing Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rong Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jianfeng Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
17
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
18
|
Ikeda T, Watanabe S, Mitani T. Genistein regulates adipogenesis by blocking the function of adenine nucleotide translocase-2 in the mitochondria. Biosci Biotechnol Biochem 2022; 86:260-272. [PMID: 34849563 DOI: 10.1093/bbb/zbab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Genistein exerts antiadipogenic effects, but its target molecules remain unclear. Here, we delineated the molecular mechanism underlying the antiadipogenic effect of genistein. A pulldown assay using genistein-immobilized beads identified adenine nucleotide translocase-2 as a genistein-binding protein in adipocytes. Adenine nucleotide translocase-2 exchanges ADP/ATP through the mitochondrial inner membrane. Similar to the knockdown of adenine nucleotide translocase-2, genistein treatment decreased ADP uptake into the mitochondria and ATP synthesis. Genistein treatment and adenine nucleotide translocase-2 knockdown suppressed adipogenesis and increased phosphorylation of AMP-activated protein kinase. Adenine nucleotide translocase-2 knockdown reduced the transcriptional activity of CCAAT/enhancer-binding protein β, whereas AMP-activated protein kinase inhibition restored the suppression of adipogenesis by adenine nucleotide translocase-2 knockdown. These results indicate that genistein interacts directly with adenine nucleotide translocase-2 to suppress its function. The downregulation of adenine nucleotide translocase-2 reduces the transcriptional activity of CCAAT/enhancer-binding protein β via activation of AMP-activated protein kinase, which consequently represses adipogenesis.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Shun Watanabe
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Department of Agriculture, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Division of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
19
|
Wang Z, Lu YL, Chen M, Xu HF, Zheng LR. Piceatannol alleviates glucolipotoxicity induced vascular barrier injury through inhibition of the ROS/NF-kappa B signaling pathway. Am J Transl Res 2022; 14:120-134. [PMID: 35173833 PMCID: PMC8829620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/25/2021] [Indexed: 06/14/2023]
Abstract
Vascular barrier dysfunction is considered as the initial and critical event in atherosclerosis progression. Recent studies have revealed that treatment with piceatannol (PIC) alleviates both acute and chronic responses to vascular injury. We investigated whether PIC treatment would have beneficial effects on glucolipotoxicity-induced endothelial barrier dysfunction. Target proteins of PIC were identified from several online databases. Then, we confirmed the effect of PIC on endothelial barrier function. PIC treatment mitigated the impairment of endothelial cell motility, adhesion and migration ability associated with high glucose/lipid stimulation. PIC stabilized cytoskeletal reorganization and expression of cell cytoskeletal associated proteins GTPase. PIC reversed changes in critical vascular junction proteins and thus preserved endothelial barrier function and permeability. Finally, we confirmed that reducing of nuclear factor kappa B (NF-κB)/p65 activation and elimination of reactive oxygen species (ROS) were involved in the protective effect of PIC against glucolipotoxicity-induced vascular barrier injury. We identify PIC as a promising therapeutic strategy for glucolipotoxicity-induced endothelial barrier injury.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Yun-Long Lu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Miao Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Hong-Fei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Liang-Rong Zheng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| |
Collapse
|
20
|
Majeed M, Nagabhushanam K, Bhat B, Ansari M, Pandey A, Bani S, Mundkur L. The Anti-Obesity Potential of Cyperus rotundus Extract Containing Piceatannol, Scirpusin A and Scirpusin B from Rhizomes: Preclinical and Clinical Evaluations. Diabetes Metab Syndr Obes 2022; 15:369-382. [PMID: 35177914 PMCID: PMC8843772 DOI: 10.2147/dmso.s348412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Obesity is a complex medical problem that increases the risk of other diseases like diabetes, cardiovascular diseases, and fatty liver disease. The present study evaluated the efficacy and safety of Cyperus rotundus rhizome extract (CRE), standardized to contain Piceatannol, Scirpusin A, and Scirpusin B (5% total Stilbenoids) in overweight individuals. The mechanism of activity was evaluated in a diet-induced mice model of obesity and adipocytes in vitro. MATERIALS AND METHODS The efficacy, safety, and tolerability of CRE were evaluated in 30 obese individuals with a BMI of 30 to 40 kg/m2 for 90 days in a randomized, double-blind, parallel-group, placebo-controlled study. In vitro studies were carried out in differentiated 3T3 L1 adipocytes, and the therapeutic efficacy was evaluated in high-fat diet-induced obese mice. RESULTS The pilot clinical study showed a reduction in body weight with a significant decrease in waist circumference and BMI. The serum lipid profile showed a significant improvement in CRE-treated individuals. The extract was well tolerated, and no adverse effects were reported at the end of the study. CRE showed a dose-dependent adipogenesis reduction in vitro with an IC50 value of 9.39 μg/mL, while oral administration of CRE reduced weight gain in diet-induced obese mice. The efficacy in mice was associated with reduced levels of leptin, corticosteroids, and serum lipid levels, with no adverse effects. CONCLUSION CRE has anti-adipogenic properties, is safe for human consumption, and effectively manages weight and hypercholesterolemia in overweight individuals.
Collapse
Affiliation(s)
- Muhammed Majeed
- Research and Development, Sami-Sabinsa Group Limited, Bangalore, India
- Research and Development, Sabinsa Corporation, East Windsor, NJ, USA
| | - Kalyanam Nagabhushanam
- Research and Development, Natural Product Chemistry Sabinsa Corporation, East Windsor, NJ, USA
| | - Beena Bhat
- Research and Development, Phytochemistry, Sami-Sabinsa Group Limited, Bangalore, India
| | - Mohammad Ansari
- Research and Development, Phytochemistry, Sami-Sabinsa Group Limited, Bangalore, India
| | - Anjali Pandey
- Research and Development, Biological Research, Sami-Sabinsa Group Limited, Bangalore, India
| | - Sarang Bani
- Research and Development, Biological Research, Sami-Sabinsa Group Limited, Bangalore, India
| | - Lakshmi Mundkur
- Research and Development, Biological Research, Sami-Sabinsa Group Limited, Bangalore, India
- Correspondence: Lakshmi Mundkur, Sami-Sabinsa Group Limited, 19/1, 19/2, 1st Main, 2nd Phase, Peenya Industrial Area Bangalore, Bengaluru, Karnataka, 560058, India, Tel +80 2839 7973, Email
| |
Collapse
|
21
|
Kim HJ, Im DU, Chau GC, Mishra NK, Kim IS, Um SH. Novel anti-adipogenic effect of CF 3-allylated indole in 3T3-L1 cells. Chem Biol Interact 2021; 352:109782. [PMID: 34932954 DOI: 10.1016/j.cbi.2021.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023]
Abstract
Indole derivatives from various plants are known to have health benefits because of their anti-cancer, anti-oxidant, anti-inflammatory, and anti-tubercular effects. However, their effects on adipogenesis have not been fully elucidated yet. Herein, we show that a newly synthesized indole derivative, CF3-allylated indole, [(E)-1-(pyrimidin- 2-yl)-2-(4,4,4- trifluorobut-2-enyl)-1H-indole], effectively inhibits adipogenesis. We found that CF3-allylated indole inhibited lipid accumulation and suppressed the expression of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator activated receptor γ (PPARγ) in 3T3-L1 cells. The inhibitory effect of CF3-allylated indole primarily occurred at the early phase of adipocyte differentiation by increasing intracellular cyclic adenosine monophosphate (cAMP) levels and enhancing protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling. Conversely, depletion of PKA or treatment with a protein kinase A inhibitor (H89) reversed such inhibitory effects of CF3-allylated indole on adipogenesis and PPARγ expression. These results suggest that CF3-allylated indole inhibits early stages of adipogenesis by increasing phosphorylation of PKA/AMPK, leading to decreased expression of adipogenic genes in 3T3-L1 cells. These results indicate that CF3-allylated indole has potential for controlling initial adipocyte differentiation in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dong Uk Im
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Gia Cac Chau
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea; Biomedical Institute Convergence at Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
22
|
Aiphanol, a native compound, suppresses angiogenesis via dual-targeting VEGFR2 and COX2. Signal Transduct Target Ther 2021; 6:413. [PMID: 34862391 PMCID: PMC8642386 DOI: 10.1038/s41392-021-00739-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
|
23
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
24
|
Development of a new nano arginase HPLC capillary column for the fast screening of arginase inhibitors and evaluation of their binding affinity. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122751. [PMID: 33991957 DOI: 10.1016/j.jchromb.2021.122751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Abstract
A simple and rapid Nano LC method has been developed for the screening of arginase inhibitors. The method is based on the immobilization of biotinylated arginase on a neutravidin functionalized nano HPLC capillary column. The arginase immobilization step performed by frontal analysis is very fast and only takes a few minutes. The miniaturized capillary column of 170 nL (length 5 cm, internal diameter 75 μm) significantly decreased the required amount of used enzyme (25 pmol). This was of significance importance when working with less available or expensive purified enzyme. Non-selective adsorption of the organic monolith matrix was reduced (<6%) and the arginase efficient yield was high (92%). The resultant affinity capillary columns showed excellent repeatability and long lifetime. The arginase reaction product was achieved within 60 s and the immobilized arginase retained 97% of the initial activity beyond 90 days. This novel approach can thus be used for the fast evaluation of recognition assay induced bya series of inhibitor molecules (caffeic acid phenylamide, chlorogenic acid, piceatannol, nor-NOHA acetate) and plant extracts.
Collapse
|
25
|
dos Santos LC, Mendiola JA, Sánchez-Camargo ADP, Álvarez-Rivera G, Viganó J, Cifuentes A, Ibáñez E, Martínez J. Selective Extraction of Piceatannol from Passiflora edulis by-Products: Application of HSPs Strategy and Inhibition of Neurodegenerative Enzymes. Int J Mol Sci 2021; 22:ijms22126248. [PMID: 34200696 PMCID: PMC8230382 DOI: 10.3390/ijms22126248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Passiflora edulis by-products (PFBP) are a rich source of polyphenols, of which piceatannol has gained special attention recently. However, there are few studies involving environmentally safe methods for obtaining extracts rich in piceatannol. This work aimed to concentrate piceatannol from defatted PFBP (d-PFBP) by means of pressurized liquid extraction (PLE) and conventional extraction, using the bio-based solvents selected with the Hansen solubility parameters approach. The relative energy distance (Ra) between solvent and solute was: Benzyl Alcohol (BnOH) < Ethyl Acetate (EtOAc) < Ethanol (EtOH) < EtOH:H2O. Nonetheless, EtOH presented the best selectivity for piceatannol. Multi-cycle PLE at 110 °C was able to concentrate piceatannol 2.4 times more than conventional extraction. PLE exhibited a dependence on kinetic parameters and temperature, which could be associated with hydrogen bonding forces and the dielectric constant of the solvents. The acetylcholinesterase (AChE) and lipoxygenase (LOX) IC50 were 29.420 μg/mL and 27.682 μg/mL, respectively. The results reinforce the demand for processes to concentrate natural extracts from food by-products.
Collapse
Affiliation(s)
- Luana Cristina dos Santos
- Laboratory of High Pressure in Food Engineering (LAPEA), Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, Campinas 13083-862, Brazil; (L.C.d.S.); (J.M.)
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (J.A.M.); (G.Á.-R.); (A.C.)
| | - Jose Antonio Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (J.A.M.); (G.Á.-R.); (A.C.)
| | - Andrea del Pilar Sánchez-Camargo
- Department of Chemistry and Food Engineering, Faculty of Engineering, University of Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia;
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (J.A.M.); (G.Á.-R.); (A.C.)
| | - Juliane Viganó
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau 210, Diadema 09913-030, Brazil;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (J.A.M.); (G.Á.-R.); (A.C.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain; (J.A.M.); (G.Á.-R.); (A.C.)
- Correspondence: ; Tel.: +34-(91)-0017956
| | - Julian Martínez
- Laboratory of High Pressure in Food Engineering (LAPEA), Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, Campinas 13083-862, Brazil; (L.C.d.S.); (J.M.)
| |
Collapse
|
26
|
Benbouguerra N, Hornedo-Ortega R, Garcia F, El Khawand T, Saucier C, Richard T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
28
|
Yu C, Wen Q, Ren Q, Du Y, Xie X. Polychlorinated biphenyl congener 180 (PCB 180) regulates mitotic clonal expansion and enhances adipogenesis through modulation of C/EBPβ SUMOylation in preadipocytes. Food Chem Toxicol 2021; 152:112205. [PMID: 33864839 DOI: 10.1016/j.fct.2021.112205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
PCB 180 is a typical non-dioxin-like polychlorinated biphenyl (NDL-PCB). It is one of the most prevalent PCB-congeners found in human adipose tissue. However, the role of PCB 180 in obesity remains poorly understood. The aim of this study was to explore the adipogenic effect and mechanism of PCB 180. Significant enhancement in adipogenesis was observed when differentiating murine 3T3-L1 preadipocytes or human preadipocytes-visceral (HPA-v) that were exposed to PCB 180. Furthermore, exposure to PCB 180 during the first two days was critical to the adipogenic effect. According to results from sequential cell cycle analyses, cell counting, BrdU incorporation, and cyclin D1, cyclin B1, and p27 protein quantification, PCB 180 was found to enhance mitotic clonal expansion (MCE) during early adipogenic differentiation. Molecular mechanistic investigation revealed that PCB 180 promoted accumulation of the C/EBPβ protein, a key regulator that controls MCE. Finally, it was found that PCB 180 mitigated degradation of the C/EBPβ protein by repressing the SUMOylation and subsequent ubiquitination of C/EBPβ by the upregulation of SENP2. In summary, it was shown for the first time that PCB 180 facilitated adipogenesis by alleviating C/EBPβ protein SUMOylation. This result provides novel evidence regarding obesogenic effect of PCB 180.
Collapse
Affiliation(s)
- Caixia Yu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemical Sciences and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
29
|
Eriau E, Paillet J, Kroemer G, Pol JG. Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13061260. [PMID: 33809187 PMCID: PMC7999281 DOI: 10.3390/cancers13061260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction and fasting have been known for a long time for their health- and life-span promoting effects, with coherent observations in multiple model organisms as well as epidemiological and clinical studies. This holds particularly true for cancer. The health-promoting effects of caloric restriction and fasting are mediated at least partly through their cellular effects-chiefly autophagy induction-rather than reduced calorie intake per se. Interestingly, caloric restriction has a differential impact on cancer and healthy cells, due to the atypical metabolic profile of malignant tumors. Caloric restriction mimetics are non-toxic compounds able to mimic the biochemical and physiological effects of caloric restriction including autophagy induction. Caloric restriction and its mimetics induce autophagy to improve the efficacy of some cancer treatments that induce immunogenic cell death (ICD), a type of cellular demise that eventually elicits adaptive antitumor immunity. Caloric restriction and its mimetics also enhance the therapeutic efficacy of chemo-immunotherapies combining ICD-inducing agents with immune checkpoint inhibitors targeting PD-1. Collectively, preclinical data encourage the application of caloric restriction and its mimetics as an adjuvant to immunotherapies. This recommendation is subject to confirmation in additional experimental settings and in clinical trials. In this work, we review the preclinical and clinical evidence in favor of such therapeutic interventions before listing ongoing clinical trials that will shed some light on this subject.
Collapse
Affiliation(s)
- Erwan Eriau
- Centre de Cancérologie de Lyon, Université de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; or
- Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Institut Universitaire de France, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique–Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215163, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France or (J.P.); (G.K.)
- Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 91190 Kremlin-Bicêtre, France
- Correspondence: or ; Tel.: +33-1-44-27-76-66
| |
Collapse
|
30
|
Piceatannol Is Superior to Resveratrol at Suppressing Adipogenesis in Human Visceral Adipose-Derived Stem Cells. PLANTS 2021; 10:plants10020366. [PMID: 33672932 PMCID: PMC7918058 DOI: 10.3390/plants10020366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/21/2023]
Abstract
Resveratrol (3,4′,5-trans-trihydroxystilbene) and piceatannol (3,3′,4′,5-trans-tetraphydroxystilbene) are major stilbene compounds that are predominantly present in various natural foods, such as berries and fruits. Both phytochemical compounds are consumed as dietary supplements to prevent various metabolic diseases and for their anti-aging properties. Adipose-derived stem cells from human visceral adipose tissue (vASCs) are a useful in vitro model for evaluating their adipogenic effect. Treatment with resveratrol and piceatannol significantly inhibited lipid accumulation in vASCs. Their effective concentrations were 5, 10, and 20 μM for inhibiting adipogenesis of vASCs. Interestingly, despite the similar chemical structures of the two compounds, piceatannol showed a higher anti-adipogenic effect at 20 μM than resveratrol in vASCs. Moreover, the inhibitory capacity of lipid droplet generation was higher for piceatannol at 20 μM than that of resveratrol. Piceatannol significantly attenuated the expression level of adipogenic markers (e.g., CCAAT/enhanced binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), and adipocyte fatty acid binding protein (aP2)) compared to resveratrol at the mRNA and protein levels. These results suggest that piceatannol is a superior anti-adipogenic compound compared to resveratrol in the vASC model of visceral obesity.
Collapse
|
31
|
Lesser Investigated Natural Ingredients for the Management of Obesity. Nutrients 2021; 13:nu13020510. [PMID: 33557185 PMCID: PMC7913945 DOI: 10.3390/nu13020510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity, an epidemiological disorder, is related to various complications in both the developed and developing world. It epitomizes a crucial risk factor for health, decreasing productivity and life expectancy while increasing health care costs worldwide. Conventional therapies with synthetic drugs or bariatric surgery, associated with numerous side effects, recurrence, and surgical complexity, have been restricted in their use. Lifestyle changes and dietary restrictions are the proven methods for successful weight loss, although maintaining a strict lifestyle is a challenge. Multiple natural products have been explored for weight management with varied efficacy. The current review explores less explored natural herbs, their active constituents, and their mechanisms of action against obesity.
Collapse
|
32
|
Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, Včev A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab Syndr Obes 2021; 14:67-83. [PMID: 33447066 PMCID: PMC7802907 DOI: 10.2147/dmso.s281186] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is recognized as a severe threat to overall human health and is associated with type 2 diabetes mellitus, dyslipidemia, hypertension, and cardiovascular diseases. Abnormal expansion of white adipose tissue involves increasing the existing adipocytes' cell size or increasing the number through the differentiation of new adipocytes. Adipogenesis is a process of proliferation and differentiation of adipocyte precursor cells in mature adipocytes. As a key process in determining the number of adipocytes, it is a possible therapeutic approach for obesity. Therefore, it is necessary to identify the molecular mechanisms involved in adipogenesis that could serve as suitable therapeutic targets. Reducing bodyweight is regarded as a major health benefit. Limited efficacy and possible side effects and drug interactions of available anti-obesity treatment highlight a constant need for finding novel efficient and safe anti-obesity ingredients. Numerous studies have recently investigated the inhibitory effects of natural products on adipocyte differentiation and lipid accumulation. Possible anti-obesity effects of natural products include the induction of apoptosis, cell-cycle arrest or delayed progression, and interference with transcription factor cascade or intracellular signaling pathways during the early phase of adipogenesis.
Collapse
Affiliation(s)
- Jelena Jakab
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Correspondence: Jelena Jakab Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Crkvena 21, Osijek31 000, CroatiaTel +385 91 224 1502 Email
| | - Blaženka Miškić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Internal Medicine, General Hospital “Dr. Josip Benčević”, Slavonski Brod, Croatia
| | - Štefica Mikšić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Brankica Juranić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Cardiology, University Hospital Osijek, Osijek, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Special Hospital Radiochirurgia Zagreb, Zagreb, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
33
|
Cao Y, Smith W, Yan L, Kong L. Overview of Cellular Mechanisms and Signaling Pathways of Piceatannol. Curr Stem Cell Res Ther 2020; 15:4-10. [PMID: 30947674 DOI: 10.2174/1574888x14666190402100054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/26/2018] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.
Collapse
Affiliation(s)
- Yang Cao
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States
| | - Liang Yan
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Honghui Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
34
|
Optimization of Bioactive Compound Extraction from Rose Myrtle Fruit ( Rhodomyrtus tomentosa, (W.Ait), Myrtaceae) as the Antioxidant Source. ScientificWorldJournal 2020; 2020:9105847. [PMID: 32395089 PMCID: PMC7201856 DOI: 10.1155/2020/9105847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/11/2020] [Indexed: 11/18/2022] Open
Abstract
Rose myrtle fruit (Rhodomyrtus tomentosa, (W.Ait), Myrtaceae) is one of fruits widely found in Kalimantan. This fruit contains a bioactive compound that has a potential to be used as medicine. The aim of this study was to obtain optimal temperature and time of extraction in maintaining and protecting the bioactive compound in rose myrtle fruit extract by using water as solvent. This research applied the response surface method with central composite design for two factors, namely, X1 (temperature/°C) consisting of three levels: 70, 80, and 90°C and X2 (time/minute) which consisted of three levels of 60, 90, and 120 minutes. Research parameters included total phenol and antioxidant activity. Moreover, GC-MS was used for the characterization of the chemical compound component contained in rose myrtle fruit extract. Optimization of extraction condition resulted in an optimum temperature for extraction of 80.43°C and optimum time for extraction of 85 minutes with an optimum yield of total phenol of 73.77 mg/100 g fresh fruit and antioxidant activity of 1.0385 µg/ml with desirability of 0.892 or 89.2%.
Collapse
|
35
|
Yang JS, Tongson J, Kim KH, Park Y. Piceatannol attenuates fat accumulation and oxidative stress in steatosis-induced HepG2 cells. Curr Res Food Sci 2020; 3:92-99. [PMID: 32914125 PMCID: PMC7473378 DOI: 10.1016/j.crfs.2020.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects over 20% of the adult population, is the most common liver disease worldwide and can progress to inflammatory hepatitis, cirrhosis and liver cancer. The need to alleviate NAFLD is imperative, but there are limited pharmacological therapies available. Based on previous reports that piceatannol, a stilbenoid metabolite of resveratrol, exhibits anti-obesity, antioxidant and anti-inflammatory effects, the goal of this study was to determine the efficacy of piceatannol on prevention and/or treatment of NAFLD. The results showed that piceatannol significantly decreased fat accumulation and suppressed lipogenesis and fatty acids (FAs) uptake by decreasing sterol regulatory element-binding protein 1 (SREBP1) and cluster of differentiation 36 (CD36) in steatosis-induced HepG2 hepatocytes. Piceatannol treatment also promoted FAs β-oxidation by increasing farnesoid X receptor (FXR), peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyltransferase 1α (CPT1α) under steatosis conditions. Moreover, piceatannol significantly suppressed FA-induced oxidative stress and inhibited phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinases 1/2 (ERK1/2). Overall, it is suggested that piceatannol reduced fat accumulation in steatosis-induced HepG2 cells by suppressing lipogenesis (SREBP1 and ACC) and FA uptake (CD36), and promoting FAs oxidation (FXR, PPARα and CPT1α).
Collapse
Affiliation(s)
- Jason Szuhao Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jozxelle Tongson
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
36
|
A. A. Aljabali A, A. Bakshi H, L. Hakkim F, Haggag YA, M. Al-Batanyeh K, S. Al Zoubi M, Al-Trad B, M. Nasef M, Satija S, Mehta M, Pabreja K, Mishra V, Khan M, Abobaker S, M. Azzouz I, Dureja H, M. Pabari R, Ali K. Dardouri A, Kesharwani P, Gupta G, Dhar Shukla S, Prasher P, B. Charbe N, Negi P, N. Kapoor D, Chellappan DK, Webba da Silva M, Thompson P, Dua K, McCarron P, M. Tambuwala M. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1α. Cancers (Basel) 2020; 12:113. [PMID: 31906321 PMCID: PMC7017258 DOI: 10.3390/cancers12010113] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Piceatannol (PIC) is known to have anticancer activity, which has been attributed to its ability to block the proliferation of cancer cells via suppression of the NF-kB signaling pathway. However, its effect on hypoxia-inducible factor (HIF) is not well known in cancer. In this study, PIC was loaded into bovine serum albumin (BSA) by desolvation method as PIC-BSA nanoparticles (NPs). These PIC-BSA nanoparticles were assessed for in vitro cytotoxicity, migration, invasion, and colony formation studies and levels of p65 and HIF-1α. Our results indicate that PIC-BSA NPs were more effective in downregulating the expression of nuclear p65 and HIF-1α in colon cancer cells as compared to free PIC. We also observed a significant reduction in inflammation induced by chemical colitis in mice by PIC-BSA NPs. Furthermore, a significant reduction in tumor size and number of colon tumors was also observed in the murine model of colitis-associated colorectal cancer, when treated with PIC-BSA NPs as compared to free PIC. The overall results indicate that PIC, when formulated as PIC-BSA NPs, enhances its therpautice potential. Our work could prompt further research in using natural anticancer agents as nanoparticels with possiable human clinical trails. This could lead to the development of a new line of safe and effective therapeutics for cancer patients.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University—Faculty of Pharmacy, Irbid 566, Jordan
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Faruck L. Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences Dhofar University Salalah, Salalah 211, Oman
| | - Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta 31111, Egypt
| | - Khalid M. Al-Batanyeh
- Department of Biological Sciences, Yarmouk University—Faculty of Science, Irbid 566, Jordan
| | - Mazhar S. Al Zoubi
- Department of Basic Medical Sciences, Yarmouk University—Faculty of Medicine, Irbid 566, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University—Faculty of Science, Irbid 566, Jordan
| | - Mohamed M. Nasef
- Department of Pharmacy and Biomedical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kavita Pabreja
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mohammed Khan
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Salem Abobaker
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow, Klinikum Charite-Universitatmedizin Berlin, augustenburger Platz 1, 13353 Berlin, Germany
| | - Ibrahim M. Azzouz
- Department of Dermatology, Venerology, and allergology, Charite—Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin, Chariteplatz1, 10117 Berlin, Germany
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ritesh M. Pabari
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin-09 D02 YN77, Ireland
| | - Ashref Ali K. Dardouri
- Department of Forensic Science, School of Applied Science, Huddersfield University, Queensgate, Huddersfield HD1 3DH, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 230, Australia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nitin B. Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436, Macul, Santiago 4860, Chile
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India 173229, India
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India 173229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Mateus Webba da Silva
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Paul Thompson
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 230, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India 173229, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
37
|
Lee YS, Park JS, Lee DH, Han J, Bae SH. Ezetimibe ameliorates lipid accumulation during adipogenesis by regulating the AMPK-mTORC1 pathway. FASEB J 2019; 34:898-911. [PMID: 31914598 DOI: 10.1096/fj.201901569r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
Adipogenesis, a critical process that converts adipocyte precursors into adipocytes, is considered a potential therapeutic target for the treatment of obesity. Ezetimibe, a drug approved by the United States Food and Drug Administration, is used for the treatment of hypercholesterolemia. Recently, it was reported to ameliorate high fat diet-induced dyslipidemia in mice and reduce lipid accumulation in hepatocytes through the activation of AMPK. However, the anti-adipogenic effects of ezetimibe and the underlying molecular mechanism have not yet been elucidated. Here, we found that ezetimibe reduced lipid accumulation via activating AMPK during the early phase of adipogenesis. We also observed that ezetimibe inhibited peroxisome proliferator-activated receptor γ, which is a major transcription factor of adipogenesis. Furthermore, ezetimibe-mediated AMPK activation reduced lipid accumulation by inhibiting mTORC1 signaling, leading to the downregulation of lipogenesis-related genes. Mitotic clonal expansion, required for adipogenesis, accelerates cell cycle progression and cell proliferation. We additionally observed that ezetimibe prevented the progression of mitotic clonal expansion by arresting the cell cycle at the G0/G1 phase, which was followed by the inhibition of cell proliferation. Collectively, ezetimibe-mediated inhibition of adipogenesis is dependent on the AMPK-mTORC1 pathway. Thus, we suggest that ezetimibe might be a promising drug for the treatment of obesity.
Collapse
Affiliation(s)
- Yu Seol Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Hyun Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jisu Han
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Furuya T, Imaki N, Shigei K, Sai M, Kino K. Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol. Appl Microbiol Biotechnol 2019; 103:5811-5820. [PMID: 31093702 DOI: 10.1007/s00253-019-09875-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Piceatannol is a valuable natural polyphenol with therapeutic potential in cardiovascular and metabolic disease treatment. In this study, we screened for microorganisms capable of producing piceatannol from resveratrol via regioselective hydroxylation. In the first screening, we isolated microorganisms utilizing resveratrol, phenol, or 4-hydroxyphenylacetic acid as a carbon source for growth. In the second screening, we assayed the isolated microorganisms for hydroxylation of resveratrol. Using this screening procedure, a variety of resveratrol-converting microorganisms were obtained. One Gram-negative bacterium, Ensifer sp. KSH1, and one Gram-positive bacterium, Arthrobacter sp. KSH3, utilized 4-hydroxyphenylacetic acid as a carbon source for growth and efficiently hydroxylated resveratrol to piceatannol without producing any detectable by-products. The hydroxylation activity of strains KSH1 and KSH3 was strongly induced by cultivation with 4-hydroxyphenylacetic acid as a carbon source during stationary growth phase. Using the 4-hydroxyphenylacetic acid-induced cells as a biocatalyst under optimal conditions, production of piceatannol by strains KSH1 and KSH3 reached 3.6 mM (0.88 g/L) and 2.6 mM (0.64 g/L), respectively. We also cloned genes homologous to the monooxygenase gene hpaBC from strains KSH1 and KSH3. Introduction of either hpaBC homolog into Escherichia coli endowed the host with resveratrol-hydroxylating activity.
Collapse
Affiliation(s)
- Toshiki Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Naoto Imaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kosuke Shigei
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahiko Sai
- Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
39
|
Chang E, Kim CY. Natural Products and Obesity: A Focus on the Regulation of Mitotic Clonal Expansion during Adipogenesis. Molecules 2019; 24:molecules24061157. [PMID: 30909556 PMCID: PMC6471203 DOI: 10.3390/molecules24061157] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Obesity is recognized as a worldwide health crisis. Obesity and its associated health complications such as diabetes, dyslipidemia, hypertension, and cardiovascular diseases impose a big social and economic burden. In an effort to identify safe, efficient, and long-term effective methods to treat obesity, various natural products with potential for inhibiting adipogenesis were revealed. This review aimed to discuss the molecular mechanisms underlying adipogenesis and the inhibitory effects of various phytochemicals, including those from natural sources, on the early stage of adipogenesis. We discuss key steps (proliferation and cell cycle) and their regulators (cell-cycle regulator, transcription factors, and intracellular signaling pathways) at the early stage of adipocyte differentiation as the mechanisms responsible for obesity.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea.
| |
Collapse
|
40
|
Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
41
|
Wen X, Xu X, Sun W, Chen K, Pan M, Wang JM, Bolland SM, Jin T. G-protein-coupled formyl peptide receptors play a dual role in neutrophil chemotaxis and bacterial phagocytosis. Mol Biol Cell 2018; 30:346-356. [PMID: 30540534 PMCID: PMC6589574 DOI: 10.1091/mbc.e18-06-0358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A dogma of innate immunity is that neutrophils use G-protein–coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein–coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2–/–) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+ response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.
Collapse
Affiliation(s)
- Xi Wen
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Xuehua Xu
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Wenxiang Sun
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Research Institute at Frederick, Frederick, MD 21702-1201
| | - Miao Pan
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Research Institute at Frederick, Frederick, MD 21702-1201
| | - Silvia M Bolland
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Tian Jin
- Chemotaxis Signal Section, National Institutes of Health, Bethesda, MD 20852
| |
Collapse
|
42
|
Shrestha A, Pandey RP, Pokhrel AR, Dhakal D, Chu LL, Sohng JK. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Appl Microbiol Biotechnol 2018; 102:9691-9706. [PMID: 30178203 DOI: 10.1007/s00253-018-9323-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/04/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Resveratrol and its ortho-hydroxylated derivative piceatannol were biosynthesized by modular pathway engineering in Escherichia coli. The biosynthetic pathway was divided into three different modules. Module I includes polyketide biosynthetic genes; module II genes include acetyl-CoA and malonyl-CoA pool-enhancing genes from three different organisms; and module III genes are regiospecific 3'-hydroxylating enzymes. E. coli BL21(DE3) with module I produced 8.6 mg/L of resveratrol from exogenously fed 1 mM p-coumaric acid after 72 h. Combination of module I and acetyl-CoA supplementing module IIb genes from N. farcinica IFM10152 produced 2.5-fold higher (60 mg/L) titer of resveratrol than the module IIa genes from E. coli. The exogenous supplementation of sodium acetate further enhanced production to 64 mg/L. Furthermore, module I with module IIc harboring matBC from S. coelicolor A3(2) produced 73 mg/L of resveratrol, which was elevated to 151 mg/L upon supplementing disodium malonate exogenously. This increment is 17.5-fold higher than module I harboring E. coli BL21(DE3). The combination of module I and two different module II genes yielded 137 mg/L resveratrol when supplemented with both sodium acetate and disodium malonate. The high resveratrol-producing combination module was further modified with incorporation of hpaBC for the ortho-hydroxylation of resveratrol to produce piceatannol. The engineered strain harboring modules I, IIc and III produced 124 mg/L of piceatannol, the highest titer after 72 h in disodium malonate-supplemented strain, which is 2-fold higher than in non-supplemented strain. The remaining resveratrol was about 30 mg/L. Furthermore, caffeic acid (85.5 mg/L) was also produced in the same strain. Resveratrol and piceatannol were biosynthesized along with caffeic acid by three different modules overexpressing acetate and malonate assimilation pathway genes from three different sources. The production titer of both resveratrol and piceatannol could be achieved higher upon blocking acetyl-CoA and malonyl-CoA utilizing pathway genes in host strain.
Collapse
Affiliation(s)
- Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Luong Luan Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. .,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
43
|
Carpéné C, Pejenaute H, Del Moral R, Boulet N, Hijona E, Andrade F, Villanueva-Millán MJ, Aguirre L, Arbones-Mainar JM. The Dietary Antioxidant Piceatannol Inhibits Adipogenesis of Human Adipose Mesenchymal Stem Cells and Limits Glucose Transport and Lipogenic Activities in Adipocytes. Int J Mol Sci 2018; 19:ijms19072081. [PMID: 30018277 PMCID: PMC6073844 DOI: 10.3390/ijms19072081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Phenolic compounds are among the most investigated herbal remedies, as is especially the case for resveratrol. Many reports have shown its anti-aging properties and the ability to reduce obesity and diabetes induced by high-fat diet in mice. However, such beneficial effects hardly translate from animal models to humans. The scientific community has therefore tested whether other plant phenolic compounds may surpass the effects of resveratrol. In this regard, it has been reported that piceatannol reproduces in rodents the anti-obesity actions of its parent polyphenol. However, the capacity of piceatannol to inhibit adipocyte differentiation in humans has not been characterized so far. Here, we investigated whether piceatannol was antiadipogenic and antilipogenic in human preadipocytes. Human mesenchymal stem cells (hMSC), isolated from adipose tissues of lean and obese individuals, were differentiated into mature adipocytes with or without piceatannol, and their functions were explored. Fifty µM of piceatannol deeply limited synthesis/accumulation of lipids in both murine and hMSC-derived adipocytes. Interestingly, this phenomenon occurred irrespective of being added at the earlier or later stages of adipocyte differentiation. Moreover, piceatannol lowered glucose transport into adipocytes and decreased the expression of key elements of the lipogenic pathway (PPARγ, FAS, and GLUT4). Thus, the confirmation of the antiadipogenic properties of piceatanol in vitro warrants the realization of clinical studies for the application of this compound in the treatment of the metabolic complications associated with obesity.
Collapse
Affiliation(s)
- Christian Carpéné
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, 31059 Toulouse, France.
| | - Héctor Pejenaute
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain.
| | - Raquel Del Moral
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain.
| | - Nathalie Boulet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, 31059 Toulouse, France.
| | - Elizabeth Hijona
- Department of Gastroenterology, University of Basque Country (UPV/EHU), Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Fernando Andrade
- Division of Metabolism, Cruces University Hospital and BioCruces Health Research Institute, Plaza de Cruces s/n, 48903 Barakaldo, Spain.
| | - Maria Jesùs Villanueva-Millán
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain.
| | - Leixuri Aguirre
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - José Miguel Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
44
|
Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition. J Biosci Bioeng 2018; 126:478-481. [PMID: 29764766 DOI: 10.1016/j.jbiosc.2018.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022]
Abstract
Piceatannol is a rare, costly plant-based stilbene derivative and exhibits various health-enhancing properties. Recently, we demonstrated that piceatannol could be produced from resveratrol through site-selective hydroxylation using Escherichia coli cells expressing the monooxygenase HpaBC. However, piceatannol production ceased at approximately 25 mM, even when sufficient levels of the substrate resveratrol remained in the reaction mixture. In this study, we found that high concentrations (>20-25 mM) of piceatannol significantly inhibited the HpaBC-catalyzed reaction. Cyclodextrins (CDs) reportedly encapsulate various hydrophobic compounds. We found that the addition of β-CD or γ-CD to the reaction mixture reduced the inhibition caused by the product piceatannol. The effects of β-CD on piceatannol production were more pronounced than those of γ-CD at high concentrations of the substrate resveratrol and CDs. The production of piceatannol reached 49 mM (12 g L-1) in the presence of β-CD, a level twice that achieved in the absence of β-CD. The technique described here might be applicable to the bioproduction of other stilbenes and structurally related compounds.
Collapse
|
45
|
|
46
|
Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct 2018; 8:3576-3586. [PMID: 28884178 DOI: 10.1039/c7fo00679a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was designed to analyze the anti-adipogenic effect of fifteen phenolic compounds from various chemical groups in 3T3-L1 pre-adipocytes. Cells were treated with 25 μM, 10 μM or 1 μM of apigenin, luteolin, catechin, epicatechin, epigallocatechin, genistein, daizein, naringenin, hesperidin, quercetin, kaempferol, resveratrol, vanillic acid, piceatannol and pterostilbene for 8 days. At 25 μM lipid accumulation was reduced by all the compounds, with the exception of catechin, epicatechin and epigallocatechin. At a dose of 10 μM apigenin, luteolin, naringenin, hesperidin, quercetin and kaempferol induced significant reductions, and at 1 μM only naringenin, hesperidin and quercetin were effective. The expression of c/ebpα was not. C/ebpβ was significantly reduced by genistein and kaempferol, pparγ by genistein and pterostilbene, srebp1c by luteolin, genistein, hesperidin, kaempferol, pterostilbene and vanillic acid, and lpl by kaempferol. In conclusion, the most effective phenolic compounds are naringenin, hesperidin and quercetin. Differences were found in terms of effects on the expression of genes involved in adipogenesis among the analyzed compounds.
Collapse
Affiliation(s)
- Andrea Mosqueda-Solís
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray, Vitoria, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Ishihata A, Maruki-Uchida H, Gotoh N, Kanno S, Aso Y, Togashi S, Sai M, Ito T, Katano Y. Vascular- and hepato-protective effects of passion fruit seed extract containing piceatannol in chronic high-fat diet-fed rats. Food Funct 2018; 7:4075-4081. [PMID: 27713972 DOI: 10.1039/c6fo01067a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of chronic administration of piceatannol-enriched (9.5% w/w) passion fruit seed extract (PFSE) on the cardiovascular damage induced in a high-fat (HF) diet-fed model of Fischer 344 rats were evaluated. Rats were fed the control, HF, or HF diets containing PFSE (0.5% w/w) for 16 weeks, and the effects of the various diets on the tissue weight, serum lipid profile, hepatic fibrosis, hepatic ductular reaction, cardiac function and aortic ring reactivity were examined. HF diet-fed rats developed signs of cardiovascular disease with abnormal serum profiles compared to control diet-fed rats. PFSE supplementation improved the liver hypertrophy and hepatic histology of the HF diet-fed rats. In addition, the triglyceride and cholesterol levels, platelet aggregation, cardiac function, and acetylcholine-mediated relaxation of the aortic ring were improved. These results suggest that the chronic intake of PFSE containing piceatannol prevents HF diet-induced cardiovascular disease in rats.
Collapse
Affiliation(s)
- Akira Ishihata
- Division of Theoretical Nursing and Pathophysiology, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan
| | - Hiroko Maruki-Uchida
- Research Institute, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Nozomi Gotoh
- Division of Theoretical Nursing and Pathophysiology, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan
| | - Sumika Kanno
- Division of Theoretical Nursing and Pathophysiology, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan
| | - Yoshitaka Aso
- Division of Theoretical Nursing and Pathophysiology, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan
| | - Satoshi Togashi
- Division of Theoretical Nursing and Pathophysiology, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan
| | - Masahiko Sai
- Research Institute, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Tatsuhiko Ito
- Research Institute, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Yumi Katano
- Division of Theoretical Nursing and Pathophysiology, Yamagata University School of Medicine, 2-2-2 Iida Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
48
|
Arai D, Kataoka R, Otsuka S, Kawamura M, Maruki-Uchida H, Sai M, Ito T, Nakao Y. Piceatannol is superior to resveratrol in promoting neural stem cell differentiation into astrocytes. Food Funct 2018; 7:4432-4441. [PMID: 27713945 DOI: 10.1039/c6fo00685j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Piceatannol (3,3',4',5-trans-tetrahydroxystilbene) is a polyphenolic compound abundant in the seeds of passion fruit (Passiflora edulis). Piceatannol is an analogue of resveratrol (3,4',5-trans-trihydroxystilbene) and shares the structural motif and biological activities such as activation of SIRT1. Several studies have shown that piceatannol is more potent than resveratrol. In this study, we examined the effects of piceatannol on neural stem cell differentiation into astrocytes compared with those of resveratrol. At a concentration of 2.5 μM, piceatannol promoted astrocyte differentiation, while resveratrol had no effect at this concentration. Furthermore, we found that oral administration of piceatannol increased the number of astrocytes in the brains of adult mice, while resveratrol administration showed no effects. These results suggest that piceatannol has a superior effect to resveratrol in promoting astrocyte differentiation.
Collapse
Affiliation(s)
- Daisuke Arai
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Ryousuke Kataoka
- School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Satoshi Otsuka
- School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Midori Kawamura
- School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Hiroko Maruki-Uchida
- Health Science Research Center, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Masahiko Sai
- Health Science Research Center, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Tatsuhiko Ito
- Health Science Research Center, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan.
| | - Yoichi Nakao
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan. and School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
49
|
Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis. Toxins (Basel) 2017; 10:toxins10010009. [PMID: 29295544 PMCID: PMC5793096 DOI: 10.3390/toxins10010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Hanny University, Suseong-gu, Deagu 42158, Korea.
| | - Yun-Yeop Cha
- Department of Rehabilitation Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
50
|
Suvarna V, Murahari M, Khan T, Chaubey P, Sangave P. Phytochemicals and PI3K Inhibitors in Cancer-An Insight. Front Pharmacol 2017; 8:916. [PMID: 29311925 PMCID: PMC5736021 DOI: 10.3389/fphar.2017.00916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
In today's world of modern medicine and novel therapies, cancer still remains to be one of the prime contributor to the death of people worldwide. The modern therapies improve condition of cancer patients and are effective in early stages of cancer but the advanced metastasized stage of cancer remains untreatable. Also most of the cancer therapies are expensive and are associated with adverse side effects. Thus, considering the current status of cancer treatment there is scope to search for efficient therapies which are cost-effective and are associated with lesser and milder side effects. Phytochemicals have been utilized for many decades to prevent and cure various ailments and current evidences indicate use of phytochemicals as an effective treatment for cancer. Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling cascades is a common phenomenon in most types of cancers. Thus, natural substances targeting PI3K pathway can be of great therapeutic potential in the treatment of cancer patients. This chapter summarizes the updated research on plant-derived substances targeting PI3K pathway and the current status of their preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S Ramaiah University of Applied Sciences, Bangalore, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Preeti Sangave
- Department of Pharmaceutical Sciences, School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|