1
|
Prokaeva T, Jayaraman S, Klimtchuk E, Burke N, Spencer B, Nedelkov D, Chen H, Dasari S, McPhail ED, Pereira L, Payne MC, Wong S, Burks EJ, Sanchorawala V, Gursky O. An unusual phenotype of hereditary AApoAI amyloidosis caused by a novel Asp20Tyr substitution is linked to pH-dependent aggregation of apolipoprotein A-I. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167820. [PMID: 40164396 PMCID: PMC11998993 DOI: 10.1016/j.bbadis.2025.167820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Apolipoprotein A-I (apoA-I) plays beneficial roles as the major structural and functional protein on plasma high-density lipoproteins (HDL). However, APOA1 gene mutations can cause protein misfolding and pathologic amyloid deposition in various organs in human hereditary AApoAI amyloidosis, a potentially lethal systemic disease. We report esophageal and duodenal AApoAI amyloidosis in a 56-year-old patient with Barrett's esophagus, a condition involving chronic acid reflux. Amyloid deposits contained full-length apoA-I featuring a novel D20Y mutation identified by gene sequencing and protein mass spectrometry. Genetic analysis of asymptomatic family members revealed autosomal dominant inheritance. Fibril formation by the full-length variant apoA-I rather than its fragments and the location of the mutation in a conserved amyloid-prone N-terminal segment were highly unusual for hereditary AApoA-I amyloidosis. Structural and stability studies of the recombinant D20Y and wild-type apoA-I showed small but significant mutation-induced structural perturbations in the native lipid-free protein at pH 7.4. Major destabilization and aggregation of the variant protein were observed at pH 4.0. We propose that acidic conditions in Barrett's esophagus promoted protein misfolding and amyloid formation by the D20Y variant. These findings expand our understanding of the clinical features and molecular basis of AApoAI amyloidosis and suggest clinical strategies.
Collapse
Affiliation(s)
- Tatiana Prokaeva
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Elena Klimtchuk
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Natasha Burke
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Brian Spencer
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | | - Hui Chen
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen D McPhail
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lucas Pereira
- Department of Hematology & Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Michael C Payne
- Division of Gastroenterology, Department of Internal Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Sherry Wong
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Vaishali Sanchorawala
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Sarker H, Panigrahi R, Lopez-Campistrous A, McMullen T, Reyes K, Anderson E, Krishnan V, Hernandez-Anzaldo S, Zheng XL, Glover JNM, Hardy E, Fernandez-Patron C. Apolipoprotein-A1 transports and regulates MMP2 in the blood. Nat Commun 2025; 16:3752. [PMID: 40263360 PMCID: PMC12015353 DOI: 10.1038/s41467-025-59062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Synthesized in the liver and intestines, apolipoprotein A1 (APOA1) transports cholesterol in high density lipoproteins from atherosclerotic lesions to the liver, protecting against atherosclerotic plaque rupture. Here, we show that proMMP2 (zymogen of matrix metalloproteinase-2) circulates associated with APOA1 in humans and APOA1-expressing mice. This is noteworthy because MMP2 is the most abundant MMP in blood, and MMPs promote atherosclerotic plaque rupture. Artificial intelligence (AlphaFold)-based modeling suggested that APOA1 and MMP2 interact; direct interactions were confirmed using five orthogonal interaction assays, showing that APOA1 binds to MMP2 catalytic and hemopexin-like domains. APOA1 inhibited MMP2 autolysis and allosterically increased MMP2 activity-an effect specifically reproduced by plasma from humans and APOA1-expressing mice but not albumin nor plasma from APOA1 knockout mice. These function-altering interactions with APOA1 may increase MMP2 bioavailability and lay the foundation for future research on how apolipoproteins and MMPs influence atherosclerotic plaque rupture, independently of cholesterol transport.
Collapse
Affiliation(s)
- Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana Lopez-Campistrous
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Todd McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ken Reyes
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Elena Anderson
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vidhya Krishnan
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Samuel Hernandez-Anzaldo
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Inorganic Chemistry, Institute of Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana, Cuba
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Shoara AA, Slavkovic S, Neves MAD, Bhoria P, Prifti V, Chen P, Donaldson LW, Beckett AN, Johnson PE, Ni H. Structural analyses of apolipoprotein A-IV polymorphisms Q360H and T347S elucidate the inhibitory effect against thrombosis. J Biol Chem 2025; 301:108392. [PMID: 40074081 PMCID: PMC12017984 DOI: 10.1016/j.jbc.2025.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is an abundant lipid-binding protein in blood plasma. We previously reported that apoA-IV, as an endogenous inhibitor, competitively binds platelet αIIbβ3 integrin from its N-terminal residues, reducing the potential risk of thrombosis. This study aims to investigate how the apoA-IVQ360H and apoA-IVT347S mutations affect the structure and function of apoA-IV. These mutations are linked to increased risk of cardiovascular diseases because of multiple single-nucleotide polymorphisms in the C-terminal region of apoA-IV. We postulate that the structural hindrance caused by the C-terminal motifs may impede the binding of apoA-IV to platelets at its N-terminal binding site. However, the mechanistic impact of Q360H and T347S polymorphisms on this intermolecular interaction and their potential contribution to the development of cardiovascular disease have not been adequately investigated. To address this, recombinant forms of human apoA-IVWT, apoA-IVQ360H, and apoA-IVT347S variants were produced, and the structural stability, dimerization, and molecular dynamics of the C terminus were examined utilizing biophysical techniques, including fluorescence anisotropy, fluorescence spectrophotometry, circular dichroism, and biolayer interferometry methods. Our results showed a decreased fraction of α-helix structure in apoA-IVQ360H and apoA-IVT347S compared with the WT, and the inhibitory effect of dimerized apoA-IV on platelet aggregation was reduced in apoA-IVQ360H and apoA-IVT347S variants. Binding kinetics of examined apoA-IV polymorphisms to platelet αIIbβ3 suggest a potential mechanism for increased risk of cardiovascular diseases in individuals with apoA-IVQ360H and apoA-IVT347S polymorphisms.
Collapse
Affiliation(s)
- Aron A Shoara
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Royal Canadian Medical Service, Canadian Armed Forces, Ottawa, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Sladjana Slavkovic
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miguel A D Neves
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Preeti Bhoria
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Viktor Prifti
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pingguo Chen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrew N Beckett
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Royal Canadian Medical Service, Canadian Armed Forces, Ottawa, Ontario, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - Heyu Ni
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Coleman B, Bedi S, Hill JH, Morris J, Manthei KA, Hart RC, He Y, Shah AS, Jerome WG, Vaisar T, Bornfeldt KE, Song H, Segrest JP, Heinecke JW, Aller SG, Tesmer JJG, Davidson WS. Lecithin:cholesterol acyltransferase binds a discontinuous binding site on adjacent apolipoprotein A-I belts in HDL. J Lipid Res 2025; 66:100786. [PMID: 40147634 PMCID: PMC12049944 DOI: 10.1016/j.jlr.2025.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a high-density lipoprotein (HDL) modifying protein that profoundly affects the composition and function of HDL subspecies. The cholesterol esterification activity of LCAT is dramatically increased by apolipoprotein A-I (APOA1) on HDL, but the mechanism remains unclear. Using site-directed mutagenesis, cross-linking, mass spectrometry, electron microscopy, protein engineering, and molecular docking, we identified two LCAT binding sites formed by helices 4 and 6 from two antiparallel APOA1 molecules in HDL. Although the reciprocating APOA1 "belts" form two ostensibly symmetrical binding locations, LCAT can adopt distinct orientations at each site, as shown by our 9.8 Å cryoEM envelope. In one case, LCAT membrane binding domains align with the APOA1 belts and, in the other, the HDL phospholipids. By introducing disulfide bonds between the APOA1 helical domains, we demonstrated that LCAT does not require helical separation during its reaction cycle. This indicates that LCAT, anchored to APOA1 belts, accesses substrates and deposits products through interactions with the planar lipid surface. This model of the LCAT/APOA1 interaction provides insights into how LCAT and possibly other HDL-modifying factors engage the APOA1 scaffold, offering potential strategies to enhance LCAT activity in individuals with genetic defects.
Collapse
Affiliation(s)
- Bethany Coleman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - John H Hill
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelly A Manthei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yi He
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Hyun Song
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Malajczuk CJ, Mancera RL. Molecular Simulation of the Binding of Amyloid Beta to Apolipoprotein A-I in High-Density Lipoproteins. Int J Mol Sci 2025; 26:1380. [PMID: 39941148 PMCID: PMC11818119 DOI: 10.3390/ijms26031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Disrupted clearance of amyloid beta (Aβ) from the brain enhances its aggregation and formation of amyloid plaques in Alzheimer's disease. The most abundant protein constituent of circulating high-density lipoprotein (HDL) particles, apoA-I, readily crosses the blood-brain barrier from periphery circulation, exhibits low-micromolar binding affinity for soluble, neurotoxic forms of Aβ, and modulates Aβ aggregation and toxicity in vitro. Its highly conserved N-terminal sequence, 42LNLKLLD48 ('LN'), has been proposed as a binding region for Aβ. However, high-resolution structural characterisation of the mechanism of HDL-Aβ interaction is very difficult to attain. Molecular dynamics simulations were conducted to investigate for the first time the interaction of Aβ and the 'LN' segment of apoA-I. Favourable binding of Aβ by HDLs was found to be driven by hydrophobic and hydrogen-bonding interactions predominantly between the 'LN' segment of apoA-I and Aβ. Preferential binding of Aβ may proceed in small, protein-rich HDLs whereby solvent-exposed hydrophobic 'LN' segments of apoA-I interact specifically with Aβ, stabilising it on the HDL surface in a possibly non-amyloidogenic conformation, facilitating effective Aβ clearance. These findings rationalise the potentially therapeutic role of HDLs in reducing Aβ aggregation and toxicity, and of peptide mimics of the apoA-I interacting region in blocking Aβ aggregation.
Collapse
Affiliation(s)
| | - Ricardo L. Mancera
- Curtin Medical School and Curtin Medical Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
| |
Collapse
|
6
|
Niesor EJ, Perez A, Rezzi S, Hodgson A, Canarelli S, Millet G, Debevec T, Bordat C, Nader E, Connes P. Plasma monomeric ApoA1 and high-density lipoprotein bound ApoA1 are markedly decreased and associated with low levels of lipophilic antioxidants in sickle cell disease: A potential new pathway for therapy. Eur J Haematol 2024; 113:788-797. [PMID: 39164995 DOI: 10.1111/ejh.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Patients with sickle cell disease (SCD) exhibit high levels of reactive oxygen species and low plasma levels of lipophilic antioxidants, which may contribute to end-organ damage and disease sequelae. Apolipoprotein A1, the major apolipoprotein of high-density lipoprotein (HDL), is mainly secreted by the intestine and liver in the form of monomeric ApoA1 (mApoA1) present in plasma. Cholesterol and α-tocopherol are delivered to ApoA1 via the ATP-binding cassette transporter, subfamily A, member 1 (ABCA1). We measured cholesterol, mApoA1, ApoA1, and lipophilic antioxidants in the plasma of 17 patients with SCD and 40 healthy volunteers. Mean HDL cholesterol (-C) levels in SCD patients and healthy subjects were 59.3 and 48.1 mg/dL, respectively, and plasma lutein, zeaxanthin, and α-tocopherol were 64.0%, 68.7%, and 9.1% lower, respectively. To compare SCD to healthy subjects with similar HDL-C, we also performed subgroup analyses of healthy subjects with HDL-C above or below the mean. In SCD, the mApoA1 level was 30.4 μg/mL; 80% lower than 141 μg/mL measured in healthy volunteers with similar HDL-C (56.7 mg/dL). The mApoA1 level was also 38.4% greater in the higher versus lower HDL-C subgroups (p = .002). In the higher HDL-C subgroup, lutein and zeaxanthin transported by HDL were 48.9% (p = .01) and 41.9% (p = .02) higher, respectively, whereas α-tocopherol was 31.7% higher (p = .003), compared to the lower HDL-C subgroup. Plasma mApoA1 may be a marker of the capacity of HDL to capture and deliver liposoluble antioxidants, and treatments which raise HDL may benefit patients with high oxidative stress as exemplified by SCD.
Collapse
Affiliation(s)
| | | | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Lausanne, Switzerland
| | - Andrew Hodgson
- Swiss Nutrition and Health Foundation, Lausanne, Switzerland
| | | | - Gregoire Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Elie Nader
- Faculty of Medicine Laennec, Claude Bernard University Lyon1, Lyon, France
| | - Philippe Connes
- Faculty of Medicine Laennec, Claude Bernard University Lyon1, Lyon, France
| |
Collapse
|
7
|
Föhrkolb C, Vogel K, Lochnit G, Presek P. Identification of apolipoprotein A-I as a target of platelet tyrosine kinases. Platelets 2024; 35:2290921. [PMID: 39686563 DOI: 10.1080/09537104.2023.2290921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2024]
Affiliation(s)
- Christine Föhrkolb
- Institute of Pharmacology and Toxicology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Katrin Vogel
- Institute of Pharmacology and Toxicology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-Universität Gießen, Institute of Biochemistry, Gießen, Germany
| | - Peter Presek
- Institute of Pharmacology and Toxicology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Lethcoe K, Fox CA, Hafiane A, Kiss RS, Liu J, Ren G, Ryan RO. Foam fractionation studies of recombinant human apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184375. [PMID: 39128552 PMCID: PMC11365745 DOI: 10.1016/j.bbamem.2024.184375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Apolipoprotein A-I (apoA-I), the primary protein component of plasma high-density lipoproteins (HDL), is comprised of two structural regions, an N-terminal amphipathic α-helix bundle domain (residues 1-184) and a hydrophobic C-terminal domain (residues 185-243). When a recombinant fusion protein construct [bacterial pelB leader sequence - human apoA-I (1-243)] was expressed in Escherichia coli shaker flask cultures, apoA-I was recovered in the cell lysate. By contrast, when the C-terminal domain was deleted from the construct, large amounts of the truncated protein, apoA-I (1-184), were recovered in the culture medium. Consequently, following pelB leader sequence cleavage in the E. coli periplasmic space, apoA-I (1-184) was secreted from the bacteria. When the pelB-apoA-I (1-184) fusion construct was expressed in a 5 L bioreactor, substantial foam production (~30 L) occurred. Upon foam collection and collapse into a liquid foamate, SDS-PAGE revealed that apoA-I (1-184) was the sole major protein present. Incubation of apoA-I (1-184) with phospholipid vesicles yielded reconstituted HDL (rHDL) particles that were similar in size and cholesterol efflux capacity to those generated with full-length apoA-I. Mass spectrometry analysis confirmed that pelB leader sequence cleavage occurred and that foam fractionation did not result in unwanted protein modifications. The facile nature and scalability of bioreactor-based apolipoprotein foam fractionation provide a novel means to generate a versatile rHDL scaffold protein.
Collapse
Affiliation(s)
- Kyle Lethcoe
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Colin A Fox
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Anouar Hafiane
- Department of Medicine, Division of Cardiology, McGill University, Montreal, QC, Canada
| | - Robert S Kiss
- Department of Medicine, Division of Cardiology, McGill University, Montreal, QC, Canada
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|
9
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Wang B, Tieleman DP. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys Chem 2024; 309:107231. [PMID: 38569455 DOI: 10.1016/j.bpc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
11
|
Malajczuk CJ, Mancera RL. An atomistic characterization of high-density lipoproteins and the conserved "LN" region of apoA-I. Biophys J 2024; 123:1116-1128. [PMID: 38555508 PMCID: PMC11079945 DOI: 10.1016/j.bpj.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
The physicochemical characteristics of the various subpopulations of high-density lipoproteins (HDLs) and, in particular, their surface properties determine their ability to scavenge lipids and interact with specific receptors and peptides. Five representative spheroidal HDL subpopulation models were mapped from a previously reported equilibrated coarse-grained (CG) description to an atomistic representation for subsequent molecular dynamics simulation. For each HDL model a range of finer-level analyses was undertaken, including the component-wise characterization of HDL surfaces, the average size and composition of hydrophobic surface patches, dynamic protein secondary structure monitoring, and the proclivity for solvent exposure of the proposed β-amyloid (Aβ) binding region of apolipoprotein A-I (apoA-I), "LN." This study reveals that previously characterized ellipsoidal HDL3a and HDL2a models revert to a more spherical geometry in an atomistic representation due to the enhanced conformational flexibility afforded to the apoA-I protein secondary structure, allowing for enhanced surface lipid packing and lower overall surface hydrophobicity. Indeed, the proportional surface hydrophobicity and apoA-I exposure reduced with increasing HDL size, consistent with previous characterizations. Furthermore, solvent exposure of the "LN" region of apoA-I was exclusively limited to the smallest HDL3c model within the timescale of the simulations, and typically corresponded to a distinct loss in secondary structure across the "LN" region to form part of a significant contiguous hydrophobic patch on the HDL surface. Taken together, these findings provide preliminary evidence for a subpopulation-specific interaction between HDL3c particles and circulating hydrophobic species such as Aβ via the exposed "LN" region of apoA-I.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Data Science, Curtin University, Perth, WA, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Data Science, Curtin University, Perth, WA, Australia.
| |
Collapse
|
12
|
Gkolfinopoulou C, Bourtsala A, Georgiadou D, Dedemadi AG, Stratikos E, Chroni A. Library screening identifies commercial drugs as potential structure correctors of abnormal apolipoprotein A-I. J Lipid Res 2024; 65:100543. [PMID: 38641010 PMCID: PMC11106541 DOI: 10.1016/j.jlr.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
AapoA-I, the main protein of high-density lipoprotein, plays a key role in the biogenesis and atheroprotective properties of high-density lipoprotein. We showed previously that a naturally occurring apoA-I mutation, L178P, induces major defects in protein's structural integrity and functions that may underlie the increased cardiovascular risk observed in carriers of the mutation. Here, a library of marketed drugs (956 compounds) was screened against apoA-I[L178P] to identify molecules that can stabilize the normal conformation of apoA-I. Screening was performed by the thermal shift assay in the presence of fluorescent dye SYPRO Orange. As an orthogonal assay, we monitored the change in fluorescence intensity of 8-anilinonaphthalene-1-sulfonic acid upon binding on hydrophobic sites on apoA-I. Screening identified four potential structure correctors. Subsequent analysis of the concentration-dependent effect of these compounds on secondary structure and thermodynamic stability of WT apoA-I and apoA-I[L178P] (assessed by thermal shift assay and circular dichroism spectroscopy), as well as on macrophage viability, narrowed the potential structure correctors to two, the drugs atorvastatin and bexarotene. Functional analysis showed that these two compounds can restore the defective capacity of apoA-I[L178P] to promote cholesterol removal from macrophages, an important step for atheroprotection. Computational docking suggested that both drugs target a positively charged cavity in apoA-I, formed between helix 1/2 and helix 5, and make extensive interactions that could underlie thermodynamic stabilization. Overall, our findings indicate that small molecules can correct defective apoA-I structure and function and may lead to novel therapeutic approaches for apoA-I-related dyslipidemias and increased cardiovascular risk.
Collapse
Affiliation(s)
- Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Angeliki Bourtsala
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Daphne Georgiadou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Anastasia-Georgia Dedemadi
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
13
|
He Y, Pavanello C, Hutchins PM, Tang C, Pourmousa M, Vaisar T, Song HD, Pastor RW, Remaley AT, Goldberg IJ, Costacou T, Sean Davidson W, Bornfeldt KE, Calabresi L, Segrest JP, Heinecke JW. Flipped C-Terminal Ends of APOA1 Promote ABCA1-Dependent Cholesterol Efflux by Small HDLs. Circulation 2024; 149:774-787. [PMID: 38018436 PMCID: PMC10913861 DOI: 10.1161/circulationaha.123.065959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.
Collapse
Affiliation(s)
- Yi He
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (C.P., L.C.)
| | - Patrick M. Hutchins
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (M.P., R.W.P.), National Institutes of Health, Bethesda, MD
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Hyun D. Song
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.D.S., J.P.S.)
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (M.P., R.W.P.), National Institutes of Health, Bethesda, MD
| | - Alan T. Remaley
- Department of Laboratory Medicine (A.T.R.), National Institutes of Health, Bethesda, MD
| | - Ira J. Goldberg
- Department of Medicine, New York University, New York, NY (I.J.G.)
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, PA (T.C.)
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, OH (W.S.D.)
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (C.P., L.C.)
| | - Jere P. Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.D.S., J.P.S.)
| | - Jay W. Heinecke
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| |
Collapse
|
14
|
Allen P, Smith AC, Benedicto V, Abdulhasan A, Narayanaswami V, Tapavicza E. Molecular dynamics simulation of apolipoprotein E3 lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184230. [PMID: 37704040 PMCID: PMC11318356 DOI: 10.1016/j.bbamem.2023.184230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.
Collapse
Affiliation(s)
- Patrick Allen
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Adam C Smith
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Vernon Benedicto
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Abbas Abdulhasan
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, CA, USA.
| |
Collapse
|
15
|
He Y, Pavanello C, Hutchins PM, Tang C, Pourmousa M, Vaisar T, Song HD, Pastor RW, Remaley AT, Goldberg IJ, Costacou T, Davidson WS, Bornfeldt KE, Calabresi L, Segrest JP, Heinecke JW. Flipped C-Terminal Ends of APOA1 Promote ABCA1-dependent Cholesterol Efflux by Small HDLs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.03.23297986. [PMID: 37961344 PMCID: PMC10635269 DOI: 10.1101/2023.11.03.23297986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear. Methods We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs. Results We quantified macrophage and ABCA1 CEC of four distinct sizes of reconstituted HDL (r-HDL). CEC increased as particle size decreased. MS/MS analysis of chemically crosslinked peptides and molecular dynamics simulations of APOA1 (HDL's major protein) indicated that the mobility of that protein's C-terminus was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs-like r-HDLs-are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3-5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. Conclusions We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the two antiparallel molecules of APOA1 are flipped off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased CVD risk. Thus, extra-small and small HDLs may be key mediators and indicators of HDL's cardioprotective effects.
Collapse
Affiliation(s)
- Yi He
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Patrick M Hutchins
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Hyun D Song
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892
| | - Ira J Goldberg
- Department of Medicine, New York University, New York, NY, 10016, USA
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
16
|
Mirza Z, Al-Saedi DA, Saddeek S, Almowallad S, AlMassabi RF, Huwait E. Atheroprotective Effect of Fucoidan in THP-1 Macrophages by Potential Upregulation of ABCA1. Biomedicines 2023; 11:2929. [PMID: 38001931 PMCID: PMC10669811 DOI: 10.3390/biomedicines11112929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting foam cells reduces the risk and pathophysiology of atherosclerosis, of which they are one of its early hallmarks. The precise mechanism of action of fucoidan, a potential anti-atherogenic drug, is still unknown. Our objective was to assess the ability of fucoidan to regulate expression of ATP-binding cassette transporter A1 (ABCA1) in ox-LDL-induced THP-1 macrophages. Molecular docking was used to predict how fucoidan interacts with anti-foam cell markers, and further in vitro experiments were performed to evaluate the protective effect of fucoidan on modulating uptake and efflux of lipids. THP-1 macrophages were protected by 50 µg/mL of fucoidan and were then induced to form foam cells with 25 µg/mL of ox-LDL. Expression levels were assessed using RT-qPCR, and an Oil Red O stain was used to observe lipid accumulation in THP-1 macrophages. In addition, ABCA1 protein was examined by Western blot, and cellular cholesterol efflux was determined using fluorescently labeled cholesterol. Under a light microscope, decreased lipid accumulation in ox-LDL-induced-THP-1 macrophages pre-treated with fucoidan showed a significant effect, although it did not affect the expression of scavenger receptors (SR-AI and CD36). It is interesting to note that fucoidan dramatically increased the gene and protein expression of ABCA1, perhaps via the liver X receptor-α (LXR-α). Moreover, fucoidan's ability to increase and control the efflux of cholesterol from ox-LDL-induced THP-1 macrophages revealed how it may alter ABCA1's conformation and have a major effect on how it interacts with apolipoprotein A (ApoA1). In vitro results support a rationale for predicting fucoidan and its interaction with its receptor targets' predicted data, hence validating its anti-atherogenic properties and suggesting that fucoidan could be promising as an atheroprotective.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Cell Culture Lab, Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salma Saddeek
- Department of Chemistry, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39511, Saudi Arabia;
| | - Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 48322, Saudi Arabia (R.F.A.)
| | - Rehab F. AlMassabi
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 48322, Saudi Arabia (R.F.A.)
| | - Etimad Huwait
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Cell Culture Lab, Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Allen P, Smith AC, Benedicto V, Abdulhassan A, Narayanaswami V, Tapavicza E. Molecular Dynamics Simulation of Apolipoprotein E3 Lipid Nanodiscs. ARXIV 2023:arXiv:2308.10164v1. [PMID: 37645042 PMCID: PMC10462174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nanodiscs are binary discoidal complexes of a phospholipid bilayer circumscribed by belt-like helical scaffold proteins. Using coarse-grained and all-atom molecular dynamics simulations, we explore the stability, size, and structure of nanodiscs formed between the N-terminal domain of apolipoprotein E3 (apoE3-NT) and variable number of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) molecules. We study both parallel and antiparallel double-belt configurations, consisting of four proteins per nanodisc. Our simulations predict nanodiscs containing between 240 and 420 DMPC molecules to be stable. The antiparallel configurations exhibit an average of 1.6 times more amino acid interactions between protein chains and 2 times more ionic contacts, compared to the parallel configuration. With one exception, DMPC order parameters are consistently larger in the antiparallel configuration than in the parallel one. In most cases, the root mean square deviation of the positions of the protein backbone atoms is smaller in the antiparallel configuration. We further report nanodisc size, thickness, radius of gyration, and solvent accessible surface area. Combining all investigated parameters, we hypothesize the antiparallel protein configuration leading to more stable and more rigid nanodiscs than the parallel one.
Collapse
Affiliation(s)
- Patrick Allen
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Adam C. Smith
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Vernon Benedicto
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Abbas Abdulhassan
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, 90840, State One, USA
| |
Collapse
|
18
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
19
|
Bhale AS, Venkataraman K. Delineating the impact of pathogenic mutations on the conformational dynamics of HDL's vital protein ApoA1: a combined computational and molecular dynamic simulation approach. J Biomol Struct Dyn 2023; 41:15661-15681. [PMID: 36943736 DOI: 10.1080/07391102.2023.2191131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Apolipoprotein A1 (ApoA1), is the important component of high-density lipoproteins (HDL), that has key role in HDL biogenesis, cholesterol trafficking, and reverse cholesterol transport (RCT). Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in ApoA1 have been linked to cardiovascular diseases and amyloidosis as they alter the protein's native structure and function. Therefore in this study, we attempted to understand the molecular pathogenicity profile of nsSNPs of ApoA1 using various computational approaches. We used state-of-the-art computational methods to thoroughly investigate the 295 ApoA1 nsSNPs at sequence and structural levels. Seven nsSNPs (L13R, L84R, L84P, L99P, R173P, L187P, and L238P) out of 295 were classified as the most deleterious and destabilizing. In order to estimate the effect of such destabilizing mutations on the protein conformation, all-atom molecular dynamics simulations (MDS) of ApoA1 wild-type (WT), L99P and R173P for 100 ns, was carried out using GROMACS 5.0.1 package. The MD simulation investigation revealed significant structural alterations in L99P and R173P. In addition, they had changed principal component analysis and electrostatic surface potential, decreased structural compactness, and intramolecular hydrogen bonds, which supported the rationale underpinning ApoA1 dysfunction with such mutations. This work sheds light on ApoA1 dysfunction due to single amino acid alterations, and offers new insight into the molecular basis of ApoA1-related diseases progression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
21
|
Interactions of fentanyl with blood platelets and plasma proteins: platelet sensitivity to prasugrel metabolite is not affected by fentanyl under in vitro conditions. Pharmacol Rep 2023; 75:423-441. [PMID: 36646965 DOI: 10.1007/s43440-023-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Clinical trials indicate that fentanyl, like morphine, may impair intestinal absorption and thus decrease the efficacy of oral P2Y12 inhibitors, such as clopidogrel, ticagrelor, and prasugrel. However, the ability of fentanyl to directly negate or reduce the inhibitory effect of P2Y12 receptor antagonists on platelet function has not been established. A series of in vitro experiments was performed to investigate the ability of fentanyl to activate platelets, potentiate platelet response to ADP, and/or diminish platelet sensitivity to prasugrel metabolite (R-138727) in agonist-stimulated platelets. The selectivity and specificity of fentanyl toward major carrier proteins has been also studied. METHODS Blood was obtained from healthy volunteers (19 women and 12 men; mean age 40 ± 13 years). Platelet function was measured in whole blood, platelet-rich plasma and in suspensions of isolated platelets by flow cytometry, impedance and optical aggregometry. Surface plasmon resonance and molecular docking were employed to determine the binding kinetics of fentanyl to human albumin, α1-acid glycoprotein, apolipoprotein A-1 and apolipoprotein B-100. RESULTS When applied at therapeutic and supratherapeutic concentrations under various experimental conditions, fentanyl had no potential to stimulate platelet activation and aggregation, or potentiate platelet response to ADP, nor did it affect platelet susceptibility to prasugrel metabolite in ADP-stimulated platelets. In addition, fentanyl was found to interact with all the examined carrier proteins with dissociation constants in the order of 10-4 to 10-9 M. CONCLUSIONS It does not seem that the delayed platelet responsiveness to oral P2Y12 inhibitors, such as prasugrel, in patients undergoing percutaneous coronary intervention, results from direct interactions between fentanyl and blood platelets. Apolipoproteins, similarly to albumin and α1-acid glycoprotein, appear to be important carriers of fentanyl in blood.
Collapse
|
22
|
Xu D, Chen X, Li Y, Chen Z, Xu W, Wang X, Lv Y, Wang Z, Wu M, Liu G, Wang J. Reconfigurable Peptide Analogs of Apolipoprotein A-I Reveal Tunable Features of Nanodisc Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1262-1276. [PMID: 36626237 DOI: 10.1021/acs.langmuir.2c03082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Collapse
Affiliation(s)
- Daiyun Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen518033, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen361102, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
23
|
Gorshkova IN, Meyers NL, Herscovitz H, Mei X, Atkinson D. Human apoA-I[Lys107del] mutation affects lipid surface behavior of apoA-I and its ability to form large nascent HDL. J Lipid Res 2022; 64:100319. [PMID: 36525992 PMCID: PMC9926306 DOI: 10.1016/j.jlr.2022.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant's content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.
Collapse
|
24
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Chen L, Zhao ZW, Zeng PH, Zhou YJ, Yin WJ. Molecular mechanisms for ABCA1-mediated cholesterol efflux. Cell Cycle 2022; 21:1121-1139. [PMID: 35192423 PMCID: PMC9103275 DOI: 10.1080/15384101.2022.2042777] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of cellular cholesterol homeostasis is essential for normal cell function and viability. Excessive cholesterol accumulation is detrimental to cells and serves as the molecular basis of many diseases, such as atherosclerosis, Alzheimer's disease, and diabetes mellitus. The peripheral cells do not have the ability to degrade cholesterol. Cholesterol efflux is therefore the only pathway to eliminate excessive cholesterol from these cells. This process is predominantly mediated by ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein. ABCA1 is known to transfer intracellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) for generating nascent high-density lipoprotein (nHDL) particles. nHDL can accept more free cholesterol from peripheral cells. Free cholesterol is then converted to cholesteryl ester by lecithin:cholesterol acyltransferase to form mature HDL. HDL-bound cholesterol enters the liver for biliary secretion and fecal excretion. Although how cholesterol is transported by ABCA1 to apoA-I remains incompletely understood, nine models have been proposed to explain this effect. In this review, we focus on the current view of the mechanisms underlying ABCA1-mediated cholesterol efflux to provide an important framework for future investigation and lipid-lowering therapy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying-Jie Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,CONTACT Wen-Jun Yin Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
26
|
Bedi S, Morris J, Shah A, Hart RC, Jerome WG, Aller SG, Tang C, Vaisar T, Bornfeldt KE, Segrest JP, Heinecke JW, Davidson WS. Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. J Lipid Res 2022; 63:100168. [PMID: 35051413 PMCID: PMC8953623 DOI: 10.1016/j.jlr.2022.100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Amy Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chongren Tang
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
27
|
HDL Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:1-11. [DOI: 10.1007/978-981-19-1592-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
29
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
30
|
Tikhonov D, Kulikova L, Kopylov AT, Rudnev V, Stepanov A, Malsagova K, Izotov A, Kulikov D, Zulkarnaev A, Enikeev D, Potoldykova N, Kaysheva AL. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep 2021; 11:19318. [PMID: 34588485 PMCID: PMC8481388 DOI: 10.1038/s41598-021-98201-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational processing leads to conformational changes in protein structure that modulate molecular functions and change the signature of metabolic transformations and immune responses. Some post-translational modifications (PTMs), such as phosphorylation and acetylation, are strongly related to oncogenic processes and malignancy. This study investigated a PTM pattern in patients with gender-specific ovarian or breast cancer. Proteomic profiling and analysis of cancer-specific PTM patterns were performed using high-resolution UPLC-MS/MS. Structural analysis, topology, and stability of PTMs associated with sex-specific cancers were analyzed using molecular dynamics modeling. We identified highly specific PTMs, of which 12 modified peptides from eight distinct proteins derived from patients with ovarian cancer and 6 peptides of three proteins favored patients from the group with breast cancer. We found that all defined PTMs were localized in the compact and stable structural motifs exposed outside the solvent environment. PTMs increase the solvent-accessible surface area of the modified moiety and its active environment. The observed conformational fluctuations are still inadequate to activate the structural degradation and enhance protein elimination/clearance; however, it is sufficient for the significant modulation of protein activity.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Arthur T Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia.
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Izotov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Dmitry Kulikov
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Alexey Zulkarnaev
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Dmitry Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Natalia Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Anna L Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| |
Collapse
|
31
|
Melchior JT, Street SE, Vaisar T, Hart R, Jerome J, Kuklenyik Z, Clouet-Foraison N, Thornock C, Bedi S, Shah AS, Segrest JP, Heinecke JW, Davidson WS. Apolipoprotein A-I modulates HDL particle size in the absence of apolipoprotein A-II. J Lipid Res 2021; 62:100099. [PMID: 34324889 PMCID: PMC8385444 DOI: 10.1016/j.jlr.2021.100099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Human high-density lipoproteins (HDL) are a complex mixture of structurally-related nanoparticles that perform distinct physiological functions. We previously showed human HDL containing apolipoprotein A-I (APOA1) but not apolipoprotein A-II (APOA2), designated LpA-I, is composed primarily of two discretely sized populations. Here, we isolated these particles directly from human plasma by antibody affinity chromatography, separated them by high-resolution size exclusion chromatography and performed a deep molecular characterization of each species. The large and small LpA-I populations were spherical with mean diameters of 109 Å and 91 Å, respectively. Unexpectedly, isotope dilution MS/MS with [15N]-APOA1 in concert with quantitation of particle concentration by calibrated ion mobility analysis demonstrated that the large particles contained fewer APOA1 molecules than the small particles; the stoichiometries were 3.0 and 3.7 molecules of APOA1 per particle, respectively. MS/MS experiments showed that the protein cargo of large LpA-I particles was more diverse. Human HDL and isolated particles containing both APOA1 and APOA2 exhibit a much wider range and variation of particle sizes than LpA-I, indicating that APOA2 is likely the major contributor to HDL size heterogeneity. We propose a ratchet model based on the trefoil structure of APOA1 whereby the helical cage maintaining particle structure has two 'settings' - large and small - that accounts for these findings. This understanding of the determinants of HDL particle size and protein cargo distribution serves as a basis for determining the roles of HDL subpopulations in metabolism and disease states.
Collapse
Affiliation(s)
- John T Melchior
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354
| | - Scott E Street
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Rachel Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jay Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341
| | - Noemie Clouet-Foraison
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Carissa Thornock
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - Shimpi Bedi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109
| | - W Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|
32
|
Schrijver DP, Dreu A, Hofstraat SRJ, Kluza E, Zwolsman R, Deckers J, Anbergen T, Bruin K, Trines MM, Nugraha EG, Ummels F, Röring RJ, Beldman TJ, Teunissen AJP, Fayad ZA, Meel R, Mulder WJM. Nanoengineering Apolipoprotein A1‐Based Immunotherapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David P. Schrijver
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Anne Dreu
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Stijn R. J. Hofstraat
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Robby Zwolsman
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Jeroen Deckers
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Tom Anbergen
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Koen Bruin
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Mirre M. Trines
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Eveline G. Nugraha
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Floor Ummels
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Roy Meel
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Willem J. M. Mulder
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| |
Collapse
|
33
|
Kjølbye LR, De Maria L, Wassenaar TA, Abdizadeh H, Marrink SJ, Ferkinghoff-Borg J, Schiøtt B. General Protocol for Constructing Molecular Models of Nanodiscs. J Chem Inf Model 2021; 61:2869-2883. [PMID: 34048229 DOI: 10.1021/acs.jcim.1c00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.
Collapse
Affiliation(s)
- Lisbeth R Kjølbye
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Agrobacterium tumefaciens Growth Pole Ring Protein: C Terminus and Internal Apolipoprotein Homologous Domains Are Essential for Function and Subcellular Localization. mBio 2021; 12:mBio.00764-21. [PMID: 34006657 PMCID: PMC8262873 DOI: 10.1128/mbio.00764-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Agrobacterium growth pole ring (GPR) protein forms a hexameric ring at the growth pole (GP) that is essential for polar growth. GPR is large (2,115 amino acids) and contains 1,700 amino acids of continuous α-helices. To dissect potential GPR functional domains, we created deletions of regions with similarity to human apolipoprotein A-IV (396 amino acids), itself composed of α-helical domains. We also tested deletions of the GPR C terminus. Deletions were inducibly expressed as green fluorescent protein (GFP) fusion proteins and tested for merodiploid interference with wild-type (WT) GPR function, for partial function in cells lacking GPR, and for formation of paired fluorescent foci (indicative of hexameric rings) at the GP. Deletion of domains similar to human apolipoprotein A-IV in GPR caused defects in cell morphology when expressed in trans to WT GPR and provided only partial complementation to cells lacking GPR. Agrobacterium-specific domains A-IV-1 and A-IV-4 contain predicted coiled coil (CC) regions of 21 amino acids; deletion of CC regions produced severe defects in cell morphology in the interference assay. Mutants that produced the most severe effects on cell shape also failed to form paired polar foci. Modeling of A-IV-1 and A-IV-4 reveals significant similarity to the solved structure of human apolipoprotein A-IV. GPR C-terminal deletions profoundly blocked complementation. Finally, peptidoglycan (PG) synthesis is abnormally localized circumferentially in cells lacking GPR. The results support the hypothesis that GPR plays essential roles as an organizing center for membrane and PG synthesis during polar growth.IMPORTANCE Bacterial growth and division are extensively studied in model systems (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus) that grow by dispersed insertion of new cell wall material along the length of the cell. An alternative growth mode-polar growth-is used by some Actinomycetales and Proteobacteria species. The latter phylum includes the family Rhizobiaceae, in which many species, including Agrobacterium tumefaciens, exhibit polar growth. Current research aims to identify growth pole (GP) factors. The Agrobacterium growth pole ring (GPR) protein is essential for polar growth and forms a striking hexameric ring structure at the GP. GPR is long (2,115 amino acids), and little is known about regions essential for structure or function. Genetic analyses demonstrate that the C terminus of GPR, and two internal regions with homology to human apolipoproteins (that sequester lipids), are essential for GPR function and localization to the GP. We hypothesize that GPR is an organizing center for membrane and cell wall synthesis during polar growth.
Collapse
|
35
|
Interaction of lipid-free apolipoprotein A-I with cholesterol revealed by molecular modeling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140614. [PMID: 33548491 DOI: 10.1016/j.bbapap.2021.140614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
We report the modeling of the interaction of differently self-associated lipid-free apoA-I with cholesterol monomer and tail-to-tail (TT) or face-to-face (FF) cholesterol dimer. Cholesterol dimerization is exploited to reconcile the existing experimental data on cholesterol binding to apoA-I with extremely low critical micelle concentration of cholesterol. Two crystal structures of 1-43 N-truncated apolipoprotein Δ(1-43)A-I tetramer (PDB ID: 1AV1, structure B), 185-243 C-truncated apolipoprotein Δ(185-243)A-I dimer (PDB ID: 3R2P, structure M) were analyzed. Cholesterol monomers bind to multiple binding sites in apoA-I monomer, dimer and tetramer with low, moderate and high energy (-10 to -28 kJ/mol with Schrödinger package), still insufficient to overcome the thermodynamic restriction by cholesterol micellization (-52.8 kJ/mol). The binding sites partially coincide with the putative cholesterol-binding motifs. However, apoA-I monomer and dimer existing in structure B, that contain nonoverlapping and non-interacting pairs of binding sites with high affinity for TT and FF cholesterol dimers, can bind in common 14 cholesterol molecules that correspond to existing values. ApoA-I monomer and dimer in structure M can bind in common 6 cholesterol molecules. The values of respective total energy of cholesterol binding up to 64.5 and 67.0 kJ/mol for both B and M structures exceed the free energy of cholesterol micellization. We hypothesize that cholesterol dimers may simultaneously interact with extracellular monomer and dimer of lipid-free apoA-I, that accumulate at acid pH in atheroma. The thermodynamically allowed apolipoprotein-cholesterol interaction outside the macrophage may represent a new mechanism of cholesterol transport by apoA-I from atheroma, in addition to ABCA1-mediated cholesterol efflux.
Collapse
|
36
|
Gkolfinopoulou C, Soukou F, Dafnis I, Kellici TF, Sanoudou D, Mavromoustakos T, Stratikos E, Chroni A. Structure-function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk. Cell Mol Life Sci 2021; 78:1523-1544. [PMID: 32666307 PMCID: PMC11072781 DOI: 10.1007/s00018-020-03583-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure-function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Apolipoprotein A-I/genetics
- Apolipoprotein A-I/metabolism
- Apolipoprotein A-I/ultrastructure
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Cell Movement/genetics
- Cholesterol, HDL/genetics
- Cholesterol, HDL/metabolism
- Cholesterol, HDL/ultrastructure
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Disease Risk Factors
- Humans
- Ketocholesterols/genetics
- Ketocholesterols/metabolism
- Lipoproteins, HDL/genetics
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/ultrastructure
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Mutant Proteins/ultrastructure
- Mutation/genetics
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/metabolism
- Structure-Activity Relationship
- Thermodynamics
Collapse
Affiliation(s)
- Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece
| | - Faye Soukou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece
| | - Tahsin F Kellici
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
37
|
Abstract
The properties of natural lipid bilayers are vital to the regulation of many membrane proteins. Scaffolded nanodiscs provide an in vitro lipid bilayer platform to host membrane proteins in an environment that approximates native lipid bilayers. However, the properties of scaffold-enclosed bilayers may depart significantly from those of bulk cellular membranes. Therefore, to improve the usefulness of nanodiscs it is essential to understand the properties of lipids restricted by scaffolds. We used computational molecular dynamics and modeling approaches to understand the effects of nanodisc size, scaffold type (DNA or protein), and hydrophobic modification of DNA scaffolds on bilayer stability and degree to which the properties of enclosed bilayers approximate bulk bilayers. With respect to achieving bulk bilayer behavior, we found that charge neutralization of DNA scaffolds was more important than the total hydrophobic content of their modifications: bilayer properties were better for scaffolds having a large number of short alkyl chains than those having fewer long alkyl chains. Further, complete charge neutralization of DNA scaffolds enabled better lipid binding, and more stable bilayers, as shown by steered molecular dynamics simulations that measured the force required to dislodge scaffolds from lipid bilayer patches. Considered together, our simulations provide a guide to the design of DNA-scaffolded nanodiscs suitable for studying membrane proteins.
Collapse
Affiliation(s)
- Vishal Maingi
- Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul W K Rothemund
- Departments of Bioengineering, Computing + Mathematical Sciences, and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
38
|
Tárraga WA, Falomir-Lockhart LJ, Garda HA, González MC. Analysis of pyrene-labelled apolipoprotein A-I oligomerization in solution: Spectra deconvolution and changes in P-value and excimer formation. Arch Biochem Biophys 2021; 699:108748. [PMID: 33444627 DOI: 10.1016/j.abb.2020.108748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/15/2022]
Abstract
ApoA-I is the main protein of HDL which has anti-atherogenic properties attributed to reverse cholesterol transport. It shares with other exchangeable apolipoproteins a high level of structural plasticity. In the lipid-free state, the apolipoprotein amphipathic α-helices interact intra- and inter-molecularly, providing structural stabilization by a complex self-association mechanism. In this study, we employed a multi-parametric fluorescent probe to study the self-association of apoA-I. We constructed six single cysteine mutants spanning positions along three helices: F104C, K107C (H4), K133C, L137C (H5), F225C and K226C (H10); and labelled them with N-Maleimide Pyrene. Taking advantage of its spectral properties, namely formation of an excited dimer (excimer) and polarity-dependent changes in its fluorescence fine structure (P-value), we monitored the apoA-I self-association in its lipid-free form as a function of its concentration. Interactions in helices H5 (K133C) and H10 (F225C and K226C) were highlighted by excimer emission; while polarity changes were reported in helix H4 (K107C), as well as in helices H5 and H10. Mathematical models were developed to enrich data analysis and estimate association constants (KA) and oligomeric species distribution. Furthermore, we briefly discuss the usefulness of the multi-parametric fluorescent probe to monitor different equilibria, even at a single labelling position. Results suggest that apoA-I self-association must be considered to fully understand its physiological roles. Particularly, some contacts that stabilize discoidal HDL particles seem to be already present in the lipid-free apoA-I oligomers.
Collapse
Affiliation(s)
- Wilson A Tárraga
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina.
| | - Lisandro J Falomir-Lockhart
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 s/n, 1900, La Plata, Argentina.
| | - Horacio A Garda
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina.
| | - Marina C González
- Instituto de Investigaciones Bioquímica de La Plata (INIBIOLP), Centro Científico Tecnológico-La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina.
| |
Collapse
|
39
|
Laurenzi T, Parravicini C, Palazzolo L, Guerrini U, Gianazza E, Calabresi L, Eberini I. rHDL modeling and the anchoring mechanism of LCAT activation. J Lipid Res 2020; 62:100006. [PMID: 33518511 PMCID: PMC7859856 DOI: 10.1194/jlr.ra120000843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Lecithin:cholesterol-acyl transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodeling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT functionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands the LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
40
|
Dergunov AD, Litvinov DY, Malkov AA, Baserova VB, Nosova EV, Dergunova LV. Denaturation of human plasma high-density lipoproteins by urea studied by apolipoprotein A-I dissociation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158814. [PMID: 32961276 DOI: 10.1016/j.bbalip.2020.158814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
We studied the mechanism of HDL denaturation with concomitant apoA-I dissociation with HDL preparations from 48 patients with a wide range of plasma HDL-C and evaluated the contribution of lipid-free apoA-I into cholesterol efflux from macrophage, in particular, mediated by cholesterol transporter ABCA1. We prepared HDL by precipitation of apoB-containing lipoproteins by polyethylene glycol and used the chaotropic agent urea to denature HDL preparations. Apo-I dissociation from urea-treated HDL was assessed by the increase of preβ-band fraction with agarose gel electrophoresis followed by electro transfer and immunodetection and by the increase of ABCA1-mediated efflux of fluorescent analogue BODIPY-Cholesterol from RAW 264.7 macrophages. The HDL denaturation is governed by a single transition to fully dissociated apoA-I and the transition cooperativity decreases with increasing HDL-C. The apoA-I release depends on phospholipid concentration of HDL preparation and HDL compositional and structural heterogeneity and is well described by apolipoprotein partition between aqueous and lipid phases. Dissociated apoA-I determines the increase of ABCA1-mediated efflux of BODIPY-Cholesterol from RAW 264.7 macrophages to patient HDL. The increase in apoA-I dissociation is associated with the increase of ABCA1 gene transcript in peripheral blood mononuclear cells from patients. The low level of plasma HDL particles may be compensated by their increased potency for apoA-I release, thus suggesting apoA-I dissociation as a new HDL functional property.
Collapse
Affiliation(s)
- Alexander D Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia.
| | - Dmitry Y Litvinov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Artem A Malkov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Veronika B Baserova
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Research Centre for Preventive Medicine, Moscow, Russia
| | - Elena V Nosova
- Laboratory of Functional Genomics, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Liudmila V Dergunova
- Laboratory of Functional Genomics, Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Ludovico ID, Gisonno RA, Gonzalez MC, Garda HA, Ramella NA, Tricerri MA. Understanding the role of apolipoproteinA-I in atherosclerosis. Post-translational modifications synergize dysfunction? Biochim Biophys Acta Gen Subj 2020; 1865:129732. [PMID: 32946930 DOI: 10.1016/j.bbagen.2020.129732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The identification of dysfunctional human apolipoprotein A-I (apoA-I) in atherosclerotic plaques suggests that protein structure and function may be hampered under a chronic pro inflammatory scenario. Moreover, the fact that natural mutants of this protein elicit severe cardiovascular diseases (CVD) strongly indicates that the native folding could shift due to the mutation, yielding a structure more prone to misfold or misfunction. To understand the events that determine the failure of apoA-I structural flexibility to fulfill its protective role, we took advantage of the study of a natural variant with a deletion of the residue lysine 107 (K107del) associated with atherosclerosis. METHODS Biophysical approaches, such as electrophoresis, fluorescence and spectroscopy were used to characterize proteins structure and function, either in native conformation or under oxidation or intramolecular crosslinking. RESULTS K107del structure was more flexible than the protein with the native sequence (Wt) but interactions with artificial membranes were preserved. Instead, structural restrictions by intramolecular crosslinking impaired the Wt and K107del lipid solubilization function. In addition, controlled oxidation decreased the yield of the native dimer conformation for both variants. CONCLUSIONS We conclude that even though mutations may alter protein structure and spatial arrangement, the highly flexible conformation compensates the mild shift from the native folding. Instead, post translational apoA-I modifications (probably chronic and progressive) are required to raise a protein conformation with significant loss of function and increased aggregation tendency. GENERAL SIGNIFICANCE The results learnt from this variant strength a close association between amyloidosis and atherosclerosis.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Romina A Gisonno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Marina C Gonzalez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Horacio A Garda
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina.
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata CP 1900, Argentina.
| |
Collapse
|
42
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
43
|
Fukuda R, Murakami T. Potential of Lipoprotein-Based Nanoparticulate Formulations for the Treatment of Eye Diseases. Biol Pharm Bull 2020; 43:596-607. [PMID: 32238702 DOI: 10.1248/bpb.b19-00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins are naturally occurring nanoparticles and their main physiological function is the promotion of lipid metabolism. They can be prepared in vitro for use as drug carriers, and these reconstituted lipoproteins show similar biological activity to their natural counterparts. Some lipoproteins can cross the blood-retinal barrier and are involved in intraocular lipid metabolism. Drug-loaded lipoproteins can be delivered to the retina for the treatment of posterior eye diseases. In this review, we have discussed the therapeutic applications of lipoproteins for eye diseases and introduced the emerging animal models used for the evaluation of their therapeutic effects.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University.,Research Fellow of Japan Society for the Promotion of Science (JSPS)
| | - Tatsuya Murakami
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS)
| |
Collapse
|
44
|
Zanoni P, von Eckardstein A. Inborn errors of apolipoprotein A-I metabolism: implications for disease, research and development. Curr Opin Lipidol 2020; 31:62-70. [PMID: 32022753 DOI: 10.1097/mol.0000000000000667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review current knowledge regarding naturally occurring mutations in the human apolipoprotein A-I (APOA1) gene with a focus on their clinical complications as well as their exploitation for the elucidation of structure-function-(disease) relationships and therapy. RECENT FINDINGS Bi-allelic loss-of-function mutations in APOA1 cause HDL deficiency and, in the majority of patients, premature atherosclerotic cardiovascular disease (ASCVD) and corneal opacities. Heterozygous HDL-cholesterol decreasing mutations in APOA1 were associated with increased risk of ASCVD in several but not all studies. Some missense mutations in APOA1 cause familial amyloidosis. Structure-function-reationships underlying the formation of amyloid as well as the manifestion of amyloidosis in specific tissues are better understood. Lessons may also be learnt from the progress in the treatment of amyloidoses induced by transthyretin variants. Infusion of reconstituted HDL (rHDL) containing apoA-I (Milano) did not cause regression of atherosclerosis in coronary arteries of patients with acute coronary syndrome. However, animal experiments indicate that rHDL with apoA-I (Milano) or apoA-I mimetic peptides may be useful for the treatment of heart failure of inflammatory bowel disease. SUMMARY Specific mutations in APOA1 are the cause of premature ASCVD or familial amyloidosis. Synthetic mimetics of apoA-I (mutants) may be useful for the treatment of several diseases beyond ASCVD.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zurich
| | | |
Collapse
|
45
|
Wzorek J, Bednarek R, Watala C, Boncler M. Binding of adenosine derivatives to carrier proteins may reduce their antiplatelet activity. Biochem Pharmacol 2020; 174:113827. [PMID: 31987853 DOI: 10.1016/j.bcp.2020.113827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023]
Abstract
Adenosine analogues have high affinity and selectivity for adenosine receptors (AR), and exhibit anti-platelet activity. Plasma proteins play an important role in the regulation of platelet function and may influence the action of anti-platelet compounds. Little is known about the interactions of AR agonists with plasma proteins. This study investigates the interplay between AR agonists and plasma proteins and the consequences of those interactions. Surface plasmon resonance was employed together with molecular docking study to determine the binding kinetics of four selected ARagonists (PSB0777, Cl-Ado, MRE0094, UK432097) to several carrier proteins and to clarify the nature of these interactions. The influence of a whole plasma and of some plasma components on the effectiveness of ARagonists in the inhibition of platelet function was assessed by flow cytometry (platelet activation) and ELISA (platelet adhesion). Plasma proteins remarkably diminished the effectiveness of ARagonists in inhibiting platelet activation and adhesion in vitro. ARagonists were found to strongly bind to human serum albumin (HSA) and the protein components of lipoproteins - apolipoproteins; HSA was essential for the binding of water-soluble PSB0777, whereas apolipoproteins were needed for interactions with poorly-water soluble compounds such as UK432097 and MRE0094. In addition, HSA was shown to significantly reduce the effectiveness of PSB0777 in inhibiting ADP-induced platelet activation. In conclusion, HSA and lipoproteins are important carriers for ARagonists, which can affect pharmacodynamics of ARagonists used as platelet inhibitors.
Collapse
Affiliation(s)
- Joanna Wzorek
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Radosław Bednarek
- Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
46
|
First eight residues of apolipoprotein A-I mediate the C-terminus control of helical bundle unfolding and its lipidation. PLoS One 2020; 15:e0221915. [PMID: 31945064 PMCID: PMC6964839 DOI: 10.1371/journal.pone.0221915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/30/2019] [Indexed: 11/23/2022] Open
Abstract
The crystal structure of a C-terminal deletion of apolipoprotein A-I (apoA1) shows a large helical bundle structure in the amino half of the protein, from residues 8 to 115. Using site directed mutagenesis, guanidine or thermal denaturation, cell free liposome clearance, and cellular ABCA1-mediated cholesterol efflux assays, we demonstrate that apoA1 lipidation can occur when the thermodynamic barrier to this bundle unfolding is lowered. The absence of the C-terminus renders the bundle harder to unfold resulting in loss of apoA1 lipidation that can be reversed by point mutations, such as Trp8Ala, and by truncations as short as 8 residues in the amino terminus, both of which facilitate helical bundle unfolding. Locking the bundle via a disulfide bond leads to loss of apoA1 lipidation. We propose a model in which the C-terminus acts on the N-terminus to destabilize this helical bundle. Upon lipid binding to the C-terminus, Trp8 is displaced from its interaction with Phe57, Arg61, Leu64, Val67, Phe71, and Trp72 to destabilize the bundle. However, when the C-terminus is deleted, Trp8 cannot be displaced, the bundle cannot unfold, and apoA1 cannot be lipidated.
Collapse
|
47
|
Gisonno RA, Prieto ED, Gorgojo JP, Curto LM, Rodriguez ME, Rosú SA, Gaddi GM, Finarelli GS, Cortez MF, Schinella GR, Tricerri MA, Ramella NA. Fibrillar conformation of an apolipoprotein A-I variant involved in amyloidosis and atherosclerosis. Biochim Biophys Acta Gen Subj 2020; 1864:129515. [PMID: 31904503 DOI: 10.1016/j.bbagen.2020.129515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions. Thus mutations result in increased protein aggregation. Here we set up to characterize the folding of a natural variant with a mutation leading to a deletion at position 107 (apoA-I Lys107-0). Patients carrying this variant show amyloidosis and severe atherosclerosis. METHODS We oxidized this variant under controlled concentrations of hydrogen peroxide and analyzed the structure obtained after 30-day incubation by fluorescence, circular dichroism and microscopy approaches. Neutrophils activation was characterized by confocal microscopy. RESULTS We obtained a high yield of well-defined stable fibrillar structures of apoA-I Lys107-0. In an in vitro neutrophils system, we were able to detect the induction of Neutrophils Extracellular Traps (NETs) when we incubated with oxidized apoA-I variants. This effect was exacerbated by the fibrillar structure of oxidized Lys 107-0. CONCLUSIONS We conclude that a pro-inflammatory microenvironment could result in the formation of aggregation-prone species, which, in addition may induce a positive feed-back in the activation of an inflammatory response. GENERAL SIGNIFICANCE These events may explain a close association between amyloidosis due to apoA-I Lys107-0 and atherosclerosis.
Collapse
Affiliation(s)
- Romina A Gisonno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Eduardo D Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| | - Juan P Gorgojo
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Lucrecia M Curto
- Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB) y Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, Argentina
| | - M Eugenia Rodriguez
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Silvana A Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Gisela M Gaddi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | | | - M Fernanda Cortez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| |
Collapse
|
48
|
Gkolfinopoulou C, Bourtsala A, Chroni A. Structural and functional basis for increased HDL-cholesterol levels due to the naturally occurring V19L mutation in human apolipoprotein A-I. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158593. [PMID: 31863971 DOI: 10.1016/j.bbalip.2019.158593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022]
Abstract
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.
Collapse
Affiliation(s)
- Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Bourtsala
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
49
|
Mizuguchi C, Nakagawa M, Namba N, Sakai M, Kurimitsu N, Suzuki A, Fujita K, Horiuchi S, Baba T, Ohgita T, Nishitsuji K, Saito H. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. J Biol Chem 2019; 294:13515-13524. [PMID: 31341020 DOI: 10.1074/jbc.ra119.008000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/20/2019] [Indexed: 01/26/2023] Open
Abstract
The N-terminal (1-83) fragment of the major constituent of plasma high-density lipoprotein, apolipoprotein A-I (apoA-I), strongly tends to form amyloid fibrils, leading to systemic amyloidosis. Here, using a series of deletion variants, we examined the roles of two major amyloidogenic segments (residues 14-22 and 50-58) in the aggregation and fibril formation of an amyloidogenic G26R variant of the apoA-I 1-83 fragment (apoA-I 1-83/G26R). Thioflavin T fluorescence assays and atomic force microscopy revealed that elimination of residues 14-22 completely inhibits fibril formation of apoA-I 1-83/G26R, whereas Δ32-40 and Δ50-58 variants formed fibrils with markedly reduced nucleation and fibril growth rates. CD measurements revealed structural transitions from random coil to β-sheet structures in all deletion variants except for the Δ14-22 variant, indicating that residues 14-22 are critical for the β-transition and fibril formation. Thermodynamic analysis of the kinetics of fibril formation by apoA-I 1-83/G26R indicated that both nucleation and fibril growth are enthalpically unfavorable, whereas entropically, nucleation is favorable, but fibril growth is unfavorable. Interestingly, the nucleation of the Δ50-58 variant was entropically unfavorable, indicating that residues 50-58 entropically promote the nucleation step in fibril formation of apoA-I 1-83/G26R. Moreover, a residue-level structural investigation of apoA-I 1-83/G26R fibrils with site-specific pyrene labeling indicated that the two amyloidogenic segments are in close proximity to form an amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. These results provide critical insights into the aggregation mechanism and fibril structure of the amyloidogenic N-terminal fragment of apoA-I.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misae Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sayaka Horiuchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
50
|
GROWTH POLE RING protein forms a 200-nm-diameter ring structure essential for polar growth and rod shape in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2019; 116:10962-10967. [PMID: 31085632 DOI: 10.1073/pnas.1905900116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polar growth in Agrobacterium pirates and repurposes well-known bacterial cell cycle proteins, such as FtsZ, FtsA, PopZ, and PodJ. Here we identify a heretofore unknown protein that we name GROWTH POLE RING (GPR) due to its striking localization as a hexameric ring at the growth pole during polar growth. GPR also localizes at the midcell late in the cell cycle just before division, where it is then poised to be precisely localized at new growth poles in sibling cells. GPR is 2,115 aa long, with two N-terminal transmembrane domains placing the bulk of the protein in the cytoplasm, N- and C-terminal proline-rich disordered regions, and a large 1,700-aa central region of continuous α-helical domains. This latter region contains 12 predicted adjacent or overlapping apolipoprotein domains that may function to sequester lipids during polar growth. Stable genetic deletion or riboswitch-controlled depletion results in spherical cells that grow poorly; thus, GPR is essential for wild-type growth and morphology. As GPR has no predicted enzymatic domains and it forms a distinct 200-nm-diameter ring, we propose that GPR is a structural component of an organizing center for peptidoglycan and membrane syntheses critical for cell envelope formation during polar growth. GPR homologs are found in numerous Rhizobiales; thus, our results and proposed model are fundamental to understanding polar growth strategy in a variety of bacterial species.
Collapse
|