1
|
Ismail DF, El-Keey MM, Elgendy SM, Hessien M. Impregnation of mesenchymal stem cell conditioned media with wortmannin enhanced its antiproliferative effect in breast cancer cells via PI3K/Akt/mTOR pathway. BMC Res Notes 2025; 18:93. [PMID: 40038752 PMCID: PMC11877855 DOI: 10.1186/s13104-025-07124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND/AIM Conditioned media derived from Mesenchymal stem cells (MSC-CM) was suggested as a promising alternative cell-free regenerative therapy. It is hypothesized that the synergistic effect of MSC-CM with anticancer drugs may improve their antiproliferative and antimetastatic effects against cancer cells. Herein, the MSC-CM was impregnated with Wortmannin, a pan-PI3K/Akt/mTOR inhibitor, and their combined effect was investigated against breast cancer cells. MATERIALS AND METHODS To explore this, the cytotoxic, apoptotic, and autophagic potentials were assessed in luminal-A breast cancer cells (MCF-7). RESULTS We found that incubation of MCF-7 to Wort-containing-CM induced apoptosis- and autophagy-mediated cell death, meanwhile prolonged exposure caused massive necrotic cell death. The involvement of MSC-CM effectively reduced Wortmannin IC50 observed in Wort-treated cells. Also, Wort-loaded-CM induced nuclear DNA fragmentation and reduced in vitro cell migration. These findings were associated with a Wort-dependent reduction in cell viability, the formation of the phosphorylated Akt and mTOR proteins, reduced the expression of mRNA, and downregulated the expression of the catalytic domain of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K-Ca). CONCLUSION These findings revealed the promising antiproliferative and antimetastasis effects of combining pan-PI3K/Akt/mTOR inhibitors with MSC-derived-CM in breast cancer via the downregulation of PI3K/AKT/mTOR signaling pathways. Further studies are required to validate this chem-regenerative strategy in cancer treatment.
Collapse
Affiliation(s)
- Doha F Ismail
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mai M El-Keey
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Saad M Elgendy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
He Y, Hu Y, Ye T. Small G Protein Regulates Virus Infection via MiRNA and Autophagy in Shrimp. Biomolecules 2025; 15:277. [PMID: 40001579 PMCID: PMC11853464 DOI: 10.3390/biom15020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Recently, there has been a burgeoning scholarly interest in elucidating the functional significance and regulatory mechanisms underlying the involvement of small G proteins, such as Rab, in the antiviral immune response of crustaceans. Rab is a member of the small G protein family and plays a crucial role in the transport of cell membranes within eukaryotic cells. It is involved in the movement of cell membranes both within the cell and on its surface, aiding in the entry of effector proteins into specific membrane subregions. While previous research has highlighted the importance of Rab in phagosome formation and maturation, as well as the clearance of innate immune pathogens by phagocytes, its role in regulating autophagy and the antiviral mechanism remains unclear. This study focused on Rab10 and its role in the autophagy pathway within shrimp, as it pertains to defending against viral infections. MiRNA targeting Rab10 was analyzed and verified by bioinformatic methods. It was found that inhibition of miR-2c could enhance the shrimp's ability to combat viral infections. This discovery suggests a potential new strategy for screening antiviral drugs. In summation, this investigation augments our comprehension of the antiviral mechanism associated with Rab10, illuminating its significance in the antiviral immune response of shrimp.
Collapse
Affiliation(s)
- Yaodong He
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yiqi Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
3
|
Zhao Z, Wei Z, Zheng J, Li Z, Zou H, Wen X, Li F, Wang X, Huang Q, Zeng H, Fan H, Cai X, Zhang J, Jia B, Huang A, Lu M, Lin Y. Hepatitis B virus promotes its own replication by enhancing RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways. Emerg Microbes Infect 2023; 12:2261556. [PMID: 37725090 PMCID: PMC10614717 DOI: 10.1080/22221751.2023.2261556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains one of the major global public health concerns, and it develop into liver fibrosis, cirrhosis, and hepatocellular carcinoma. Recent evidence suggests that endosomal and autophagic vesicles are beneficial for HBV replication. However, it has not been well elucidated how HBV exploits such intracellular vesicle systems for its replication. RAB5A, a member of small GTPase family, plays crucial roles in early endosome biogenesis and autophagy initiation. We observed that RAB5A mRNA and protein levels were significantly increased in HBV-expressing hepatoma cell lines as well as in liver tissue samples from chronic HBV-infected patients. Moreover, RAB5A silencing inhibited HBV replication and subviral particle (SVP) expression significantly in HBV-transfected and -infected hepatoma cells, whereas RAB5A overexpression increased them. Mechanistically, RAB5A increases HBV replication through enhancement of early endosome (EE) - late endosome (LE) activation by interacting with EEA1, as well as enhancing autophagy induction by interacting with VPS34. Additionally, HBV infection enhances RAB5A-mediated dual activation of EE-LE system and autophagy. Collectively, our findings highlight that HBV utilizes RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways for its own replication and persistence. Therefore, RAB5A is a potential target for chronic HBV infection treatment.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhihong Li
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fahong Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xueyu Wang
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Qian Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huaqing Zeng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Fan
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Petenkova A, Auger SA, Lamb J, Quellier D, Carter C, To OT, Milosevic J, Barghout R, Kugadas A, Lu X, Geddes-McAlister J, Fichorova R, Sykes DB, Distefano MD, Gadjeva M. Prenylcysteine oxidase 1 like protein is required for neutrophil bactericidal activities. Nat Commun 2023; 14:2761. [PMID: 37179332 PMCID: PMC10182992 DOI: 10.1038/s41467-023-38447-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.
Collapse
Affiliation(s)
- Anastasiia Petenkova
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey Lamb
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Daisy Quellier
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Cody Carter
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - On Tak To
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Rana Barghout
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoxiao Lu
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard University, Faculty of Arts and Sciences, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Herrera A, Packer MM, Rosas-Lemus M, Minasov G, Brummel JH, Satchell KJF. Vibrio MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537381. [PMID: 37131655 PMCID: PMC10153396 DOI: 10.1101/2023.04.19.537381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vibrio vulnificus causes life threatening infections dependent upon the effectors released from the Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The Makes Caterpillars Floppy-like (MCF) cysteine protease effector is activated by host ADP ribosylation factors (ARFs), although the targets of processing activity were unknown. In this study we show MCF binds Ras-related proteins in brain (Rab) GTPases at the same interface occupied by ARFs and then cleaves and/or degrades 24 distinct members of the Rab GTPases family. The cleavage occurs in the C-terminal tails of Rabs. We determine the crystal structure of MCF as a swapped dimer revealing the open, activated state of MCF and then use structure prediction algorithms to show that structural composition, rather than sequence or localization, determine Rabs selected as MCF proteolytic targets. Once cleaved, Rabs become dispersed in cells to drive organelle damage and cell death to promote pathogenesis of these rapidly fatal infections.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan M. Packer
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John H. Brummel
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- SickKids IBD Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Troutman KK, Varlakhanova NV, Tornabene BA, Ramachandran R, Ford MGJ. Conserved Pib2 regions have distinct roles in TORC1 regulation at the vacuole. J Cell Sci 2022; 135:jcs259994. [PMID: 36000409 PMCID: PMC9584352 DOI: 10.1242/jcs.259994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/15/2022] [Indexed: 12/27/2022] Open
Abstract
TORC1 is a critical controller of cell growth in eukaryotes. In yeast (Saccharomyces cerevisiae), the presence of nutrients is signaled to TORC1 by several upstream regulatory sensors that together coordinate TORC1 activity. TORC1 localizes to both vacuolar and endosomal membranes, where differential signaling occurs. This localization is mimicked by Pib2, a key upstream TORC1 regulator that is essential for TORC1 reactivation after nutrient starvation or pharmacological inhibition. Pib2 has both positive and negative effects on TORC1 activity, but the mechanisms remain poorly understood. Here, we pinpoint the Pib2 inhibitory function on TORC1 to residues within short, conserved N-terminal regions. We also show that the Pib2 C-terminal regions, helical region E and tail, are essential for TORC1 reactivation. Furthermore, the Pib2 FYVE domain plays a role in vacuolar localization, but it is surprisingly unnecessary for recovery from rapamycin exposure. Using chimeric Pib2 targeting constructs, we show that endosomal localization is not necessary for TORC1 reactivation and cell growth after rapamycin treatment. Thus, a comprehensive molecular dissection of Pib2 demonstrates that each of its conserved regions differentially contribute to Pib2-mediated regulation of TORC1 activity.
Collapse
Affiliation(s)
- Kayla K. Troutman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Natalia V. Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bryan A. Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rajesh Ramachandran
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marijn G. J. Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
8
|
Takahara T, Amemiya Y, Sugiyama R, Maki M, Shibata H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci 2020; 27:87. [PMID: 32799865 PMCID: PMC7429791 DOI: 10.1186/s12929-020-00679-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an essential regulator of cell growth and metabolism through the modulation of protein and lipid synthesis, lysosome biogenesis, and autophagy. The activity of mTORC1 is dynamically regulated by several environmental cues, including amino acid availability, growth factors, energy levels, and stresses, to coordinate cellular status with environmental conditions. Dysregulation of mTORC1 activity is closely associated with various diseases, including diabetes, cancer, and neurodegenerative disorders. The discovery of Rag GTPases has greatly expanded our understanding of the regulation of mTORC1 activity by amino acids, especially leucine and arginine. In addition to Rag GTPases, other factors that also contribute to the modulation of mTORC1 activity have been identified. In this review, we discuss the mechanisms of regulation of mTORC1 activity by particular amino acids.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuna Amemiya
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Risa Sugiyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
9
|
Zhu M, Wang XQ. Regulation of mTORC1 by Small GTPases in Response to Nutrients. J Nutr 2020; 150:1004-1011. [PMID: 31965176 DOI: 10.1093/jn/nxz301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a highly evolutionarily conserved serine/threonine kinase that regulates cell growth and metabolism in response to multiple environmental cues, such as nutrients, hormones, energy, and stress. Deregulation of mTORC1 can lead to diseases such as diabetes, obesity, and cancer. A series of small GTPases, including Rag, Ras homolog enriched in brain (Rheb), adenosine diphosphate ribosylation factor 1 (Arf1), Ras-related protein Ral-A, Ras homolog (Rho), and Rab, are involved in regulating mTORC1 in response to nutrients, and mTORC1 is differentially regulated via these small GTPases according to specific conditions. Leucine and arginine sensing are considered to be well-confirmed amino acid-sensing signals, activating mTORC1 via a Rag GTPase-dependent mechanism as well as the Ragulator complex and vacuolar H+-adenosine triphosphatase (v-ATPase). Glutamine promotes mTORC1 activation via Arf1 independently of the Rag GTPase. In this review, we summarize current knowledge regarding the regulation of mTORC1 activity by small GTPases in response to nutrients, focusing on the function of small GTPases in mTORC1 activation and how small GTPases are regulated by nutrients.
Collapse
Affiliation(s)
- Min Zhu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Carroll B. Spatial regulation of mTORC1 signalling: Beyond the Rag GTPases. Semin Cell Dev Biol 2020; 107:103-111. [PMID: 32122730 DOI: 10.1016/j.semcdb.2020.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
The mechanistic (or mammalian) Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism. By integrating mitogenic signals, mTORC1-dependent phosphorylation of substrates dictates the balance between anabolic, pro-growth and catabolic, recycling processes in the cell. The discovery that amino acids activate mTORC1 by promoting its translocation to the lysosome was a fundamental advance in the understanding of mTORC1 signalling. It has since become clear that the lysosome-cytoplasm shuttling of mTORC1 represents just one layer of spatial control of this signalling pathway. This review will focus on exploring the subcellular localisation of mTORC1 and its regulators to multiple sites within the cell. We will discuss how these spatially distinct regions such as endoplasmic reticulum, plasma membrane and the endosomal pathway co-operate to transduce nutrient availability to mTORC1, allowing for tight control of cell growth.
Collapse
Affiliation(s)
- Bernadette Carroll
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8, United Kingdom.
| |
Collapse
|
11
|
Cong XX, Gao XK, Rao XS, Wen J, Liu XC, Shi YP, He MY, Shen WL, Shen Y, Ouyang H, Hu P, Low BC, Meng ZX, Ke YH, Zheng MZ, Lu LR, Liang YH, Zheng LL, Zhou YT. Rab5a activates IRS1 to coordinate IGF-AKT-mTOR signaling and myoblast differentiation during muscle regeneration. Cell Death Differ 2020; 27:2344-2362. [PMID: 32051546 DOI: 10.1038/s41418-020-0508-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Rab5 is a master regulator for endosome biogenesis and transport while its in vivo physiological function remains elusive. Here, we find that Rab5a is upregulated in several in vivo and in vitro myogenesis models. By generating myogenic Rab5a-deficient mice, we uncover the essential roles of Rab5a in regulating skeletal muscle regeneration. We further reveal that Rab5a promotes myoblast differentiation and directly interacts with insulin receptor substrate 1 (IRS1), an essential scaffold protein for propagating IGF signaling. Rab5a interacts with IRS1 in a GTP-dependent manner and this interaction is enhanced upon IGF-1 activation and myogenic differentiation. We subsequently identify that the arginine 207 and 222 of IRS1 and tyrosine 82, 89, and 90 of Rab5a are the critical amino acid residues for mediating the association. Mechanistically, Rab5a modulates IRS1 activation by coordinating the association between IRS1 and the IGF receptor (IGFR) and regulating the intracellular membrane targeting of IRS1. Both myogenesis-induced and IGF-evoked AKT-mTOR signaling are dependent on Rab5a. Myogenic deletion of Rab5a also reduces the activation of AKT-mTOR signaling during skeletal muscle regeneration. Taken together, our study uncovers the physiological function of Rab5a in regulating muscle regeneration and delineates the novel role of Rab5a as a critical switch controlling AKT-mTOR signaling by activating IRS1.
Collapse
Affiliation(s)
- Xiao Xia Cong
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiu Kui Gao
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xi Sheng Rao
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Wen
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao Ceng Liu
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yin Pu Shi
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Min Yi He
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Liang Shen
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yue Shen
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongwei Ouyang
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,ZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Ping Hu
- The Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Boon Chuan Low
- Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore
| | - Zhuo Xian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yue Hai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ming Zhu Zheng
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lin Rong Lu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.,ZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong Heng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Ling Zheng
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yi Ting Zhou
- Department of Biochemistry and Molecular Biology and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,ZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China.
| |
Collapse
|
12
|
Nassari S, Del Olmo T, Jean S. Rabs in Signaling and Embryonic Development. Int J Mol Sci 2020; 21:E1064. [PMID: 32033485 PMCID: PMC7037298 DOI: 10.3390/ijms21031064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.
Collapse
Affiliation(s)
| | | | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; (S.N.); (T.D.O.)
| |
Collapse
|
13
|
Abstract
Macropinosome formation occurs as a localized sequence of biochemical activities and associated morphological changes, which may be considered a form of signal transduction leading to the construction of an organelle. Macropinocytosis may also convey information about the availability of extracellular nutrients to intracellular regulators of metabolism. Consistent with this idea, activation of the metabolic regulator mechanistic target of rapamycin complex-1 (mTORC1) in response to acute stimulation by growth factors and extracellular amino acids requires internalization of amino acids by macropinocytosis. This suggests that macropinocytosis is necessary for mTORC1-dependent growth of metazoan cells, both as a route for delivery of amino acids to sensors associated with lysosomes and as a platform for growth factor-dependent signalling to mTORC1 via phosphatidylinositol 3-kinase (PI3K) and the Akt pathway. Because the biochemical signals required for the construction of macropinosomes are also required for cell growth, and inhibition of macropinocytosis inhibits growth factor signalling to mTORC1, we propose that signalling by growth factor receptors is organized into stochastic, structure-dependent cascades of chemical reactions that both build a macropinosome and stimulate mTORC1. More generally, as discrete units of signal transduction, macropinosomes may be subject to feedback regulation by metabolism and cell dimensions. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| | - Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| |
Collapse
|
14
|
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway coordinates environmental and intracellular cues to control eukaryotic cell growth. As a pivot point between anabolic and catabolic processes, mTOR complex 1 (mTORC1) signaling has established roles in regulating metabolism, translation and autophagy. Hyperactivity of the mTOR pathway is associated with numerous human diseases, including diabetes, cancer and epilepsy. Pharmacological inhibition of the mTOR pathway can extend lifespan in a variety of model organisms. Given its broad control of essential cellular processes and clear relevance to human health, there is extensive interest in elucidating how upstream inputs regulate mTORC1 activation. In this Cell Science at a Glance article and accompanying poster, we summarize our understanding of how extracellular and intracellular signals feed into the mTOR pathway, how the lysosome acts as an mTOR signaling hub, and how downstream signaling controls autophagy and lysosome biogenesis.
Collapse
Affiliation(s)
- Kendall J Condon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute, Cambridge, MA 02142, USA.,The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA .,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute, Cambridge, MA 02142, USA.,The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Morgan NE, Cutrona MB, Simpson JC. Multitasking Rab Proteins in Autophagy and Membrane Trafficking: A Focus on Rab33b. Int J Mol Sci 2019; 20:ijms20163916. [PMID: 31408960 PMCID: PMC6719199 DOI: 10.3390/ijms20163916] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Autophagy (particularly macroautophagy) is a bulk degradation process used by eukaryotic cells in order to maintain adequate energy levels and cellular homeostasis through the delivery of long-lived proteins and organelles to the lysosome, resulting in their degradation. It is becoming increasingly clear that many of the molecular requirements to fulfil autophagy intersect with those of conventional and unconventional membrane trafficking pathways. Of particular interest is the dependence of these processes on multiple members of the Rab family of small GTP binding proteins. Rab33b is a protein that localises to the Golgi apparatus and has suggested functions in both membrane trafficking and autophagic processes. Interestingly, mutations in the RAB33B gene have been reported to cause the severe skeletal disorder, Smith–McCort Dysplasia; however, the molecular basis for Rab33b in this disorder remains to be determined. In this review, we focus on the current knowledge of the participation of Rab33b and its interacting partners in membrane trafficking and macroautophagy, and speculate on how its function, and dysfunction, may contribute to human disease.
Collapse
Affiliation(s)
- Niamh E Morgan
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Meritxell B Cutrona
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), D04 N2E5 Dublin, Ireland.
| |
Collapse
|
16
|
Kobolák J, Molnár K, Varga E, Bock I, Jezsó B, Téglási A, Zhou S, Lo Giudice M, Hoogeveen-Westerveld M, Pijnappel WP, Phanthong P, Varga N, Kitiyanant N, Freude K, Nakanishi H, László L, Hyttel P, Dinnyés A. Modelling the neuropathology of lysosomal storage disorders through disease-specific human induced pluripotent stem cells. Exp Cell Res 2019; 380:216-233. [PMID: 31039347 DOI: 10.1016/j.yexcr.2019.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder (LSD), caused by iduronate 2-sulphatase (IDS) enzyme dysfunction. The neuropathology of the disease is not well understood, although the neural symptoms are currently incurable. MPS II-patient derived iPSC lines were established and differentiated to neuronal lineage. The disease phenotype was confirmed by IDS enzyme and glycosaminoglycan assay. MPS II neuronal precursor cells (NPCs) showed significantly decreased self-renewal capacity, while their cortical neuronal differentiation potential was not affected. Major structural alterations in the ER and Golgi complex, accumulation of storage vacuoles, and increased apoptosis were observed both at protein expression and ultrastructural level in the MPS II neuronal cells, which was more pronounced in GFAP + astrocytes, with increased LAMP2 expression but unchanged in their RAB7 compartment. Based on these finding we hypothesize that lysosomal membrane protein (LMP) carrier vesicles have an initiating role in the formation of storage vacuoles leading to impaired lysosomal function. In conclusion, a novel human MPS II disease model was established for the first time which recapitulates the in vitro neuropathology of the disorder, providing novel information on the disease mechanism which allows better understanding of further lysosomal storage disorders and facilitates drug testing and gene therapy approaches.
Collapse
Affiliation(s)
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | | | | | - Bálint Jezsó
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | | | - Shuling Zhou
- BioTalentum Ltd., Gödöllő, 2100, Hungary; Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | | | | | - Wwm Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3015 CN, Rotterdam, the Netherlands
| | - Phetcharat Phanthong
- BioTalentum Ltd., Gödöllő, 2100, Hungary; Institute of Molecular Biosciences, Mahidol University, Bangkok, 73170, Thailand
| | - Norbert Varga
- Department of Metabolic Diseases, Heim Pál Children's Hospital, Budapest, 1089, Hungary
| | - Narisorn Kitiyanant
- Institute of Molecular Biosciences, Mahidol University, Bangkok, 73170, Thailand
| | - Kristine Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, 2100, Hungary; Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2101, Hungary.
| |
Collapse
|
17
|
Ranadheera C, Coombs KM, Kobasa D. Comprehending a Killer: The Akt/mTOR Signaling Pathways Are Temporally High-Jacked by the Highly Pathogenic 1918 Influenza Virus. EBioMedicine 2018; 32:142-163. [PMID: 29866590 PMCID: PMC6021456 DOI: 10.1016/j.ebiom.2018.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Previous transcriptomic analyses suggested that the 1918 influenza A virus (IAV1918), one of the most devastating pandemic viruses of the 20th century, induces a dysfunctional cytokine storm and affects other innate immune response patterns. Because all viruses are obligate parasites that require host cells for replication, we globally assessed how IAV1918 induces host protein dysregulation. We performed quantitative mass spectrometry of IAV1918-infected cells to measure host protein dysregulation. Selected proteins were validated by immunoblotting and phosphorylation levels of members of the PI3K/AKT/mTOR pathway were assessed. Compared to mock-infected controls, >170 proteins in the IAV1918-infected cells were dysregulated. Proteins mapped to amino sugar metabolism, purine metabolism, steroid biosynthesis, transmembrane receptors, phosphatases and transcription regulation. Immunoblotting demonstrated that IAV1918 induced a slight up-regulation of the lamin B receptor whereas all other tested virus strains induced a significant down-regulation. IAV1918 also strongly induced Rab5b expression whereas all other tested viruses induced minor up-regulation or down-regulation. IAV1918 showed early reduced phosphorylation of PI3K/AKT/mTOR pathway members and was especially sensitive to rapamycin. These results suggest the 1918 strain requires mTORC1 activity in early replication events, and may explain the unique pathogenicity of this virus. Proteomic analyses of influenza 1918 virus-infected cells identified >170 dysregulated host proteins. Dysregulated proteins mapped to numerous important cellular pathways. 1918 virus infection showed prominent early reduced phosphorylation of PI3K/Akt/mTOR.
The 1918 influenza pandemic was one of the most devastating infectious disease events of the 20th century, resulting in 20–100 million deaths. Gene-based assays showed severe dysregulation of the host's cytokine responses, but little was known about global protein responses to virus infection. This work identifies unique and temporal alterations in phosphorylation of the PI3K/AKT/mTOR signaling pathway, which is important in determining cell death. This work paves the way for further research on how this pathway influences host mechanisms responsible for aiding virus replication and in determining levels and severity of influenza virus-induced patho
Collapse
Affiliation(s)
- Charlene Ranadheera
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Institute of Child Health, John Buhler Research Centre, Room 513, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada.
| | - Darwyn Kobasa
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J6, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.
| |
Collapse
|
18
|
Xu W, Shi Q, Qian X, Zhou B, Xu J, Zhu L, Feng L, Jin H, Wang X. Rab5a suppresses autophagy to promote drug resistance in cancer cells. Am J Transl Res 2018; 10:1229-1236. [PMID: 29736216 PMCID: PMC5934582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Cancers are huge problems that need to be investigated thoroughly. Rab5a plays an important part in the regulation of intracellular membrane trafficking. However, its role in cancer and autophagy has not been fully determined. In this study, we analyzed the correlation between Rab5a expression and patients' prognosis and then explored the effect of Rab5a knockdown on different cell lines using western blotting and fluorescence. Our results showed that up-regulated Rab5a positively correlated with the prognosis of gastric cancer patients. After knocking down Rab5a, mTOR activity was inhibited and autophagy flux increased. We also found that in our cisplatin-resistant cells, knockdown of Rab5a activated autophagy via mTOR pathway and could reverse drug resistance while overexpression of Rab5a in drug sensitive cells increased drug tolerance. In conclusion, our study demonstrates that Rab5a can suppress autophagy through mTOR and promote drug resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Qiqi Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Xiaoling Qian
- Department of Chinese Medicine, Zhejiang HospitalZhejiang, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Jinye Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| |
Collapse
|
19
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
20
|
TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discov 2018; 4:1. [PMID: 29423269 PMCID: PMC5798889 DOI: 10.1038/s41421-017-0001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis. Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers. Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.
Collapse
|
21
|
Varlakhanova NV, Mihalevic MJ, Bernstein KA, Ford MGJ. Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 2017; 130:3878-3890. [PMID: 28993463 DOI: 10.1242/jcs.207910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Marijn G J Ford
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Nguyen TP, Frank AR, Jewell JL. Amino acid and small GTPase regulation of mTORC1. CELLULAR LOGISTICS 2017; 7:e1378794. [PMID: 29296509 PMCID: PMC5739091 DOI: 10.1080/21592799.2017.1378794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/03/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1), which integrates multiple environmental signals to control cell growth and metabolism. Nutrients, specifically amino acids, are the most potent stimuli for mTORC1 activation. Multiple studies have focused on how leucine and arginine activate mTORC1 through the Rag GTPases, with mechanistic details slowly emerging. Recently, a Rag GTPase-independent glutamine signaling pathway to mTORC1 has been identified, suggesting that mTORC1 is differentially regulated through distinct pathways by specific amino acids. In this review, we summarize our current understanding of how amino acids modulate mTORC1, and the role of other small GTPases in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
23
|
A Rab5 GTPase module is important for autophagosome closure. PLoS Genet 2017; 13:e1007020. [PMID: 28934205 PMCID: PMC5626503 DOI: 10.1371/journal.pgen.1007020] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/03/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023] Open
Abstract
In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure. In autophagy, a cellular recycling pathway, the double-membrane autophagosome (AP) engulfs excess or damaged cargo and delivers it for degradation in the lysosome for the reuse of its building blocks. While plenty of information is currently available regarding AP formation, expansion and fusion, not much is known about the regulation of AP closure, which is required for fusion of APs with the lysosome. Here, we use yeast genetics to characterize a novel mutant phenotype, accumulation of unsealed APs, and identify a role for the Rab5-related Vps21 GTPase in this process. Rab GTPases function in modules that include upstream activators and downstream effectors. We have previously shown that the same Vps21 module that regulates endocytosis also plays a role in autophagy. Using single and double mutant analyses, we find that this module is important for AP closure. Moreover, we delineate three Rab GTPase-regulated steps in the autophagy pathway: AP formation, closure, and fusion, which are regulated by Ypt1, Vps21 and Ypt7, respectively. This study provides the first insight into the mechanism of the elusive process of AP closure.
Collapse
|
24
|
Chan L, Hong J, Pan J, Li J, Wen Z, Shi H, Ding J, Luo X. Role of Rab5 in the formation of macrophage-derived foam cell. Lipids Health Dis 2017; 16:170. [PMID: 28899395 PMCID: PMC5596464 DOI: 10.1186/s12944-017-0559-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
Abstract
Background Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Methods Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Results Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Conclusions Rab5 plays an important role in modulating the intracellular cholesterol of macrophages and consequently mediating the formation of foam cells.
Collapse
Affiliation(s)
- Lokwern Chan
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Jin Hong
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Zhichao Wen
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, People's Republic of China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
25
|
Shibutani S, Okazaki H, Iwata H. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1). J Biol Chem 2017; 292:18052-18061. [PMID: 28808055 DOI: 10.1074/jbc.m117.776443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1.
Collapse
Affiliation(s)
- Shusaku Shibutani
- From the Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hana Okazaki
- From the Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroyuki Iwata
- From the Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
26
|
Chichger H, Braza J, Duong H, Boni G, Harrington EO. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. Am J Respir Cell Mol Biol 2017; 54:769-81. [PMID: 26551054 DOI: 10.1165/rcmb.2015-0286oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Geraldine Boni
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
27
|
Kamalesh K, Trivedi D, Toscano S, Sharma S, Kolay S, Raghu P. Phosphatidylinositol 5-phosphate 4-kinase regulates early endosomal dynamics during clathrin-mediated endocytosis. J Cell Sci 2017; 130:2119-2133. [PMID: 28507272 PMCID: PMC5536888 DOI: 10.1242/jcs.202259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Endocytic turnover is essential for the regulation of the protein composition and function of the plasma membrane, and thus affects the plasma membrane levels of many receptors. In Drosophila melanogaster photoreceptors, photon absorption by the G-protein-coupled receptor (GPCR) rhodopsin 1 (Rh1; also known as NinaE) triggers its endocytosis through clathrin-mediated endocytosis (CME). We find that CME of Rh1 is regulated by phosphatidylinositol 5 phosphate 4-kinase (PIP4K). Flies lacking PIP4K show mislocalization of Rh1 on expanded endomembranes within the cell body. This mislocalization of Rh1 was dependent on the formation of an expanded Rab5-positive compartment. The Rh1-trafficking defect in PIP4K-depleted cells could be suppressed by downregulating Rab5 function or by selectively reconstituting PIP4K in the PI3P-enriched early endosomal compartment of photoreceptors. We also found that loss of PIP4K was associated with increased CME and an enlarged Rab5-positive compartment in cultured Drosophila cells. Collectively, our findings define PIP4K as a novel regulator of early endosomal homeostasis during CME.
Collapse
Affiliation(s)
- Kumari Kamalesh
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India.,Department of Biological Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Deepti Trivedi
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sarah Toscano
- Inositide Laboratory, Babraham Institute, Cambridge CB22 3AT, UK
| | - Sanjeev Sharma
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sourav Kolay
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India.,Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
28
|
Zhikrivetskaya SO, Snezhkina AV, Zaretsky AR, Alekseev BY, Pokrovsky AV, Golovyuk AL, Melnikova NV, Stepanov OA, Kalinin DV, Moskalev AA, Krasnov GS, Dmitriev AA, Kudryavtseva AV. Molecular markers of paragangliomas/pheochromocytomas. Oncotarget 2017; 8:25756-25782. [PMID: 28187001 PMCID: PMC5421967 DOI: 10.18632/oncotarget.15201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
Paragangliomas/pheochromocytomas comprise rare tumors that arise from the extra-adrenal paraganglia, with an incidence of about 2 to 8 per million people each year. Approximately 40% of cases are due to genetic mutations in at least one out of more than 30 causative genes. About 25-30% of pheochromocytomas/paragangliomas develop under the conditions of a hereditary tumor syndrome a third of which are caused by mutations in the VHL gene. Together, the gene mutations in this disorder have implicated multiple processes including signaling pathways, translation initiation, hypoxia regulation, protein synthesis, differentiation, survival, proliferation, and cell growth. The present review contemplates the mutations associated with the development of pheochromocytomas/paragangliomas and their potential to serve as specific markers of these tumors and their progression. These data will improve our understanding of the pathogenesis of these tumors and likely reveal certain features that may be useful for early diagnostics, malignancy prognostics, and the determination of new targets for disease therapeutics.
Collapse
Affiliation(s)
| | | | - Andrew R Zaretsky
- M.M. Shemyakin - Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oleg A Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
29
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
30
|
Ejzykowicz DE, Locken KM, Ruiz FJ, Manandhar SP, Olson DK, Gharakhanian E. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function. Curr Genet 2016; 63:531-551. [PMID: 27812735 DOI: 10.1007/s00294-016-0660-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.
Collapse
Affiliation(s)
- Daniele E Ejzykowicz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Kristopher M Locken
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Fiona J Ruiz
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Surya P Manandhar
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | - Daniel K Olson
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.,Inouye Center for Microbial Oceanography, Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA.
| |
Collapse
|
31
|
Mülleder M, Calvani E, Alam MT, Wang RK, Eckerstorfer F, Zelezniak A, Ralser M. Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 2016; 167:553-565.e12. [PMID: 27693354 PMCID: PMC5055083 DOI: 10.1016/j.cell.2016.09.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/23/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022]
Abstract
Genome-metabolism interactions enable cell growth. To probe the extent of these interactions and delineate their functional contributions, we quantified the Saccharomyces amino acid metabolome and its response to systematic gene deletion. Over one-third of coding genes, in particular those important for chromatin dynamics, translation, and transport, contribute to biosynthetic metabolism. Specific amino acid signatures characterize genes of similar function. This enabled us to exploit functional metabolomics to connect metabolic regulators to their effectors, as exemplified by TORC1, whose inhibition in exponentially growing cells is shown to match an interruption in endomembrane transport. Providing orthogonal information compared to physical and genetic interaction networks, metabolomic signatures cluster more than half of the so far uncharacterized yeast genes and provide functional annotation for them. A major part of coding genes is therefore participating in gene-metabolism interactions that expose the metabolism regulatory network and enable access to an underexplored space in gene function. One-third of coding genes significantly impact yeast biosynthetic metabolism The amino acid metabolome is most sensitive to chromatin and transport proteins TORC1 affects biosynthetic amino acid metabolism via vesicle-mediated transport Metabolic signatures are gene specific and cluster 3,923 genes according to function
Collapse
Affiliation(s)
- Michael Mülleder
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Enrica Calvani
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Mohammad Tauqeer Alam
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Richard Kangda Wang
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Florian Eckerstorfer
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Aleksej Zelezniak
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
32
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fragmentation. Curr Genet 2016; 63:35-42. [PMID: 27233284 DOI: 10.1007/s00294-016-0616-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
33
|
Role of the mammalian target of rapamycin pathway in lentiviral vector transduction of hematopoietic stem cells. Curr Opin Hematol 2016; 22:302-8. [PMID: 26049750 DOI: 10.1097/moh.0000000000000150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW A major goal in repopulating hematopoietic stem cell (HSC) gene therapies is achieving high-efficacy gene transfer, while maintaining robust HSC engraftment and differentiation in vivo. Recent studies have documented that rapamycin treatment of HSC during lentiviral vector transduction enhances gene transfer to human and mouse HSCs and maintains engraftment capacity. In this review, we place into context the role of mammalian target of rapamycin (mTOR) pathways in HSC quiescence and function, endocytic regulation, and lentiviral gene delivery. RECENT FINDINGS Lentiviral vector transduction of human and mouse HSCs is considerably enhanced by rapamycin treatment. Furthermore, rapamycin preserves long-term engraftment of human and mouse HSCs. Investigations of cellular mechanisms that contribute to increased transduction in HSCs uncover a role for mTOR inhibition-dependent activation of endocytosis. SUMMARY Rapamycin enhances lentiviral vector transduction of HSCs through regulation of endocytic activity via mTOR inhibition. An important attribute of rapamycin treatment during transduction is the preservation of HSC function, allowing reconstitution of long-term hematopoiesis in vivo in murine models.
Collapse
|
34
|
Kim A, Cunningham KW. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 2015; 26:4631-45. [PMID: 26510498 PMCID: PMC4678020 DOI: 10.1091/mbc.e15-08-0581] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
The controlled permeabilization of lysosomes and vacuoles may represent an ancient manner of programmed cell death. It is shown that TORC1 is required for lysosomal membrane permeabilization and death of yeast cells that have been exposed to antifungals, and that a novel FYVE-domain protein regulates TORC1 signaling in these conditions. Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts.
Collapse
Affiliation(s)
- Adam Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
35
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4618-30. [PMID: 26466677 PMCID: PMC4678019 DOI: 10.1091/mbc.e15-06-0344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/07/2015] [Indexed: 01/15/2023] Open
Abstract
The yeast vacuole is equivalent to the mammalian lysosome and, in response to diverse physiological and environmental stimuli, undergoes alterations both in size and number. Here we demonstrate that vacuoles fragment in response to stress within the endoplasmic reticulum (ER) caused by chemical or genetic perturbations. We establish that this response does not involve known signaling pathways linked previously to ER stress but instead requires the rapamycin-sensitive TOR Complex 1 (TORC1), a master regulator of cell growth, together with its downstream effectors, Tap42/Sit4 and Sch9. To identify additional factors required for ER stress-induced vacuolar fragmentation, we conducted a high-throughput, genome-wide visual screen for yeast mutants that are refractory to ER stress-induced changes in vacuolar morphology. We identified several genes shown previously to be required for vacuolar fusion and/or fission, validating the utility of this approach. We also identified a number of new components important for fragmentation, including a set of proteins involved in assembly of the V-ATPase. Remarkably, we find that one of these, Vph2, undergoes a change in intracellular localization in response to ER stress and, moreover, in a manner that requires TORC1 activity. Together these results reveal a new role for TORC1 in the regulation of vacuolar behavior.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616 )
| |
Collapse
|
36
|
Yoshida S, Pacitto R, Yao Y, Inoki K, Swanson JA. Growth factor signaling to mTORC1 by amino acid-laden macropinosomes. J Biophys Biochem Cytol 2015; 211:159-72. [PMID: 26438830 PMCID: PMC4602043 DOI: 10.1083/jcb.201504097] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
The rapid activation of the mechanistic target of rapamycin complex-1 (mTORC1) by growth factors is increased by extracellular amino acids through yet-undefined mechanisms of amino acid transfer into endolysosomes. Because the endocytic process of macropinocytosis concentrates extracellular solutes into endolysosomes and is increased in cells stimulated by growth factors or tumor-promoting phorbol esters, we analyzed its role in amino acid-dependent activation of mTORC1. Here, we show that growth factor-dependent activation of mTORC1 by amino acids, but not glucose, requires macropinocytosis. In murine bone marrow-derived macrophages and murine embryonic fibroblasts stimulated with their cognate growth factors or with phorbol myristate acetate, activation of mTORC1 required an Akt-independent vesicular pathway of amino acid delivery into endolysosomes, mediated by the actin cytoskeleton. Macropinocytosis delivered small, fluorescent fluid-phase solutes into endolysosomes sufficiently fast to explain growth factor-mediated signaling by amino acids. Therefore, the amino acid-laden macropinosome is an essential and discrete unit of growth factor receptor signaling to mTORC1.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Regina Pacitto
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yao Yao
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Joel A. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
37
|
De Cicco M, Rahim MSA, Dames SA. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. MEMBRANES 2015; 5:553-75. [PMID: 26426064 PMCID: PMC4703999 DOI: 10.3390/membranes5040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| |
Collapse
|
38
|
Chua CEL, Tang BL. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72:2289-304. [PMID: 25690707 PMCID: PMC11113524 DOI: 10.1007/s00018-015-1862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect-vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
39
|
Buchner DA, Charrier A, Srinivasan E, Wang L, Paulsen MT, Ljungman M, Bridges D, Saltiel AR. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem 2015; 290:6376-86. [PMID: 25596527 DOI: 10.1074/jbc.m114.623736] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.
Collapse
Affiliation(s)
- David A Buchner
- From the Departments of Genetics and Genome Sciences and Biological Chemistry, Case Western Reserve University, Cleveland, Ohio 44106,
| | | | - Ethan Srinivasan
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Li Wang
- From the Departments of Genetics and Genome Sciences and
| | - Michelle T Paulsen
- the Department of Oncology, Division of Radiation and Cancer Biology, University of Michigan Cancer Center, Ann Arbor, Michigan 48109
| | - Mats Ljungman
- the Department of Oncology, Division of Radiation and Cancer Biology, University of Michigan Cancer Center, Ann Arbor, Michigan 48109
| | - Dave Bridges
- the Department of Physiology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, and the Children's Foundation Research Institute, Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee 38103
| | - Alan R Saltiel
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109,
| |
Collapse
|
40
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Tan YS, Kim M, Kingsbury TJ, Civin CI, Cheng WC. Regulation of RAB5C is important for the growth inhibitory effects of MiR-509 in human precursor-B acute lymphoblastic leukemia. PLoS One 2014; 9:e111777. [PMID: 25368993 PMCID: PMC4219775 DOI: 10.1371/journal.pone.0111777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRs) regulate essentially all cellular processes, but few miRs are known to inhibit growth of precursor-B acute lymphoblastic leukemias (B-ALLs). We identified miR-509 via a human genome-wide gain-of-function screen for miRs that inhibit growth of the NALM6 human B-ALL cell line. MiR-509-mediated inhibition of NALM6 growth was confirmed by 3 independent assays. Enforced miR-509 expression inhibited 2 of 2 additional B-ALL cell lines tested, but not 3 non-B-ALL leukemia cell lines. MiR-509-transduced NALM6 cells had reduced numbers of actively proliferating cells and increased numbers of cells undergoing apoptosis. Using miR target prediction algorithms and a filtering strategy, RAB5C was predicted as a potentially relevant target of miR-509. Enforced miR-509 expression in NALM6 cells reduced RAB5C mRNA and protein levels, and RAB5C was demonstrated to be a direct target of miR-509. Knockdown of RAB5C in NALM6 cells recapitulated the growth inhibitory effects of miR-509. Co-expression of the RAB5C open reading frame without its 3' untranslated region (3'UTR) blocked the growth-inhibitory effect mediated by miR-509. These findings establish RAB5C as a target of miR-509 and an important regulator of B-ALL cell growth with potential as a therapeutic target.
Collapse
Affiliation(s)
- Yee Sun Tan
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - MinJung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tami J. Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Curt I. Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wen-Chih Cheng
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 2014; 36:79-90. [PMID: 25242279 DOI: 10.1016/j.semcdb.2014.09.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Abstract
The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered.
Collapse
Affiliation(s)
- Kezhen Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States; Division of Metabolism, Endocrinology, and Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
43
|
Nakatsukasa K, Kanada A, Matsuzaki M, Byrne SD, Okumura F, Kamura T. The nutrient stress-induced small GTPase Rab5 contributes to the activation of vesicle trafficking and vacuolar activity. J Biol Chem 2014; 289:20970-8. [PMID: 24923442 DOI: 10.1074/jbc.m114.548297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab family small GTPases regulate membrane trafficking by spatiotemporal recruitment of various effectors. However, it remains largely unclear how the expression and functions of Rab proteins are regulated in response to extracellular or intracellular stimuli. Here we show that Ypt53, one isoform of Rab5 in Saccharomyces cerevisiae, is up-regulated significantly under nutrient stress. Under non-stress conditions, Vps21, a constitutively expressed Rab5 isoform, is crucial to Golgi-vacuole trafficking and to vacuolar hydrolase activity. However, when cells are exposed to nutrient stress for an extended period of time, the up-regulated Ypt53 and the constitutive Vps21 function redundantly to maintain these activities, which, in turn, prevent the accumulation of reactive oxygen species and maintain mitochondrial respiration. Together, our results clarify the relative roles of these constitutive and nutrient stress-inducible Rab5 proteins that ensure adaptable vesicle trafficking and vacuolar hydrolase activity, thereby allowing cells to adapt to environmental changes.
Collapse
|
44
|
Szatmári Z, Sass M. The autophagic roles of Rab small GTPases and their upstream regulators: a review. Autophagy 2014; 10:1154-66. [PMID: 24915298 DOI: 10.4161/auto.29395] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macroautophagy is an evolutionarily conserved degradative process of eukaryotic cells. Double-membrane vesicles called autophagosomes sequester portions of cytoplasm and undergo fusion with the endolysosomal pathway in order to degrade their content. There is growing evidence that members of the small GTPase RAB protein family-the well-known regulators of membrane trafficking and fusion events-play key roles in the regulation of the autophagic process. Despite numerous studies focusing on the functions of RAB proteins in autophagy, the importance of their upstream regulators in this process emerged only in the past few years. In this review, we summarize recent advances on the effects of RABs and their upstream modulators in the regulation of autophagy. Moreover, we discuss how impairment of these proteins alters the autophagic process leading to several generally known human diseases.
Collapse
Affiliation(s)
- Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology; Eötvös Loránd University; Budapest, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology; Eötvös Loránd University; Budapest, Hungary
| |
Collapse
|
45
|
Qin Y, Deng Y, Ricketts C, Srikantan S, Wang E, Maher E, Dahia PL. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet 2014; 23:2428-39. [PMID: 24334765 PMCID: PMC3976335 DOI: 10.1093/hmg/ddt638] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
TMEM127 is an endosome-associated tumor suppressor gene in pheochromocytomas, neuroendocrine tumors that can co-occur with renal cell carcinomas (RCCs). TMEM127 loss leads to increased mTOR signaling. However, the spectrum of tumors with TMEM127 mutation and how TMEM127 and mTOR interact in tumorigenesis remains unknown. Here, we report that germline TMEM127 mutations occur in RCCs and that some mutant proteins, unlike wild-type (WT) TMEM127, fail to cooperate with activated early endosomal GTPase, Rab5, to inhibit mTOR signaling. Tmem127-null mouse embryonic fibroblasts (MEFs) are deficient in generating early-to-late hybrid endosomes upon constitutive Rab5 activation, a defect rescued by WT, but not mutant, TMEM127. This endosomal dysfunction results in diminished mTOR colocalization with Rab5-positive vesicles. Conversely, active, lysosomal-bound mTOR is increased in Tmem127-null MEFs, which also display enhanced lysosomal biogenesis. Our data map the tumor-suppressive properties of TMEM127 to modulation of mTOR function in the endolysosome, a feature that may contribute to both pheochromocytoma and RCC pathogenesis.
Collapse
Affiliation(s)
| | - Y. Deng
- Department of Medicine
- Department of Cellular & Structural Biology and
| | - C.J. Ricketts
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences and Centre for Rare Diseases and Personalized Medicine, University of Birmingham, Birmingham, UK
| | | | - E. Wang
- Department of Cellular & Structural Biology and
| | - E.R. Maher
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences and Centre for Rare Diseases and Personalized Medicine, University of Birmingham, Birmingham, UK
| | - P. L.M. Dahia
- Department of Medicine
- Cancer Therapy and Research Center (CTRC)
- Greehey Children's Cancer Research Institute (GCCRI), University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
46
|
Johnston DA, Tapia AL, Eberle KE, Palmer GE. Three prevacuolar compartment Rab GTPases impact Candida albicans hyphal growth. EUKARYOTIC CELL 2013; 12:1039-50. [PMID: 23709183 PMCID: PMC3697461 DOI: 10.1128/ec.00359-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
Abstract
Disruption of vacuolar biogenesis in the pathogenic yeast Candida albicans causes profound defects in polarized hyphal growth. However, the precise vacuolar pathways involved in yeast-hypha differentiation have not been determined. Previously we focused on Vps21p, a Rab GTPase involved in directing vacuolar trafficking through the late endosomal prevacuolar compartment (PVC). Herein, we identify two additional Vps21p-related GTPases, Ypt52p and Ypt53p, that colocalize with Vps21p and can suppress the hyphal defects of the vps21Δ/Δ mutant. Phenotypic analysis of gene deletion strains revealed that loss of both VPS21 and YPT52 causes synthetic defects in endocytic trafficking to the vacuole, as well as delivery of the virulence-associated vacuolar membrane protein Mlt1p from the Golgi compartment. Transcription of all three GTPase-encoding genes is increased under hyphal growth conditions, and overexpression of the transcription factor Ume6p is sufficient to increase the transcription of these genes. While only the vps21Δ/Δ single mutant has hyphal growth defects, these were greatly exacerbated in a vps21Δ/Δ ypt52Δ/Δ double mutant. On the basis of relative expression levels and phenotypic analysis of gene deletion strains, Vps21p is the most important of the three GTPases, followed by Ypt52p, while Ypt53p has an only marginal impact on C. albicans physiology. Finally, disruption of a nonendosomal AP-3-dependent vacuolar trafficking pathway in the vps21Δ/Δ ypt52Δ/Δ mutant, further exacerbated the stress and hyphal growth defects. These findings underscore the importance of membrane trafficking through the PVC in sustaining the invasive hyphal growth form of C. albicans.
Collapse
Affiliation(s)
- Douglas A Johnston
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
47
|
Nookala RK, Langemeyer L, Pacitto A, Ochoa-Montaño B, Donaldson JC, Blaszczyk BK, Chirgadze DY, Barr FA, Bazan JF, Blundell TL. Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biol 2013; 2:120071. [PMID: 22977732 PMCID: PMC3438538 DOI: 10.1098/rsob.120071] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022] Open
Abstract
Mutations in the renal tumour suppressor protein, folliculin, lead to proliferative skin lesions, lung complications and renal cell carcinoma. Folliculin has been reported to interact with AMP-activated kinase, a key component of the mammalian target of rapamycin pathway. Most cancer-causing mutations lead to a carboxy-terminal truncation of folliculin, pointing to a functional importance of this domain in tumour suppression. We present here the crystal structure of folliculin carboxy-terminal domain and demonstrate that it is distantly related to differentially expressed in normal cells and neoplasia (DENN) domain proteins, a family of Rab guanine nucleotide exchange factors (GEFs). Using biochemical analysis, we show that folliculin has GEF activity, indicating that folliculin is probably a distantly related member of this class of Rab GEFs.
Collapse
Affiliation(s)
- Ravi K Nookala
- Department of Biochemistry , University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Paulsel AL, Merz AJ, Nickerson DP. Vps9 family protein Muk1 is the second Rab5 guanosine nucleotide exchange factor in budding yeast. J Biol Chem 2013; 288:18162-71. [PMID: 23612966 DOI: 10.1074/jbc.m113.457069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
VPS9 domains can act as guanosine nucleotide exchange factors (GEFs) against small G proteins of the Rab5 family. Saccharomyces cerevisiae vps9Δ mutants have trafficking defects considerably less severe than multiple deletions of the three cognate Rab5 paralogs (Vps21, Ypt52, and Ypt53). Here, we show that Muk1, which also contains a VPS9 domain, acts as a second GEF against Vps21, Ypt52, and Ypt53. Muk1 is partially redundant with Vps9 in vivo, with vps9Δ muk1Δ double mutant cells displaying hypersensitivity to temperature and ionic stress, as well as profound impairments in endocytic and Golgi endosome trafficking, including defects in sorting through the multivesicular body. Cells lacking both Vps9 and Muk1 closely phenocopy double and triple knock-out strains lacking Rab5 paralogs. Microscopy and overexpression experiments demonstrate that Vps9 and Muk1 have distinct localization determinants. These experiments establish Muk1 as the second Rab5 GEF in budding yeast.
Collapse
Affiliation(s)
- Andrew L Paulsel
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
49
|
Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 2013; 14:450-7. [PMID: 23478338 DOI: 10.1038/embor.2013.32] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism that targets intracellular molecules and damaged organelles to lysosomes. Autophagy is achieved by a series of membrane trafficking events, but their regulatory mechanisms are poorly understood. Here, we report small GTPase Rab12 as a new type of autophagic regulator that controls the degradation of an amino-acid transporter. Knockdown of Rab12 results in inhibition of autophagy and in increased activity of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), an upstream regulator of autophagy. We also found that Rab12 promotes constitutive degradation of PAT4 (proton-coupled amino-acid transporter 4), whose accumulation in Rab12-knockdown cells modulates mTORC1 activity and autophagy. Our findings reveal a new mechanism of regulation of mTORC1 signalling and autophagy, that is, quality control of PAT4 by Rab12.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | |
Collapse
|
50
|
Maturation of autophagosomes and endosomes: a key role for Rab7. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:503-10. [PMID: 23220125 DOI: 10.1016/j.bbamcr.2012.11.018] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 01/24/2023]
Abstract
Macroautophagy is an important route in cellular maintenance, in the breakdown and reuse of intracellular materials. It is closely related to endocytosis, the means by which the cell can absorb extracellular material, as both macroautophagy and endocytosis have converging steps and common participating molecules. The point where autophagosomes and endosomes fuse with lysosomes to permit for the final degradation of their contents is important. One of the most substantial molecules in the maturation of autophagosomes/endosomes is Rab7, a member of small GTPases. Rab7 designates the maturation of endosomes and also autophagosomes, directing the trafficking of cargos along microtubules, and finally, participating in the fusion step with lysosomes. Rab7 is an effective multifunctional regulator of autophagy and endocytosis. Since many aggregation-based diseases, e.g. age-related macular degeneration of the eye (AMD) and Alzheimer's disease are due of malfunctioning in the autophagic process, the management of Rab7 activity might hold potential as a therapeutic target against these diseases.
Collapse
|