1
|
Huber PB, Rao A, LaBonne C. BET activity plays an essential role in control of stem cell attributes in Xenopus. Development 2024; 151:dev202990. [PMID: 38884356 PMCID: PMC11266789 DOI: 10.1242/dev.202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.
Collapse
Affiliation(s)
- Paul B. Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| | - Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
3
|
Khadempar S, Lotfi M, Haghiralsadat F, Saidijam M, Ghasemi N, Afshar S. Lansoprazole as a potent HDAC2 inhibitor for treatment of colorectal cancer: An in-silico analysis and experimental validation. Comput Biol Med 2023; 166:107518. [PMID: 37806058 DOI: 10.1016/j.compbiomed.2023.107518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Histone deacetylase 2 (HDAC2), belonging to the class I HDAC family, holds significant therapeutic potential as a crucial target for diverse cancer types. As key players in the realm of epigenetic regulatory enzymes, histone deacetylases (HDACs) are intricately involved in the onset and progression of cancer. Consequently, pursuing isoform-specific inhibitors targeting histone deacetylases (HDACs) has garnered substantial interest in both biological and medical circles. The objective of the present investigation was to employ a drug repurposing approach to discover novel and potent HDAC2 inhibitors. MATERIALS AND METHODS In this study, our protocol is presented on virtual screening to identify novel potential HDAC2 inhibitors through 3D-QSAR, molecular docking, pharmacophore modeling, and molecular dynamics (MD) simulation. Afterward, In-vitro assays were employed to evaluate the cytotoxicity, apoptosis, and migration of HCT-116 cell lines under treatment of hit compound and valproic acid as a control inhibitor. The expression levels of HDAC2, TP53, BCL2, and BAX were evaluated by QRT-PCR. RESULTS RMSD, RMSF, H-bond, and DSSP analysis results confirmed that among bioinformatically selected compounds, lansoprazole exhibited the highest HDAC2 inhibitory potential. Experimental validation revealed that lansoprazole displayed significant antiproliferative activity. The determined IC50 value was 400 ± 2.36 μM. Furthermore, the apoptotic cells ratio concentration-dependently increased under Lansoprazole treatment. Results of the Scratch assay indicated that lansoprazole led to decreasing the migration of CRC cells. Finally, under Lansoprazole treatment the expression level of BCL2 and HDAC2 decreased and BAX and TP53 increased. CONCLUSION Taking together the results of the current study indicated that Lansoprazole as a novel HDAC2 inhibitor, could be used as a potential therapeutic agent for the treatment of CRC. Although, further experimental studies should be performed before using this compound in the clinic.
Collapse
Affiliation(s)
- Saedeh Khadempar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Marzieh Lotfi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ghasemi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Saeid Afshar
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Chen A, Wang M, Xu C, Zhao Y, Xian P, Li Y, Zheng W, Yi X, Wu S, Wang Y. Glycolysis mediates neuron specific histone acetylation in valproic acid-induced human excitatory neuron differentiation. Front Mol Neurosci 2023; 16:1151162. [PMID: 37089691 PMCID: PMC10118002 DOI: 10.3389/fnmol.2023.1151162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Pregnancy exposure of valproic acid (VPA) is widely adopted as a model of environmental factor induced autism spectrum disorder (ASD). Increase of excitatory/inhibitory synaptic transmission ratio has been proposed as the mechanism of VPA induced ASD. How this happened, particularly at the level of excitatory neuron differentiation in human neural progenitor cells (NPCs) remains largely unclear. Here, we report that VPA exposure remarkably inhibited human NPC proliferation and induced excitatory neuronal differentiation without affecting inhibitory neurons. Following VPA treatment, mitochondrial dysfunction was observed before neuronal differentiation, as showed by ultrastructural changes, respiratory complex activity, mitochondrial membrane potential and oxidation levels. Meanwhile, extracellular acidification assay revealed an elevation of glycolysis by VPA stimulation. Interestingly, inhibiting glycolysis by 2-deoxy-d-glucose-6-phosphate (2-DG) efficiently blocked the excitatory neuronal differentiation of human NPCs induced by VPA. Furthermore, 2-DG treatment significantly compromised the VPA-induced expression of H3ac and H3K9ac, and the VPA-induced binding of H3K9ac on the promoter of Ngn2 and Mash1, two key transcription factors of excitatory neuron fate determination. These data, for the first time, demonstrated that VPA biased excitatory neuron differentiation by glycolysis-mediated histone acetylation of neuron specific transcription factors.
Collapse
Affiliation(s)
- Andi Chen
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Mengmeng Wang
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chao Xu
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Panpan Xian
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqian Li
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weian Zheng
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Life Sciences and Research Center for Natural Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Xuyang Yi
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shengxi Wu,
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Yazhou Wang,
| |
Collapse
|
5
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
6
|
Enhancement of cordycepin production from Cordyceps militaris culture by epigenetic modification. Biotechnol Lett 2022; 44:581-593. [PMID: 35262812 DOI: 10.1007/s10529-022-03241-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/25/2022] [Indexed: 11/02/2022]
Abstract
Cordycepin (3'-deoxyadenosine) is a nucleoside analogue and biosynthesised by Cordyceps militaris, an entomopathogenic fungus. In this study, an epigenetic modifier was applied to static liquid cultures to enhance cordycepin production. C. militaris was cultured in a static liquid culture, and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was supplemented in order to modifying the epigenetic status. Gene regulatory network was explored to understand the molecular mechanisms underlying cordycepin production. 50 micromolar of VPA enhanced cordycepin production by 41.187% via the upregulation of 5'-nucleotidase, adenylate kinase, phosphorybosyltransferase, Cns1, Cns2, Cnsa3, and Cns4 of C. militaris for at least 2 days after VPA treatment. The maximum production of cordycepin was 2,835.32 ± 34.35 mg/L in 400 mL-working volume. A scaled-up culture was established with a working volume of 10 L, which led to the slight decrease of cordycepin production. This might due to multifactorial effects, for instance limited aeration and an uneven dispersion of nutrients in the culture system. This scaled-up culture was still needed further optimization. The modification of epigenetic status by VPA significantly enhanced cordycepin production by altering key gene regulatory network of C. militaris. The strategy established in this study might be applicable to other microorganism culture in order to improving the production of bioactive compounds. This work aimed to enhance the production of cordycepin by modifying the epigenetic status of C. militaris, in which subsequently altered gene regulatory network of cordycepin biosynthesis pathway. The weekly supplementation of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, significantly improve cordycepin production over 40%, compared to the untreated control, and the gene regulatory network of C. militaris was also adapted.
Collapse
|
7
|
Wang X, Qu M, Li Z, Long Y, Hong K, Li H. Valproic acid promotes the in vitro differentiation of human pluripotent stem cells into spermatogonial stem cell-like cells. Stem Cell Res Ther 2021; 12:553. [PMID: 34715904 PMCID: PMC8555208 DOI: 10.1186/s13287-021-02621-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background Studying human germ cell development and male infertility is heavily relied on mouse models. In vitro differentiation of human pluripotent stem cells into spermatogonial stem cell-like cells (SSCLCs) can be used as a model to study human germ cells and infertility. The current study aimed to develop the SSCLC induction protocol and assess the effects of the developed protocol on SSCLC induction. Methods We examined the effects of valproic acid (VPA), vitamin C (VC) and the combination of VPA and VC on the SSCLC induction efficiency and determined the expression of spermatogonial genes of differentiated cells. Haploid cells and cells expressed meiotic genes were also detected. RNA-seq analysis was performed to compare the transcriptome between cells at 0 and 12 days of differentiation and differently expressed genes were confirmed by RT-qPCR. We further evaluated the alteration in histone marks (H3K9ac and H3K27me3) at 12 days of differentiation. Moreover, the SSCLC induction efficiency of two hiPSC lines of non-obstructive azoospermia (NOA) patients was assessed using different induction protocols. Results The combination of low concentrations of VPA and VC in the induction medium was most effective to induce SSCLCs expressing several spermatogonial genes from human pluripotent stem cells at 12 days of differentiation. The high concentration of VPA was more effective to induce cells expressing meiotic genes and haploid cells. RNA-seq analysis revealed that the induction of SSCLC involved the upregulated genes in Wnt signaling pathway, and cells at 12 days of differentiation showed increased H3K9ac and decreased H3K27me3. Additionally, two hiPSC lines of NOA patients showed low SSCLC induction efficiency and decreased expression of genes in Wnt signaling pathway. Conclusions VPA robustly promoted the differentiation of human pluripotent stem cells into SSCLCs, which involved the upregulated genes in Wnt signaling pathway and epigenetic changes. hiPSCs from NOA patients showed decreased SSCLC induction efficiency and Wnt signaling pathway gene expression, suggesting that SSC depletion in azoospermia testes might be associated with inactivation of Wnt signaling pathway. Our developed SSCLC induction protocol provides a reliable tool and model to study human germ cell development and male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02621-1.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zili Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuting Long
- Wuhan Tongji Reproductive Hospital, Wuhan, 430013, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Wuhan Tongji Reproductive Hospital, Wuhan, 430013, China.
| |
Collapse
|
8
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
9
|
Bassani A, Rocha MA, Rodrigues VLC, Santos DS, Nascimento JD, da Rosa JA, Mello MLS. Effects of sodium valproate on the chromatin of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae) under in vitro culture conditions. Acta Histochem 2021; 123:151695. [PMID: 33571696 DOI: 10.1016/j.acthis.2021.151695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Sodium valproate (VPA) is a classic anticonvulsive, a histone deacetylase inhibitor, and a chromatin remodeling inducer. When injected into specimens of Triatoma infestans, a vector of Chagas disease, VPA affects the chromatin supraorganization of chromocenter heterochromatin in only a few cells of the Malpighian tubules. To test whether this result was explained by the inaccessibility of all of the organ's cells to the drug, we investigated the nuclear phenotypes and global acetylation of lysine 9 in histone H3 (H3K9ac) in Malpighian tubules cultivated in vitro for 1-24 h in the presence of 0.05 mM-1 mM VPA. The present results revealed that the chromatin decondensation event in the chromocenter body, which was detected only under low VPA concentrations up to a 4-h treatment, was not frequent during organ culture, similar to the results for injected insects. Cultivation of T. infestans Malpighian tubules in vitro for 24 h revealed inadequate for cell preservation even in the absence of the drug. Immunofluorescence signals for H3K9ac following VPA treatment showed a slightly increased intensity in the euchromatin, but were never detected in the chromocenter bodies, except with great intensity at their periphery, where the 18S rDNA is located. In conclusion, when VPA affects the chromocenter heterochromatin in this animal cell model, it occurs through a pathway that excludes a classic global H3K9ac mark. Investigation of nonhistone proteins associated with histone methylation marks is still required to further explain the differential response of T. infestans chromatin to VPA.
Collapse
|
10
|
Pontelo TP, Franco MM, Kawamoto TS, Caixeta FMC, de Oliveira Leme L, Kussano NR, Zangeronimo MG, Dode MAN. Histone deacetylase inhibitor during in vitro maturation decreases developmental capacity of bovine oocytes. PLoS One 2021; 16:e0247518. [PMID: 33667248 PMCID: PMC7935280 DOI: 10.1371/journal.pone.0247518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.
Collapse
Affiliation(s)
| | - Mauricio Machaim Franco
- Federal University Uberlândia, Animal Science, Uberlândia, Minas Gerais, Brazil
- Institute of Genetics and Biochemistry of Federal, University of Uberlandia, Uberlândia, Minas Gerais, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Margot Alves Nunes Dode
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- University of Brasilia, Animal Science, Brasilia, Distrito Federal, Brazil
- University of Brasilia, Institute of Biology, Brasilia, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
11
|
Lezmi E, Weissbein U, Golan-Lev T, Nissim-Rafinia M, Meshorer E, Benvenisty N. The Chromatin Regulator ZMYM2 Restricts Human Pluripotent Stem Cell Growth and Is Essential for Teratoma Formation. Stem Cell Reports 2020; 15:1275-1286. [PMID: 32559458 PMCID: PMC7724477 DOI: 10.1016/j.stemcr.2020.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/13/2023] Open
Abstract
Chromatin regulators play fundamental roles in controlling pluripotency and differentiation. We examined the effect of mutations in 703 genes from nearly 70 chromatin-modifying complexes on human embryonic stem cell (ESC) growth. While the vast majority of chromatin-associated complexes are essential for ESC growth, the only complexes that conferred growth advantage upon mutation of their members, were the repressive complexes LSD-CoREST and BHC. Both complexes include the most potent growth-restricting chromatin-related protein, ZMYM2. Interestingly, while ZMYM2 expression is rather low in human blastocysts, its expression peaks in primed ESCs and is again downregulated upon differentiation. ZMYM2-null ESCs overexpress pluripotency genes and show genome-wide promotor-localized histone H3 hyper-acetylation. These mutant cells were also refractory to differentiate in vitro and failed to produce teratomas upon injection into immunodeficient mice. Our results suggest a central role for ZMYM2 in the transcriptional regulation of the undifferentiated state and in the exit-from-pluripotency of human ESCs.
Collapse
Affiliation(s)
- Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel
| | - Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel; Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Jerusalem, Israel; Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
12
|
Yao Z, Chen Y, Cao W, Shyh‐Chang N. Chromatin-modifying drugs and metabolites in cell fate control. Cell Prolif 2020; 53:e12898. [PMID: 32979011 PMCID: PMC7653270 DOI: 10.1111/cpr.12898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, it is essential to produce a variety of specialized cells to perform a dazzling panoply of functions. Chromatin plays a vital role in determining cellular identities, and it dynamically regulates gene expression in response to changing nutrient metabolism and environmental conditions. Intermediates produced by cellular metabolic pathways are used as cofactors or substrates for chromatin modification. Drug analogues of metabolites that regulate chromatin-modifying enzyme reactions can also regulate cell fate by adjusting chromatin organization. In recent years, there have been many studies about how chromatin-modifying drug molecules or metabolites can interact with chromatin to regulate cell fate. In this review, we systematically discuss how DNA and histone-modifying molecules alter cell fate by regulating chromatin conformation and propose a mechanistic model that explains the process of cell fate transitions in a concise and qualitative manner.
Collapse
Affiliation(s)
- Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Park H, Shin J, Choi H, Cho B, Kim J. Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing. Cells 2020; 9:cells9061447. [PMID: 32532133 PMCID: PMC7349485 DOI: 10.3390/cells9061447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has emerged as a powerful technology, with the potential to generate transgenic animals. Particularly, efficient and precise genetic editing with CRISPR/Cas9 offers immense prospects in various biotechnological applications. Here, we report that the histone deacetylase inhibitor valproic acid (VPA) significantly increases the efficiency of CRISPR/Cas9-mediated gene editing in mouse embryonic stem cells and embryos. This effect may be caused through globally enhanced chromatin accessibility, as indicate by histone hyperacetylation. Taken together, our results suggest that VPA can be used to increase the efficacy of CRISPR/Cas9 in generating transgenic systems.
Collapse
Affiliation(s)
- Hanseul Park
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Jaein Shin
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Hwan Choi
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Byounggook Cho
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
| | - Jongpil Kim
- Department of Biomedical Engineering (BK21 Plus), Dongguk University, Seoul 04620, Korea; (H.P.); (J.S.); (H.C.); (B.C.)
- Laboratory of Cell reprogramming and Gene editing, Department of Chemistry, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-031-961-5153
| |
Collapse
|
14
|
Zhang Q, Pei LG, Liu M, Lv F, Chen G, Wang H. Reduced testicular steroidogenesis in rat offspring by prenatal nicotine exposure: Epigenetic programming and heritability via nAChR/HDAC4. Food Chem Toxicol 2019; 135:111057. [PMID: 31846720 DOI: 10.1016/j.fct.2019.111057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Prenatal nicotine exposure (PNE) may lead to offspring's testicular dysplasia. Here, we confirmed the intergenerational effect of PNE on testosterone synthetic function and explored its epigenetic programming mechanism. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg.d) from gestational day 9-20. Some dams were anesthetized to obtain fetal rats, the rest were allowed to spontaneous labor to generate F1 and F2 generation. In utero, PNE impaired testicular development and testosterone production. Meanwhile, the expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were decreased both in F1 and F2 generations. Furthermore, PNE enhanced the expression of fetal testicular nicotinic acetylcholine receptors (nAChRs) and histone deacetylase 4 (HDAC4), while obviously weakened histone 3 lysine 9 acetylation (H3K9ac) level of StAR/3β-HSD promoter from GD20 to postnatal week 12 and even in F2 generation. In vitro, nicotine increased nAChRs and HDAC4 expression, and decreased the StAR/3β-HSD H3K9ac level and expression, as well as the testosterone production in Leydig cells. Antagonism of nAChRs and inhibition of HDAC4 reversed the aforementioned changes. In conclusion, PNE programmed testicular low steroidogenesis and its heritability in male offspring rats. The underlying mechanism was associated to the low-level programming of StAR/3β-HSD H3K9ac via nAChR/HDAC4.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lin-Guo Pei
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Basic Medical College of Nanyang Medical University, Nanyang, 473041, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Feng Lv
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
15
|
Paternal valproic acid exposure in mice triggers behavioral alterations in offspring. Neurotoxicol Teratol 2019; 76:106837. [DOI: 10.1016/j.ntt.2019.106837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/22/2019] [Accepted: 09/18/2019] [Indexed: 01/29/2023]
|
16
|
Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Adv 2019; 2:2766-2779. [PMID: 30348672 DOI: 10.1182/bloodadvances.2018024273] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/02/2023] Open
Abstract
The limited number of hematopoietic stem cells (HSCs) in umbilical cord blood (UCB) units restricts their use for stem cell transplantation. Ex vivo treatment of UCB-CD34+ cells with valproic acid (VPA) increases the number of transplantable HSCs. In this study, we demonstrate that HSC expansion is not merely a result of proliferation of the existing stem cells but, rather, a result of a rapid reprogramming of CD34+CD90- cells into CD34+CD90+ cells, which is accompanied by limited numbers of cell divisions. Beyond this phenotypic switch, the treated cells acquire and retain a transcriptomic and mitochondrial profile, reminiscent of primary HSCs. Single and bulk RNA-seq revealed a signature highly enriched for transcripts characteristic of primary HSCs. The acquisition of this HSC signature is linked to mitochondrial remodeling accompanied by a reduced activity and enhanced glycolytic potential. These events act in concert with a modest upregulation of p53 activity to limit the levels of reactive oxygen species (ROS). Inhibition of either glycolysis or p53 activity impairs HSC expansion. This study indicates that a complex interplay of events is required for effective ex vivo expansion of UCB-HSCs.
Collapse
|
17
|
Chan AKN, Chen CW. Rewiring the Epigenetic Networks in MLL-Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions. Front Cell Dev Biol 2019; 7:81. [PMID: 31157223 PMCID: PMC6529847 DOI: 10.3389/fcell.2019.00081] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.
Collapse
Affiliation(s)
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
18
|
Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic Potential of Wnt and Notch Signaling and Epigenetic Regulation in Mammalian Sensory Hair Cell Regeneration. Mol Ther 2019; 27:904-911. [PMID: 30982678 PMCID: PMC6520458 DOI: 10.1016/j.ymthe.2019.03.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Hearing loss is one of the most prevalent sensory deficits worldwide and can result from the death of mechanosensory hair cells that transduce auditory signals in the cochlea. The mammalian cochlea lacks the capacity to regenerate these hair cells once damaged, and currently there are no biological therapies for hearing loss. Understanding the signaling pathways responsible for hair cell development can inform regenerative strategies and identify targets for treating hearing loss. The canonical Wnt and Notch pathways are critical for cochlear development; they converge on several key molecules, such as Atoh1, to regulate prosensory specification, proliferation, hair cell differentiation, and cellular organization. Much work has focused on Wnt and Notch modulation in the neonatal mouse cochlea, where they can promote hair cell regeneration. However, this regenerative response is limited in the adult cochlea and this might be attributed to age-dependent epigenetic modifications. Indeed, the epigenetic status at key gene loci undergoes dynamic changes during cochlear development, maturation, and aging. Therefore, strategies to improve regenerative success in the adult cochlea might require the modulation of Wnt, Notch, or other pathways, as well as targeted epigenetic modifications to alter the activity of key genes critical for supporting cell proliferation or transdifferentiation.
Collapse
Affiliation(s)
- Anshula Samarajeewa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
19
|
Balasubramanian D, Pearson JF, Kennedy MA. Gene expression effects of lithium and valproic acid in a serotonergic cell line. Physiol Genomics 2018; 51:43-50. [PMID: 30576260 DOI: 10.1152/physiolgenomics.00069.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Valproic acid (VPA) and lithium are widely used in the treatment of bipolar disorder. However, the underlying mechanism of action of these drugs is not clearly understood. We used RNA-Seq analysis to examine the global profile of gene expression in a rat serotonergic cell line (RN46A) after exposure to these two mood stabilizer drugs. Numerous genes were differentially regulated in response to VPA (log2 fold change ≥ 1.0; i.e., odds ratio of ≥2, at false discovery rate <5%), but only two genes ( Dynlrb2 and Cdyl2) showed significant differential regulation after exposure of the cells to lithium, with the same analysis criteria. Both of these genes were also regulated by VPA. Many of the differentially expressed genes had functions of potential relevance to mood disorders or their treatment, such as several serpin family genes (including neuroserpin), Nts (neurotensin), Maob (monoamine oxidase B), and Ap2b1, which is important for synaptic vesicle function. Pathway analysis revealed significant enrichment of Gene Ontology terms such as extracellular matrix remodeling, cell adhesion, and chemotaxis. This study in a cell line derived from the raphe nucleus has identified a range of genes and pathways that provide novel insights into potential therapeutic actions of the commonly used mood stabilizer drugs.
Collapse
Affiliation(s)
- Diana Balasubramanian
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| | - John F Pearson
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand.,Biostatistics and Computational Biology Unit, University of Otago , Christchurch , New Zealand
| | - Martin A Kennedy
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| |
Collapse
|
20
|
Jung HG, Hwang YS, Park YH, Cho HY, Rengaraj D, Han JY. Role of Epigenetic Regulation by the REST/CoREST/HDAC Corepressor Complex of Moderate NANOG Expression in Chicken Primordial Germ Cells. Stem Cells Dev 2018; 27:1215-1225. [DOI: 10.1089/scd.2018.0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hyun Gyo Jung
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ho Yeon Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Rao A, LaBonne C. Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest. Development 2018; 145:dev.163386. [PMID: 30002130 DOI: 10.1242/dev.163386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
The neural crest, a progenitor population that drove vertebrate evolution, retains the broad developmental potential of the blastula cells it is derived from, even as neighboring cells undergo lineage restriction. The mechanisms that enable these cells to preserve their developmental potential remain poorly understood. Here, we explore the role of histone deacetylase (HDAC) activity in this process in Xenopus We show that HDAC activity is essential for the formation of neural crest, as well as for proper patterning of the early ectoderm. The requirement for HDAC activity initiates in naïve blastula cells; HDAC inhibition causes loss of pluripotency gene expression and blocks the ability of blastula stem cells to contribute to lineages of the three embryonic germ layers. We find that pluripotent naïve blastula cells and neural crest cells are both characterized by low levels of histone acetylation, and show that increasing HDAC1 levels enhance the ability of blastula cells to be reprogrammed to a neural crest state. Together, these findings elucidate a previously uncharacterized role for HDAC activity in establishing the neural crest stem cell state.
Collapse
Affiliation(s)
- Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Abstract
The system-level identification and analysis of molecular networks in mammals can be accelerated by 'next-generation' genetics, defined as genetics that does not require crossing of multiple generations of animals in order to achieve the desired genetic makeup. We have established a highly efficient procedure for producing knock-in (KI) mice within a single generation, by optimizing the genome-editing protocol for KI embryonic stem (ES) cells and the protocol for the generation of fully ES-cell-derived mice (ES mice). Using this protocol, the production of chimeric mice is eliminated, and, therefore, there is no requirement for the crossing of chimeric mice to produce mice that carry the KI gene in all cells of the body. Our procedure thus shortens the time required to produce KI ES mice from about a year to ∼3 months. Various kinds of KI ES mice can be produced with a minimized amount of work, facilitating the elucidation of organism-level phenomena using a systems biology approach. In this report, we describe the basic technologies and protocols for this procedure, and discuss the current challenges for next-generation mammalian genetics in organism-level systems biology studies.
Collapse
|
23
|
Konopko MA, Densmore AL, Krueger BK. Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 2017; 39:507-518. [PMID: 29073621 PMCID: PMC6020162 DOI: 10.1159/000481134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
Prenatal exposure to the antiepileptic, mood-stabilizing drug, valproic acid (VPA), increases the incidence of autism spectrum disorders (ASDs); in utero administration of VPA to pregnant rodents induces ASD-like behaviors such as repetitive, stereotyped activity, and decreased socialization. In both cases, males are more affected than females. We previously reported that VPA, administered to pregnant mice at gestational day 12.5, rapidly induces a transient, 6-fold increase in BDNF (brain-derived neurotrophic factor) protein and mRNA in the fetal brain. Here, we investigate sex differences in the induction of Bdnf expression by VPA as well as the underlying epigenetic mechanisms. We found no sex differences in the VPA stimulation of total brain Bdnf mRNA as indicated by probing for the BDNF protein coding sequence (exon 9); however, stimulation of individual transcripts containing two of the nine 5'-untranslated exons (5'UTEs) in Bdnf (exons 1 and 4) by VPA was greater in female fetal brains. These Bdnf transcripts have been associated with different cell types or subcellular compartments within neurons. Since VPA is a histone deacetylase inhibitor, covalent histone modifications at Bdnf 5'UTEs in the fetal brain were analyzed by chromatin immunoprecipitation. VPA increased the acetylation of multiple H3 and H4 lysine residues in the vicinity of exons 1, 2, 4, and 6; minimal differences between the sexes were observed. H3 lysine 4 trimethylation (H3K4me3) at those exons was also stimulated by VPA. Moreover, the VPA-induced increase in H3K4me3 at exons 1, 4, and 6 was significantly greater in females than in males, i.e., sexually dimorphic stimulation of H3K4me3 by VPA correlated with Bdnf transcripts containing exons 1 and 4, but not 6. Neither H3K27me3 nor cytosine methylation at any of the 117 CpGs in the vicinity of the transcription start sites of exons 1, 4, and 6 was affected by VPA. Thus, of the 6 epigenetic marks analyzed, only H3K4me3 can account for the sexually dimorphic expression of Bdnf transcripts induced by VPA in the fetal brain. Preferential expression of exon 1- and exon 4-Bdnf transcripts in females may contribute to sex differences in ASDs by protecting females from the adverse effects of genetic variants or environmental factors such as VPA on the developing brain.
Collapse
Affiliation(s)
- Melissa A Konopko
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| | | | - Bruce K. Krueger
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| |
Collapse
|
24
|
Bhushal S, Wolfsmüller M, Selvakumar TA, Kemper L, Wirth D, Hornef MW, Hauser H, Köster M. Cell Polarization and Epigenetic Status Shape the Heterogeneous Response to Type III Interferons in Intestinal Epithelial Cells. Front Immunol 2017; 8:671. [PMID: 28659914 PMCID: PMC5467006 DOI: 10.3389/fimmu.2017.00671] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/23/2017] [Indexed: 11/13/2022] Open
Abstract
Type I and type III interferons (IFNs) are crucial components of the first-line antiviral host response. While specific receptors for both IFN types exist, intracellular signaling shares the same Jak-STAT pathway. Due to its receptor expression, IFN-λ responsiveness is restricted mainly to epithelial cells. Here, we display IFN-stimulated gene induction at the single cell level to comparatively analyze the activities of both IFN types in intestinal epithelial cells and mini-gut organoids. Initially, we noticed that the response to both types of IFNs at low concentrations is based on a single cell decision-making determining the total cell intrinsic antiviral activity. We identified histone deacetylase (HDAC) activity as a crucial restriction factor controlling the cell frequency of IFN-stimulated gene (ISG) induction upon IFN-λ but not IFN-β stimulation. Consistently, HDAC blockade confers antiviral activity to an elsewise non-responding subpopulation. Second, in contrast to the type I IFN system, polarization of intestinal epithelial cells strongly enhances their ability to respond to IFN-λ signaling and raises the kinetics of gene induction. Finally, we show that ISG induction in mini-gut organoids by low amounts of IFN is characterized by a scattered heterogeneous responsiveness of the epithelial cells and HDAC activity fine-tunes exclusively IFN-λ activity. This study provides a comprehensive description of the differential response to type I and type III IFNs and demonstrates that cell polarization in gut epithelial cells specifically increases IFN-λ activity.
Collapse
Affiliation(s)
- Sudeep Bhushal
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Markus Wolfsmüller
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Tharini A Selvakumar
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lucas Kemper
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mathias W Hornef
- Institute for Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hansjörg Hauser
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Köster
- Research Group Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| |
Collapse
|
25
|
Abstract
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, , Kawaguchi, Saitama 332-0012 Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| |
Collapse
|
26
|
Venosa A, Gow JG, Hall L, Malaviya R, Gow AJ, Laskin JD, Laskin DL. Regulation of Nitrogen Mustard-Induced Lung Macrophage Activation by Valproic Acid, a Histone Deacetylase Inhibitor. Toxicol Sci 2017; 157:222-234. [PMID: 28184907 PMCID: PMC6075217 DOI: 10.1093/toxsci/kfx032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nitrogen mustard (NM)-induced lung injury is associated with an accumulation of proinflammatory/cytotoxic M1 and antiinflammatory/wound repair M2 macrophages, which have been implicated in tissue injury and repair. Herein, we analyzed the effects of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor with antiinflammatory and antioxidant activity, on lung macrophages responding to NM. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in structural alterations in the lung and a macrophage-rich inflammatory cell infiltrate, at 3 d and 7 d. This was accompanied by expression of PCNA, a marker of proliferation, and CYPb5, HO-1, and MnSOD, markers of oxidative stress. Administration of VPA (300 mg/kg/day; i.p.), beginning 30 min after NM, reduced increases in PCNA, CYPb5, HO-1, and MnSOD. This was associated with increases in immature CD11b+CD43+ M1 macrophages in the lung, and decreases in mature CD11b+CD43- M2 macrophages 3 d post NM, suggesting delayed maturation and phenotypic switching. VPA also attenuated NM-induced increases in lung iNOS+ and CCR2+ M1 macrophages, a response correlated with downregulation of NOS2, IL12B, PTGS2, MMP-9, and CCR2 expression. Conversely, numbers of CD68+, CD163+ , and ATR-1α+ M2 macrophages increased after VPA, along with the expression of IL10, ApoE, and ATR-1A. NM exposure resulted in increased HDAC activity and upregulation of HDAC2 and acetylated H3K9 in the lung. Whereas VPA blunted the effects of NM on HDAC2 expression, histone H3K9 acetylation increased. These data suggest that alterations in the balance between histone acetylases and deacetylases contribute to lung macrophage maturation and activation following NM exposure.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - James G. Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - LeRoy Hall
- Drug Safety Sciences, Johnson & Johnson, Raritan, New Jersey 08869
| | - Rama Malaviya
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jeffrey D. Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey 08854
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| |
Collapse
|
27
|
Um S, Lee H, Zhang Q, Kim HY, Lee JH, Seo BM. Valproic Acid Modulates the Multipotency in Periodontal Ligament Stem Cells via p53-Mediated Cell Cycle. Tissue Eng Regen Med 2017; 14:153-162. [PMID: 30603472 DOI: 10.1007/s13770-017-0027-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022] Open
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of mesenchymal stem cell, are a promising source for dental regeneration and are identified in human periodontal ligaments from extracted third molars. Valproic acid (VPA) is a histone deacetylase inhibitor that has been used as a wide-spectrum antiepileptic drug and a medication for mood disorders. VPA has shown several effects on increasing the pluripotency of embryonic stem cells and controlling osteogenic differentiation, besides the prevention of seizures. However, its effect on proliferation and osteogenesis depends on the cell type and concentration. The aim of this study was to investigate the effects of cyclic and constant VPA treatment on PDLSCs. Proliferation and apoptosis of PDLSCs were determined with cyclic and constant VPA treatment. In cemento/osteogenic differentiation, osteogenic markers decreased significantly after cyclic treatment with 0.5 mM VPA. In contrast, VPA enhanced osteogenic differentiation after constant treatment. With cyclic VPA treatment, p53 levels related to apoptotic pathway decreased to induce proliferation. These findings indicated that VPA has different roles in proliferation and differentiation of PDLSCs in vitro and in vivo via p53-related pathway.
Collapse
Affiliation(s)
- Soyoun Um
- 1Department of Dental Science, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Ho Lee
- 2Department of Oral and Maxillofacial Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061 Korea
| | - Qingbin Zhang
- 3Department of Temporomandibular Joint Diseases, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510182 China
| | - Hui Young Kim
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Joo-Hee Lee
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Byoung Moo Seo
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
28
|
Hawkins KE, Moschidou D, Faccenda D, Wruck W, Martin-Trujillo A, Hau KL, Ranzoni AM, Sanchez-Freire V, Tommasini F, Eaton S, De Coppi P, Monk D, Campanella M, Thrasher AJ, Adjaye J, Guillot PV. Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency. Mol Ther 2017; 25:427-442. [PMID: 28153093 PMCID: PMC5368475 DOI: 10.1016/j.ymthe.2016.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/11/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023] Open
Abstract
Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway or GSK3β inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kate E Hawkins
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Dafni Moschidou
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Barcelona 08908, Spain
| | - Kwan-Leong Hau
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Imperial College London, National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Anna Maria Ranzoni
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | | | - Fabio Tommasini
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Simon Eaton
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Paolo De Coppi
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - David Monk
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK; Consortium for Mitochondrial Research, University College London, Royal College Street, London NW1 0TU, UK
| | - Adrian J Thrasher
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK.
| |
Collapse
|
29
|
Jin X, Wu N, Dai J, Li Q, Xiao X. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment. Cancer Med 2016; 6:424-438. [PMID: 28033672 PMCID: PMC5313639 DOI: 10.1002/cam4.977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application.
Collapse
Affiliation(s)
- Xuefang Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nana Wu
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- Department of General Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Qiuxia Li
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - XiaoQiang Xiao
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.,Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
30
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
31
|
Frank CL, Manandhar D, Gordân R, Crawford GE. HDAC inhibitors cause site-specific chromatin remodeling at PU.1-bound enhancers in K562 cells. Epigenetics Chromatin 2016; 9:15. [PMID: 27087856 PMCID: PMC4833939 DOI: 10.1186/s13072-016-0065-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
Abstract
Background Small molecule inhibitors of histone deacetylases (HDACi) hold promise as anticancer agents for particular malignancies. However, clinical use is often confounded by toxicity, perhaps due to indiscriminate hyperacetylation of cellular proteins. Therefore, elucidating the mechanisms by which HDACi trigger differentiation, cell cycle arrest, or apoptosis of cancer cells could inform development of more targeted therapies. We used the myelogenous leukemia line K562 as a model of HDACi-induced differentiation to investigate chromatin accessibility (DNase-seq) and expression (RNA-seq) changes associated with this process. Results We identified several thousand specific regulatory elements [~10 % of total DNase I-hypersensitive (DHS) sites] that become significantly more or less accessible with sodium butyrate or suberanilohydroxamic acid treatment. Most of the differential DHS sites display hallmarks of enhancers, including being enriched for non-promoter regions, associating with nearby gene expression changes, and increasing luciferase reporter expression in K562 cells. Differential DHS sites were enriched for key hematopoietic lineage transcription factor motifs, including SPI1 (PU.1), a known pioneer factor. We found PU.1 increases binding at opened DHS sites with HDACi treatment by ChIP-seq, but PU.1 knockdown by shRNA fails to block the chromatin accessibility and expression changes. A machine-learning approach indicates H3K27me3 initially marks PU.1-bound sites that open with HDACi treatment, suggesting these sites are epigenetically poised. Conclusions We find HDACi treatment of K562 cells results in site-specific chromatin remodeling at epigenetically poised regulatory elements. PU.1 shows evidence of a pioneer role in this process by marking poised enhancers but is not required for transcriptional activation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher L Frank
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA ; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
| | - Dinesh Manandhar
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA ; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708 USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA ; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708 USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA ; Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27708 USA
| |
Collapse
|
32
|
Qiao Y, Yang X, Jing N. Epigenetic regulation of early neural fate commitment. Cell Mol Life Sci 2016; 73:1399-411. [PMID: 26801220 PMCID: PMC11108527 DOI: 10.1007/s00018-015-2125-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification.
Collapse
Affiliation(s)
- Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xianfa Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China.
| |
Collapse
|
33
|
Felisbino MB, Alves da Costa T, Gatti MSV, Mello MLS. Differential Response of Human Hepatocyte Chromatin to HDAC Inhibitors as a Function of Microenvironmental Glucose Level. J Cell Physiol 2016; 231:2257-65. [DOI: 10.1002/jcp.25343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Maria Silvia Viccari Gatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| |
Collapse
|
34
|
Gardner NM, Riley RT, Showker JL, Voss KA, Sachs AJ, Maddox JR, Gelineau-van Waes JB. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol Appl Pharmacol 2016; 298:56-65. [PMID: 26905748 DOI: 10.1016/j.taap.2016.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs.
Collapse
Affiliation(s)
- Nicole M Gardner
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States.
| | - Ronald T Riley
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Jency L Showker
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Kenneth A Voss
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, United States
| | - Andrew J Sachs
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States
| | - Joyce R Maddox
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States
| | | |
Collapse
|
35
|
Gardner NM, Riley RT, Showker JL, Voss KA, Sachs AJ, Maddox JR, Gelineau-van Waes JB. Elevated Nuclear and Cytoplasmic FTY720-Phosphate in Mouse Embryonic Fibroblasts Suggests the Potential for Multiple Mechanisms in FTY720-Induced Neural Tube Defects. Toxicol Sci 2015; 150:161-8. [PMID: 26719367 DOI: 10.1093/toxsci/kfv321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FTY720 (fingolimod) is a U.S. Food and Drug Administration-approved drug to treat relapsing remitting multiple sclerosis. FTY720 treatment in pregnant inbred LM/Bc mice results in approximately 60% of embryos having a neural tube defect (NTD). Sphingosine kinases (Sphk1, Sphk2) phosphorylate FTY720 in vivo to form the bioactive metabolite FTY720-1-phosphate (FTY720-P). Cytoplasmic FTY720-P is an agonist for 4 of the 5 sphingosine-1-phosphate (S1P) receptors (S1P1, 3-5) and can also act as a functional antagonist of S1P1, whereas FTY720-P generated in the nucleus inhibits histone deacetylases (HDACs), leading to increased histone acetylation. This study demonstrates that treatment of LM/Bc mouse embryonic fibroblasts (MEFs) with FTY720 results in a significant accumulation of FTY720-P in both the cytoplasmic and nuclear compartments. Elevated nuclear FTY720-P is associated with decreased HDAC activity and increased histone acetylation at H3K18 and H3K23 in LM/Bc MEFs. Treatment of LM/Bc MEFs with FTY720 and a selective Sphk2 inhibitor, ABC294640, significantly reduces the amount of FTY720-P that accumulates in the nucleus. The data provide insight into the relative amounts of FTY720-P generated in the nuclear versus cytoplasmic subcellular compartments after FTY720 treatment and the specific Sphk isoforms involved. The results of this study suggest that FTY720-induced NTDs may involve multiple mechanisms, including: (1) sustained and/or altered S1P receptor activation and signaling by FTY720-P produced in the cytoplasm and (2) HDAC inhibition and histone hyperacetylation by FTY720-P generated in the nucleus that could lead to epigenetic changes in gene regulation.
Collapse
Affiliation(s)
- Nicole M Gardner
- *Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | - Ronald T Riley
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, Georgia 30605
| | - Jency L Showker
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, Georgia 30605
| | - Kenneth A Voss
- USDA-ARS, Toxicology and Mycotoxin Research Unit, Athens, Georgia 30605
| | - Andrew J Sachs
- *Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | - Joyce R Maddox
- *Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178 and
| | | |
Collapse
|
36
|
Harvey AJ, Rathjen J, Gardner DK. Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1816525. [PMID: 26839556 PMCID: PMC4709785 DOI: 10.1155/2016/1816525] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joy Rathjen
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - David K. Gardner
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
37
|
Reprogramming cancer cells: A novel approach for cancer therapy or a tool for disease-modeling? Cancer Lett 2015; 369:1-8. [DOI: 10.1016/j.canlet.2015.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/04/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
|
38
|
Halsall JA, Turan N, Wiersma M, Turner BM. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin 2015; 8:29. [PMID: 26380582 PMCID: PMC4572612 DOI: 10.1186/s13072-015-0021-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The genome-wide hyperacetylation of chromatin caused by histone deacetylase inhibitors (HDACi) is surprisingly well tolerated by most eukaryotic cells. The homeostatic mechanisms that underlie this tolerance are unknown. Here we identify the transcriptional and epigenomic changes that constitute the earliest response of human lymphoblastoid cells to two HDACi, valproic acid and suberoylanilide hydroxamic acid (Vorinostat), both in widespread clinical use. RESULTS Dynamic changes in transcript levels over the first 2 h of exposure to HDACi were assayed on High Density microarrays. There was a consistent response to the two different inhibitors at several concentrations. Strikingly, components of all known lysine acetyltransferase (KAT) complexes were down-regulated, as were genes required for growth and maintenance of the lymphoid phenotype. Up-regulated gene clusters were enriched in regulators of transcription, development and phenotypic change. In untreated cells, HDACi-responsive genes, whether up- or down-regulated, were packaged in highly acetylated chromatin. This was essentially unaffected by HDACi. In contrast, HDACi induced a strong increase in H3K27me3 at transcription start sites, irrespective of their transcriptional response. Inhibition of the H3K27 methylating enzymes, EZH1/2, altered the transcriptional response to HDACi, confirming the functional significance of H3K27 methylation for specific genes. CONCLUSIONS We propose that the observed transcriptional changes constitute an inbuilt adaptive response to HDACi that promotes cell survival by minimising protein hyperacetylation, slowing growth and re-balancing patterns of gene expression. The transcriptional response to HDACi is mediated by a precisely timed increase in H3K27me3 at transcription start sites. In contrast, histone acetylation, at least at the three lysine residues tested, seems to play no direct role. Instead, it may provide a stable chromatin environment that allows transcriptional change to be induced by other factors, possibly acetylated non-histone proteins.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Nil Turan
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Maaike Wiersma
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Bryan M Turner
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
39
|
Tan CSH, Ng YK, Ong WY. Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells. Mol Neurobiol 2015; 53:3854-3872. [PMID: 26162318 DOI: 10.1007/s12035-015-9314-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation.
Collapse
Affiliation(s)
- Charlene Siew-Hon Tan
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore. .,Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
40
|
Chueh AC, Tse JWT, Tögel L, Mariadason JM. Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxid Redox Signal 2015; 23:66-84. [PMID: 24512308 PMCID: PMC4492771 DOI: 10.1089/ars.2014.5863] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.
Collapse
Affiliation(s)
- Anderly C Chueh
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Janson W T Tse
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Lars Tögel
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
41
|
Alajem A, Biran A, Harikumar A, Sailaja BS, Aaronson Y, Livyatan I, Nissim-Rafinia M, Sommer AG, Mostoslavsky G, Gerbasi VR, Golden DE, Datta A, Sze SK, Meshorer E. Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation. Cell Rep 2015; 10:2019-31. [PMID: 25818293 DOI: 10.1016/j.celrep.2015.02.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1. SMARCD1 depletion in ESCs led to altered chromatin and enhanced endodermal differentiation. Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggested that SMARCD1 is both an activator and a repressor and is enriched at developmental regulators and that its chromatin binding coincides with H3K27me3. SMARCD1 knockdown caused H3K27me3 redistribution and increased H3K4me3 around the transcription start site (TSS). One of the identified SMARCD1 targets was Klf4. In SMARCD1-knockdown clones, KLF4, as well as H3K4me3 at the Klf4 locus, remained high and H3K27me3 was abolished. These results propose a role for SMARCD1 in restricting pluripotency and activating lineage pathways by regulating H3K27 methylation.
Collapse
Affiliation(s)
- Adi Alajem
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alva Biran
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Arigela Harikumar
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Badi Sri Sailaja
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yair Aaronson
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ilana Livyatan
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Andreia Gianotti Sommer
- Section of Gastroenterology, Department of Medicine, Center for Regenerative Medicine (CReM), Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Gustavo Mostoslavsky
- Section of Gastroenterology, Department of Medicine, Center for Regenerative Medicine (CReM), Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Vincent R Gerbasi
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA; Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | - Arnab Datta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
42
|
Qiao Y, Wang R, Yang X, Tang K, Jing N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 2014; 290:2508-20. [PMID: 25519907 DOI: 10.1074/jbc.m114.603761] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4-8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0-4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4-8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation.
Collapse
Affiliation(s)
- Yunbo Qiao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ran Wang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xianfa Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, the School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China, and
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China,
| |
Collapse
|
43
|
Fu Y, Zhang P, Ge J, Cheng J, Dong W, Yuan H, Du Y, Yang M, Sun R, Jiang H. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Int J Biochem Cell Biol 2014; 54:68-77. [PMID: 25019367 DOI: 10.1016/j.biocel.2014.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Bone marrow stromal cells (BMSCs) are multipotent progenitor cells with capacities to differentiate into the various cell types and hold great promise in regenerative medicine. The regulatory roles of histone deacetylases (HDACs) in osteoblast differentiation process have been increasingly recognized; however, little is known about the precise roles of HDAC8 in the osteogenic differentiation of BMSCs. Herein we aimed to investigate the roles of HDAC8 in the osteogenic differentiation of rat BMSCs by pharmacological and genetic manipulations in vitro. During osteogenic differentiation of BMSCs, pharmacological inhibition of HDAC8 by HDAC inhibitor valproic acid (VPA) promoted the level of histone H3 lysine 9 acetylation (H3K9Ac) and significantly enhanced the expression of osteogenesis-related genes Runx2, Osterix, osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP). Similarly, knockdown of HDAC8 using short interfering RNA triggered H3K9Ac and enhanced osteogenic differentiation of BMSCs, largely phenocopied the effects of VPA-mediated HDAC8 depletion. However, enforced expression of HDAC8 significantly reduced the level of H3K9Ac and inhibited osteogenic differentiation of BMSCs, which can be attenuated by VPA addition. Mechanistically, HDAC8 suppressed osteogenesis-related genes expression by removing the acetylation of histone H3K9, thus leading to transcriptional inhibition during osteogenic differentiation of BMSCs. Importantly, we found that HDAC8 physically associated with Runx2 to repress its transcriptional activity and this association decreased when BMSCs underwent osteogenic differentiation. Taken together, these results indicate that epigenetic regulation of Runx2 by HDAC8-mediated histone H3K9 acetylation is required for the proper osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Ge
- Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Weijie Dong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Mifang Yang
- Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ruoxing Sun
- Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
44
|
Balmer NV, Klima S, Rempel E, Ivanova VN, Kolde R, Weng MK, Meganathan K, Henry M, Sachinidis A, Berthold MR, Hengstler JG, Rahnenführer J, Waldmann T, Leist M. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 2014; 88:1451-68. [PMID: 24935251 PMCID: PMC4067541 DOI: 10.1007/s00204-014-1279-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/19/2014] [Indexed: 01/17/2023]
Abstract
The superordinate principles governing the transcriptome response of differentiating cells exposed to drugs are still unclear. Often, it is assumed that toxicogenomics data reflect the immediate mode of action (MoA) of drugs. Alternatively, transcriptome changes could describe altered differentiation states as indirect consequence of drug exposure. We used here the developmental toxicants valproate and trichostatin A to address this question. Neurally differentiating human embryonic stem cells were treated for 6 days. Histone acetylation (primary MoA) increased quickly and returned to baseline after 48 h. Histone H3 lysine methylation at the promoter of the neurodevelopmental regulators PAX6 or OTX2 was increasingly altered over time. Methylation changes remained persistent and correlated with neurodevelopmental defects and with effects on PAX6 gene expression, also when the drug was washed out after 3-4 days. We hypothesized that drug exposures altering only acetylation would lead to reversible transcriptome changes (indicating MoA), and challenges that altered methylation would lead to irreversible developmental disturbances. Data from pulse-chase experiments corroborated this assumption. Short drug treatment triggered reversible transcriptome changes; longer exposure disrupted neurodevelopment. The disturbed differentiation was reflected by an altered transcriptome pattern, and the observed changes were similar when the drug was washed out during the last 48 h. We conclude that transcriptome data after prolonged chemical stress of differentiating cells mainly reflect the altered developmental stage of the model system and not the drug MoA. We suggest that brief exposures, followed by immediate analysis, are more suitable for information on immediate drug responses and the toxicity MoA.
Collapse
Affiliation(s)
- Nina V. Balmer
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Stefanie Klima
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Eugen Rempel
- Department of Statistics, TU Dortmund, Dortmund, Germany
| | - Violeta N. Ivanova
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | | | - Matthias K. Weng
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Kesavan Meganathan
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Michael R. Berthold
- Chair for Bioinformatics and Information Mining, University of Konstanz, Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139 Dortmund, Germany
| | | | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box 657, 78457 Constance, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
45
|
Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 2014; 9:e101022. [PMID: 24959750 PMCID: PMC4069182 DOI: 10.1371/journal.pone.0101022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
- * E-mail:
| | - Marcos Roberto Chiaratti
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Reno Roldi de Araújo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence Charles Smith
- Centre de recherche em reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Willian Allan King
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
46
|
Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol 2014; 290:120-30. [PMID: 24978612 DOI: 10.1016/j.cellimm.2014.05.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/08/2014] [Accepted: 05/31/2014] [Indexed: 12/21/2022]
Abstract
Although glucocorticoids are well known for their capacity to suppress the immune response, glucocorticoids can also promote immune responsiveness. It was the purpose of this investigation to evaluate the molecular basis for this apparent dichotomous immunologic effect. Glucocorticoid treatment of natural killer cells (NK) was shown to reduce NK cell cytolytic activity by reduction of histone promoter acetylation for perforin and granzyme B, which corresponded with reduced mRNA and protein for each. In contrast, glucocorticoid treatment increased histone acetylation at regulatory regions for interferon gamma and IL-6, as well as chromatin accessibility for each. This increase in histone acetylation was associated with increased proinflammatory cytokine mRNA and protein production upon cellular stimulation. These immunologic effects were evident at the level of the individual cell and demonstrate glucocorticoids to epigenetically reduce NK cell cytolytic activity while at the same time to prime NK cells for proinflammatory cytokine production.
Collapse
|
47
|
de Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J, Berns A, van Lohuizen M, Wessels LFA, de Ridder J. Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet 2014; 10:e1004250. [PMID: 24721906 PMCID: PMC3983033 DOI: 10.1371/journal.pgen.1004250] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/04/2014] [Indexed: 12/16/2022] Open
Abstract
The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of to unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes. Retroviruses and transposons are widely used in cancer research and gene therapy. However, these systems show integration biases that may strongly affect results. To address this issue, we generated very large datasets consisting of to unselected integrations for the Sleeping Beauty and piggyBac transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome, and a striking similarity was observed between piggyBac and the Murine Leukemia Virus. Moreover, we find that target site selection is directed at multiple scales. At larger scales, it is similar across systems, and directed by a set of domain-oriented features, including chromatin compaction, replication timing, and CpG islands. Notable differences between systems are defined at smaller scales by a diverse range of epigenetic features. As a practical application of our findings, we determined that three recent insertional mutagenesis screens - commonly used for cancer gene discovery - contained 7%–33% putative false positive integration hotspots.
Collapse
Affiliation(s)
- Johann de Jong
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Waseem Akhtar
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton-Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II; Klinikum Rechts der Isar; Technische Universität München, German Cancer Research Center (DKFZ), Heidelberg, & German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Skoltech Center for Stem Cell Research, Skolkovo Institute for Science and Technology, Skolkovo, Odintsovsky, Moscow, Russia
| | - Maarten van Lohuizen
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F. A. Wessels
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
- * E-mail: (LFAW); (JdR)
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
- * E-mail: (LFAW); (JdR)
| |
Collapse
|
48
|
Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, Berns A, Wessels LFA, van Lohuizen M, van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 2013; 154:914-27. [PMID: 23953119 DOI: 10.1016/j.cell.2013.07.018] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/31/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Reporter genes integrated into the genome are a powerful tool to reveal effects of regulatory elements and local chromatin context on gene expression. However, so far such reporter assays have been of low throughput. Here, we describe a multiplexing approach for the parallel monitoring of transcriptional activity of thousands of randomly integrated reporters. More than 27,000 distinct reporter integrations in mouse embryonic stem cells, obtained with two different promoters, show ∼1,000-fold variation in expression levels. Data analysis indicates that lamina-associated domains act as attenuators of transcription, likely by reducing access of transcription factors to binding sites. Furthermore, chromatin compaction is predictive of reporter activity. We also found evidence for crosstalk between neighboring genes and estimate that enhancers can influence gene expression on average over ∼20 kb. The multiplexed reporter assay is highly flexible in design and can be modified to query a wide range of aspects of gene regulation.
Collapse
Affiliation(s)
- Waseem Akhtar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Henry RA, Kuo YM, Andrews AJ. Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 2013; 52:5746-59. [PMID: 23862699 PMCID: PMC3756530 DOI: 10.1021/bi400684q] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Although
p300 and CBP lysine acetyltransferases are often treated
interchangeably, the inability of one enzyme to compensate for the
loss of the other suggests unique roles for each. As these deficiencies
coincide with aberrant levels of histone acetylation, we hypothesized
that the key difference between p300 and CBP activity is differences
in their specificity/selectivity for lysines within the histones.
Utilizing a label-free, quantitative mass spectrometry based technique,
we determined the kinetic parameters of both CBP and p300 at each
lysine of H3 and H4, under conditions we would expect to encounter
in the cell (either limiting acetyl-CoA or histone). Our results show
that while p300 and CBP acetylate many common residues on H3 and H4,
they do in fact possess very different specificities, and these specificities
are dependent on whether histone or acetyl-CoA is limiting. Steady-state
experiments with limiting H3 demonstrate that both CBP and p300 acetylate
H3K14, H3K18, H3K23, with p300 having specificities up to 1010-fold higher than CBP. Utilizing tetramer as a substrate, both enzymes
also acetylate H4K5, H4K8, H4K12, and H4K16. With limiting tetramer,
CBP displays higher specificities, especially at H3K18, where CBP
specificity is 1032-fold higher than p300. With limiting
acetyl-CoA, p300 has the highest specificity at H4K16, where specificity
is 1018-fold higher than CBP. This discovery of unique
specificity for targets of CBP- vs p300-mediated acetylation of histone
lysine residues presents a new model for understanding their respective
biological roles and possibly an opportunity for selective therapeutic
intervention.
Collapse
Affiliation(s)
- Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | | | | |
Collapse
|
50
|
Kerl K, Ries D, Unland R, Borchert C, Moreno N, Hasselblatt M, Jürgens H, Kool M, Görlich D, Eveslage M, Jung M, Meisterernst M, Frühwald M. The histone deacetylase inhibitor SAHA acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells. BMC Cancer 2013; 13:286. [PMID: 23764045 PMCID: PMC3693872 DOI: 10.1186/1471-2407-13-286] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. METHODS Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. RESULTS HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. CONCLUSION Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors.
Collapse
Affiliation(s)
- Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Childrens' Hospital Muenster, Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|