1
|
You M, Zhang Y, Gao M, Zhao W, Wei L, Ruan XZ, Chen Y. Selenoprotein K-dependent MyD88 palmitoylation promotes hepatic metaflammation in high-fat diet fed mice. Free Radic Biol Med 2025:S0891-5849(25)00686-0. [PMID: 40409695 DOI: 10.1016/j.freeradbiomed.2025.05.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Metaflammation is characteristic of chronic metabolic inflammation, associated with increased risk of development of metabolic dysfunction-associated steatotic liver disease (MASLD). Palmitoylation of Myeloid differentiation factor 88 (MyD88) adaptor protein mediates biologically important signal transduction pathways in inflammatory responses. However, the molecular mechanisms underlying MyD88 palmitoylation contributes to lipid-induced metaflammation in the progression of MASLD is not completely understood. In this study, an increment of MyD88 palmitoylation was observed in the livers of high-fat diet fed mice, accompanied by increased lipid accumulation and an inflammatory response. Inhibition of MyD88 palmitoylation attenuated the inflammation and hepatic steatosis in HFD-induced mice. Mechanistically, palmitoylation of MyD88 activated NF-κB-p65 and p38 MAPK signals in a selenoprotein K (SelK)-DHHC6 palmitoyltransferase complex dependent pathway. Intervention of SelK SH3 binding domain reduced the palmitoylation level of MyD88 by inhibiting the interaction between SelK and DHHC6. Our findings suggest that MyD88 palmitoylation regulates the metabolic disorder and metaflammation through SelK/DHHC6-dependent pathway, cooperatively. Inhibition of MyD88 palmitoylation and SelK SH3 binding domain may represent a new therapeutic strategy for treatment of MASLD progression.
Collapse
Affiliation(s)
- Mengyue You
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China; Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Yun Zhang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Meilin Gao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Zhao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Li Wei
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
2
|
Manhertz-Patterson R, Atilla-Gokcumen GE. S-acylation in apoptotic and non-apoptotic cell death: a central regulator of membrane dynamics and protein function. Biochem Soc Trans 2025; 53:BST20253012. [PMID: 40304073 DOI: 10.1042/bst20253012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Protein lipidation is a collection of important post-translational modifications that modulate protein localization and stability. Protein lipidation affects protein function by facilitating interactions with cellular membranes, changing the local environment of protein interactions. Among these modifications, S-acylation has emerged as a key regulator of various cellular processes, including different forms of cell death. In this mini-review, we highlight the role of S-acylation in apoptosis and its emerging contributions to necroptosis and pyroptosis. While traditionally associated with the incorporation of palmitic acid (palmitoylation), recent findings indicate that other fatty acids can also participate in S-acylation, expanding its functional repertoire. In apoptosis, S-acylation influences the localization and function of key regulators such as Bcl-2-associated X protein and other proteins modulating their role in mitochondrial permeabilization and death receptor signaling. Similarly, in necroptosis, S-acylation of mixed lineage kinase domain-like protein (MLKL) with palmitic acid and very long-chain fatty acids enhances membrane binding and membrane permeabilization, contributing to cell death and inflammatory responses. Recent studies also highlight the role of S-acylation in pyroptosis, where S-acylated gasdermin D facilitates membrane localization and pore assembly upon inflammasome activation. Blocking palmitoylation has shown to suppress pyroptosis and cytokine release, reducing inflammatory activity and tissue damage in septic models. Collectively, these findings underscore S-acylation as a shared and important regulatory mechanism across cell death pathways affecting membrane association of key signaling proteins and membrane dynamics, and offer insights into the spatial and temporal control of protein function.
Collapse
Affiliation(s)
- Rojae Manhertz-Patterson
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, U.S.A
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, U.S.A
| |
Collapse
|
3
|
Stillger K, Platz-Baudin E, Friedland F, Ruppel M, Sticker CL, Bodenhausen A, Noetzel E, Neundorf I. First Steps toward the Design of Peptides that Influence the Intracellular Palmitoylation Machinery. Chembiochem 2025:e2500218. [PMID: 40205982 DOI: 10.1002/cbic.202500218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
Protein S-palmitoylation is a reversible posttranslational modification transferring the 16-carbon fatty acid palmitate to cysteines. It plays a critical role in many cellular processes by influencing protein function, localization, stability, and protein-protein interactions and has a significant impact on various physiological and pathological conditions. This emphasizes the need to develop new technologies to study and treat diseases associated with aberrant palmitoylation. To address these challenges, cell-permeable peptides containing an Asp-His-His-Cys (DHHC) palmitoylation motif are presented aiming to affect intracellular protein S-palmitoylation. A small library of peptides is generated and screened for cellular uptake and cell compatibility. Interestingly, the newly designed peptides internalize to high extent into different cell lines and human breast cell spheroids dependent on their palmitoylation motif. In addition, out of this screen, DC-2 is identified as very potent and this peptide is investigated in more detail concerning its impact on palmitoylated proteins that are connected to cancer progression. These initial explorations highlight that DC-2 affected the localization of HRas and altered S-palmitoylation-related signaling cascades of epidermal growth factor receptor. These findings suggest a peptide-driven impact on proteins having palmitoylation sites and highlight cell-permeable DHHC peptides as a potential tool to be further evolved in the context of palmitoylation and cancer.
Collapse
Affiliation(s)
- Katharina Stillger
- Department of Chemistry and Biochemistry, Institute for Biochemistry, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Eric Platz-Baudin
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Florian Friedland
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Melina Ruppel
- Department of Chemistry and Biochemistry, Institute for Biochemistry, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Coco-Louisa Sticker
- Department of Chemistry and Biochemistry, Institute for Biochemistry, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Anne Bodenhausen
- Department of Chemistry and Biochemistry, Institute for Biochemistry, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Ines Neundorf
- Department of Chemistry and Biochemistry, Institute for Biochemistry, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| |
Collapse
|
4
|
Zhu Z, Feng S, Zeng A, Song L. Advances in Palmitoylation: A key Regulator of liver cancer development and therapeutic targets. Biochem Pharmacol 2025; 234:116810. [PMID: 39978688 DOI: 10.1016/j.bcp.2025.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Liver cancer ranks as the second leading cause of cancer-related deaths globally, which remains a significant public health concern. The development of liver cancer is associated with several signaling pathways, particularly metabolic reprogramming. Protein S-palmitoylation, a type of lipid post-translational modification (PTM), involves the reversible attachment of palmitic acid to a cysteine residue through a thioester bond. This modification is found in a wide range of proteins, including enzymes, cancer promoters, tumor suppressors, and transcription factors. The palmitoylation process is catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family, while the reverse process, depalmitoylation, is facilitated by palmitoyl-protein thioesterases (PPTs). Dysregulation of palmitoylation has been linked to various cancer hallmark functions, cancer metabolism, and tumor microenvironment regulation. Currently, membrane palmitoylated protein (MPP) and PPT1 have been identified as prognostic markers and potential therapeutic targets in liver cancer. In this review, we summarize recent advances in understanding the effects of palmitoylation on liver cancer development, metastasis, and prognosis prediction, and explore potential therapeutic strategies for managing liver cancer.
Collapse
Affiliation(s)
- Zilong Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Shenghui Feng
- Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
5
|
Mondal T, Song J, Banerjee A. In vitro reconstitution reveals substrate selectivity of protein S-acyltransferases. J Biol Chem 2025; 301:108406. [PMID: 40090582 PMCID: PMC12018989 DOI: 10.1016/j.jbc.2025.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Protein S-acylation, commonly known as protein palmitoylation, is the most prevalent form of protein lipidation with ∼6000 target proteins and in humans, is catalyzed by 23 integral membrane enzymes of the zDHHC family. Recognition of its importance in cellular physiology as well as human diseases has undergone an explosive growth in recent years. Yet, the nature of zDHHC-substrate interactions has remained poorly understood for most zDHHC enzymes. Cell-based experiments indicate a promiscuous and complex zDHHC-substrate network, whereas lack of in vitro reconstitution experiments has impeded insights into the nature of discrete zDHHC-substrate interactions. Here we report a substrate S-acylation reconstitution assay, called the Pep-PAT assay, using purified enzyme and peptide fragments of substrates. We use the Pep-PAT assay to investigate the substrate S-acylation of three different zDHHC enzymes on seven different substrates. Remarkably, all the zDHHC enzymes showed robust activity with certain substrates but not others. These in vitro reconstitution experiments indicate that there is a preferred substrate hierarchy for zDHHC enzymes. We further used the Pep-PAT assay to interrogate the role of neighboring residues around the target cysteine on S-acylation of PSD-95 and SARS-CoV-2 Spike protein. Select residues around the target cysteines have distinct impact on substrate S-acylation, leading to the first insights into how neighboring residues around the target cysteine affect substrate S-acylation by zDHHC enzymes. Finally, we validated the impact of neighboring residues on substrate S-acylation using in cellulo assays. Our experiments build a framework for understanding substrate S-acylation by zDHHC enzymes.
Collapse
Affiliation(s)
- Tanmay Mondal
- Section on Structural and Chemical Biology, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - James Song
- Section on Structural and Chemical Biology, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anirban Banerjee
- Section on Structural and Chemical Biology, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Adachi N, Hess DT, Ueyama T. A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification. J Lipid Res 2025; 66:100743. [PMID: 39800157 PMCID: PMC11870023 DOI: 10.1016/j.jlr.2025.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies. Activation of the zDHHCs by auto-S-palmitoylation, the transthioesterification of the active site Cys by fatty acyl coenzyme A, is the necessary first step in zDHHC-mediated protein S-palmitoylation. Most prior in vitro assessments of zDHHC activation have utilized purified zDHHCs, a time- and effort-intensive approach, which removes zDHHCs from their native membrane environment. We describe here a facile assay for zDHHC activation in native membranes. We overexpressed hemagglutinin-tagged wild-type or mutant zDHHCs in cultured HEK293 cells and prepared a whole membrane fraction, which was incubated with fluorescent palmitoyl CoA (NBD-palmitoyl-CoA) followed by SDS-PAGE, fluorescence imaging, and Western blotting for hemagglutinin. We show by mutational analysis that, as assayed, zDHHC auto-S-palmitoylation by NBD-palmitoyl-CoA is limited to the active site Cys. Application of the assay revealed differential effects on zDHHC activation of posttranslational zDHHC modification and of zDHHC mutations associated with human disease, in particular cancer. Our assay provides a facile means of assessing zDHHC activation, and thus of differentiating the effects of zDHHC mutation and posttranslational modification on zDHHC activation versus secondary effects on zDHHC functionality including altered zDHHC interaction with substrate palmitoyl-proteins.
Collapse
Affiliation(s)
- Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| | - Douglas T Hess
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
7
|
Williams DM, Peden AA. Greasing the wheels of inflammasome formation: regulation of NLRP3 function by S-linked fatty acids. Biochem Soc Trans 2025:BST20241738. [PMID: 39838868 DOI: 10.1042/bst20241738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
NLRP3 is an inflammasome seeding pattern recognition receptor that initiates a pro-inflammatory signalling cascade in response to changes in intracellular homeostasis that are indicative of bacterial infection or tissue damage. Several types of post-translational modification (PTM) have been identified that are added to NLRP3 to regulate its activity. Recent progress has revealed that NLRP3 is subject to a further type of PTM, S-acylation (or palmitoylation), which involves the reversible addition of long-chain fatty acids to target cysteine residues by opposing sets of enzymes. This review provides an overview of recent studies that have identified S-acylation as an important modifier of NLRP3 function. The essential role of S-acylation in the recruitment of NLRP3 to intracellular membranes and the consequences of S-acylation-dependent membrane recruitment on NLRP3 localisation and activation are discussed in detail.
Collapse
Affiliation(s)
- Daniel M Williams
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew A Peden
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
8
|
Shen X, Miao S, Zhang Y, Guo X, Li W, Mao X, Zhang Q. Stearic acid metabolism in human health and disease. Clin Nutr 2025; 44:222-238. [PMID: 39709650 DOI: 10.1016/j.clnu.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis. Similar to palmitate, stearic acid serves as a primary substrate for the stearoyl coenzyme A desaturase, which catalyzes the conversion of stearate to oleate and is involved in the synthesis of triglyceride and other complex lipids. Additionally, stearic acid functions as a vital signaling molecule in pathological processes such as cardiovascular diseases, diabetes development, liver injury and even nervous system disorders. Therefore, we conduct a comprehensive review of stearic acid, summarizing its role in various diseases and attempting to provide a systematic overview of its homeostasis, physiological functions, and pathological process. From a medical standpoint, we also explore potential applications and discuss stearic acid as a potential therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingying Guo
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G, Pan Y. Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol 2024; 12:1413708. [PMID: 39563863 PMCID: PMC11573772 DOI: 10.3389/fcell.2024.1413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
S-Palmitoylation has been widely noticed and studied in a variety of diseases. Increasing evidence suggests that S-palmitoylation modification also plays a key role in Glioblastoma (GBM). The zDHHC family, as an important member of S-palmitoyltransferases, has received extensive attention for its function and mechanism in GBM which is one of the most common primary malignant tumors of the brain and has an adverse prognosis. This review focuses on the zDHHC family, essential S-palmitoyltransferases, and their involvement in GBM. By summarizing recent studies on zDHHC molecules in GBM, we highlight their significance in regulating critical processes such as cell proliferation, invasion, and apoptosis. Specifically, members of zDHHC3, zDHHC4, zDHHC5 and others affect key processes such as signal transduction and phenotypic transformation in GBM cells through different pathways, which in turn influence tumorigenesis and progression. This review systematically outlines the mechanism of zDHHC family-mediated S-palmitoylation modification in GBM, emphasizes its importance in the development of this disease, and provides potential targets and strategies for the treatment of GBM. It also offers theoretical foundations and insights for future research and clinical applications.
Collapse
Affiliation(s)
- Beiyan Tang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwei Qin
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lei Duan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianjun Zhao
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
11
|
Ocasio CA, Baggelaar MP, Sipthorp J, Losada de la Lastra A, Tavares M, Volarić J, Soudy C, Storck EM, Houghton JW, Palma-Duran SA, MacRae JI, Tomić G, Carr L, Downward J, Eggert US, Tate EW. A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation. Nat Biotechnol 2024; 42:1548-1558. [PMID: 38191663 PMCID: PMC11471619 DOI: 10.1038/s41587-023-02030-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2023] [Indexed: 01/10/2024]
Abstract
The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.
Collapse
Affiliation(s)
| | - Marc P Baggelaar
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
- Utrecht University, Biomolecular Mass Spectrometry & Proteomics Group, Utrecht, The Netherlands
| | - James Sipthorp
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Ana Losada de la Lastra
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Manuel Tavares
- The Francis Crick Institute, London, UK
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | - Jana Volarić
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK
| | | | - Elisabeth M Storck
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | | | - Susana A Palma-Duran
- The Francis Crick Institute, London, UK
- Department of Food Science, Research Center in Food and Development A.C., Hermosillo, Mexico
| | | | | | | | | | - Ulrike S Eggert
- King's College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and Department of Chemistry, London, UK
| | - Edward W Tate
- The Francis Crick Institute, London, UK.
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, UK.
| |
Collapse
|
12
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
13
|
Shao Y, Hu J, Li H, Lu K. Regulation of autophagy by protein lipidation. ADVANCED BIOTECHNOLOGY 2024; 2:33. [PMID: 39883197 PMCID: PMC11709147 DOI: 10.1007/s44307-024-00040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy is a conserved catabolic recycling pathway that can eliminate cytosolic materials to maintain homeostasis and organelle functions. Many studies over the past few decades have demonstrated that abnormal autophagy is associated with a variety of diseases. Protein lipidation plays an important role in the regulation of autophagy by affecting protein trafficking, localization, stability, interactions and signal transduction. Here, we review recent advances in the understanding of the role of lipidation in autophagy, including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor modification and cholesterylation. We comprehensively review the enzymes and catalytic mechanisms of lipidation and discuss the relationship between lipidation and autophagy, aiming to deepen the understanding of lipidation and promote the discovery of drug targets for the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Yuqian Shao
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junchao Hu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Williams DM, Peden AA. S-acylation of NLRP3 provides a nigericin sensitive gating mechanism that controls access to the Golgi. eLife 2024; 13:RP94302. [PMID: 39263961 PMCID: PMC11392533 DOI: 10.7554/elife.94302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
NLRP3 is an inflammasome seeding pattern recognition receptor activated in response to multiple danger signals which perturb intracellular homeostasis. Electrostatic interactions between the NLRP3 polybasic (PB) region and negatively charged lipids on the trans-Golgi network (TGN) have been proposed to recruit NLRP3 to the TGN. In this study, we demonstrate that membrane association of NLRP3 is critically dependant on S-acylation of a highly conserved cysteine residue (Cys-130), which traps NLRP3 in a dynamic S-acylation cycle at the Golgi, and a series of hydrophobic residues preceding Cys-130 which act in conjunction with the PB region to facilitate Cys-130 dependent Golgi enrichment. Due to segregation from Golgi localised thioesterase enzymes caused by a nigericin induced breakdown in Golgi organisation and function, NLRP3 becomes immobilised on the Golgi through reduced de-acylation of its Cys-130 lipid anchor, suggesting that disruptions in Golgi homeostasis are conveyed to NLRP3 through its acylation state. Thus, our work defines a nigericin sensitive S-acylation cycle that gates access of NLRP3 to the Golgi.
Collapse
Affiliation(s)
- Daniel M Williams
- School of Bioscience, University of SheffieldSheffieldUnited Kingdom
| | - Andrew A Peden
- School of Bioscience, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
15
|
Busquets-Hernández C, Ribó S, Gratacós-Batlle E, Carbajo D, Tsiotsia A, Blanco-Canosa JB, Chamberlain LH, Triola G. Quantitative analysis of protein lipidation and acyl-CoAs reveals substrate preferences of the S-acylation machinery. Chem Sci 2024; 15:12845-12855. [PMID: 39148806 PMCID: PMC11322976 DOI: 10.1039/d4sc02235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Protein palmitoylation or S-acylation has emerged as a key regulator of cellular processes. Increasing evidence shows that this modification is not restricted to palmitate but it can include additional fatty acids, raising the possibility that differential S-acylation contributes to the fine-tuning of protein activity. However, methods to profile the acyl moieties attached to proteins are scarce. Herein, we report a method for the identification and quantification of lipids bound to proteins that relies on hydroxylamine treatment and mass spectrometry analysis of fatty acid hydroxamates. This method has enabled unprecedented and extensive profiling of the S-acylome in different cell lines and tissues and has shed light on the substrate specificity of some S-acylating enzymes. Moreover, we could extend it to quantify also the acyl-CoAs, which are thioesters formed between a fatty acid and a coenzyme A, overcoming many of the previously described challenges for the detection of such species. Importantly, the simultaneous analysis of the lipid fraction and the proteome allowed us to establish, for the first time, a direct correlation between the endogenous levels of acyl-CoAs and the S-acylation profile of its proteome.
Collapse
Affiliation(s)
- Carla Busquets-Hernández
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Silvia Ribó
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Esther Gratacós-Batlle
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Daniel Carbajo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Alexandra Tsiotsia
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow UK
| | - Gemma Triola
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Barcelona Spain
| |
Collapse
|
16
|
Griffiths G, Brügger B, Freund C. Lipid switches in the immunological synapse. J Biol Chem 2024; 300:107428. [PMID: 38823638 PMCID: PMC11259711 DOI: 10.1016/j.jbc.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
Collapse
Affiliation(s)
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Choi M, Lee J, Jeong K, Pak Y. Caveolin-2 palmitoylation turnover facilitates insulin receptor substrate-1-directed lipid metabolism by insulin receptor tyrosine kinase. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167173. [PMID: 38631410 DOI: 10.1016/j.bbadis.2024.167173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
18
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 PMCID: PMC12010433 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
19
|
Zhang N, Zhang J, Yang Y, Shan H, Hou S, Fang H, Ma M, Chen Z, Tan L, Xu D. A palmitoylation-depalmitoylation relay spatiotemporally controls GSDMD activation in pyroptosis. Nat Cell Biol 2024; 26:757-769. [PMID: 38538834 DOI: 10.1038/s41556-024-01397-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Gasdermin D (GSDMD) is the executor of pyroptosis, which is important for host defence against pathogen infection. Following activation, caspase-mediated cleavage of GSDMD releases an amino-terminal fragment (GSDMD-NT), which oligomerizes and forms pores in the plasma membrane, leading to cell death and release of proinflammatory cytokines. The spatial and temporal regulation of this process in cells remains unclear. Here we identify GSDMD as a substrate for reversible S-palmitoylation on C192 during pyroptosis. The palmitoyl acyltransferase DHHC7 palmitoylates GSDMD to direct its cleavage by caspases. Subsequently, palmitoylation of GSDMD-NT promotes its translocation to the plasma membrane, where APT2 depalmitoylates GSDMD-NT to unmask the C192 residue and promote GSDMD-NT oligomerization. Perturbation of either palmitoylation or depalmitoylation suppresses pyroptosis, leading to increased survival of mice with lipopolysaccharide-induced lethal septic shock and increased sensitivity to bacterial infection. Our findings reveal a model through which a palmitoylation-depalmitoylation relay spatiotemporally controls GSDMD activation during pyroptosis.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
20
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
21
|
Yang A, Liu S, Zhang Y, Chen J, Fan Y, Wang F, Zou Y, Feng S, Wu J, Hu Q. Regulation of RAS palmitoyltransferases by accessory proteins and palmitoylation. Nat Struct Mol Biol 2024; 31:436-446. [PMID: 38182928 DOI: 10.1038/s41594-023-01183-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024]
Abstract
Palmitoylation of cysteine residues at the C-terminal hypervariable regions in human HRAS and NRAS, which is necessary for RAS signaling, is catalyzed by the acyltransferase DHHC9 in complex with its accessory protein GCP16. The molecular basis for the acyltransferase activity and the regulation of DHHC9 by GCP16 is not clear. Here we report the cryo-electron microscopy structures of the human DHHC9-GCP16 complex and its yeast counterpart-the Erf2-Erf4 complex, demonstrating that GCP16 and Erf4 are not directly involved in the catalytic process but stabilize the architecture of DHHC9 and Erf2, respectively. We found that a phospholipid binding to an arginine-rich region of DHHC9 and palmitoylation on three residues (C24, C25 and C288) were essential for the catalytic activity of the DHHC9-GCP16 complex. Moreover, we showed that GCP16 also formed complexes with DHHC14 and DHHC18 to catalyze RAS palmitoylation. These findings provide insights into the regulatory mechanism of RAS palmitoyltransferases.
Collapse
Affiliation(s)
- Anlan Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shengjie Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Yuqi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jia Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, Westlake University, Hangzhou, China
| | - Yujing Fan
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Fengxiang Wang
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yilong Zou
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, Westlake University, Hangzhou, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
22
|
Mesquita FS, Abrami L, Samurkas A, van der Goot FG. S-acylation: an orchestrator of the life cycle and function of membrane proteins. FEBS J 2024; 291:45-56. [PMID: 37811679 DOI: 10.1111/febs.16972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
S-acylation is a covalent post-translational modification of proteins with fatty acids, achieved by enzymatic attachment via a labile thioester bond. This modification allows for dynamic control of protein properties and functions in association with cell membranes. This lipid modification regulates a substantial portion of the human proteome and plays an increasingly recognized role throughout the lifespan of affected proteins. Recent technical advancements have propelled the S-acylation field into a 'molecular era', unveiling new insights into its mechanistic intricacies and far-reaching implications. With a striking increase in the number of studies on this modification, new concepts are indeed emerging on the roles of S-acylation in specific cell biology processes and features. After a brief overview of the enzymes involved in S-acylation, this viewpoint focuses on the importance of S-acylation in the homeostasis, function, and coordination of integral membrane proteins. In particular, we put forward the hypotheses that S-acylation is a gatekeeper of membrane protein folding and turnover and a regulator of the formation and dynamics of membrane contact sites.
Collapse
Affiliation(s)
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Arthur Samurkas
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
23
|
Talwadekar M, Khatri S, Balaji C, Chakraborty A, Basak NP, Kamat SS, Kolthur-Seetharam U. Metabolic transitions regulate global protein fatty acylation. J Biol Chem 2024; 300:105563. [PMID: 38101568 PMCID: PMC10808961 DOI: 10.1016/j.jbc.2023.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.
Collapse
Affiliation(s)
- Manasi Talwadekar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Nandini-Pal Basak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India; Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
24
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. Front Physiol 2023; 14:1330259. [PMID: 38169682 PMCID: PMC10758431 DOI: 10.3389/fphys.2023.1330259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium release-activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
25
|
Kodakandla G, Akimzhanov AM, Boehning D. Regulatory mechanisms controlling store-operated calcium entry. ARXIV 2023:arXiv:2309.06907v3. [PMID: 37744466 PMCID: PMC10516112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Calcium influx through plasma membrane ion channels is crucial for many events in cellular physiology. Cell surface stimuli lead to the production of inositol 1,4,5-trisphosphate (IP3), which binds to IP3 receptors (IP3R) in the endoplasmic reticulum (ER) to release calcium pools from the ER lumen. This leads to the depletion of ER calcium pools, which has been termed store depletion. Store depletion leads to the dissociation of calcium ions from the EF-hand motif of the ER calcium sensor Stromal Interaction Molecule 1 (STIM1). This leads to a conformational change in STIM1, which helps it to interact with the plasma membrane (PM) at ER:PM junctions. At these ER:PM junctions, STIM1 binds to and activates a calcium channel known as Orai1 to form calcium-release activated calcium (CRAC) channels. Activation of Orai1 leads to calcium influx, known as store-operated calcium entry (SOCE). In addition to Orai1 and STIM1, the homologs of Orai1 and STIM1, such as Orai2/3 and STIM2, also play a crucial role in calcium homeostasis. The influx of calcium through the Orai channel activates a calcium current that has been termed the CRAC current. CRAC channels form multimers and cluster together in large macromolecular assemblies termed "puncta". How CRAC channels form puncta has been contentious since their discovery. In this review, we will outline the history of SOCE, the molecular players involved in this process, as well as the models that have been proposed to explain this critical mechanism in cellular physiology.
Collapse
Affiliation(s)
- Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, Texas, USA, 77030
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA, 08103
| |
Collapse
|
26
|
Meng X, Templeton C, Clementi C, Veit M. The role of an amphiphilic helix and transmembrane region in the efficient acylation of the M2 protein from influenza virus. Sci Rep 2023; 13:18928. [PMID: 37919373 PMCID: PMC10622425 DOI: 10.1038/s41598-023-45945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Protein palmitoylation, a cellular process occurring at the membrane-cytosol interface, is orchestrated by members of the DHHC enzyme family and plays a pivotal role in regulating various cellular functions. The M2 protein of the influenza virus, which is acylated at a membrane-near amphiphilic helix serves as a model for studying the intricate signals governing acylation and its interaction with the cognate enzyme, DHHC20. We investigate it here using both experimental and computational assays. We report that altering the biophysical properties of the amphiphilic helix, particularly by shortening or disrupting it, results in a substantial reduction in M2 palmitoylation, but does not entirely abolish the process. Intriguingly, DHHC20 exhibits an augmented affinity for some M2 mutants compared to the wildtype M2. Molecular dynamics simulations unveil interactions between amino acids of the helix and the catalytically significant DHHC and TTXE motifs of DHHC20. Our findings suggest that the binding of M2 to DHHC20, while not highly specific, is mediated by requisite contacts, possibly instigating the transfer of fatty acids. A comprehensive comprehension of protein palmitoylation mechanisms is imperative for the development of DHHC-specific inhibitors, holding promise for the treatment of diverse human diseases.
Collapse
Affiliation(s)
- Xiaorong Meng
- Institute of Virology, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany
| | - Clark Templeton
- Theoretical and Computational Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Cecilia Clementi
- Theoretical and Computational Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Ekin Atilla-Gokcumen G. Acylation of MLKL impacts its function in necroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553906. [PMID: 37645912 PMCID: PMC10462141 DOI: 10.1101/2023.08.19.553906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by the electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, C184, C269 and C286 are the possible acylation sites. Using all atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane level. Through systematic investigations of the S-palmitoyltransferases that might acylate MLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.
Collapse
Affiliation(s)
- Apoorva J. Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
28
|
Meng X, Veit M. Palmitoylation of the hemagglutinin of influenza B virus by ER-localized DHHC enzymes 1, 2, 4, and 6 is required for efficient virus replication. J Virol 2023; 97:e0124523. [PMID: 37792001 PMCID: PMC10617437 DOI: 10.1128/jvi.01245-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.
Collapse
Affiliation(s)
- Xiaorong Meng
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| | - Michael Veit
- Veterinary Faculty, Institute for Virology, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
29
|
Huang X, Yao J, Liu L, Chen J, Mei L, Huangfu J, Luo D, Wang X, Lin C, Chen X, Yang Y, Ouyang S, Wei F, Wang Z, Zhang S, Xiang T, Neculai D, Sun Q, Kong E, Tate EW, Yang A. S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol Cell 2023; 83:3485-3501.e11. [PMID: 37802024 PMCID: PMC10552648 DOI: 10.1016/j.molcel.2023.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jingjing Huangfu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Dong Luo
- School of Pharmacy, Chongqing University, Chongqing 401331, China
| | - Xinyi Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Changhai Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Sheng Ouyang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shaolin Zhang
- School of Pharmacy, Chongqing University, Chongqing 401331, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Edward W Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
30
|
Salaun C, Tomkinson NCO, Chamberlain LH. The endoplasmic reticulum-localized enzyme zDHHC6 mediates S-acylation of short transmembrane constructs from multiple type I and II membrane proteins. J Biol Chem 2023; 299:105201. [PMID: 37660915 PMCID: PMC10520890 DOI: 10.1016/j.jbc.2023.105201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
In this study, we investigated the S-acylation of two host cell proteins important for viral infection: TMPRSS2 (transmembrane serine protease 2), which cleaves severe acute respiratory syndrome coronavirus 2 spike to facilitate viral entry, and bone marrow stromal antigen 2, a general viral restriction factor. We found that both proteins were S-acylated by zDHHC6, an S-acyltransferase enzyme localized at the endoplasmic reticulum, in coexpression experiments. Mutagenic analysis revealed that zDHHC6 modifies a single cysteine in each protein, which are in proximity to the transmembrane domains (TMDs). For TMPRSS2, the modified cysteine is positioned two residues into the TMD, whereas the modified cysteine in bone marrow stromal antigen 2 has a cytosolic location two amino acids upstream of the TMD. Cysteine swapping revealed that repositioning the target cysteine of TMPRSS2 further into the TMD substantially reduced S-acylation by zDHHC6. Interestingly, zDHHC6 efficiently S-acylated truncated forms of these proteins that contained only the TMDs and short juxtamembrane regions. The ability of zDHHC6 to modify short TMD sequences was also seen for the transferrin receptor (another type II membrane protein) and for five different type I membrane protein constructs, including cluster of differentiation 4. Collectively, the results of this study show that zDHHC6 can modify diverse membrane proteins (type I and II) and requires only the presence of the TMD and target cysteine for efficient S-acylation. Thus, zDHHC6 may be a broad specificity S-acyltransferase specialized for the modification of a diverse set of transmembrane proteins at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
31
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Nůsková H, Cortizo FG, Schwenker LS, Sachsenheimer T, Diakonov EE, Tiebe M, Schneider M, Lohbeck J, Reid C, Kopp-Schneider A, Helm D, Brügger B, Miller AK, Teleman AA. Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome. J Biol Chem 2023; 299:105088. [PMID: 37495107 PMCID: PMC10470219 DOI: 10.1016/j.jbc.2023.105088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.
Collapse
Affiliation(s)
- Hana Nůsková
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabiola Garcia Cortizo
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Sophie Schwenker
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Egor E Diakonov
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Tiebe
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Mass Spectrometry Based Protein Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Lohbeck
- Research Group Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carissa Reid
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Dominic Helm
- Mass Spectrometry Based Protein Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Aubry K Miller
- Research Group Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
Nguyen PL, Greentree WK, Kawate T, Linder ME. GCP16 stabilizes the DHHC9 subfamily of protein acyltransferases through a conserved C-terminal cysteine motif. Front Physiol 2023; 14:1167094. [PMID: 37035671 PMCID: PMC10076531 DOI: 10.3389/fphys.2023.1167094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Protein S-acylation is a reversible lipid post-translational modification that allows dynamic regulation of processes such as protein stability, membrane association, and localization. Palmitoyltransferase ZDHHC9 (DHHC9) is one of the 23 human DHHC acyltransferases that catalyze protein S-acylation. Dysregulation of DHHC9 is associated with X-linked intellectual disability and increased epilepsy risk. Interestingly, activation of DHHC9 requires an accessory protein-GCP16. However, the exact role of GCP16 and the prevalence of a requirement for accessory proteins among other DHHC proteins remain unclear. Here, we report that one role of GCP16 is to stabilize DHHC9 by preventing its aggregation through formation of a protein complex. Using a combination of size-exclusion chromatography and palmitoyl acyltransferase assays, we demonstrate that only properly folded DHHC9-GCP16 complex is enzymatically active in vitro. Additionally, the ZDHHC9 mutations linked to X-linked intellectual disability result in reduced protein stability and DHHC9-GCP16 complex formation. Notably, we discovered that the C-terminal cysteine motif (CCM) that is conserved among the DHHC9 subfamily (DHHC14, -18, -5, and -8) is required for DHHC9 and GCP16 complex formation and activity in vitro. Co-expression of GCP16 with DHHCs containing the CCM improves DHHC protein stability. Like DHHC9, DHHC14 and DHHC18 require GCP16 for their enzymatic activity. Furthermore, GOLGA7B, an accessory protein with 75% sequence identity to GCP16, improves protein stability of DHHC5 and DHHC8, but not the other members of the DHHC9 subfamily, suggesting selectivity in accessory protein interactions. Our study supports a broader role for GCP16 and GOLGA7B in the function of human DHHCs.
Collapse
Affiliation(s)
| | | | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
| | - Maurine E. Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
34
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
35
|
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol 2022; 13:1040968. [PMID: 36467682 PMCID: PMC9709458 DOI: 10.3389/fphys.2022.1040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/26/2023] Open
Abstract
S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.
Collapse
Affiliation(s)
- Savannah J. West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| |
Collapse
|
36
|
Chalhoub G, McCormick PJ. Palmitoylation and G-protein coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:195-211. [PMID: 36357078 DOI: 10.1016/bs.pmbts.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
More and more it is being appreciated that not all GPCRs are the same, sub-populations of GPCRs exist within a cell and function differently than others. The question is, how does one regulate a given sub-population? One way is through the addition of post-translational modifications to G-protein coupled receptors (GPCR). This process has long been known to occur and play a role in trafficking, pharmacology and ultimately function. This chapter will focus on one particular modification, that of S-palmitoylation, and its impact on GPCR function. We will discuss the history of this modification on these receptors and the connection with disease. We will highlight several examples from the literature of where palmitoylation impacts GPCR function.
Collapse
Affiliation(s)
- Georges Chalhoub
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Department of Endocrinology, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
37
|
Development of a novel high-throughput screen for the identification of new inhibitors of protein S-acylation. J Biol Chem 2022; 298:102469. [PMID: 36087837 PMCID: PMC9558053 DOI: 10.1016/j.jbc.2022.102469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain–containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving “autoacylation” of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.
Collapse
|
38
|
Tang F, Liu Z, Chen X, Yang J, Wang Z, Li Z. Current knowledge of protein palmitoylation in gliomas. Mol Biol Rep 2022; 49:10949-10959. [PMID: 36044113 DOI: 10.1007/s11033-022-07809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Malignant tumor cells can obtain proliferative benefits from deviant metabolic networks. Emerging evidence suggests that lipid metabolism are dramatically altered in gliomas and excessive fatty acd accumulation is detrimentally correlated with the prognosis of glioma patients. Glioma cells possess remarkably high levels of free fatty acids, which, in turn, enhance post-translational modifications (e.g. palmitoylation). Our and other groups found that palmitoylational modification is essential for remaining intracellular homeostasis and cell survival. Disrupting the balance between palmitoylation and depalmitoylation affects glioma cell viability, apoptosis, invasion, self-renew and pyroptosis. In this review, we focused on summarizing roles and relevant mechanisms of protein palmitoylational modification in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zhenyuan Liu
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Jinzhou Yang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhiqiang Li
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China.
| |
Collapse
|
39
|
Schonbrun AR, Resh MD. Hedgehog acyltransferase catalyzes a random sequential reaction and utilizes multiple fatty acyl-CoA substrates. J Biol Chem 2022; 298:102422. [PMID: 36030053 PMCID: PMC9513256 DOI: 10.1016/j.jbc.2022.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is a key component of embryonic development and is a driving force in several cancers. Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase family of enzymes, catalyzes the attachment of palmitate to the N-terminal cysteine of Shh, a posttranslation modification critical for Shh signaling. The activity of Hhat has been assayed in cells and in vitro, and cryo-EM structures of Hhat have been reported, yet several unanswered questions remain regarding the enzyme’s reaction mechanism, substrate specificity, and the impact of the latter on Shh signaling. Here, we present an in vitro acylation assay with purified Hhat that directly monitors attachment of a fluorescently tagged fatty acyl chain to Shh. Our kinetic analyses revealed that the reaction catalyzed by Hhat proceeds through a random sequential mechanism. We also determined that Hhat can utilize multiple fatty acyl-CoA substrates for fatty acid transfer to Shh, with comparable affinities and turnover rates for myristoyl-CoA, palmitoyl-CoA, palmitoleoyl-CoA, and oleoyl-CoA. Furthermore, we investigated the functional consequence of differential fatty acylation of Shh in a luciferase-based Shh reporter system. We found that the potency of the signaling response in cells was higher for Shh acylated with saturated fatty acids compared to monounsaturated fatty acids. These findings demonstrate that Hhat can attach fatty acids other than palmitate to Shh and suggest that heterogeneous fatty acylation has the potential to impact Shh signaling in the developing embryo and/or cancer cells.
Collapse
Affiliation(s)
- Adina R Schonbrun
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY; Gerstner Sloan Kettering Graduate School
| | - Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY; Gerstner Sloan Kettering Graduate School; Biochemistry, Cell Biology and Molecular Biology Graduate Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY.
| |
Collapse
|
40
|
Li J, Zhang M, Zhou L. Protein S-acyltransferases and acyl protein thioesterases, regulation executors of protein S-acylation in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:956231. [PMID: 35968095 PMCID: PMC9363829 DOI: 10.3389/fpls.2022.956231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Protein S-acylation, also known as palmitoylation, is an important lipid post-translational modification of proteins in eukaryotes. S-acylation plays critical roles in a variety of protein functions involved in plant development and responses to abiotic and biotic stresses. The status of S-acylation on proteins is dynamic and reversible, which is catalyzed by protein S-acyltransferases (PATs) and reversed by acyl protein thioesterases. The cycle of S-acylation and de-S-acylation provides a molecular mechanism for membrane-associated proteins to undergo cycling and trafficking between different cell compartments and thus works as a switch to initiate or terminate particular signaling transductions on the membrane surface. In plants, thousands of proteins have been identified to be S-acylated through proteomics. Many S-acylated proteins and quite a few PAT-substrate pairs have been functionally characterized. A recently characterized acyl protein thioesterases family, ABAPT family proteins in Arabidopsis, has provided new insights into the de-S-acylation process. However, our understanding of the regulatory mechanisms controlling the S-acylation and de-S-acylation process is surprisingly incomplete. In this review, we discuss how protein S-acylation level is regulated with the focus on catalyzing enzymes in plants. We also propose the challenges and potential developments for the understanding of the regulatory mechanisms controlling protein S-acylation in plants.
Collapse
Affiliation(s)
- Jincheng Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Manqi Zhang
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
41
|
Tang M, Xia Y, Xiao T, Cao R, Cao Y, Ouyang B. Structural Exploration on Palmitoyltransferase DHHC3 from Homo sapiens. Polymers (Basel) 2022; 14:3013. [PMID: 35893977 PMCID: PMC9332573 DOI: 10.3390/polym14153013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
DHHC3 belongs to a family of DHHC palmitoyltransferase, which catalyzes the S-palmitoylation of target proteins by attaching a fatty acyl group to a cysteine. Recently, DHHC3 has been demonstrated to be a promising antitumor target in cancer therapeutics. However, the detailed structure and catalysis mechanism of DHHC3 remain elusive, considering its sequence diversity from the DHHC homologues with known crystal structures. Here, we described the expression and purification of human DHHC3 (hDHHC3) and truncated hDHHC3 with the flexible N-terminal domain (NTD) removed. Purified hDHHC3 proteins were used under various conditions for protein crystallization. LAMTOR1, one of the interacting proteins of hDHHC3 to facilitate the crystallization, was further identified by mass spectrometry and co-immunoprecipitation assay. The structural exploration using cryogenic electronic microscopy (cryo-EM) on the inactive hDHHS3 mutant showed a typical sideview of membrane proteins. These results provide a preliminary guidance for the structural determination of DHHC3.
Collapse
Affiliation(s)
- Meng Tang
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Xia
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China;
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Taoran Xiao
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China;
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Mekhail K, Lee M, Sugiyama M, Astori A, St-Germain J, Latreille E, Khosraviani N, Wei K, Li Z, Rini J, Lee WL, Antonescu C, Raught B, Fairn GD. Fatty Acid Synthase inhibitor TVB-3166 prevents S-acylation of the Spike protein of human coronaviruses. J Lipid Res 2022; 63:100256. [PMID: 35921881 PMCID: PMC9339154 DOI: 10.1016/j.jlr.2022.100256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022] Open
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.
Collapse
Affiliation(s)
- Katrina Mekhail
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Minhyoung Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Ontario, Canada
| | | | - Elyse Latreille
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Negar Khosraviani
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Kuiru Wei
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - James Rini
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
43
|
Meinnel T. Comment on “Binding Affinity Determines Substrate Specificity and Enables Discovery of Substrates for N-Myristoyltransferases”. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thierry Meinnel
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
44
|
Gök C, Robertson AD, Fuller W. Insulin-induced palmitoylation regulates the Cardiac Na+/Ca2+ exchanger NCX1. Cell Calcium 2022; 104:102567. [DOI: 10.1016/j.ceca.2022.102567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
|
45
|
Sharma C, Hemler ME. Antioxidant and Anticancer Functions of Protein Acyltransferase DHHC3. Antioxidants (Basel) 2022; 11:antiox11050960. [PMID: 35624824 PMCID: PMC9137668 DOI: 10.3390/antiox11050960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Silencing of DHHC3, an acyltransferase enzyme in the DHHC family, extensively upregulates oxidative stress (OS). Substrates for DHHC3-mediated palmitoylation include several antioxidant proteins and many other redox regulatory proteins. This helps to explain why DHHC3 ablation upregulates OS. DHHC3 also plays a key role in cancer. DHHC3 ablation leads to diminished xenograft growth of multiple cancer cell types, along with diminished metastasis. Furthermore, DHHC3 protein is upregulated on malignant/metastatic cancer samples, and upregulated gene expression correlates with diminished patient survival in several human cancers. Decreased primary tumor growth due to DHHC3 ablation may be partly explained by an elevated OS → senescence → innate immune cell recruitment mechanism. Elevated OS due to DHHC3 ablation may also contribute to adaptive anticancer immunity and impair tumor metastasis. In addition, DHHC3 ablation disrupts antioxidant protection mechanisms, thus enhancing the efficacy of OS-inducing anticancer drugs. A major focus has thus far been on OS regulation by DHHC3. However, remaining to be studied are multiple DHHC3 substrates that may affect tumor behavior independent of OS. Nonetheless, the currently established properties of DHHC3 make it an attractive candidate for therapeutic targeting in situations in which antioxidant protections need to be downmodulated, and also in cancer.
Collapse
|
46
|
Molecular Dynamics of DHHC20 Acyltransferase Suggests Principles of Lipid and Protein Substrate Selectivity. Int J Mol Sci 2022; 23:ijms23095091. [PMID: 35563480 PMCID: PMC9105814 DOI: 10.3390/ijms23095091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Lipid modification of viral proteins with fatty acids of different lengths (S-acylation) is crucial for virus pathogenesis. The reaction is catalyzed by members of the DHHC family and proceeds in two steps: the autoacylation is followed by the acyl chain transfer onto protein substrates. The crystal structure of human DHHC20 (hDHHC20), an enzyme involved in the acylation of S-protein of SARS-CoV-2, revealed that the acyl chain may be inserted into a hydrophobic cavity formed by four transmembrane (TM) α-helices. To test this model, we used molecular dynamics of membrane-embedded hDHHC20 and its mutants either in the absence or presence of various acyl-CoAs. We found that among a range of acyl chain lengths probed only C16 adopts a conformation suitable for hDHHC20 autoacylation. This specificity is altered if the small or bulky residues at the cavity's ceiling are exchanged, e.g., the V185G mutant obtains strong preferences for binding C18. Surprisingly, an unusual hydrophilic ridge was found in TM helix 4 of hDHHC20, and the responsive hydrophilic patch supposedly involved in association was found in the 3D model of the S-protein TM-domain trimer. Finally, the exchange of critical Thr and Ser residues in the spike led to a significant decrease in its S-acylation. Our data allow further development of peptide/lipid-based inhibitors of hDHHC20 that might impede replication of Corona- and other enveloped viruses.
Collapse
|
47
|
Elliot Murphy R, Banerjee A. In vitro reconstitution of substrate S-acylation by the zDHHC family of protein acyltransferases. Open Biol 2022; 12:210390. [PMID: 35414257 PMCID: PMC9006032 DOI: 10.1098/rsob.210390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Protein S-acylation, more commonly known as protein palmitoylation, is a biological process defined by the covalent attachment of long chain fatty acids onto cysteine residues of a protein, effectively altering the local hydrophobicity and influencing its stability, localization and overall function. Observed ubiquitously in all eukaryotes, this post translational modification is mediated by the 23-member family of zDHHC protein acyltransferases in mammals. There are thousands of proteins that are S-acylated and multiple zDHHC enzymes can potentially act on a single substrate. Since its discovery, numerous methods have been developed for the identification of zDHHC substrates and the individual members of the family that catalyse their acylation. Despite these recent advances in assay development, there is a persistent gap in knowledge relating to zDHHC substrate specificity and recognition, that can only be thoroughly addressed through in vitro reconstitution. Herein, we will review the various methods currently available for reconstitution of protein S-acylation for the purposes of identifying enzyme-substrate pairs with a particular emphasis on the advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- R. Elliot Murphy
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anirban Banerjee
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase. Proc Natl Acad Sci U S A 2022; 119:2022050119. [PMID: 35140179 PMCID: PMC8851515 DOI: 10.1073/pnas.2022050119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein palmitoylation is one of the most highly abundant protein modifications, through which long-chain fatty acids get attached to cysteines by a thioester linkage. It plays critically important roles in growth signaling, the organization of synaptic receptors, and the regulation of ion channel function. Yet the molecular mechanism of the DHHC family of integral membrane enzymes that catalyze this modification remains poorly understood. Here, we present the structure of a precatalytic complex of human DHHC20 with palmitoyl CoA. Together with the accompanying functional data, the structure shows how a bivalent recognition of palmitoyl CoA by the DHHC enzyme, simultaneously at both the fatty acyl group and the CoA headgroup, is essential for catalytic chemistry to proceed. S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.
Collapse
|
49
|
Abstract
DHHC3 is a DHHC-family palmitoyl acyltransferase that is responsible for many mammalian palmitoylation events. By regulating the posttranslational modification of its specific substrates, DHHC3 has shown a strong protumor effect in various cancers. In this review, the authors introduce the research progress of DHHC3 as a new antitumor target through the expression of DHHC3 in patients with tumors, substrate proteins and potential mechanisms. Recent advances in the search for protein structures and inhibitors are also reviewed. Several design strategies to facilitate the optimization of the process of drug design based on DHHC3 are also discussed.
Collapse
|
50
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|