1
|
Tomaziu-Todosia Anton E, Anton GI, Scripcariu IS, Dumitrașcu I, Scripcariu DV, Balmus IM, Ionescu C, Visternicu M, Socolov DG. Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer-A Narrative Review. Int J Mol Sci 2025; 26:4961. [PMID: 40430101 PMCID: PMC12111834 DOI: 10.3390/ijms26104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Cervical cancer ranks third among malignant diseases of the female reproductive system and progressively develops through a series of pathological changes known as cervical intraepithelial neoplasia (CIN). Despite being extremely aggressive and causing increased mortality, the main treatment options include surgery or a combination of chemotherapy and radiotherapy, often based on cisplatin-based chemotherapy and external beam radiotherapy or brachytherapy. Cervical dysplasia is an abnormal growth of cells on the surface of the cervix that could lead to cervical cancer. CIN most commonly occurs at the squamocolumnar junction of the cervix, a transitional zone between the squamous epithelium of the vagina and the columnar epithelium of the endocervix. The primary cause of CIN is chronic infection of the cervix with Human Papillomavirus (HPV). Oxidative stress (OS) and chronic inflammation are associated with HPV-induced cervical dysplasia. Reactive oxygen species (ROS) facilitate the progression of CIN through DNA damage, immune evasion, and cellular mutations. Thus, the inflammatory environment, characterized by increased expression of proinflammatory cytokines, contributes to epithelial transformation. Given these mechanisms, antioxidants, including vitamins A, C, D, E, polyphenols, and carotenoids, are being investigated for their potential as adjunctive therapies in CIN management. This review aims to provide a comprehensive analysis of the influence of oxidative stress, antioxidants, and inflammation on cervical cancer.
Collapse
Affiliation(s)
- Ecaterina Tomaziu-Todosia Anton
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Gabriel-Ioan Anton
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Ioana-Sadiye Scripcariu
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Irina Dumitrașcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| | - Dragos Viorel Scripcariu
- Department of Surgical Specialties I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Surgery, Regional Institute of Oncology Iasi, General Henri Mathias Berthelot Street, No. 2-4, 700483 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, No. 26, 700506 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Cătălina Ionescu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Mălina Visternicu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Demetra Gabriela Socolov
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
- Department of Obstetrics and Gynecology, Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania
| |
Collapse
|
2
|
Patange V, Ahirwar K, Tripathi T, Tripathi P, Shukla R. Scientific investigation of non-coding RNAs in mitochondrial epigenetic and aging disorders: Current nanoengineered approaches for their therapeutic improvement. Mitochondrion 2025; 80:101979. [PMID: 39505245 DOI: 10.1016/j.mito.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Genetic control is vital for the growth of cells and tissues, and it also helps living things, from single-celled organisms to complex creatures, maintain a stable internal environment. Within cells, structures called mitochondria act like tiny power plants, producing energy and keeping the cell balanced. The two primary categories of RNA are messenger RNA (mRNA) and non-coding RNA (ncRNA). mRNA carries the instructions for building proteins, while ncRNA does various jobs at the RNA level. There are different kinds of ncRNA, each with a specific role. Some help put RNA molecules together correctly, while others modify other RNAs or cut them into smaller pieces. Still others control how much protein is made from a gene. Scientists have recently discovered many more ncRNAs than previously known, and their functions are still being explored. This article analyzes the RNA molecules present within mitochondria, which have a crucial purpose in the operation of mitochondria. We'll also discuss how genes can be turned on and off without changing their DNA code, and how this process might be linked to mitochondrial RNA. Finally, we'll explore how scientists are using engineered particles to silence genes and develop new treatments based on manipulating ncRNA.
Collapse
Affiliation(s)
- Vaibhav Patange
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Tripti Tripathi
- Department of Physiology, Integral University, Kursi Road, Dashauli, UP 226026, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
3
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
4
|
Hu Z, Yang L, Zhang M, Tang H, Huang Y, Su Y, Ding Y, Li C, Wang M, Zhou Y, Zhang Q, Guo L, Wu Y, Wang Q, Liu N, Kang H, Wu Y, Yao D, Li Y, Ruan Z, Wang H, Bao F, Liu G, Wang J, Wang Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab 2024; 36:1586-1597.e7. [PMID: 38703762 DOI: 10.1016/j.cmet.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.
Collapse
Affiliation(s)
- Zhijuan Hu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Maolei Zhang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Yujie Su
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Chong Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengfei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Liman Guo
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Yue Wu
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Haoran Kang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Deyang Yao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yukun Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Ruan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feixiang Bao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guopan Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Junwei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Letafati A, Taghiabadi Z, Zafarian N, Tajdini R, Mondeali M, Aboofazeli A, Chichiarelli S, Saso L, Jazayeri SM. Emerging paradigms: unmasking the role of oxidative stress in HPV-induced carcinogenesis. Infect Agent Cancer 2024; 19:30. [PMID: 38956668 PMCID: PMC11218399 DOI: 10.1186/s13027-024-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024] Open
Abstract
The contribution of the human papillomavirus (HPV) to cancer is significant but not exclusive, as carcinogenesis involves complex mechanisms, notably oxidative stress. Oxidative stress and HPV can independently cause genome instability and DNA damage, contributing to tumorigenesis. Oxidative stress-induced DNA damage, especially double-strand breaks, aids in the integration of HPV into the host genome and promotes the overexpression of two viral proteins, E6 and E7. Lifestyle factors, including diet, smoking, alcohol, and psychological stress, along with genetic and epigenetic modifications, and viral oncoproteins may influence oxidative stress, impacting the progression of HPV-related cancers. This review highlights various mechanisms in oxidative-induced HPV-mediated carcinogenesis, including altered mitochondrial morphology and function leading to elevated ROS levels, modulation of antioxidant enzymes like Superoxide Dismutase (SOD), Glutathione (GSH), and Glutathione Peroxidase (GPx), induction of chronic inflammatory environments, and activation of specific cell signaling pathways like the Phosphoinositide 3-kinase, Protein kinase B, Mammalian target of rapamycin (PI3K/AKT/mTOR) and the Extracellular signal-regulated kinase (ERK) signaling pathway. The study highlights the significance of comprehending and controlling oxidative stress in preventing and treating cancer. We suggested that incorporating dietary antioxidants and targeting cancer cells through mechanisms involving ROS could be potential interventions to mitigate the impact of oxidative stress on HPV-related malignancies.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Zafarian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Roxana Tajdini
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mozhgan Mondeali
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer", Sapienza University, Rome, Italy.
| | - Seyed Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
6
|
Pereira IOA, Silva NNT, Lima AA, da Silva GN. Qualitative and quantitative changes in mitochondrial DNA associated with cervical cancer: A comprehensive review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:143-152. [PMID: 38523463 DOI: 10.1002/em.22591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Cervical cancer is the fourth most commonly diagnosed cancer in women and is considered a preventable disease, as vaccination and screening programs effectively reduce its incidence and mortality rates. Disease physiopathology and malignant cell transformation is a complex process, but it is widely known that high-risk HPV (hrHPV) infection is a necessary risk factor for cancer development. Mitochondria, cell organelles with important bioenergetic and biosynthetic functions, are important for cell energy production, cell growth, and apoptosis. Mitochondrial DNA is a structure that is particularly susceptible to quantitative (mtDNA copy number variation) and qualitative (sequence variations) alterations that are associated with various types of cancer. Novel biomarkers with diagnostic and prognostic value in cervical cancer can be evaluated to provide higher specificity and complement hrHPV molecular testing, which is the most recommended method for primary screening. In accordance with this, this review aimed to assess mitochondrial alterations associated with cervical cancer in clinical cervicovaginal samples, in order to unravel their possible role as specific diagnostic and prognostic biomarkers for cervical malignancy, and also to guide the understanding of their involvement in carcinogenesis, HPV infection, and disease progression.
Collapse
Affiliation(s)
| | | | - Angelica Alves Lima
- School of Pharmacy, UFOP - Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | |
Collapse
|
7
|
Bruni F. Human mtDNA-Encoded Long ncRNAs: Knotty Molecules and Complex Functions. Int J Mol Sci 2024; 25:1502. [PMID: 38338781 PMCID: PMC10855489 DOI: 10.3390/ijms25031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Until a few decades ago, most of our knowledge of RNA transcription products was focused on protein-coding sequences, which were later determined to make up the smallest portion of the mammalian genome. Since 2002, we have learnt a great deal about the intriguing world of non-coding RNAs (ncRNAs), mainly due to the rapid development of bioinformatic tools and next-generation sequencing (NGS) platforms. Moreover, interest in non-human ncRNAs and their functions has increased as a result of these technologies and the accessibility of complete genome sequences of species ranging from Archaea to primates. Despite not producing proteins, ncRNAs constitute a vast family of RNA molecules that serve a number of regulatory roles and are essential for cellular physiology and pathology. This review focuses on a subgroup of human ncRNAs, namely mtDNA-encoded long non-coding RNAs (mt-lncRNAs), which are transcribed from the mitochondrial genome and whose disparate localisations and functions are linked as much to mitochondrial metabolism as to cellular physiology and pathology.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
8
|
La Colla A, Cámara CA, Campisano S, Chisari AN. Mitochondrial dysfunction and epigenetics underlying the link between early-life nutrition and non-alcoholic fatty liver disease. Nutr Res Rev 2023; 36:281-294. [PMID: 35067233 DOI: 10.1017/s0954422422000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of 'developmental programming'. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review, we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD.
Collapse
Affiliation(s)
- Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carolina Anahí Cámara
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
9
|
Nguyen J, Le Q, Win PW, Hill KA, Singh SM, Castellani CA. Decoding mitochondrial-nuclear (epi)genome interactions: the emerging role of ncRNAs. Epigenomics 2023; 15:1121-1136. [PMID: 38031736 DOI: 10.2217/epi-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Phyo W Win
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Bendek MF, Fitzpatrick C, Jeldes E, Boland A, Deleuze JF, Farfán N, Villegas J, Nardocci G, Montecino M, Burzio LO, Burzio VA. Inverse Modulation of Aurora Kinase A and Topoisomerase IIα in Normal and Tumor Breast Cells upon Knockdown of Mitochondrial ASncmtRNA. Noncoding RNA 2023; 9:59. [PMID: 37888205 PMCID: PMC10609868 DOI: 10.3390/ncrna9050059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is currently the most diagnosed form of cancer and the leading cause of death by cancer among females worldwide. We described the family of long non-coding mitochondrial RNAs (ncmtRNAs), comprised of sense (SncmtRNA) and antisense (ASncmtRNA) members. Knockdown of ASncmtRNAs using antisense oligonucleotides (ASOs) induces proliferative arrest and apoptotic death of tumor cells, but not normal cells, from various tissue origins. In order to study the mechanisms underlying this selectivity, in this study we performed RNAseq in MDA-MB-231 breast cancer cells transfected with ASncmtRNA-specific ASO or control-ASO, or left untransfected. Bioinformatic analysis yielded several differentially expressed cell-cycle-related genes, from which we selected Aurora kinase A (AURKA) and topoisomerase IIα (TOP2A) for RT-qPCR and western blot validation in MDA-MB-231 and MCF7 breast cancer cells, as well as normal breast epithelial cells (HMEC). We observed no clear differences regarding mRNA levels but both proteins were downregulated in tumor cells and upregulated in normal cells. Since these proteins play a role in genomic integrity, this inverse effect of ASncmtRNA knockdown could account for tumor cell downfall whilst protecting normal cells, suggesting this approach could be used for genomic protection under cancer treatment regimens or other scenarios.
Collapse
Affiliation(s)
- Maximiliano F. Bendek
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
| | - Christopher Fitzpatrick
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Unit of Molecular Virology and Immunology, INRAE, University of Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Emanuel Jeldes
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Anne Boland
- CEA, National Center for Research in Human Genomics (NCRHG), University of Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- CEA, National Center for Research in Human Genomics (NCRHG), University of Paris-Saclay, 91057 Evry, France
| | - Nicole Farfán
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
- Faculty of Health and Social Sciences, University of Las Americas, Santiago 8242125, Chile
| | - Jaime Villegas
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- School of Veterinary Medicine, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| | - Gino Nardocci
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Faculty of Medicine, University of Los Andes, Santiago 7620086, Chile
- Center for Biomedical Research and Innovation (CIIB), Faculty of Medicine, University of Los Andes, Santiago 7620086, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| | - Luis O. Burzio
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
| | - Verónica A. Burzio
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| |
Collapse
|
11
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, Alavi MS, Moghbeli M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res 2023; 56:1. [PMID: 36597150 PMCID: PMC9808980 DOI: 10.1186/s40659-022-00411-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Rahimi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Sadat Alavi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Alternations in mitochondrial genome in carcinogenesis of HPV positive cervix. Exp Mol Pathol 2020; 117:104530. [PMID: 32931837 DOI: 10.1016/j.yexmp.2020.104530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE It is well known that mitochondrial dysfunctions are involved in tumorigenesis. A special interest of scientists is mitochondrial ND1 gene (mtND1). Recently detected mutations in the mtND1 can disrupt the normal activity of complex I and affect oxidative phosphorylation, thus leading to increase reactive oxygen species production. This study was undertaken to determine the alternations in the mtND1 and evaluate their association with development of precancerous lesions and cervical cancer. METHODS In the study 29 cervical cancer, 28 low grade squamous intraepithelial lesion (L-SIL) and 30 high grade squamous intraepithelial lesion (H-SIL) HPV positive fragments tissue were screened for the presence of mtND1 mutations. RESULTS Our study showed that mutations in the mtND1 gene were detected in patients with precancerous stage, as well as cervical cancer. We have identified 12 point mutations in 116 analyzed precancerous and cancer samples HPV positive. Most detected missense mutations were previously described, except one (p. M156K) with Grantham value 95. The lower expression of mRNA ND1 was detected in cervical cancer cases and in all samples in which mtND1 mutations were identified. Our analyses revealed that level of ROS production was higher in cervical cancer tissues and all cases characterized by mtND1 mutations. CONCLUSIONS We hypothesize that mutations in MT-ND1 observed in H-SIL and cancer could activate cervical carcinogenesis by increased ROS production.
Collapse
|
14
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Human Papillomavirus-related Cancers and Mitochondria. Virus Res 2020; 286:198016. [PMID: 32445871 DOI: 10.1016/j.virusres.2020.198016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Although it has been established that persistent infection with high risk human papillomavirus (HR-HPV) is the main cause in the development of cervical cancer, the HR-HPV infection is also related with the cause of a significant fraction of other human malignancies from the mucosal squamous epithelial such as anus, vagina, vulva, penis and oropharynx. HR-HPV infection induces cell proliferation, cell death evasion and genomic instability resulting in cell transformation, due to HPV proteins, which target and modify the function of differents cell molecules and organelles, such as mitochondria. Mitochondria are essential in the production of the cellular energy by oxidative phosphorylation (OXPHOS), in the metabolism of nucleotides, aminoacids (aa), and fatty acids, even in the regulation of cell death processes such as apoptosis or mitophagy. Thus, mitochondria have a significant role in the HPV-related cancer development. This review focuses on the role of HPV and mitochondria in HPV-related cancer development, and treatments associated to mitochondrial apoptosis.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Faculty of Chemistry, Biology Department, Laboratories F-225, National Autonomous University of Mexico, CDMX, 04510, Mexico.
| | - Ana Karina Aranda-Rivera
- Faculty of Chemistry, Biology Department, Laboratories F-315, National Autonomous University of Mexico, CDMX, 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - José Pedraza-Chaverri
- Faculty of Chemistry, Biology Department, Laboratories F-315, National Autonomous University of Mexico, CDMX, 04510, Mexico.
| |
Collapse
|
15
|
Casarotto M, Fanetti G, Guerrieri R, Palazzari E, Lupato V, Steffan A, Polesel J, Boscolo-Rizzo P, Fratta E. Beyond MicroRNAs: Emerging Role of Other Non-Coding RNAs in HPV-Driven Cancers. Cancers (Basel) 2020; 12:cancers12051246. [PMID: 32429207 PMCID: PMC7281476 DOI: 10.3390/cancers12051246] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with high-risk Human Papilloma Virus (HPV) leads to the development of several tumors, including cervical, oropharyngeal, and anogenital squamous cell carcinoma. In the last years, the use of high-throughput sequencing technologies has revealed a number of non-coding RNA (ncRNAs), distinct from micro RNAs (miRNAs), that are deregulated in HPV-driven cancers, thus suggesting that HPV infection may affect their expression. However, since the knowledge of ncRNAs is still limited, a better understanding of ncRNAs biology, biogenesis, and function may be challenging for improving the diagnosis of HPV infection or progression, and for monitoring the response to therapy of patients affected by HPV-driven tumors. In addition, to establish a ncRNAs expression profile may be instrumental for developing more effective therapeutic strategies for the treatment of HPV-associated lesions and cancers. Therefore, this review will address novel classes of ncRNAs that have recently started to draw increasing attention in HPV-driven tumors, with a particular focus on ncRNAs that have been identified as a direct target of HPV oncoproteins.
Collapse
Affiliation(s)
- Mariateresa Casarotto
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
| | - Giuseppe Fanetti
- Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (G.F.); (E.P.)
| | - Roberto Guerrieri
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
| | - Elisa Palazzari
- Division of Radiotherapy, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (G.F.); (E.P.)
| | - Valentina Lupato
- Division of Otolaryngology, General Hospital “Santa Maria degli Angeli”, 33170 Pordenone, Italy;
| | - Agostino Steffan
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
| | - Jerry Polesel
- Division of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy;
| | - Paolo Boscolo-Rizzo
- Section of Otolaryngology, Department of Neurosciences, University of Padova, 31100 Treviso, Italy;
| | - Elisabetta Fratta
- Division of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano (PN), Italy; (M.C.); (R.G.); (A.S.)
- Correspondence: ; Tel.: +390434659569
| |
Collapse
|
16
|
Crosstalk of lncRNA and Cellular Metabolism and Their Regulatory Mechanism in Cancer. Int J Mol Sci 2020; 21:ijms21082947. [PMID: 32331347 PMCID: PMC7215767 DOI: 10.3390/ijms21082947] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
The imbalanced regulation of metabolic homeostasis and energy production is highly associated with inflammation, tumor growth, metastasis and cancer progression. Both glycolysis and oxidative phosphorylation maintain metabolic homeostasis and energy production in cells. Long noncoding RNAs (lncRNAs) are a class of non-protein-coding transcripts longer than 200 nucleotides. Furthermore, lncRNAs can function as either tumor suppressors or oncogenes in cancer. Dysregulated lncRNAs reportedly regulate cancer hallmarks such as tumor growth, metabolism and metastasis. Accordingly, uncovering the interaction between lncRNAs and cellular metabolism has become a necessity when attempting to identify effective therapeutic and preventive strategies in cancer progression. This review summarizes important knowledge of the actions of known lncRNAs-mediated cancer metabolism.
Collapse
|
17
|
Cavalcante GC, Magalhães L, Ribeiro-dos-Santos Â, Vidal AF. Mitochondrial Epigenetics: Non-Coding RNAs as a Novel Layer of Complexity. Int J Mol Sci 2020; 21:E1838. [PMID: 32155913 PMCID: PMC7084767 DOI: 10.3390/ijms21051838] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are organelles responsible for several functions involved in cellular balance, including energy generation and apoptosis. For decades now, it has been well-known that mitochondria have their own genetic material (mitochondrial DNA), which is different from nuclear DNA in many ways. More recently, studies indicated that, much like nuclear DNA, mitochondrial DNA is regulated by epigenetic factors, particularly DNA methylation and non-coding RNAs (ncRNAs). This field is now called mitoepigenetics. Additionally, it has also been established that nucleus and mitochondria are constantly communicating to each other to regulate different cellular pathways. However, little is known about the mechanisms underlying mitoepigenetics and nuclei-mitochondria communication, and also about the involvement of the ncRNAs in mitochondrial functions and related diseases. In this context, this review presents the state-of-the-art knowledge, focusing on ncRNAs as new players in mitoepigenetic regulation and discussing future perspectives of these fields.
Collapse
Affiliation(s)
- Giovanna C. Cavalcante
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Rua dos Mundurucus, 4487, 66073-005 Belém, PA, Brazil
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
18
|
Jusic A, Devaux Y. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115:23. [PMID: 32140778 DOI: 10.1007/s00395-020-0783-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Mitochondrial function and integrity are vital for the maintenance of cellular homeostasis, particularly in high-energy demanding cells. Cardiomyocytes have a large number of mitochondria, which provide a continuous and bulk supply of the ATP necessary for cardiac mechanical function. More than 90% of the ATP consumed by the heart is derived from the mitochondrial oxidative metabolism. Decreased energy supply as the main consequence of mitochondrial dysfunction is closely linked to cardiovascular disease (CVD). The discovery of noncoding RNA (ncRNAs) in the mitochondrial compartment has changed the traditional view of molecular pathways involved in the regulatory network of CVD. Mitochondrial ncRNAs participate in controlling cardiovascular pathogenesis by regulating glycolysis, mitochondrial energy status, and the expression of genes involved in mitochondrial metabolism. Understanding the underlying mechanisms of the association between impaired mitochondrial function resulting from fluctuation in expression levels of ncRNAs and specific disease phenotype can aid in preventing and treating CVD. This review presents an overview of the role of mitochondrial ncRNAs in the complex regulatory network of the cardiovascular pathology. We will summarize and discuss (1) mitochondrial microRNAs (mitomiRs) and long noncoding RNAs (lncRNAs) encoded either by nuclear or mitochondrial genome which are involved in the regulation of mitochondrial metabolism; (2) the role of mitomiRs and lncRNAs in the pathogenesis of several CVD such as hypertension, cardiac hypertrophy, acute myocardial infarction and heart failure; (3) the biomarker and therapeutic potential of mitochondrial ncRNAs in CVD; (4) and the challenges inherent to their translation into clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg.
| | | |
Collapse
|
19
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Borgna V, Lobos-González L, Guevara F, Landerer E, Bendek M, Ávila R, Silva V, Villota C, Araya M, Rivas A, López C, Socias T, Castillo J, Alarcón L, Burzio LO, Burzio VA, Villegas J. Targeting antisense mitochondrial noncoding RNAs induces bladder cancer cell death and inhibition of tumor growth through reduction of survival and invasion factors. J Cancer 2020; 11:1780-1791. [PMID: 32194789 PMCID: PMC7052861 DOI: 10.7150/jca.38880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/23/2019] [Indexed: 01/06/2023] Open
Abstract
Knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, supporting a selective therapy against different types of cancer. In this work, we evaluated the effects of knockdown of ASncmtRNAs on bladder cancer (BCa). We transfected the BCa cell lines UMUC-3, RT4 and T24 with the specific antisense oligonucleotide Andes-1537S, targeted to the human ASncmtRNAs. Knockdown induced a strong inhibition of cell proliferation and increase in cell death in all three cell lines. As observed in UMUC-3 cells, the treatment triggered apoptosis, evidenced by loss of mitochondrial membrane potential and Annexin V staining, along with activation of procaspase-3 and downregulation of the anti-apoptotic factors survivin and Bcl-xL. Treatment also inhibited cell invasion and spheroid formation together with inhibition of N-cadherin and MMP 11. In vivo treatment of subcutaneous xenograft UMUC-3 tumors in NOD/SCID mice with Andes-1537S induced inhibition of tumor growth as compared to saline control. Similarly, treatment of a high-grade bladder cancer PDX with Andes-1537S resulted in a strong inhibition of tumor growth. Our results suggest that ASncmtRNAs could be potent targets for bladder cancer as adjuvant therapy.
Collapse
Affiliation(s)
- Vincenzo Borgna
- Fundación Ciencia & Vida.,Facultad de Medicina, Universidad De Santiago.,Servicio de Urología, Hospital Barros Luco-Trudeau
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo
| | | | | | | | | | | | - Claudio Villota
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Bernardo O'Higgins
| | - Mariela Araya
- Fundación Ciencia & Vida.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | | | | | | | - Jorge Castillo
- Servicio de Anatomía Patológica, Hospital Barros Luco-Trudeau. Santiago, Chile
| | - Luis Alarcón
- Servicio de Urología, Hospital Barros Luco-Trudeau
| | - Luis O Burzio
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | - Verónica A Burzio
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | - Jaime Villegas
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| |
Collapse
|
21
|
Villota C, Varas-Godoy M, Jeldes E, Campos A, Villegas J, Borgna V, Burzio LO, Burzio VA. HPV-18 E2 protein downregulates antisense noncoding mitochondrial RNA-2, delaying replicative senescence of human keratinocytes. Aging (Albany NY) 2019; 11:33-47. [PMID: 30595560 PMCID: PMC6339806 DOI: 10.18632/aging.101711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Human and mouse cells display a differential expression pattern of a family of mitochondrial noncoding RNAs (ncmtRNAs), according to proliferative status. Normal proliferating and cancer cells express a sense ncmtRNA (SncmtRNA), which seems to be required for cell proliferation, and two antisense transcripts referred to as ASncmtRNA-1 and -2. Remarkably however, the ASncmtRNAs are downregulated in human and mouse cancer cells, including HeLa and SiHa cells, transformed with HPV-18 and HPV-16, respectively. HPV E2 protein is considered a tumor suppressor in the context of high-risk HPV-induced transformation and therefore, to explore the mechanisms involved in the downregulation of ASncmtRNAs during tumorigenesis, we studied human foreskin keratinocytes (HFK) transduced with lentiviral-encoded HPV-18 E2. Transduced cells displayed a significantly extended replicative lifespan of up to 23 population doublings, compared to 8 in control cells, together with downregulation of the ASncmtRNAs. At 26 population doublings, cells transduced with E2 were arrested at G2/M, together with downregulation of E2 and SncmtRNA and upregulation of ASncmtRNA-2. Our results suggest a role for high-risk HPV E2 protein in cellular immortalization. Additionally, we propose a new cellular phenotype according to the expression of the SncmtRNA and the ASncmtRNAs.
Collapse
Affiliation(s)
- Claudio Villota
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Emanuel Jeldes
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - América Campos
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Laboratorio de Comunicaciones Celulares (CEMC) Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime Villegas
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Vincenzo Borgna
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis O Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
Fitzpatrick C, Bendek MF, Briones M, Farfán N, Silva VA, Nardocci G, Montecino M, Boland A, Deleuze JF, Villegas J, Villota C, Silva V, Lobos-Gonzalez L, Borgna V, Barrey E, Burzio LO, Burzio VA. Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors. Cell Death Dis 2019; 10:423. [PMID: 31142736 PMCID: PMC6541642 DOI: 10.1038/s41419-019-1649-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Abstract
The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Christopher Fitzpatrick
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Maximiliano F Bendek
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Macarena Briones
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile
| | - Nicole Farfán
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Valeria A Silva
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Valparaíso Interdisciplinary Neuroscience Center, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Gino Nardocci
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Life Sciences and Faculty of Medicine, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Martín Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Life Sciences and Faculty of Medicine, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Jaime Villegas
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile.,Andes Biotechnologies Global Inc., Burlingame, CA, USA.,Center for Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Villota
- School of Nutrition and Diet, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Verónica Silva
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana & Universidad del Desarrollo, Santiago, Chile
| | - Vincenzo Borgna
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Eric Barrey
- INRA, Génétique Animale et Biologie Intégrative UMR1313, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis O Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile.,Andes Biotechnologies Global Inc., Burlingame, CA, USA
| | - Verónica A Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile. .,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile. .,Andes Biotechnologies Global Inc., Burlingame, CA, USA.
| |
Collapse
|
23
|
Borgna V, Villegas J, Burzio VA, Belmar S, Araya M, Jeldes E, Lobos-González L, Silva V, Villota C, Oliveira-Cruz L, Lopez C, Socias T, Castillo O, Burzio LO. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model. Oncotarget 2018; 8:43692-43708. [PMID: 28620146 PMCID: PMC5546434 DOI: 10.18632/oncotarget.18460] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/28/2017] [Indexed: 12/20/2022] Open
Abstract
Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.
Collapse
Affiliation(s)
- Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Servicio de Urología, Hospital Barros Luco-Trudeau, Universidad de Santiago, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | | | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Emanuel Jeldes
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Octavio Castillo
- Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile.,Centro de Cirugía Robótica, Clínica Indisa, Santa María, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
24
|
Lobos-González L, Silva V, Araya M, Restovic F, Echenique J, Oliveira-Cruz L, Fitzpatrick C, Briones M, Villegas J, Villota C, Vidaurre S, Borgna V, Socias M, Valenzuela S, Lopez C, Socias T, Varas M, Díaz J, Burzio LO, Burzio VA. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget 2018; 7:58331-58350. [PMID: 27507060 PMCID: PMC5295434 DOI: 10.18632/oncotarget.11110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.
Collapse
Affiliation(s)
- Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Franko Restovic
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Present address: Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Echenique
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Macarena Briones
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Soledad Vidaurre
- Andes Biotechnologies SpA, Santiago, Chile.,Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Servicio de Urología, Hospital Barros-Lucco-Trudeau, Santiago, Chile
| | | | | | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | | | - Jorge Díaz
- Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| |
Collapse
|
25
|
Abstract
The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration.
Collapse
Affiliation(s)
- Luca Lambertini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1057, New York, NY, 10029, USA. .,Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1057, New York, NY, 10029, USA.
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Ageing Research Laboratory, Newcastle University, Campus for Ageing and Vitality, Edwardson Building, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
26
|
Villegas J, Borgna V, Burzio VA. Different cancers, same target? Aging (Albany NY) 2017; 9:1853-1854. [PMID: 28800297 PMCID: PMC5611975 DOI: 10.18632/aging.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022]
MESH Headings
- Animals
- Cell Line, Tumor
- Clinical Trials, Phase I as Topic
- Gene Knockdown Techniques
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/classification
- Neoplasms/pathology
- Neoplasms/therapy
- Oligoribonucleotides, Antisense/administration & dosage
- Oligoribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Jaime Villegas
- Andes Biotechnologies SpA - Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA - Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina, Universidad de Santiago, Santiago, Chile
| | - Veronica A Burzio
- Andes Biotechnologies SpA - Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
27
|
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int J Mol Sci 2017; 18:ijms18040714. [PMID: 28350330 PMCID: PMC5412300 DOI: 10.3390/ijms18040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, "chimeric RNA" has never been lucidly defined, partly because "gene" itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today's chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay.
Collapse
|
28
|
Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer 2016; 140:1955-1967. [DOI: 10.1002/ijc.30546] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/11/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Subash Chandra Gupta
- Laboratory for Translational Cancer Research; Department of Biochemistry, Institute of Science, Banaras Hindu University; Varanasi 221 005 India
| | - Yashoda Nandan Tripathi
- Laboratory for Translational Cancer Research; Department of Biochemistry, Institute of Science, Banaras Hindu University; Varanasi 221 005 India
| |
Collapse
|
29
|
Xie B, Yang W, Ouyang Y, Chen L, Jiang H, Liao Y, Liao DJ. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution. PLoS One 2016; 11:e0154855. [PMID: 27148738 PMCID: PMC4858267 DOI: 10.1371/journal.pone.0154855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization.
Collapse
Affiliation(s)
- Bingkun Xie
- Guangxi Institute of Animal Sciences, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi, 530001, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| | - Wei Yang
- Guangxi Veterinary Research Institute, Nanning, Guangxi, P.R. China
| | - Yongchang Ouyang
- Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, United States of America
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, United States of America
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| | - Yuying Liao
- Guangxi Institute of Animal Sciences, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi, 530001, P.R. China
| | - D. Joshua Liao
- Department of Pathology, Guizhou Medical University Hospital, Guizhou, Guiyang, 550004, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| |
Collapse
|
30
|
Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2016; 17:260. [PMID: 26907262 PMCID: PMC4783989 DOI: 10.3390/ijms17020260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.
Collapse
|
31
|
Dietrich A, Wallet C, Iqbal RK, Gualberto JM, Lotfi F. Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie 2015; 117:48-62. [DOI: 10.1016/j.biochi.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
|
32
|
Bianchessi V, Badi I, Bertolotti M, Nigro P, D'Alessandra Y, Capogrossi MC, Zanobini M, Pompilio G, Raucci A, Lauri A. The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. J Mol Cell Cardiol 2015; 81:62-70. [PMID: 25640160 DOI: 10.1016/j.yjmcc.2015.01.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/12/2014] [Accepted: 01/04/2015] [Indexed: 01/23/2023]
Abstract
Age-associated cardiovascular diseases are at least partially ascribable to vascular cell senescence. Replicative senescence (RS) and stress-induced premature senescence (SIPS) are provoked respectively by endogenous (telomere erosion) and exogenous (H2O2, UV) stimuli resulting in cell cycle arrest in G1 and G2 phases. In both scenarios, mitochondria-derived ROS are important players in senescence initiation. We aimed to define whether a mtDNA-transcribed long-non-coding-RNA (lncRNA), ASncmtRNA-2, has a role in vascular aging and senescence. Aortas of old mice, characterized by increased senescence, showed an increment in ASncmtRNA-2 expression. In vitro analysis of Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC) established that ASncmtRNA-2 is induced in EC, but not in VSMC, during RS. Surprisingly, ASncmtRNA-2 is not upregulated in two different EC SIPS scenarios, treated with H2O2 and UV. The p16 gene displayed similar ASncmtRNA-2 expression patterns, suggesting a possible co-regulation of the two genes. Interestingly, the expression of two miRNAs, hsa-miR-4485 and hsa-miR-1973, with perfect homology to the double strand region of ASncmtRNA-2 and originating at least in part from a mitochondrial transcript, was induced in RS, opening to the possibility that this lncRNA functions as a non-canonical precursor of these miRNAs. Cell cycle analysis of EC transiently over-expressing ASncmtRNA-2 revealed an accumulation of EC in the G2/M phase, but not in the G1 phase. We propose that ASncmtRNA-2 in EC might be involved in the RS establishment by participating in the cell cycle arrest in G2/M phase, possibly through the production of hsa-miR-4485 and hsa-miR-1973. This article is part of a Special Issue entitled: Mitochondria.
Collapse
Affiliation(s)
- Valentina Bianchessi
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Ileana Badi
- Unità di Cardio-Oncologia Sperimentale e Invecchiamento Cardiovascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Matteo Bertolotti
- Unità di Cardio-Oncologia Sperimentale e Invecchiamento Cardiovascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Patrizia Nigro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Yuri D'Alessandra
- Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Roma, Italy
| | - Marco Zanobini
- Dipartimento di Chirurgia Vascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Angela Raucci
- Unità di Cardio-Oncologia Sperimentale e Invecchiamento Cardiovascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Andrea Lauri
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy.
| |
Collapse
|
33
|
Noncoding RNA Expression During Viral Infection: The Long and the Short of It. MICRORNAS AND OTHER NON-CODING RNAS IN INFLAMMATION 2015. [PMCID: PMC7123390 DOI: 10.1007/978-3-319-13689-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Choi YB, Harhaj EW. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses. ACTA ACUST UNITED AC 2014; 9:423-436. [PMID: 25580106 DOI: 10.1007/s11515-014-1332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Between 15-20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.
Collapse
Affiliation(s)
- Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
35
|
Vidaurre S, Fitzpatrick C, Burzio VA, Briones M, Villota C, Villegas J, Echenique J, Oliveira-Cruz L, Araya M, Borgna V, Socías T, Lopez C, Avila R, Burzio LO. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J Biol Chem 2014; 289:27182-27198. [PMID: 25100722 PMCID: PMC4175353 DOI: 10.1074/jbc.m114.558841] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy.
Collapse
Affiliation(s)
- Soledad Vidaurre
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo ÓHiggins, General Gana 1702, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile.
| | - Macarena Briones
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Claudio Villota
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Jaime Villegas
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Javiera Echenique
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Mariela Araya
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8370134, Chile, and
| | - Teresa Socías
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Constanza Lopez
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Rodolfo Avila
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Luis O Burzio
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile.
| |
Collapse
|
36
|
Lai D, Tan CL, Gunaratne J, Quek LS, Nei W, Thierry F, Bellanger S. Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host cell metabolism. PLoS One 2013; 8:e75625. [PMID: 24086592 PMCID: PMC3782431 DOI: 10.1371/journal.pone.0075625] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/19/2013] [Indexed: 02/05/2023] Open
Abstract
Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk) HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when analyzed by electron microscopy and increases production of mitochondrial ROS. This ROS release does not induce apoptosis, but instead correlates with stabilization of HIF-1α and increased glycolysis. These mitochondrial functions are not shared by the non-oncogenic (low-risk) HPV-6 E2 protein, suggesting that modification of cellular metabolism by high-risk HPV E2 proteins could play a role in carcinogenesis by inducing the Warburg effect.
Collapse
Affiliation(s)
- Deborah Lai
- Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chye Ling Tan
- Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ling Shih Quek
- Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wenlong Nei
- Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Françoise Thierry
- Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sophie Bellanger
- Papillomavirus Regulation and Cancer, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail:
| |
Collapse
|
37
|
Nikonov A, Mölder T, Sikut R, Kiiver K, Männik A, Toots U, Lulla A, Lulla V, Utt A, Merits A, Ustav M. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog 2013; 9:e1003610. [PMID: 24039580 PMCID: PMC3764220 DOI: 10.1371/journal.ppat.1003610] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/25/2013] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-β independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-β through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-β induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-β production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.
Collapse
Affiliation(s)
- Andrei Nikonov
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tarmo Mölder
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
| | | | - Kaja Kiiver
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Andres Männik
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Urve Toots
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Aleksei Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valeria Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Age Utt
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
38
|
Halim TA, Farooqi AA, Zaman F. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell Int 2013; 13:61. [PMID: 23773282 PMCID: PMC3691735 DOI: 10.1186/1475-2867-13-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials.
Collapse
Affiliation(s)
- Talha Abdul Halim
- Laboratory for Translational oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|
39
|
Gao LJ, Gu PQ, Zhao W, Ding WY, Zhao XQ, Guo SY, Zhong TY. The role of globular heads of the C1q receptor in HPV 16 E2-induced human cervical squamous carcinoma cell apoptosis is associated with p38 MAPK/JNK activation. J Transl Med 2013; 11:118. [PMID: 23651874 PMCID: PMC3651870 DOI: 10.1186/1479-5876-11-118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomavirus type 16 (HPV 16) E2 protein is a multifunctional DNA-binding protein. HPV 16 E2 regulates many biological responses, including DNA replication, gene expression, and apoptosis. The purpose of this study was to investigate the relationship among the receptor for globular heads of the human C1q (gC1qR) gene expression, HPV 16 E2 transfection and apoptosis regulation in human cervical squamous carcinoma cells (C33a and SiHa). METHODS gC1qR expression was examined in C33a and SiHa cells using real-time PCR and Western blot analysis. Apoptosis of C33a and SiHa cells was assessed by flow cytometry. C33a and SiHa cell viability, migration and proliferation were detected using the water-soluble tetrazolium salt (WST-1) assay, a transwell assay and 3H-thymidine incorporation into DNA (3H-TdR), respectively. RESULTS C33a and SiHa cells that were transfected with a vector encoding HPV 16 E2 displayed significantly increased gC1qR gene expression and p38 mitogen-activated protein kinase (p38 MAPK)/c-jun N-terminal kinase (JNK) activation as well as up-regulation of cellular apoptosis, which was abrogated by the addition of gC1qR small interfering RNA (siRNA). Furthermore, the changes in C33a and SiHa cell viability, migration and proliferation that were observed upon HPV 16 E2 transfection were abrogated by SB203580 (a p38 MAPK inhibitor) or SP600125 (a JNK inhibitor) treatment. CONCLUSION These data support a mechanism whereby HPV 16 E2 induces apoptosis by silencing the gC1qR gene or inhibiting p38 MAPK/JNK signalling in cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Ling-juan Gao
- State Key Laboratory of Reproductive Medicine, Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Tianfei Alley, Nanjing Mochou Road, Nanjing, 210004, PR China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Calmon MF, Mota MTDO, Babeto É, Candido NM, Girol AP, Mendiburu CF, Bonilha JL, Silvestre RVD, Rosa BM, Thomé JA, Medeiros GHA, Soares FA, Guimarães GC, de Arruda JGF, Oliani SM, Villa LL, Vassallo J, Rahal P. Overexpression of ANXA1 in penile carcinomas positive for high-risk HPVs. PLoS One 2013; 8:e53260. [PMID: 23341933 PMCID: PMC3544802 DOI: 10.1371/journal.pone.0053260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/27/2012] [Indexed: 01/16/2023] Open
Abstract
The incidence of penile cancer varies between populations but is rare in developed nations. Penile cancer is associated with a number of established risk factors and associated diseases including phimosis with chronic inflammation, human papillomavirus (HPV) infection, poor hygiene and smoking. The objective of this study was to identify genes related to this type of cancer. The detection of HPV was analyzed in 47 penile squamous cell carcinoma samples. HPV DNA was detected in 48.9% of penile squamous cell carcinoma cases. High-risk HPV were present in 42.5% of cases and low-risk HPV were detected in 10.6% of penile squamous cell carcinomas. The RaSH approach identified differential expression of Annexin A1 (ANXA1), p16, RPL6, PBEF1 and KIAA1033 in high-risk HPV positive penile carcinoma; ANXA1 and p16 were overexpressed in penile squamous cells positive for high-risk HPVs compared to normal penile samples by qPCR. ANXA1 and p16 proteins were significantly more expressed in the cells from high-risk HPV-positive penile carcinoma as compared to HPV-negative tumors (p<0.0001) independently of the subtype of the carcinoma. Overexpression of ANXA1 might be mediated by HPV E6 in penile squamous cell carcinoma of patients with high-risk HPVs, suggesting that this gene plays an important role in penile cancer.
Collapse
Affiliation(s)
| | | | - Érica Babeto
- São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | | | - Ana Paula Girol
- São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Carlos Fabian Mendiburu
- Institute of Anatomical Pathology and Cytopathology, São José do Rio Preto, São Paulo, Brazil
| | - Jane Lopes Bonilha
- College of Medicine of Rio Preto,São José do Rio Preto, São Paulo, Brazil
| | | | - Bruno Miziara Rosa
- Institute of Anatomical Pathology and Cytopathology, São José do Rio Preto, São Paulo, Brazil
| | - Jorge Alberto Thomé
- Institute of Anatomical Pathology and Cytopathology, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | | | | | - Luisa Lina Villa
- Department of Radiology and Basic Oncology, School of Medicine, University of São Paulo, and College of Medical Sciences of Santa Casa de São Paulo, São Paulo,São Paulo, Brazil
| | - José Vassallo
- Hospital A. C. Camargo,São Paulo, São Paulo, São Paulo, Brazil
| | - Paula Rahal
- São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Rivas A, Burzio V, Landerer E, Borgna V, Gatica S, Ávila R, López C, Villota C, de la Fuente R, Echenique J, Burzio LO, Villegas J. Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer. BMC Urol 2012; 12:37. [PMID: 23249382 PMCID: PMC3541257 DOI: 10.1186/1471-2490-12-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 12/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bladder cancer is a significant cause of morbidity and mortality with a high recurrence rate. Early detection of bladder cancer is essential in order to remove the tumor, to preserve the organ and to avoid metastasis. The aim of this study was to analyze the differential expression of mitochondrial non-coding RNAs (sense and antisense) in cells isolated from voided urine of patients with bladder cancer as a noninvasive diagnostic assay. Methods The differential expression of the sense (SncmtRNA) and the antisense (ASncmtRNAs) transcripts in cells isolated from voided urine was determined by fluorescent in situ hybridization. The test uses a multiprobe mixture labeled with different fluorophores and takes about 1 hour to complete. We examined the expression of these transcripts in cells isolated from urine of 24 patients with bladder cancer and from 15 healthy donors. Results This study indicates that the SncmtRNA and the ASncmtRNAs are stable in cells present in urine. The test reveals that the expression pattern of the mitochondrial transcripts can discriminate between normal and tumor cells. The analysis of 24 urine samples from patients with bladder cancer revealed expression of the SncmtRNA and down-regulation of the ASncmtRNAs. Exfoliated cells recovered from the urine of healthy donors do not express these mitochondrial transcripts. This is the first report showing that the differential expression of these mitochondrial transcripts can detect tumor cells in the urine of patients with low and high grade bladder cancer. Conclusion This pilot study indicates that fluorescent in situ hybridization of cells from urine of patients with different grades of bladder cancer confirmed the tumor origin of these cells. Samples from the 24 patients with bladder cancer contain cells that express the SncmtRNA and down-regulate the ASncmtRNAs. In contrast, the hybridization of the few exfoliated cells recovered from healthy donors revealed no expression of these mitochondrial transcripts. This assay can be explored as a non-invasive diagnostic tool for bladder cancer.
Collapse
Affiliation(s)
- Alexis Rivas
- Andes Biotechnologies S.A. and Fundación Ciencia para la Vida, 7780272 Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|