1
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Identifying Specificity Protein 2 as a key marker for diabetic encephalopathy in the context of predictive, preventive, and personalized medicine. EPMA J 2025; 16:67-93. [PMID: 39991102 PMCID: PMC11842694 DOI: 10.1007/s13167-024-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025]
Abstract
Background Transcription factor specificity protein (SP2) regulates various cellular functions, including cell division, proliferation, invasion, metastasis, differentiation, and death; however, its role has not been studied in prominent medical conditions including diabetic encephalopathy (DE). Therefore, this study addressed its physiological function in the context of DE to also better characterize its possible use in the context of predictive, preventive, and personalized medicine (PPPM). Methods The anti-inflammatory and anti-DE actions of SP2 were investigated using three animal models (SP2-/- mice, streptozocin-treated mice, and db/db mice) and two cell lines (primary cultured hippocampal neurons and N2A cells). The db/db mice were a leptin deficiency model often used to study type 2 diabetes. An equal number of males and females (8-12 weeks of age) was selected. Behavioral changes in mice were determined using both morris water maze (MWM) test and Y-maze (YM) test. The alterations in oxidative stress and inflammation were examined via immunofluorescence assay, flow cytometry, co-immunoprecipitation, and immunoblotting. Results Mechanistically, SP2-knockout (SP2-/-) mice showed dysregulation of insulin/glucose homeostasis, neuroinflammation, and cognitive loss. Otherwise, in db/db DE mice and STZ-induced DE mice, neuroinflammation, neuroapoptosis, and cognitive decline were significantly attenuated when SP2 was overexpressed in the brain. On the other hand, SP2 overexpression activates the insulin signaling pathway and improves insulin resistance via targeting X-box binding protein 1 (XBP1) in neurons. Moreover, SP2 overexpression significantly reduces oxidative stress by interacting with XBP1 and nuclear factor erythroid 2-related factor 2 (NRF2) in neurons. Furthermore, SP2 enhances the suppression of inflammatory response triggered by nuclear factor kappa B (NFκB) through the recruitment of XBP1 and NRF2 and by the in vitro inactivation of IκB kinase (IKK) complex. Conclusions These findings highlight SP2 as key biological targets for DE and reveal the infammation-related potential molecular mechanism of DE, which is helpful for early risk prediction and targeted prevention of DE. In conclusion, our study provides a new perspective for developing a PPPM method for managing DE patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00394-0.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000 China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
2
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
3
|
LaMoia TE, Hubbard BT, Guerra MT, Nasiri A, Sakuma I, Kahn M, Zhang D, Goodman RP, Nathanson MH, Sancak Y, Perelis M, Mootha VK, Shulman GI. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Cell Metab 2024; 36:2329-2340.e4. [PMID: 39153480 PMCID: PMC11446666 DOI: 10.1016/j.cmet.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/06/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
To examine the roles of mitochondrial calcium Ca2+ ([Ca2+]mt) and cytosolic Ca2+ ([Ca2+]cyt) in the regulation of hepatic mitochondrial fat oxidation, we studied a liver-specific mitochondrial calcium uniporter knockout (MCU KO) mouse model with reduced [Ca2+]mt and increased [Ca2+]cyt content. Despite decreased [Ca2+]mt, deletion of hepatic MCU increased rates of isocitrate dehydrogenase flux, α-ketoglutarate dehydrogenase flux, and succinate dehydrogenase flux in vivo. Rates of [14C16]palmitate oxidation and intrahepatic lipolysis were increased in MCU KO liver slices, which led to decreased hepatic triacylglycerol content. These effects were recapitulated with activation of CAMKII and abrogated with CAMKII knockdown, demonstrating that [Ca2+]cyt activation of CAMKII may be the primary mechanism by which MCU deletion promotes increased hepatic mitochondrial oxidation. Together, these data demonstrate that hepatic mitochondrial oxidation can be dissociated from [Ca2+]mt and reveal a key role for [Ca2+]cyt in the regulation of hepatic fat mitochondrial oxidation, intrahepatic lipolysis, gluconeogenesis, and lipid accumulation.
Collapse
Affiliation(s)
- Traci E LaMoia
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brandon T Hubbard
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mateus T Guerra
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ali Nasiri
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ikki Sakuma
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dongyan Zhang
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell P Goodman
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael H Nathanson
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Vamsi K Mootha
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gerald I Shulman
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Dos Santos RM, Miyamoto JÉ, Siqueira BP, Araujo TR, Vettorazzi JF, Menta PLR, Denom J, Latorraca MQ, Cruciani-Guglielmacci C, Carneiro EM, Torsoni A, Torsoni M, Badan AP, Magnan C, Le Stunff H, Ignácio-Souza L, Milanski M. Interesterified palm oil promotes insulin resistance and altered insulin secretion and signaling in Swiss mice. Food Res Int 2024; 177:113850. [PMID: 38225125 DOI: 10.1016/j.foodres.2023.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Interesterified fats have been used to replace trans-fat in ultra-processed foods. However, their metabolic effects are not completely understood. Hence, this study aimed to investigate the effects related to glucose homeostasis in response to interesterified palm oil or refined palm oil intake. Four-week-old male Swiss mice were randomly divided into four experimental groups and fed the following diets for 8 weeks: a normocaloric and normolipidic diet containing refined palm oil (PO group) or interesterified palm oil (IPO group); a hypercaloric and high-fat diet containing refined PO (POHF group) or interesterified PO (IPOHF group). Metabolic parameters related to body mass, adiposity and food consumption showed no significant differences. As for glucose homeostasis parameters, interesterified palm oil diets (IPO and IPOHF) resulted in higher glucose intolerance than unmodified palm oil diets (PO and POHF). Euglycemic-hyperinsulinemic clamp assessment showed a higher endogenous glucose production in the IPO group compared with the PO group. Moreover, the IPO group showed significantly lower p-AKT protein content (in the muscle and liver tissues) when compared with the PO group. Analysis of glucose-stimulated static insulin secretion (11.1 mmol/L glucose) in isolated pancreatic islets showed a higher insulin secretion in animals fed interesterified fat diets (IPO and IPOHF) than in those fed with palm oil (PO and POHF). Interesterified palm oil, including in normolipidic diets, can impair insulin signaling in peripheral tissues and increase insulin secretion by β-cells, characterizing insulin resistance in mice.
Collapse
Affiliation(s)
- Raísa Magno Dos Santos
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Josiane Érica Miyamoto
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Beatriz Piatezzi Siqueira
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thiago Reis Araujo
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jean Franciesco Vettorazzi
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Foz do Iguaçu, Paraná, Brazil
| | - Penelope Lacrisio Reis Menta
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | | | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Torsoni
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio Torsoni
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana Paula Badan
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay, France
| | - Letícia Ignácio-Souza
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marciane Milanski
- School of Applied Sciences, Universidade Estadual de Campinas (UNICAMP), Limeira, SP, Brazil; Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
5
|
Wang J, Wang X, Zhang M, Lang Y, Chen B, Ye Y, Bai Y, Ding S. The activation of spliced X-box binding protein 1 by isorhynchophylline therapy improves diabetic encephalopathy. Cell Biol Toxicol 2023; 39:2587-2613. [PMID: 36695953 DOI: 10.1007/s10565-022-09789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
The primary symptom of diabetic encephalopathy (DE), a kind of central diabetic neuropathy caused by diabetes mellitus (DM), is cognitive impairment. In addition, the tetracyclic oxindole alkaloid isorhynchophylline (IRN) helps lessen cognitive impairment. However, it is still unclear how IRN affects DM and DE and what mechanisms are involved. The effectiveness of IRN on brain insulin resistance was carefully examined in this work, both in vitro and in vivo. We found that IRN accelerates spliced form of X-box binding protein 1 (sXBP1) translocation into the nucleus under high glucose conditions in vitro. IRN also facilitates the nuclear association of pCREB with sXBP1 and the binding of regulatory subunits of phosphatidylinositol 3-kinase (PI3K) p85α or p85β with XBP1 to restore high glucose impairment. Also, IRN treatment improves high glucose-mediated impairment of insulin signaling, endoplasmic reticulum stress, and pyroptosis/apoptosis by depending on sXBP1 in vitro. In vivo studies suggested that IRN attenuates cognitive impairment, ameliorating peripheral insulin resistance, activating insulin signaling, inactivating activating transcription factor 6 (ATF6) and C/EBP homology protein (CHOP), and mitigating pyroptosis/apoptosis by stimulation of sXBP1 nuclear translocation in the brain. In summary, these data indicate that IRN contributes to maintaining insulin homeostasis by activating sXBP1 in the brain. Thus, IRN is a potent antidiabetic agent as well as an sXBP1 activator that has promising potential for the prevention or treatment of DE.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Xuebao Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Baihui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiru Ye
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saidan Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Mao Z, Ma X, Jing Y, Shen M, Ma X, Zhu J, Liu H, Zhang G, Chen F. Ufmylation on UFBP1 alleviates non-alcoholic fatty liver disease by modulating hepatic endoplasmic reticulum stress. Cell Death Dis 2023; 14:584. [PMID: 37660122 PMCID: PMC10475044 DOI: 10.1038/s41419-023-06095-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease characterized by lipid accumulation and endoplasmic reticulum (ER) stress, while effective therapies targeting the specific characteristics of NAFLD are limited. Ufmylation is a newly found post-translational modification process that involves the attachment of the Ubiquitin-fold modifier 1 (UFM1) protein to its substrates via ufmylation modification system. Ufmylation regulates ER stress via modifying UFM1 binding protein 1 (UFBP1), suggesting a potential role for ufmylation in NAFLD pathogenesis. However, the precise role of ufmylation in NAFLD remains unclear. Herein, we aim to elucidate the impact of ufmylation on UFBP1 in NAFLD and explore the underlying mechanisms involved. We observed increased expression of UFM1-conjugated proteins and ufmylation modification system components in livers with steatosis derived from NAFLD patients and NAFLD models. Upregulation of ufmylation on hepatic proteins appeared to be an adaptive response to hepatic ER stress in NAFLD. In vitro, knocking down UFBP1 resulted in increased lipid accumulation and lipogenesis in hepatocytes treated with free fatty acids (FFA), which could be rescued by wild-type UFBP1 (WT UFBP1) but not by a mutant form of UFBP1 lacking the main ufmylation site lys267 (UFBP1 K267R). In vivo, ufmylation on UFBP1 ameliorated obesity, hepatic steatosis, hepatic lipogenesis, dyslipidemia, insulin resistance and liver damage in mice with NAFLD induced by a high fat diet (HFD). We also demonstrated that the downregulation of UFBP1 induced ER stress, whereas the reintroduction or overexpression of UFBP1 alleviated ER stress in a manner dependent on ufmylation in NAFLD. This mechanism could be responsible for the amelioration of aberrant hepatic lipogenesis and insulin resistance in NAFLD. Our data reveal a protective role of ufmylation on UFBP1 against NAFLD and offer a specific target for NAFLD treatment.
Collapse
Affiliation(s)
- Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaowen Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Minyan Shen
- School of Graduate, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200233, China.
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
7
|
Raja R, Fonseka O, Ganenthiran H, Andrea-Ruiz-Velasco, Liu W. The multifaceted roles of ER and Golgi in metabolic cardiomyopathy. Front Cardiovasc Med 2022; 9:999044. [PMID: 36119738 PMCID: PMC9479098 DOI: 10.3389/fcvm.2022.999044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Metabolic cardiomyopathy is a significant global financial and health challenge; however, pathophysiological mechanisms governing this entity remain poorly understood. Among the main features of metabolic cardiomyopathy, the changes to cellular lipid metabolism have been studied and targeted for the discovery of novel treatment strategies obtaining contrasting results. The endoplasmic reticulum (ER) and Golgi apparatus (GA) carry out protein modification, sorting, and secretion activities that are more commonly studied from the perspective of protein quality control; however, they also drive the maintenance of lipid homeostasis. In response to metabolic stress, ER and GA regulate the expression of genes involved in cardiac lipid biogenesis and participate in lipid droplet formation and degradation. Due to the varied roles these organelles play, this review will focus on recapitulating the alterations and crosstalk between ER, GA, and lipid metabolism in cardiac metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | - Andrea-Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Roy N, Alencastro F, Roseman BA, Wilson SR, Delgado ER, May MC, Bhushan B, Bello FM, Jurczak MJ, Shiva S, Locker J, Gingras S, Duncan AW. Dysregulation of Lipid and Glucose Homeostasis in Hepatocyte-Specific SLC25A34 Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1259-1281. [PMID: 35718058 PMCID: PMC9472157 DOI: 10.1016/j.ajpath.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an epidemic affecting 30% of the US population. It is characterized by insulin resistance, and by defective lipid metabolism and mitochondrial dysfunction in the liver. SLC25A34 is a major repressive target of miR-122, a miR that has a central role in NAFLD and liver cancer. However, little is known about the function of SLC25A34. To investigate SLC25A34 in vitro, mitochondrial respiration and bioenergetics were examined using hepatocytes depleted of Slc25a34 or overexpressing Slc25a34. To test the function of SLC25A34 in vivo, a hepatocyte-specific knockout mouse was generated, and loss of SLC25A34 was assessed in mice maintained on a chow diet and a fast-food diet (FFD), a model for NAFLD. Hepatocytes depleted of Slc25a34 displayed increased mitochondrial biogenesis, lipid synthesis, and ADP/ATP ratio; Slc25a34 overexpression had the opposite effect. In the knockout model on chow diet, SLC25A34 loss modestly affected liver function (altered glucose metabolism was the most pronounced defect). RNA-sequencing revealed changes in metabolic processes, especially fatty acid metabolism. After 2 months on FFD, knockouts had a more severe phenotype, with increased lipid content and impaired glucose tolerance, which was attenuated after longer FFD feeding (6 months). This work thus presents a novel model for studying SLC25A34 in vivo in which SLC25A34 plays a role in mitochondrial respiration and bioenergetics during NAFLD.
Collapse
Affiliation(s)
- Nairita Roy
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frances Alencastro
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bayley A Roseman
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sierra R Wilson
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Evan R Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meredith C May
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fiona M Bello
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J Jurczak
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Departments of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Peng J, Qin C, Ramatchandirin B, Pearah A, Guo S, Hussain M, Yu L, Wondisford FE, He L. Activation of the canonical ER Stress IRE1-XBP1 Pathway by Insulin Regulates Glucose and Lipid Metabolism. J Biol Chem 2022; 298:102283. [PMID: 35863429 PMCID: PMC9396404 DOI: 10.1016/j.jbc.2022.102283] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Knockout of the transcription factor X-box binding protein (XBP1) is known to decrease liver glucose production and lipogenesis. However, whether insulin can regulate gluconeogenesis and lipogenesis through XBP1 and how insulin activates the inositol-requiring enzyme-XBP1 ER stress pathway remains unexplored. Here, we report that in the fed state, insulin-activated kinase AKT directly phosphorylates inositol-requiring enzyme 1 at S724, which in turn mediates the splicing of XBP1u mRNA, thus favoring the generation of the spliced form, XBP1s, in the liver of mice. Subsequently, XBP1s stimulate the expression of lipogenic genes and upregulates liver lipogenesis as previously reported. Intriguingly, we find that fasting leads to an increase in XBP1u along with a drastic decrease in XBP1s in the liver of mice, and XBP1u, not XBP1s, significantly increases PKA-stimulated CRE reporter activity in cultured hepatocytes. Furthermore, we demonstrate that overexpression of XBP1u significantly increases cAMP-stimulated expression of rate-limiting gluconeogenic genes, G6pc and Pck1, and glucose production in primary hepatocytes. Reexpression of XBP1u in the liver of mice with XBP1 depletion significantly increases fasting blood glucose levels and gluconeogenic gene expression. These data support an important role of XBP1u in upregulating gluconeogenesis in the fasted state. Taken together, we reveal that insulin signaling via AKT controls the expression of XBP1 isoforms and that XBP1u and XBP1s function in different nutritional states to regulate liver gluconeogenesis and lipogenesis, respectively.
Collapse
Affiliation(s)
- Jinghua Peng
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Caolitao Qin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Alexia Pearah
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, TX 77843
| | - Mehboob Hussain
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Liqing Yu
- Division of Metabolism, Endocrinology and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Ling He
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Yan B, Chen L, Wang Y, Zhang J, Zhao H, Hua Q, Pei S, Yue Z, Liang H, Zhang H. Preventive Effect of Apple Polyphenol Extract on High-Fat Diet-Induced Hepatic Steatosis in Mice through Alleviating Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3172-3180. [PMID: 35227062 DOI: 10.1021/acs.jafc.1c07733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, the protective effect of apple polyphenol extract (APE) on hepatic steatosis was investigated. Thirty-two C57BL/6J mice were assigned randomly to control group, hepatic steatosis group, lovastatin group, and APE group. After 8 weeks of intervention, APE supplementation markedly decreased the body weight gain, liver weight, liver index, epididymal adipose weight, epididymal adipose index, serum, and hepatic lipid levels. Hematoxylin and eosin staining revealed that APE supplementation alleviated histopathological changes of hepatic steatosis. Western blot revealed that APE downregulated the protein levels of GRP78, IRE1α, p-IRE1α, XBP1, PERK, p-PERK, p-eIF2α, ATF6, PPAR-γ, SREBP-1c, FAS, and ACC1. In conclusion, this study found that APE inhibited IRE1α-XBP1, PERK-eIF2α, and ATF6 signaling pathways to alleviate endoplasmic reticulum stress, thereby improving HFD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Bei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lei Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qinglian Hua
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shengjie Pei
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zihang Yue
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
11
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
12
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
13
|
Glycoursodeoxycholic acid ameliorates diet-induced metabolic disorders with inhibiting endoplasmic reticulum stress. Clin Sci (Lond) 2021; 135:1689-1706. [PMID: 34236076 PMCID: PMC8302808 DOI: 10.1042/cs20210198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Recent studies reveal that bile acid metabolite composition and its metabolism are changed in metabolic disorders, such as obesity, type 2 diabetes and metabolic associated fatty liver disease (MAFLD), yet its role and the mechanism remain largely unknown. In the present study, metabolomic analysis of 163 serum and stool samples of our metabolic disease cohort was performed, and we identified glycoursodeoxycholic acid (GUDCA), glycine-conjugated bile acid produced from intestinal bacteria, was decreased in both serum and stool samples from patients with hyperglycemia. RNA-sequencing and quantitative PCR results indicated that GUDCA alleviated endoplasmic reticulum (ER) stress in livers of high fat diet (HFD)-fed mice without alteration of liver metabolism. In vitro, GUDCA reduced palmitic acid induced-ER stress and -apoptosis, as well as stabilized calcium homeostasis. In vivo, GUDCA exerted effects on amelioration of HFD-induced insulin resistance and hepatic steatosis. In parallel, ER stress and apoptosis were decreased in GUDCA-treated mice as compared with vehicle-treated mice in liver. These findings demonstrate that reduced GUDCA is an indicator of hyperglycemia. Supplementation of GUDCA could be an option for the treatment of diet-induced metabolic disorders, including insulin resistance and hepatic steatosis, with inhibiting ER stress.
Collapse
|
14
|
Liu C, Zhou B, Meng M, Zhao W, Wang D, Yuan Y, Zheng Y, Qiu J, Li Y, Li G, Xiong X, Bian H, Zhang H, Wang H, Ma X, Hu C, Xu L, Lu Y. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J Hepatol 2021; 75:150-162. [PMID: 33548387 DOI: 10.1016/j.jhep.2021.01.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Chronic endoplasmic reticulum (ER) stress in the liver has been shown to play a causative role in non-alcoholic fatty liver disease (NAFLD) progression, yet the underlying molecular mechanisms remain to be elucidated. Forkhead box A3 (FOXA3), a member of the FOX family, plays critical roles in metabolic homeostasis, although its possible functions in ER stress and fatty liver progression are unknown. METHODS Adenoviral delivery, siRNA delivery, and genetic knockout mice were used to crease FOXA3 gain- or loss-of-function models. Tunicamycin (TM) and a high-fat diet (HFD) were used to induce acute or chronic ER stress in mice. Chromatin immunoprecipiation (ChIP)-seq, luciferase assay, and adenoviral-mediated downstream gene manipulations were performed to reveal the transcriptional axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. RESULTS FOXA3 transcription is specifically induced by XBP1s upon ER stress. FOXA3 exacerbates the excessive lipid accumulation caused by the acute ER-inducer TM, whereas FOXA3 deficiency in hepatocytes and mice alleviates it. Importantly, FOXA3 deficiency in mice reduced diet-induced chronic ER stress, fatty liver, and insulin resistance. In addition, FOXA3 suppression via siRNA or adeno-associated virus delivery ameliorated the fatty liver phenotype in HFD-fed and db/db mice. Mechanistically, ChIP-Seq analysis revealed that FOXA3 directly regulates Period1 (Per1) transcription, which in turn promotes the expression of lipogenic genes, including Srebp1c, thus enhancing lipid synthesis. Of pathophysiological significance, FOXA3, PER1, and SREBP1c levels were increased in livers of obese mice and patients with NAFLD. CONCLUSION The present study identified FOXA3 as the bridging molecule that links ER stress and NAFLD progression. Our results highlighted the role of the XBP1s-FOXA3-PER1/Srebp1c transcriptional axis in the development of NAFLD and identified FOXA3 as a potential therapeutic target for fatty liver disease. LAY SUMMARY The molecular mechanisms linking endoplasmic reticulum stress to non-alcoholic fatty liver disease (NAFLD) progression remain undefined. Herein, via in vitro and in vivo analysis, we identified Forkhead box A3 (FOXA3) as a key bridging molecule. Of pathophysiological significance, FOXA3 protein levels were increased in livers of obese mice and patients with NAFLD, indicating that FOXA3 could be a potential therapeutic target in fatty liver disease.
Collapse
Affiliation(s)
- Caizhi Liu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuelian Xiong
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Zhao X, Wang M, Liu J, Su X. Stearoyl CoA Desaturase 1 and Inositol-Requiring Protein 1 α Determine the Efficiency of Oleic Acid in Alleviating Silica Nanoparticle-Induced Insulin Resistance. J Biomed Nanotechnol 2021; 17:1349-1363. [PMID: 34446138 DOI: 10.1166/jbn.2021.3109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the widespread use of silica nanoparticles (SiNPs), their metabolic impact and mechanisms of action have not been well studied. Exposure to SiNPs induces insulin resistance (IR) in hepatocytes by endoplasmic reticulum (ER) stress via inositol-requiring protein 1α (IRE1α) activation of c-Jun N-terminal kinases (JNK). It has been well established that stearoyl CoA desaturase (SCD1) and its major product oleic acid elicited beneficial effects in restoring ER homeostasis. However, the potential coordination of SCD1 and IRE1α in determining SiNP regulation of insulin signaling is unclear. Herein, we investigated the effects of SCD1 and oleic acid on IR induced by SiNPs or thapsigargin in hepatocytes. SCD1 overexpression or oleic acid efficiently reversed SiNP-induced ER stress and IR, whereas the effects of thapsigargin treatment could not be restored. Thapsigargin diminished SCD1 protein levels, leading to the accumulation of IRE1α and sustained activation of the IRE1α/JNK pathway. Moreover, knockdown of activating transcription factor 4 (ATF4) upstream of SCD1 suppressed SiNP-induced SCD1 expression, rescued the activated IRE1α, and inhibited insulin signaling but was not able to restore the effects of thapsigargin. Collectively, downregulation of SCD1 and excess accumulation of IRE1α protein prevented the beneficial effects of exogenous oleic acid on IR induced by ER stress. Our results provide valuable mechanistic insights into the synergic regulation of IR by SiNPs and ER stress and suggest a combinational strategy to restore ER homeostasis by targeting SCD1 and IRE1α proteins, as well as supplementation of unsaturated fatty acids.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Min Wang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| |
Collapse
|
16
|
Shi YN, Liu YJ, Xie Z, Zhang WJ. Fructose and metabolic diseases: too much to be good. Chin Med J (Engl) 2021; 134:1276-1285. [PMID: 34010200 PMCID: PMC8183764 DOI: 10.1097/cm9.0000000000001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT Excessive consumption of fructose, the sweetest of all naturally occurring carbohydrates, has been linked to worldwide epidemics of metabolic diseases in humans, and it is considered an independent risk factor for cardiovascular diseases. We provide an overview about the features of fructose metabolism, as well as potential mechanisms by which excessive fructose intake is associated with the pathogenesis of metabolic diseases both in humans and rodents. To accomplish this aim, we focus on illuminating the cellular and molecular mechanisms of fructose metabolism as well as its signaling effects on metabolic and cardiovascular homeostasis in health and disease, highlighting the role of carbohydrate-responsive element-binding protein in regulating fructose metabolism.
Collapse
Affiliation(s)
- Ya-Nan Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Ya-Jin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Weiping J. Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Fernandes-da-Silva A, Miranda CS, Santana-Oliveira DA, Oliveira-Cordeiro B, Rangel-Azevedo C, Silva-Veiga FM, Martins FF, Souza-Mello V. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr 2021; 60:2949-2960. [PMID: 33742254 DOI: 10.1007/s00394-021-02542-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Obesity challenges lipid and carbohydrate metabolism. The resulting glucolipotoxicity causes endoplasmic reticulum (ER) dysfunction, provoking the accumulation of immature proteins, which triggers the unfolded protein reaction (UPR) as an attempt to reestablish ER homeostasis. When the three branches of UPR fail to correct the unfolded/misfolded proteins, ER stress happens. Excessive dietary saturated fatty acids or fructose exhibit the same impact on the ER stress, induced by excessive ectopic fat accumulation or rising blood glucose levels, and meta-inflammation. These metabolic abnormalities can alleviate through dietary interventions. Many pathways are disrupted in adipose tissue, liver, and pancreas during ER stress, compromising browning and thermogenesis, favoring hepatic lipogenesis, and impairing glucose-stimulated insulin secretion within pancreatic beta cells. As a result, ER stress takes part in obesity, hepatic steatosis, and diabetes pathogenesis, arising as a potential target to treat or even prevent metabolic diseases. The scientific community seeks strategies to alleviate ER stress by avoiding inflammation, apoptosis, lipogenesis suppression, and insulin sensitivity augmentation through pharmacological and non-pharmacological interventions. This comprehensive review aimed to describe the contribution of excessive dietary fat or sugar to ER stress and the impact of this adverse cellular environment on adipose tissue, liver, and pancreas function.
Collapse
Affiliation(s)
- Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Brenda Oliveira-Cordeiro
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Camilla Rangel-Azevedo
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
18
|
A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nat Chem Biol 2021; 17:298-306. [PMID: 33495648 PMCID: PMC8529588 DOI: 10.1038/s41589-020-00723-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside (AICAR) or metformin. This compound increases the biological activity of Ampk not by stimulating the activation of Ampk, but rather by preventing activated pAmpkα from Fbxo48-mediated degradation. We demonstrate that, consistent with augmenting Ampk activity, BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity in high-fat-diet-induced obese mice. Hence, we provide a unique bioactive compound that inhibits pAmpkα disposal. Together, these results define a new pathway regulating Ampk biological activity and demonstrate the potential utility of modulating this pathway for therapeutic benefit.
Collapse
|
19
|
Gariani K, Jornayvaz FR. Pathophysiology of NASH in endocrine diseases. Endocr Connect 2021; 10:R52-R65. [PMID: 33449917 PMCID: PMC7983516 DOI: 10.1530/ec-20-0490] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Collapse
Affiliation(s)
- Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals and Geneva University, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Correspondence should be addressed to F R Jornayvaz:
| |
Collapse
|
20
|
Duwaerts CC, Siao K, Soon RK, Her C, Iwawaki T, Kohno K, Mattis AN, Maher JJ. Hepatocyte-specific deletion of XBP1 sensitizes mice to liver injury through hyperactivation of IRE1α. Cell Death Differ 2020; 28:1455-1465. [PMID: 33219328 DOI: 10.1038/s41418-020-00671-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
X-box binding protein-1 (XBP1) is a transcription factor that plays a central role in controlling cellular responses to endoplasmic reticulum (ER) stress. Under stress conditions, the transcriptionally active form of XBP1 is generated via splicing of Xbp1 mRNA by the ER-resident protein inositol-requiring enzyme-1 (IRE1α). Genetic deletion of XBP1 has multiple consequences: some resulting from the loss of the transcription factor per se, and others related to compensatory activation of IRE1α. The objective of the current study was to investigate the effects of XBP1 deletion in adult mouse liver and determine to what extent they are direct or indirect. XBP1 was deleted from hepatocytes in adult Xbp1fl/fl mice using AAV8-Transthyretin-Cre (Xbp1Δhep). Xbp1Δhep mice exhibited no liver disease at baseline, but developed acute biochemical and histologic liver injury in response to a dietary challenge with fructose for 4 weeks. Fructose-mediated liver injury in Xbp1Δhep mice coincided with heightened IRE1α activity, as demonstrated by Xbp1 mRNA splicing, JNK activation, and regulated IRE1α-dependent RNA decay (RIDD). Activation of eIF2α was also evident, with associated up-regulation of the pro-apoptotic molecules CHOP, BIM, and PUMA. To determine whether the adverse consequences of liver-specific XBP1 deletion were due to XBP1 loss or heightened IRE1α activity, we repeated a fructose challenge in mice with liver-specific deletion of both XBP1 and IRE1α (Xbp1Δhep;Ire1aΔhep). Xbp1Δhep;Ire1aΔhep mice were protected from fructose-mediated liver injury and failed to exhibit any of the signs of ER stress seen in mice lacking XBP1 alone. The protective effect of IRE1α deletion persisted even with long-term exposure to fructose. Xbp1Δhep mice developed liver fibrosis at 16 weeks, but Xbp1Δhep;Ire1aΔhep mice did not. Overall, the results indicate that the deleterious effects of hepatocyte-specific XBP1 deletion are due primarily to hyperactivation of IRE1α. They support further exploration of IRE1α as a contributor to acute and chronic liver diseases.
Collapse
Affiliation(s)
- Caroline C Duwaerts
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Siao
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell K Soon
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA.,BioMarin Pharmaceutical Inc. 105 Digital Drive, Novato, CA, 94949, USA
| | - Chris Her
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Aras N Mattis
- The Liver Center, University of California San Francisco, San Francisco, CA, USA.,Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jacquelyn J Maher
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA. .,The Liver Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Song JD, Alves TC, Befroy DE, Perry RJ, Mason GF, Zhang XM, Munk A, Zhang Y, Zhang D, Cline GW, Rothman DL, Petersen KF, Shulman GI. Dissociation of Muscle Insulin Resistance from Alterations in Mitochondrial Substrate Preference. Cell Metab 2020; 32:726-735.e5. [PMID: 33035493 PMCID: PMC8218871 DOI: 10.1016/j.cmet.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
Abstract
Alterations in muscle mitochondrial substrate preference have been postulated to play a major role in the pathogenesis of muscle insulin resistance. In order to examine this hypothesis, we assessed the ratio of mitochondrial pyruvate oxidation (VPDH) to rates of mitochondrial citrate synthase flux (VCS) in muscle. Contrary to this hypothesis, we found that high-fat-diet (HFD)-fed insulin-resistant rats did not manifest altered muscle substrate preference (VPDH/VCS) in soleus or quadriceps muscles in the fasting state. Furthermore, hyperinsulinemic-euglycemic (HE) clamps increased VPDH/VCS in both muscles in normal and insulin-resistant rats. We then examined the muscle VPDH/VCS flux in insulin-sensitive and insulin-resistant humans and found similar relative rates of VPDH/VCS, following an overnight fast (∼20%), and similar increases in VPDH/VCS fluxes during a HE clamp. Altogether, these findings demonstrate that alterations in mitochondrial substrate preference are not an essential step in the pathogenesis of muscle insulin resistance.
Collapse
Affiliation(s)
- Joongyu D Song
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Tiago C Alves
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas E Befroy
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, CT, USA; PeakAnalysts, Benenden, Kent, UK
| | - Rachel J Perry
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Alexander Munk
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ye Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, CT, USA
| | - Kitt Falk Petersen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Gerald I Shulman
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Wang L, Sinnott-Armstrong N, Wagschal A, Wark AR, Camporez JP, Perry RJ, Ji F, Sohn Y, Oh J, Wu S, Chery J, Moud BN, Saadat A, Dankel SN, Mellgren G, Tallapragada DSP, Strobel SM, Lee MJ, Tewhey R, Sabeti PC, Schaefer A, Petri A, Kauppinen S, Chung RT, Soukas A, Avruch J, Fried SK, Hauner H, Sadreyev RI, Shulman GI, Claussnitzer M, Näär AM. A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell 2020; 183:684-701.e14. [PMID: 33058756 PMCID: PMC8092355 DOI: 10.1016/j.cell.2020.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/08/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.
Collapse
Affiliation(s)
- Lifeng Wang
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,These authors contributed equally,Present address: Cardiovascular & Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477, USA
| | - Nasa Sinnott-Armstrong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Alexandre Wagschal
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vertex Pharmaceuticals, Watertown, MA 02472, USA
| | - Abigail R. Wark
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joao-Paulo Camporez
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA,Present address: Ribeirao Preto School of Medicine, University of Sao Paulo, Sao Paulo 14049-90, Brazil
| | - Rachel J. Perry
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yoojin Sohn
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vanderbilt University, Nashville, TN 37235, USA
| | - Justin Oh
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Vertex Pharmaceuticals, Watertown, MA 02472, USA
| | - Su Wu
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Chery
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bahareh Nemati Moud
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alham Saadat
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Simon N. Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Divya Sri Priyanka Tallapragada
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5020 Bergen, Norway
| | - Sophie Madlen Strobel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Mi-Jeong Lee
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Present address: Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Ryan Tewhey
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA,Present address: The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School ofMedicine atMount Sinai, New York, New York 10029, USA
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Raymond T. Chung
- Liver Center, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Soukas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA,Diabetes unit, Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Susan K. Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA,Present address: Diabetes, Obesity and Metabolism Institute, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Hans Hauner
- Else Kroener-Fresenius-Center of Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany,Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 80992 Munich, Germany
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gerald I. Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA,Lead Contact,Correspondence: https://doi.org/10.1016/j.cell.2020.09.017
| |
Collapse
|
23
|
Hall JA, Ramachandran D, Roh HC, DiSpirito JR, Belchior T, Zushin PJH, Palmer C, Hong S, Mina AI, Liu B, Deng Z, Aryal P, Jacobs C, Tenen D, Brown CW, Charles JF, Shulman GI, Kahn BB, Tsai LTY, Rosen ED, Spiegelman BM, Banks AS. Obesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metab 2020; 32:665-675.e6. [PMID: 32941798 PMCID: PMC7543662 DOI: 10.1016/j.cmet.2020.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
The thiazolidinediones (TZDs) are ligands of PPARγ that improve insulin sensitivity, but their use is limited by significant side effects. Recently, we demonstrated a mechanism wherein TZDs improve insulin sensitivity distinct from receptor agonism and adipogenesis: reversal of obesity-linked phosphorylation of PPARγ at serine 273. However, the role of this modification hasn't been tested genetically. Here we demonstrate that mice encoding an allele of PPARγ that cannot be phosphorylated at S273 are protected from insulin resistance, without exhibiting differences in body weight or TZD-associated side effects. Indeed, hyperinsulinemic-euglycemic clamp experiments confirm insulin sensitivity. RNA-seq in these mice reveals reduced expression of Gdf3, a BMP family member. Ectopic expression of Gdf3 is sufficient to induce insulin resistance in lean, healthy mice. We find Gdf3 inhibits BMP signaling and insulin signaling in vitro. Together, these results highlight the diabetogenic role of PPARγ S273 phosphorylation and focus attention on a putative target, Gdf3.
Collapse
Affiliation(s)
- Jessica A Hall
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Ramachandran
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Hyun C Roh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | - Thiago Belchior
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Peter-James H Zushin
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Colin Palmer
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shangyu Hong
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Amir I Mina
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Bingyang Liu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Zhaoming Deng
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Chester W Brown
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Memphis, TN 38103, USA
| | - Julia F Charles
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Linus T Y Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|
25
|
Qiu N, Wei XM, Zhang ZJ, He YL, Zhou XK, Xiong Y. Asymmetrical dimethylarginine induces dysfunction of insulin signal transduction via endoplasmic reticulum stress in the liver of diabetic rats. Life Sci 2020; 260:118373. [PMID: 32898530 DOI: 10.1016/j.lfs.2020.118373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 11/16/2022]
Abstract
AIMS Endoplasmic reticulum stress (ERS) as an emerging factor is involved in insulin resistance (IR), which is the pathological basis of diabetes mellitus. Accumulation of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase is associated with IR, but the underlying mechanisms have not been elucidated. This study was to reveal the important role of ADMA in IR and determine whether endogenous ADMA accumulation contributes to hepatic IR via ERS in diabetic rats and hepatocytes. MATERIALS AND METHODS Diabetic rat model was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg). Phosphorylation of insulin receptor substrate 1 (IRS1) and protein kinase B (Akt) was detected to evaluate IR. The protein kinase PKR-like ER kinase (PERK) and eukaryotic initiation factor 2α kinase (eIF2α) phosphorylation, x-box binding protein-1 (XBP-1) splicing, glucose-regulated protein 78 (GRP78) and C/EBP homologues protein (CHOP) expressions were measured to assess ERS. KEY FINDINGS Endogenous ADMA content was significantly increased and positively correlated with either IR as evidenced by increased IRS1 at serine and reduced Akt phosphorylation or ERS as indicated by upregulations of PERK and eIF2α phosphorylation, XBP-1 splicing, GRP78 and CHOP expressions in the liver of diabetic rats compared with control rats. Exogenous ADMA directly caused IR and ERS in dose- and time-dependent manners in primary mouse hepatocytes. Pretreatment with ERS inhibitor 4-phenylbutyrate or ADMA antagonist L-arginine not only improved ADMA-associated or -induced hepatic IR but also attenuated ADMA-associated or -induced ERS in diabetic rats or hepatocytes. SIGNIFICANCE These findings indicate that endogenous ADMA accumulation contributes to hepatic IR via ERS in diabetic rats.
Collapse
Affiliation(s)
- Ni Qiu
- Department of Central Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, PR China; Department of Breast Surgery, Clinical Key Specialty Project of Guangzhou Medical University, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, PR China; Guangzhou Institute of Snake Venom Research, Guangzhou 511436, Guangdong, PR China
| | - Xue-Mei Wei
- Guangzhou Institute of Snake Venom Research, Guangzhou 511436, Guangdong, PR China
| | - Zhi-Jie Zhang
- Department of Breast Surgery, Clinical Key Specialty Project of Guangzhou Medical University, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, PR China
| | - Yu-Lian He
- Guangzhou Institute of Snake Venom Research, Guangzhou 511436, Guangdong, PR China
| | - Xin-Ke Zhou
- Department of Central Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, PR China.
| | - Yan Xiong
- Department of Central Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, PR China; Guangzhou Institute of Snake Venom Research, Guangzhou 511436, Guangdong, PR China.
| |
Collapse
|
26
|
Mollaei M, Abbasi A, Hassan ZM, Pakravan N. The intrinsic and extrinsic elements regulating inflammation. Life Sci 2020; 260:118258. [PMID: 32818542 DOI: 10.1016/j.lfs.2020.118258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Inflammation is a sophisticated biological tissue response to both extrinsic and intrinsic stimuli. Although the pathological aspects of inflammation are well appreciated, there are still rooms for understanding the physiological functions of the inflammation. Recent studies have focused on mechanisms, context and the role of physiological inflammation. Besides, there have been progress in the comprehension of commensal microbiota, immunometabolism, cancer and intracellular signaling events' roles that impact on the regulation of inflammation. Despite the fact that inflammatory responses are vital through tissue damage, understanding the mechanisms to turn off the finished or unnecessary inflammation is crucial for restoring homeostasis. Inflammation seems to be a smart process that acts like two edges of a sword, meaning that it has both protective and deleterious consequences. Knowing both edges and the regulation processes will help the future understanding and therapy for various diseases.
Collapse
Affiliation(s)
- M Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran.
| | - A Abbasi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - Z M Hassan
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - N Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Science, Iran
| |
Collapse
|
27
|
Ji M, Niu S, Guo J, Mi H, Jiang P. Silencing RNF13 Alleviates Parkinson’s Disease – Like Problems in Mouse Models by Regulating the Endoplasmic Reticulum Stress–Mediated IRE1α-TRAF2-ASK1-JNK Pathway. J Mol Neurosci 2020; 70:1977-1986. [DOI: 10.1007/s12031-020-01599-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
|
28
|
Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H, Fang Z. Protein Palmitoylation Regulates Cell Survival by Modulating XBP1 Activity in Glioblastoma Multiforme. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:518-530. [PMID: 33024813 PMCID: PMC7525067 DOI: 10.1016/j.omto.2020.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM) almost invariably acquires an invasive phenotype, resulting in limited therapeutic options. Protein palmitoylation markedly affects tumorigenesis and malignant progression in GBM. The role of protein palmitoylation in GBM, however, has not been systematically reported. This study aimed to investigate the effect of protein palmitoylation on GBM cell survival and the cell cycle. In this study, most palmitoyltransferases were upregulated in GBM and its cell lines, and protein palmitoylation participated in signaling pathways controlling cell survival and the GBM cell cycle. Inhibition of protein palmitoylation with substrate-analog inhibitors, that is, 2-bromopalmitate, cerulenin, and tunicamycin, induced G2 cell cycle arrest and cell death in GBM cells through enhanced endoplasmic reticulum (ER) stress. These effects are primarily attributed to the palmitoylation inhibitors activating pro-apoptotic pathways and ER stress signals. Further analysis revealed was the accumulation of SUMOylated XBP1 (X-box binding protein 1) and its transcriptional repression, along with a reduction in XBP1 palmitoylation. Taken together, the present results indicate that protein palmitoylation plays an important role in the survival of GBM cells, further providing a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Xueran Chen, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| | - Hao Li
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Xiaoqing Fan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, Anhui 230001, China
- Department of Anesthesiology, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui 230001, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Huihui Ma
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 218, JiXi Road, Hefei, Anhui 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Zhiyou Fang, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| |
Collapse
|
29
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
30
|
Riaz TA, Junjappa RP, Handigund M, Ferdous J, Kim HR, Chae HJ. Role of Endoplasmic Reticulum Stress Sensor IRE1α in Cellular Physiology, Calcium, ROS Signaling, and Metaflammation. Cells 2020; 9:E1160. [PMID: 32397116 PMCID: PMC7290600 DOI: 10.3390/cells9051160] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.
Collapse
Affiliation(s)
- Thoufiqul Alam Riaz
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| | - Raghu Patil Junjappa
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| | - Mallikarjun Handigund
- Department of Laboratory Medicine, Jeonbuk National University, Medical School, Jeonju 54907, Korea;
| | - Jannatul Ferdous
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju 54907, Korea; (T.A.R.); (R.P.J.)
| |
Collapse
|
31
|
Maeyashiki C, Melhem H, Hering L, Baebler K, Cosin-Roger J, Schefer F, Weder B, Hausmann M, Scharl M, Rogler G, de Vallière C, Ruiz PA. Activation of pH-Sensing Receptor OGR1 (GPR68) Induces ER Stress Via the IRE1α/JNK Pathway in an Intestinal Epithelial Cell Model. Sci Rep 2020; 10:1438. [PMID: 31996710 PMCID: PMC6989664 DOI: 10.1038/s41598-020-57657-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Proton-sensing ovarian cancer G-protein coupled receptor (OGR1) plays an important role in pH homeostasis. Acidosis occurs at sites of intestinal inflammation and can induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), an evolutionary mechanism that enables cells to cope with stressful conditions. ER stress activates autophagy, and both play important roles in gut homeostasis and contribute to the pathogenesis of inflammatory bowel disease (IBD). Using a human intestinal epithelial cell model, we investigated whether our previously observed protective effects of OGR1 deficiency in experimental colitis are associated with a differential regulation of ER stress, the UPR and autophagy. Caco-2 cells stably overexpressing OGR1 were subjected to an acidic pH shift. pH-dependent OGR1-mediated signalling led to a significant upregulation in the ER stress markers, binding immunoglobulin protein (BiP) and phospho-inositol required 1α (IRE1α), which was reversed by a novel OGR1 inhibitor and a c-Jun N-terminal kinase (JNK) inhibitor. Proton-activated OGR1-mediated signalling failed to induce apoptosis, but triggered accumulation of total microtubule-associated protein 1 A/1B-light chain 3, suggesting blockage of late stage autophagy. Our results show novel functions for OGR1 in the regulation of ER stress through the IRE1α-JNK signalling pathway, as well as blockage of autophagosomal degradation. OGR1 inhibition might represent a novel therapeutic approach in IBD.
Collapse
Affiliation(s)
- Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Schefer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Softic S, Stanhope KL, Boucher J, Divanovic S, Lanaspa MA, Johnson RJ, Kahn CR. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57:308-322. [PMID: 31935149 DOI: 10.1080/10408363.2019.1711360] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.
Collapse
Affiliation(s)
- Samir Softic
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA.,Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| | - Kimber L Stanhope
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
33
|
Huang S, Xing Y, Liu Y. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J Biol Chem 2019; 294:18726-18741. [PMID: 31666338 DOI: 10.1074/jbc.rev119.007036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inositol-requiring enzyme 1 (IRE1) is an endoplasmic reticulum (ER)-resident transmembrane protein that senses ER stress and is evolutionarily conserved from yeast to humans. IRE1 possesses both Ser/Thr protein kinase and endoribonuclease (RNase) activities within its cytoplasmic domain and is activated through autophosphorylation and dimerization/oligomerization. It mediates a critical arm of the unfolded protein response to manage ER stress provoked by lumenal overload of unfolded/misfolded proteins. Emerging lines of evidence have revealed that in mammals, IRE1α functions as a multifunctional signal transducer that responds to metabolic cues and nutrient stress conditions, exerting profound and broad effects on metabolic homeostasis. In this review, we cover recent advances in our understanding of how IRE1α integrates a variety of metabolic and stress signals and highlight its tissue-specific or context-dependent metabolic activities. We also discuss how dysregulation of this metabolic stress sensor during handling of excessive nutrients in cells contributes to the progression of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuying Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
34
|
Sustained ER stress promotes hyperglycemia by increasing glucagon action through the deubiquitinating enzyme USP14. Proc Natl Acad Sci U S A 2019; 116:21732-21738. [PMID: 31594848 DOI: 10.1073/pnas.1907288116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays an important role in metabolic diseases like obesity and type 2 diabetes mellitus (T2DM), although the underlying mechanisms and regulatory pathways remain to be elucidated. Here, we induced chronic low-grade ER stress in lean mice to levels similar to those in high-fat diet (HFD)-fed obese mice and found that it promoted hyperglycemia due to enhanced hepatic gluconeogenesis. Mechanistically, sustained ER stress up-regulated the deubiquitinating enzyme ubiquitin-specific peptidase 14 (USP14), which increased the stability and levels of 3',5'-cyclic monophosphate-responsive element binding (CREB) protein (CBP) to enhance glucagon action and hepatic gluconeogenesis. Exogenous overexpression of USP14 in the liver significantly increased hepatic glucose output. Consistent with this, liver-specific knockdown of USP14 abrogated the effects of ER stress on glucose metabolism, and also improved hyperglycemia and glucose intolerance in obese mice. In conclusion, our findings show a mechanism underlying ER stress-induced disruption of glucose homeostasis, and present USP14 as a potential therapeutic target against T2DM.
Collapse
|
35
|
Abstract
Nutrient overload occurs worldwide as a consequence of the modern diet pattern and the physical inactivity that sometimes accompanies it. Cells initiate multiple protective mechanisms to adapt to elevated intracellular metabolites and restore metabolic homeostasis, but irreversible injury to the cells can occur in the event of prolonged nutrient overload. Many studies have advanced the understanding of the different detrimental effects of nutrient overload; however, few reports have made connections and given the full picture of the impact of nutrient overload on cellular metabolism. In this review, detailed changes in metabolic and energy homeostasis caused by chronic nutrient overload, as well as their associations with the development of metabolic disorders, are discussed. Overnutrition-induced changes in key organelles and sensors rewire cellular bioenergetic pathways and facilitate the shift of the metabolic state toward biosynthesis, thereby leading to the onset of various metabolic disorders, which are essentially the downstream manifestations of a misbalanced metabolic equilibrium. Based on these mechanisms, potential therapeutic targets for metabolic disorders and new research directions are proposed.
Collapse
Affiliation(s)
- Haowen Qiu
- Department of Nutrition and Health Sciences and Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Vicki Schlegel
- Department of Nutrition and Health Sciences and Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
36
|
Bang IH, Kwon OK, Hao L, Park D, Chung MJ, Oh BC, Lee S, Bae EJ, Park BH. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med 2019; 51:1-11. [PMID: 31541078 PMCID: PMC6802632 DOI: 10.1038/s12276-019-0309-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
The active spliced form of X-box-binding protein 1 (XBP1s) is a key modulator of ER stress, but the functional role of its post-translational modification remains unclear. Here, we demonstrate that XBP1s is a deacetylation target of Sirt6 and that its deacetylation protects against ER stress-induced hepatic steatosis. Specifically, the abundance of acetylated XBP1s and concordant hepatic steatosis were increased in hepatocyte-specific Sirt6 knockout and obese mice but were decreased by genetic overexpression and pharmacological activation of Sirt6. Mechanistically, we identified that Sirt6 deacetylated a transactivation domain of XBP1s at Lys257 and Lys297 and promoted XBP1s protein degradation through the ubiquitin-proteasome system. Overexpression of XBP1s, but not its deacetylation mutant 2KR (K257/297R), in mice increased lipid accumulation in the liver. Importantly, in liver tissues obtained from patients with nonalcoholic fatty liver disease (NAFLD), the extent of XBP1s acetylation correlated positively with the NAFLD activity score but negatively with the Sirt6 level. Collectively, we present direct evidence supporting the importance of XBP1 acetylation in ER stress-induced hepatic steatosis. Activating a protein that regulates cellular health could protect against fat accumulation during the onset of non-alcoholic fatty liver disease (NAFLD). A high-fat diet disrupts the endoplasmic reticulum (ER), a cellular membrane network responsible for synthesizing and processing proteins and fats, and can lead to NAFLD development. Previous studies found that a protein called XBP1s activates fat-related genes during NAFLD. Byung-Hyun Park and Eun Ju Bae at Chonbuk National University in Jeonbuk, South Korea, and co-workers, recently demonstrated that high levels of a regulatory protein called Sirt6 limits liver inflammation and ER stress during high-fat diets. Now, in experiments on mouse models and human liver cells, Park’s team have shown that Sirt6 reduces liver ER stress by modifying XBP1s. Encouraging Sirt6 activation may help protect against NAFLD progression.
Collapse
Affiliation(s)
- In Hyuk Bang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Oh Kwang Kwon
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Lihua Hao
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dami Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Myung-Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
37
|
Pol CJ, Pollak NM, Jurczak MJ, Zacharia E, Karagiannides I, Kyriazis ID, Ntziachristos P, Scerbo DA, Brown BR, Aifantis I, Shulman GI, Goldberg IJ, Drosatos K. Cardiac myocyte KLF5 regulates body weight via alteration of cardiac FGF21. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2125-2137. [PMID: 31029826 PMCID: PMC6614009 DOI: 10.1016/j.bbadis.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/22/2023]
Abstract
Cardiac metabolism affects systemic energetic balance. Previously, we showed that Krüppel-like factor (KLF)-5 regulates cardiomyocyte PPARα and fatty acid oxidation-related gene expression in diabetes. We surprisingly found that cardiomyocyte-specific KLF5 knockout mice (αMHC-KLF5-/-) have accelerated diet-induced obesity, associated with increased white adipose tissue (WAT). Alterations in cardiac expression of the mediator complex subunit 13 (Med13) modulates obesity. αMHC-KLF5-/- mice had reduced cardiac Med13 expression likely because KLF5 upregulates Med13 expression in cardiomyocytes. We then investigated potential mechanisms that mediate cross-talk between cardiomyocytes and WAT. High fat diet-fed αMHC-KLF5-/- mice had increased levels of cardiac and plasma FGF21, while food intake, activity, plasma leptin, and natriuretic peptides expression were unchanged. Consistent with studies reporting that FGF21 signaling in WAT decreases sumoylation-driven PPARγ inactivation, αMHC-KLF5-/- mice had less SUMO-PPARγ in WAT. Increased diet-induced obesity found in αMHC-KLF5-/- mice was absent in αMHC-[KLF5-/-;FGF21-/-] double knockout mice, as well as in αMHC-FGF21-/- mice that we generated. Thus, cardiomyocyte-derived FGF21 is a component of pro-adipogenic crosstalk between heart and WAT.
Collapse
Affiliation(s)
- Christine J Pol
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Nina M Pollak
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael J Jurczak
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Effimia Zacharia
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Iordanes Karagiannides
- Inflammatory Bowel Disease Center and Neuroendocrine Assay Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ioannis D Kyriazis
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Panagiotis Ntziachristos
- Howard Hughes Medical Institute, Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Diego A Scerbo
- Division of Preventive Medicine and Nutrition, Columbia University, New York, NY 10032, USA
| | - Brett R Brown
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute, Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Gerald I Shulman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ira J Goldberg
- Division of Preventive Medicine and Nutrition, Columbia University, New York, NY 10032, USA
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Department of Pharmacology, Philadelphia, USA.
| |
Collapse
|
38
|
Harmon DB, Mandler WK, Sipula IJ, Dedousis N, Lewis SE, Eckels JT, Du J, Wang Y, Huckestein BR, Pagano PJ, Cifuentes-Pagano E, Homanics GE, Van't Erve TJ, Stefanovic-Racic M, Jurczak MJ, O'Doherty RM, Kelley EE. Hepatocyte-Specific Ablation or Whole-Body Inhibition of Xanthine Oxidoreductase in Mice Corrects Obesity-Induced Systemic Hyperuricemia Without Improving Metabolic Abnormalities. Diabetes 2019; 68:1221-1229. [PMID: 30936145 PMCID: PMC6610025 DOI: 10.2337/db18-1198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/18/2019] [Indexed: 01/20/2023]
Abstract
Systemic hyperuricemia (HyUA) in obesity/type 2 diabetes facilitated by elevated activity of xanthine oxidoreductase (XOR), which is the sole source of uric acid (UA) in mammals, has been proposed to contribute to the pathogenesis of insulin resistance/dyslipidemia in obesity. Here, the effects of hepatocyte-specific ablation of Xdh, the gene encoding XOR (HXO), and whole-body pharmacologic inhibition of XOR (febuxostat) on obesity-induced insulin resistance/dyslipidemia were assessed. Deletion of hepatocyte Xdh substantially lowered liver and plasma UA concentration. When exposed to an obesogenic diet, HXO and control floxed (FLX) mice became equally obese, but systemic HyUA was absent in HXO mice. Despite this, obese HXO mice became as insulin resistant and dyslipidemic as obese FLX mice. Similarly, febuxostat dramatically lowered plasma and tissue UA and XOR activity in obese wild-type mice without altering obesity-associated insulin resistance/dyslipidemia. These data demonstrate that hepatocyte XOR activity is a critical determinant of systemic UA homeostasis, that deletion of hepatocyte Xdh is sufficient to prevent systemic HyUA of obesity, and that neither prevention nor correction of HyUA improves insulin resistance/dyslipidemia in obesity. Thus, systemic HyUA, although clearly a biomarker of the metabolic abnormalities of obesity, does not appear to be causative.
Collapse
Affiliation(s)
- Daniel B Harmon
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - W Kyle Mandler
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Ian J Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nikolaos Dedousis
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sara E Lewis
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Jeremy T Eckels
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Jianhai Du
- Department of Ophthalmology and Biochemistry, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Yekai Wang
- Department of Ophthalmology and Biochemistry, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Brydie R Huckestein
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Gregg E Homanics
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Thomas J Van't Erve
- Immunity, Inflammation, and Disease Laboratory/Free Radical Metabolism Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| |
Collapse
|
39
|
Kang DW, Dong SH, Kim SH, Kim YI, Park DC, Yeo SG. Expression of endoplasmic reticulum stress-related mRNA in otitis media with effusion. Int J Pediatr Otorhinolaryngol 2019; 121:109-113. [PMID: 30878556 DOI: 10.1016/j.ijporl.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The endoplasmic reticulum (ER) is an intracellular organelle involved in the synthesis and secretion of proteins. The ER stress response, which protects cells from cytotoxic proteins such as unfolded proteins, is related to several diseases including inflammation. In this study, we investigated the effect of ER stress on the pathophysiology of otitis media with effusion (OME). METHODS Thirty-nine pediatric patients who were diagnosed with OME and underwent ventilation tube insertion were enrolled in this study. Exudate from the middle ear cavity was collected through ventilation insertion, and ER stress gene expression was analyzed via real-time polymerase chain reactions(PCR). RESULTS There were no significant differences in ER stress-related mRNA expression between effusion culture-positive and culture-negative groups (p > 0.05). Expression of the C/EBP-homologous protein (CHOP) was higher in the otitis-prone group than in the non-otitis-prone group (p < 0.05). The most common type of fluid was mucoid, and inositol-requiring enzyme 1α expression was higher in serous fluid than in mucoid, mucopurulent, or purulent fluid (p < 0.05). CONCLUSIONS Endoplasmic reticulum stress-related responses are activated in pediatric OME patients, and specific ER-stress related pathways are related to both the characteristics of fluid and the frequency of OME. Thus, ER stress-related responses affect the pathophysiology of OME in pediatric OME patients.
Collapse
Affiliation(s)
- Dae Woong Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sung Hwa Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Sasako T, Ohsugi M, Kubota N, Itoh S, Okazaki Y, Terai A, Kubota T, Yamashita S, Nakatsukasa K, Kamura T, Iwayama K, Tokuyama K, Kiyonari H, Furuta Y, Shibahara J, Fukayama M, Enooku K, Okushin K, Tsutsumi T, Tateishi R, Tobe K, Asahara H, Koike K, Kadowaki T, Ueki K. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat Commun 2019; 10:947. [PMID: 30814508 PMCID: PMC6393527 DOI: 10.1038/s41467-019-08591-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Dynamic metabolic changes occur in the liver during the transition between fasting and feeding. Here we show that transient ER stress responses in the liver following feeding terminated by Sdf2l1 are essential for normal glucose and lipid homeostasis. Sdf2l1 regulates ERAD through interaction with a trafficking protein, TMED10. Suppression of Sdf2l1 expression in the liver results in insulin resistance and increases triglyceride content with sustained ER stress. In obese and diabetic mice, Sdf2l1 is downregulated due to decreased levels of nuclear XBP-1s, whereas restoration of Sdf2l1 expression ameliorates glucose intolerance and fatty liver with decreased ER stress. In diabetic patients, insufficient induction of Sdf2l1 correlates with progression of insulin resistance and steatohepatitis. Therefore, failure to build an ER stress response in the liver may be a causal factor in obesity-related diabetes and nonalcoholic steatohepatitis, for which Sdf2l1 could serve as a therapeutic target and sensitive biomarker.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Molecular Sciences on Diabetes, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, 113-865, Japan
| | - Shinsuke Itoh
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Kowa Company Limited, Nagoya, 460-0003, Japan
| | - Yukiko Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Ai Terai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, Tokyo, 162-8636, Japan.,Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, 143-8541, Japan
| | - Satoshi Yamashita
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan.,Graduate School of Natural Sciences, Nagoya City University, Nagoya, 464-8601, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, 464-8601, Japan
| | - Kaito Iwayama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Kumpei Tokuyama
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Junji Shibahara
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuya Okushin
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takeya Tsutsumi
- Department of Infectious Disease, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Sciences of Research, The University of Toyama, Toyama, 930-8555, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Tokyo, 213-8507, Japan.
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan. .,Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, 113-8655, Japan. .,Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| |
Collapse
|
41
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
42
|
Bhattacharya A, Sun S, Wang H, Liu M, Long Q, Yin L, Kersten S, Zhang K, Qi L. Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J 2018; 37:embj.201899277. [PMID: 30389665 DOI: 10.15252/embj.201899277] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factor 21 (Fgf21) is a liver-derived, fasting-induced hormone with broad effects on growth, nutrient metabolism, and insulin sensitivity. Here, we report the discovery of a novel mechanism regulating Fgf21 expression under growth and fasting-feeding. The Sel1L-Hrd1 complex is the most conserved branch of mammalian endoplasmic reticulum (ER)-associated degradation (ERAD) machinery. Mice with liver-specific deletion of Sel1L exhibit growth retardation with markedly elevated circulating Fgf21, reaching levels close to those in Fgf21 transgenic mice or pharmacological models. Mechanistically, we show that the Sel1L-Hrd1 ERAD complex controls Fgf21 transcription by regulating the ubiquitination and turnover (and thus nuclear abundance) of ER-resident transcription factor Crebh, while having no effect on the other well-known Fgf21 transcription factor Pparα. Our data reveal a physiologically regulated, inverse correlation between Sel1L-Hrd1 ERAD and Crebh-Fgf21 levels under fasting-feeding and growth. This study not only establishes the importance of Sel1L-Hrd1 ERAD in the liver in the regulation of systemic energy metabolism, but also reveals a novel hepatic "ERAD-Crebh-Fgf21" axis directly linking ER protein turnover to gene transcription and systemic metabolic regulation.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY, USA.,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heting Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiaoming Long
- Cam-Su Mouse Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sander Kersten
- Nutrition Metabolism and Genomics Group, Wageningen University, Wageningen, The Netherlands
| | - Kezhong Zhang
- Department of Biochemistry, Microbiology, and Immunology, Center for Molecular Medicine and Genetics Wayne State University School of Medicine, Detroit, MI, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA .,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Spradley FT, Smith JA, Alexander BT, Anderson CD. Developmental origins of nonalcoholic fatty liver disease as a risk factor for exaggerated metabolic and cardiovascular-renal disease. Am J Physiol Endocrinol Metab 2018; 315:E795-E814. [PMID: 29509436 PMCID: PMC6293166 DOI: 10.1152/ajpendo.00394.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrauterine growth restriction (IUGR) is linked to increased risk for chronic disease. Placental ischemia and insufficiency in the mother are implicated in predisposing IUGR offspring to metabolic dysfunction, including hypertension, insulin resistance, abnormalities in glucose homeostasis, and nonalcoholic fatty liver disease (NAFLD). It is unclear whether these metabolic disturbances contribute to the developmental origins of exaggerated cardiovascular-renal disease (CVRD) risk accompanying IUGR. IUGR impacts the pancreas, adipose tissue, and liver, which are hypothesized to program for hepatic insulin resistance and subsequent NAFLD. NAFLD is projected to become the major cause of chronic liver disease and contributor to uncontrolled type 2 diabetes mellitus, which is a leading cause of chronic kidney disease. While NAFLD is increased in experimental models of IUGR, lacking is a full comprehension of the mechanisms responsible for programming of NAFLD and whether this potentiates susceptibility to liver injury. The use of well-established and clinically relevant rodent models, which mimic the clinical characteristics of IUGR, metabolic disturbances, and increased blood pressure in the offspring, will permit investigation into mechanisms linking adverse influences during early life and later chronic health. The purpose of this review is to propose mechanisms, including those proinflammatory in nature, whereby IUGR exacerbates the pathogenesis of NAFLD and how these adverse programmed outcomes contribute to exaggerated CVRD risk. Understanding the etiology of the developmental origins of chronic disease will allow investigators to uncover treatment strategies to intervene in the mother and her offspring to halt the increasing prevalence of metabolic dysfunction and CVRD.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jillian A Smith
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Barbara T Alexander
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
44
|
Geng T, Liu Y, Xu Y, Jiang Y, Zhang N, Wang Z, Carmichael GG, Taylor HS, Li D, Huang Y. H19 lncRNA Promotes Skeletal Muscle Insulin Sensitivity in Part by Targeting AMPK. Diabetes 2018; 67:2183-2198. [PMID: 30201684 PMCID: PMC6198334 DOI: 10.2337/db18-0370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a pivotal role in regulating systemic glucose homeostasis in part through the conserved cellular energy sensor AMPK. AMPK activation increases glucose uptake, lipid oxidation, and mitochondrial biogenesis, leading to enhanced muscle insulin sensitivity and whole-body energy metabolism. Here we show that the muscle-enriched H19 long noncoding RNA (lncRNA) acts to enhance muscle insulin sensitivity, at least in part, by activating AMPK. We identify the atypical dual-specificity phosphatase DUSP27/DUPD1 as a potentially important downstream effector of H19. We show that DUSP27, which is highly expressed in muscle with previously unknown physiological function, interacts with and activates AMPK in muscle cells. Consistent with decreased H19 expression in the muscle of insulin-resistant human subjects and rodents, mice with genetic H19 ablation exhibit muscle insulin resistance. Furthermore, a high-fat diet downregulates muscle H19 via both posttranscriptional and epigenetic mechanisms. Our results uncover an evolutionarily conserved, highly expressed lncRNA as an important regulator of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Ya Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Yetao Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Da Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| |
Collapse
|
45
|
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69:927-947. [PMID: 29940269 DOI: 10.1016/j.jhep.2018.06.008] [Citation(s) in RCA: 640] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
The global epidemic of obesity has been accompanied by a rising burden of non-alcoholic fatty liver disease (NAFLD), with manifestations ranging from simple steatosis to non-alcoholic steatohepatitis, potentially developing into hepatocellular carcinoma. Although much attention has focused on NAFLD, its pathogenesis remains largely obscure. The hallmark of NAFLD is the hepatic accumulation of lipids, which subsequently leads to cellular stress and hepatic injury, eventually resulting in chronic liver disease. Abnormal lipid accumulation often coincides with insulin resistance in steatotic livers and is associated with perturbed endoplasmic reticulum (ER) proteostasis in hepatocytes. In response to chronic ER stress, an adaptive signalling pathway known as the unfolded protein response is triggered to restore ER proteostasis. However, the unfolded protein response can cause inflammation, inflammasome activation and, in the case of non-resolvable ER stress, the death of hepatocytes. Experimental data suggest that the unfolded protein response influences hepatic tumour development, aggressiveness and response to treatment, offering novel therapeutic avenues. Herein, we provide an overview of the evidence linking ER stress to NAFLD and discuss possible points of intervention.
Collapse
Affiliation(s)
| | - Deborah Vallée
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, 02115 Boston, MA, USA
| | - Eric Chevet
- "Chemistry, Oncogenesis, Stress, Signaling", Inserm U1242, Université de Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | |
Collapse
|
46
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1701] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
47
|
Wei J, Yuan Y, Chen L, Xu Y, Zhang Y, Wang Y, Yang Y, Peek CB, Diebold L, Yang Y, Gao B, Jin C, Melo-Cardenas J, Chandel NS, Zhang DD, Pan H, Zhang K, Wang J, He F, Fang D. ER-associated ubiquitin ligase HRD1 programs liver metabolism by targeting multiple metabolic enzymes. Nat Commun 2018; 9:3659. [PMID: 30201971 PMCID: PMC6131148 DOI: 10.1038/s41467-018-06091-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
The HMG-CoA reductase degradation protein 1 (HRD1) has been identified as a key enzyme for endoplasmic reticulum-associated degradation of misfolded proteins, but its organ-specific physiological functions remain largely undefined. Here we show that mice with HRD1 deletion specifically in the liver display increased energy expenditure and are resistant to HFD-induced obesity and liver steatosis and insulin resistance. Proteomic analysis identifies a HRD1 interactome, a large portion of which includes metabolic regulators. Loss of HRD1 results in elevated ENTPD5, CPT2, RMND1, and HSD17B4 protein levels and a consequent hyperactivation of both AMPK and AKT pathways. Genome-wide mRNA sequencing revealed that HRD1-deficiency reprograms liver metabolic gene expression profiles, including suppressing genes involved in glycogenesis and lipogenesis and upregulating genes involved in glycolysis and fatty acid oxidation. We propose HRD1 as a liver metabolic regulator and a potential drug target for obesity, fatty liver disease, and insulin resistance associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuehui Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Yajun Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yanjie Yang
- Department of Medical Psychology, Public Health Institute of Harbin Medical University, 150081, Harbin, China
| | - Clara Bien Peek
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren Diebold
- Department of Medicine, Northwestern University Feinberg School of Mdicine, Chicago, IL, 60611, USA
| | - Yi Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Mdicine, Chicago, IL, 60611, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hui Pan
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, 100730, Beijing, China
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Cruz VH, Arner EN, Wynne KW, Scherer PE, Brekken RA. Loss of Tbk1 kinase activity protects mice from diet-induced metabolic dysfunction. Mol Metab 2018; 16:139-149. [PMID: 29935921 PMCID: PMC6157474 DOI: 10.1016/j.molmet.2018.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE TANK Binding Kinase 1 (TBK1) has been implicated in the regulation of metabolism through studies with the drug amlexanox, an inhibitor of the IκB kinase (IKK)-related kinases. Amlexanox induced weight loss, reduced fatty liver and insulin resistance in high fat diet (HFD) fed mice and has now progressed into clinical testing for the treatment and prevention of obesity and type 2 diabetes. However, since amlexanox is a dual IKKε/TBK1 inhibitor, the specific metabolic contribution of TBK1 is not clear. METHODS To distinguish metabolic functions unique to TBK1, we examined the metabolic profile of global Tbk1 mutant mice challenged with an obesogenic diet and investigated potential mechanisms for the improved metabolic phenotype. RESULTS AND CONCLUSION We report that systemic loss of TBK1 kinase function has an overall protective effect on metabolic readouts in mice on an obesogenic diet, which is mediated by loss of an inhibitory interaction between TBK1 and the insulin receptor.
Collapse
Affiliation(s)
- Victoria H Cruz
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA
| | - Emily N Arner
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA
| | - Katherine W Wynne
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA
| | | | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
49
|
Zhang N, Geng T, Wang Z, Zhang R, Cao T, Camporez JP, Cai SY, Liu Y, Dandolo L, Shulman GI, Carmichael GG, Taylor HS, Huang Y. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia. JCI Insight 2018; 3:120304. [PMID: 29769440 DOI: 10.1172/jci.insight.120304] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022] Open
Abstract
Excessive hepatic glucose production (HGP) contributes significantly to the hyperglycemia of type 2 diabetes; however, the molecular mechanism underlying this dysregulation remains poorly understood. Here, we show that fasting temporally increases the expression of H19 long noncoding RNA (lncRNA) in nondiabetic mouse liver, whereas its level is chronically elevated in diet-induced diabetic mice, consistent with the previously reported chronic hepatic H19 increase in diabetic patients. Importantly, liver-specific H19 overexpression promotes HGP, hyperglycemia, and insulin resistance, while H19 depletion enhances insulin-dependent suppression of HGP. Using genome-wide methylation and transcriptome analyses, we demonstrate that H19 knockdown in hepatic cells alters promoter methylation and expression of Hnf4a, a master gluconeogenic transcription factor, and that this regulation is recapitulated in vivo. Our findings offer a mechanistic explanation of lncRNA H19's role in the pathogenesis of diabetic hyperglycemia and suggest that targeting hepatic H19 may hold the potential of new treatment for this disease.
Collapse
Affiliation(s)
- Na Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tingting Geng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ruling Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tiefeng Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Joao Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shi-Ying Cai
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ya Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Luisa Dandolo
- Department of Genetics and Development, Inserm U1016, Institut Cochin, Paris, France
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
50
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|