1
|
Das S, Das S, Maity A, Maiti S. Nuclear Protein FNBP4: A Novel Inhibitor of Non-diaphanous Formin FMN1-Mediated Actin Cytoskeleton Dynamics. J Biol Chem 2025:108550. [PMID: 40316024 DOI: 10.1016/j.jbc.2025.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Formin1 (FMN1), a member of the non-diaphanous formin family, is essential for development and neuronal function. Unlike diaphanous-related formins, FMN1 is not subject to canonical autoinhibition through the DID and DAD domains, nor is it activated by Rho GTPase binding. Recent studies suggest that formins also play roles in the nucleus, influencing DNA damage response and transcriptional regulation. However, the mechanisms regulating formins particularly non-diaphanous ones like FMN1 remain poorly understood. Our previous research identified the interaction between FMN1 and formin-binding protein 4 (FNBP4), prompting further investigation into its functional role in regulating actin dynamics. Results reveal that FNBP4 inhibits FMN1-mediated actin assembly in vitro. It is shown that FNBP4 prevents FMN1 from displacing the capping protein CapZ at the growing barbed end of actin filaments. Additionally, FNBP4 inhibits FMN1's bundling activity in a concentration-dependent manner. Further analysis indicates that FNBP4 interacts with the FH1 domain and the interdomain connector between the FH1 and FH2 domains, creating spatial constraints on the FH2 domain. We propose that FNBP4 acts as a stationary inhibitor of FMN1. In addition, our subcellular localization studies revealed that FNBP4 is exclusively nuclear, supported by the identification of a monopartite nuclear localization signal (NLS) within its sequence, suggesting a potential role in regulating nuclear actin dynamics. This study provides new insights into the regulatory role of FNBP4 in modulating FMN1-mediated actin dynamics, shedding light on regulatory mechanisms specific to non-diaphanous formins.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Amrita Maity
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
2
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
3
|
Subramanian B, Williams S, Karp S, Hennino MF, Jacas S, Lee M, Riella CV, Alper SL, Higgs HN, Pollak MR. INF2 mutations cause kidney disease through a gain-of-function mechanism. SCIENCE ADVANCES 2024; 10:eadr1017. [PMID: 39536114 PMCID: PMC11559609 DOI: 10.1126/sciadv.adr1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Heterozygosity for inverted formin-2 (INF2) mutations causes focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth disease. A key question is whether the disease is caused by gain-of-function effects on INF2 or loss of function (haploinsufficiency). Despite established roles in multiple cellular processes, neither INF2 knockout mice nor mice with a disease-associated point mutation display an evident kidney or neurologic phenotype. Here, we compared responses to puromycin aminonucleoside (PAN)-induced kidney injury between INF2 R218Q and INF2 knockout mice. R218Q INF2 mice are susceptible to glomerular disease, in contrast to INF2 knockout mice. Colocalization, coimmunoprecipitation analyses, and cellular actin measurements showed that INF2 R218Q confers a gain-of-function effect on the actin cytoskeleton. RNA expression analysis showed that adhesion and mitochondria-related pathways were enriched in the PAN-treated R218Q mice. Both podocytes from INF2 R218Q mice and human kidney organoids with an INF2 mutation (S186P) recapitulate adhesion and mitochondrial phenotypes. Thus, gain-of-function mechanisms drive INF2-related FSGS and explain this disease's autosomal dominant inheritance.
Collapse
Affiliation(s)
- Balajikarthick Subramanian
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Kidney Bioengineering Resource Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Williams
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sophie Karp
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marie-Flore Hennino
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sonako Jacas
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Miriam Lee
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Cristian V. Riella
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Seth L. Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Henry N. Higgs
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Martin R. Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Kidney Bioengineering Resource Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Albaghdadi AJH, Xu W, Kan FWK. An Immune-Independent Mode of Action of Tacrolimus in Promoting Human Extravillous Trophoblast Migration Involves Intracellular Calcium Release and F-Actin Cytoskeletal Reorganization. Int J Mol Sci 2024; 25:12090. [PMID: 39596157 PMCID: PMC11593602 DOI: 10.3390/ijms252212090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously reported that the calcineurin inhibitor macrolide immunosuppressant Tacrolimus (TAC, FK506) can promote the migration and invasion of the human-derived extravillous trophoblast cells conducive to preventing implantation failure in immune-complicated gestations manifesting recurrent implantation failure. Although the exact mode of action of TAC in promoting implantation has yet to be elucidated, the integral association of its binding protein FKBP12 with the inositol triphosphate receptor (IP3R) regulated intracellular calcium [Ca2+]i channels in the endoplasmic reticulum (ER), suggesting that TAC can mediate its action through ER release of [Ca2+]i. Using the immortalized human-derived first-trimester extravillous trophoblast cells HTR8/SVneo, our data indicated that TAC can increase [Ca2+]I, as measured by fluorescent live-cell imaging using Fluo-4. Concomitantly, the treatment of HTR8/SVneo with TAC resulted in a major dynamic reorganization in the actin cytoskeleton, favoring a predominant distribution of cortical F-actin networks in these trophoblasts. Notably, the findings that TAC was unable to recover [Ca2+]i in the presence of the IP3R inhibitor 2-APB indicate that this receptor may play a crucial role in the mechanism of action of TAC. Taken together, our results suggest that TAC has the potential to influence trophoblast migration through downstream [Ca2+]i-mediated intracellular events and mechanisms involved in trophoblast migration, such as F-actin redistribution. Further research into the mono-therapeutic use of TAC in promoting trophoblast growth and differentiation in clinical settings of assisted reproduction is warranted.
Collapse
Affiliation(s)
| | | | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.J.H.A.); (W.X.)
| |
Collapse
|
5
|
Tran QTH, Kondo N, Ueda H, Matsuo Y, Tsukaguchi H. Altered Endoplasmic Reticulum Integrity and Organelle Interactions in Living Cells Expressing INF2 Variants. Int J Mol Sci 2024; 25:9783. [PMID: 39337270 PMCID: PMC11431639 DOI: 10.3390/ijms25189783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The cytoskeleton mediates fundamental cellular processes by organizing inter-organelle interactions. Pathogenic variants of inverted formin 2 (INF2) CAAX isoform, an actin assembly factor that is predominantly expressed in the endoplasmic reticulum (ER), are linked to focal segmental glomerulosclerosis (FSGS) and Charcot-Marie-Tooth (CMT) neuropathy. To investigate how pathogenic INF2 variants alter ER integrity, we used high-resolution live imaging of HeLa cells. Cells expressing wild-type (WT) INF2 showed a predominant tubular ER with perinuclear clustering. Cells expressing INF2 FSGS variants that cause mild and intermediate disease induced more sheet-like ER, a pattern similar to that seen for cells expressing WT-INF2 that were treated with actin and microtubule (MT) inhibitors. Dual CMT-FSGS INF2 variants led to more severe ER dysmorphism, with a diffuse, fragmented ER and coarse INF2 aggregates. Proper organization of both F-actin and MT was needed to modulate the tubule vs. sheet conformation balance, while MT arrays regulated spatial expansion of tubular ER in the cell periphery. Pathogenic INF2 variants also induced mitochondria fragmentation and dysregulated mitochondria distribution. Such mitochondrial abnormalities were more prominent for cells expressing CMT-FSGS compared to those with FSGS variants, indicating that the severity of the dysfunction is linked to the degree of cytoskeletal disorganization. Our observations suggest that pathogenic INF2 variants disrupt ER continuity by altering interactions between the ER and the cytoskeleton that in turn impairs inter-organelle communication, especially at ER-mitochondria contact sites. ER continuity defects may be a common disease mechanism involved in both peripheral neuropathy and glomerulopathy.
Collapse
Affiliation(s)
- Quynh Thuy Huong Tran
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biochemical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroko Ueda
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yoshiyuki Matsuo
- Central Research Center, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan
- Clinical Genetics Center, Kansai Medical University Hospital, Hirakata 573-1191, Japan
| |
Collapse
|
6
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
7
|
Subramanian B, Williams S, Karp S, Hennino MF, Jacas S, Lee M, Riella CV, Alper SL, Higgs HN, Pollak MR. Missense Mutant Gain-of-Function Causes Inverted Formin 2 (INF2)-Related Focal Segmental Glomerulosclerosis (FSGS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598088. [PMID: 38915495 PMCID: PMC11195136 DOI: 10.1101/2024.06.08.598088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Inverted formin-2 (INF2) gene mutations are among the most common causes of genetic focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth (CMT) disease. Recent studies suggest that INF2, through its effects on actin and microtubule arrangement, can regulate processes including vesicle trafficking, cell adhesion, mitochondrial calcium uptake, mitochondrial fission, and T-cell polarization. Despite roles for INF2 in multiple cellular processes, neither the human pathogenic R218Q INF2 point mutation nor the INF2 knock-out allele is sufficient to cause disease in mice. This discrepancy challenges our efforts to explain the disease mechanism, as the link between INF2-related processes, podocyte structure, disease inheritance pattern, and their clinical presentation remains enigmatic. Here, we compared the kidney responses to puromycin aminonucleoside (PAN) induced injury between R218Q INF2 point mutant knock-in and INF2 knock-out mouse models and show that R218Q INF2 mice are susceptible to developing proteinuria and FSGS. This contrasts with INF2 knock-out mice, which show only a minimal kidney phenotype. Co-localization and co-immunoprecipitation analysis of wild-type and mutant INF2 coupled with measurements of cellular actin content revealed that the R218Q INF2 point mutation confers a gain-of-function effect by altering the actin cytoskeleton, facilitated in part by alterations in INF2 localization. Differential analysis of RNA expression in PAN-stressed heterozygous R218Q INF2 point-mutant and heterozygous INF2 knock-out mouse glomeruli showed that the adhesion and mitochondria-related pathways were significantly enriched in the disease condition. Mouse podocytes with R218Q INF2, and an INF2-mutant human patient's kidney organoid-derived podocytes with an S186P INF2 mutation, recapitulate the defective adhesion and mitochondria phenotypes. These results link INF2-regulated cellular processes to the onset and progression of glomerular disease. Thus, our data demonstrate that gain-of-function mechanisms drive INF2-related FSGS and explain the autosomal dominant inheritance pattern of this disease.
Collapse
|
8
|
Rajan S, Aguirre R, Hong Zhou Z, Hauser P, Reisler E. Drebrin Protects Assembled Actin from INF2-FFC-mediated Severing and Stabilizes Cell Protrusions. J Mol Biol 2024; 436:168421. [PMID: 38158176 DOI: 10.1016/j.jmb.2023.168421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Highly specialized cells, such as neurons and podocytes, have arborized morphologies that serve their specific functions. Actin cytoskeleton and its associated proteins are responsible for the distinctive shapes of cells. The mechanism of their cytoskeleton regulation - contributing to cell shape maintenance - is yet to be fully clarified. Inverted formin 2 (INF2), one of the modulators of the cytoskeleton, is an atypical formin that can both polymerize and depolymerize actin filaments depending on its molar ratio to actin. Prior work has established that INF2 binds to the sides of actin filaments and severs them. Drebrin is another actin-binding protein that also binds filaments laterally and stabilizes them, but the interplay between drebrin and INF2 on actin filament stabilization is not well understood. Here, we have used biochemical assays, electron microscopy, and total internal reflection fluorescence microscopy imaging to show that drebrin protects actin filaments from severing by INF2 without inhibiting its polymerization activity. Notably, truncated drebrin - DrbA1-300 - is sufficient for this protection, though not as effective as the full-length protein. INF2 and drebrin are abundantly expressed in highly specialized cells and are crucial for the temporal regulation of their actin cytoskeleton, consistent with their involvement in peripheral neuropathy.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Roman Aguirre
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Peter Hauser
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA; Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Zou W, Yang L, Lu H, Li M, Ji D, Slone J, Huang T. Application of super-resolution microscopy in mitochondria-dynamic diseases. Adv Drug Deliv Rev 2023; 200:115043. [PMID: 37536507 DOI: 10.1016/j.addr.2023.115043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Limited by spatial and temporal resolution, traditional optical microscopy cannot image the delicate ultra-structure organelles and sub-organelles. The emergence of super-resolution microscopy makes it possible. In this review, we focus on mitochondria. We summarize the process of mitochondrial dynamics, the primary proteins that regulate mitochondrial morphology, the diseases related to mitochondrial dynamics. The purpose is to apply super-resolution microscopy developed during recent years to the mitochondrial research. By providing the right research tools, we will help to promote the application of this technique to the in-depth elucidation of the pathogenesis of diseases related to mitochondrial dynamics, assistdiagnosis and develop the therapeutic treatment.
Collapse
Affiliation(s)
- Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hedong Lu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Hao Y, Zhao L, Zhao JY, Han X, Zhou X. Unveiling the potential of mitochondrial dynamics as a therapeutic strategy for acute kidney injury. Front Cell Dev Biol 2023; 11:1244313. [PMID: 37635869 PMCID: PMC10456901 DOI: 10.3389/fcell.2023.1244313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Acute Kidney Injury (AKI), a critical clinical syndrome, has been strongly linked to mitochondrial malfunction. Mitochondria, vital cellular organelles, play a key role in regulating cellular energy metabolism and ensuring cell survival. Impaired mitochondrial function in AKI leads to decreased energy generation, elevated oxidative stress, and the initiation of inflammatory cascades, resulting in renal tissue damage and functional impairment. Therefore, mitochondria have gained significant research attention as a potential therapeutic target for AKI. Mitochondrial dynamics, which encompass the adaptive shifts of mitochondria within cellular environments, exert significant influence on mitochondrial function. Modulating these dynamics, such as promoting mitochondrial fusion and inhibiting mitochondrial division, offers opportunities to mitigate renal injury in AKI. Consequently, elucidating the mechanisms underlying mitochondrial dynamics has gained considerable importance, providing valuable insights into mitochondrial regulation and facilitating the development of innovative therapeutic approaches for AKI. This comprehensive review aims to highlight the latest advancements in mitochondrial dynamics research, provide an exhaustive analysis of existing studies investigating the relationship between mitochondrial dynamics and acute injury, and shed light on their implications for AKI. The ultimate goal is to advance the development of more effective therapeutic interventions for managing AKI.
Collapse
Affiliation(s)
- Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Yu Zhao
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
11
|
Ueda H, Tran QTH, Tran LNT, Higasa K, Ikeda Y, Kondo N, Hashiyada M, Sato C, Sato Y, Ashida A, Nishio S, Iwata Y, Iida H, Matsuoka D, Hidaka Y, Fukui K, Itami S, Kawashita N, Sugimoto K, Nozu K, Hattori M, Tsukaguchi H. Characterization of cytoskeletal and structural effects of INF2 variants causing glomerulopathy and neuropathy. Sci Rep 2023; 13:12003. [PMID: 37491439 PMCID: PMC10368640 DOI: 10.1038/s41598-023-38588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular injury leading to end-stage renal disease. Monogenic FSGS is primarily ascribed to decreased podocyte integrity. Variants between residues 184 and 245 of INF2, an actin assembly factor, produce the monogenic FSGS phenotype. Meanwhile, variants between residues 57 and 184 cause a dual-faceted disease involving peripheral neurons and podocytes (Charcot-Marie-Tooth CMT/FSGS). To understand the molecular basis for INF2 disorders, we compared structural and cytoskeletal effects of INF2 variants classified into two subgroups: One (G73D, V108D) causes the CMT/FSGS phenotype, and the other (T161N, N202S) produces monogenic FSGS. Molecular dynamics analysis revealed that all INF2 variants show distinct flexibility compared to the wild-type INF2 and could affect stability of an intramolecular interaction between their N- and C-terminal segments. Immunocytochemistry of cells expressing INF2 variants showed fewer actin stress fibers, and disorganization of cytoplasmic microtubule arrays. Notably, CMT/FSGS variants caused more prominent changes in mitochondrial distribution and fragmentation than FSGS variants and these changes correlated with the severity of cytoskeletal disruption. Our results indicate that CMT/FSGS variants are associated with more severe global cellular defects caused by disrupted cytoskeleton-organelle interactions than are FSGS variants. Further study is needed to clarify tissue-specific pathways and/or cellular functions implicated in FSGS and CMT phenotypes.
Collapse
Affiliation(s)
- Hiroko Ueda
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Quynh Thuy Huong Tran
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Linh Nguyen Truc Tran
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Kansai Medical University, Hirakata, Japan
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, Hirakata, Japan
| | - Chika Sato
- Department of Gynecology and Obstetrics, Kansai Medical University, Hirakata, Japan
| | - Yoshinori Sato
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Iida
- Department of Internal Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
- Toyama Transplantation Promotion Foundation, Toyama, Japan
| | - Daisuke Matsuoka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiko Hidaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Suzu Itami
- Major in Science, Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Norihito Kawashita
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Keisuke Sugimoto
- Department of Pediatrics, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyasu Tsukaguchi
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.
| |
Collapse
|
12
|
A M, Wales TE, Zhou H, Draga-Coletă SV, Gorgulla C, Blackmore KA, Mittenbühler MJ, Kim CR, Bogoslavski D, Zhang Q, Wang ZF, Jedrychowski MP, Seo HS, Song K, Xu AZ, Sebastian L, Gygi SP, Arthanari H, Dhe-Paganon S, Griffin PR, Engen JR, Spiegelman BM. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α. Mol Cell 2023; 83:1903-1920.e12. [PMID: 37267907 PMCID: PMC10984146 DOI: 10.1016/j.molcel.2023.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/19/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVβ5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/β5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVβ5 complex docking model. Irisin binds very tightly to an alternative interface on αVβ5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.
Collapse
Affiliation(s)
- Mu A
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Haixia Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sorin-Valeriu Draga-Coletă
- Virtual Discovery, Inc. 569 Hammond Street, Chestnut Hill, MA 02467, USA; Non-Governmental Research Organization Biologic, 14 Schitului Street, Bucharest 032044, Romania
| | - Christoph Gorgulla
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Katherine A Blackmore
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline R Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dina Bogoslavski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Qiuyang Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zi-Fu Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew Z Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Luke Sebastian
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick R Griffin
- UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Calabrese B, Jones SL, Shiraishi-Yamaguchi Y, Lingelbach M, Manor U, Svitkina TM, Higgs HN, Shih AY, Halpain S. INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury. Nat Commun 2022; 13:6037. [PMID: 36229429 PMCID: PMC9558009 DOI: 10.1038/s41467-022-33268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
During early ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation cause actin to rapidly and extensively reorganize within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines. However, <5 min after bath-applied NMDA, F-actin depolymerizes within spines and polymerizes into stable filaments within the dendrite shaft and soma. A similar actinification occurs after experimental ischemia in culture, and photothrombotic stroke in mouse. Following transient NMDA incubation, actinification spontaneously reverses. Na+, Cl-, water, and Ca2+ influx, and spine F-actin depolymerization are all necessary, but not individually sufficient, for actinification, but combined they induce activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons vulnerable to cell death and INF2 overexpression is protective. Ischemia-induced dendritic actin reorganization is therefore an intrinsic pro-survival response that protects neurons from death induced by cell edema.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Steven L Jones
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | | | - Michael Lingelbach
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, 94305, USA
| | - Uri Manor
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-4544, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, 03755, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Shelley Halpain
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Zhao Y, Zhang H, Wang H, Ye M, Jin X. Role of formin INF2 in human diseases. Mol Biol Rep 2021; 49:735-746. [PMID: 34698992 DOI: 10.1007/s11033-021-06869-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Formin proteins catalyze actin nucleation and microfilament polymerization. Inverted formin 2 (INF2) is an atypical diaphanous-related formin characterized by polymerization and depolymerization of actin. Accumulating evidence showed that INF2 is associated with kidney disease focal segmental glomerulosclerosis and cancers, such as colorectal and thyroid cancer where it functions as a tumor suppressor, glioblastoma, breast, prostate, and gastric cancer, via its oncogenic function. However, studies on the underlying molecular mechanisms of the different roles of INF2 in diverse cancers are limited. This review comprehensively describes the structure, biochemical features, and primary pathogenic mutations of INF2.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Haibiao Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
15
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
16
|
Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77:4581-4600. [PMID: 32451589 PMCID: PMC11104792 DOI: 10.1007/s00018-020-03550-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot-Marie-Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
18
|
Zuidscherwoude M, Haining EJ, Simms VA, Watson S, Grygielska B, Hardy AT, Bacon A, Watson SP, Thomas SG. Loss of mDia1 and Fhod1 impacts platelet formation but not platelet function. Platelets 2020; 32:1051-1062. [PMID: 32981398 PMCID: PMC8635707 DOI: 10.1080/09537104.2020.1822522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An organized and dynamic cytoskeleton is required for platelet formation and function. Formins are a large family of actin regulatory proteins which are also able to regulate microtubule dynamics. There are four formin family members expressed in human and mouse megakaryocytes and platelets. We have previously shown that the actin polymerization activity of formin proteins is required for cytoskeletal dynamics and platelet spreading using a small molecule inhibitor. In the current study, we analyze transgenic mouse models deficient in two of these proteins, mDia1 and Fhod1, along with a model lacking both proteins. We demonstrate that double knockout mice display macrothrombocytopenia which is due to aberrant megakaryocyte function and a small decrease in platelet lifespan. Platelet function is unaffected by the loss of these proteins. This data indicates a critical role for formins in platelet and megakaryocyte function.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Elizabeth J. Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria A. Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex T. Hardy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Genome Editing Facility, Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Steven G. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
19
|
Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochem J 2020; 477:2561-2580. [PMID: 32573649 DOI: 10.1042/bcj20200287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.
Collapse
|
20
|
Zhang D. Interplay between endoplasmic reticulum membrane contacts and actomyosin cytoskeleton. Cytoskeleton (Hoboken) 2020; 77:241-248. [PMID: 32543125 DOI: 10.1002/cm.21623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic membrane-bound organelles, exhibiting distinctive morphologies, dynamics and functions, are interconnected at membrane contact sites (MCSs) through numerous tethering machineries. MCSs are required for many fundamental cellular processes, such as non-vesicular lipid transfer, calcium transport and organelle homeostasis. Actin cytoskeleton and myosin motors are known to dynamically interact with different membrane boundaries, facilitating organelle movements and partitioning. Intriguingly, recent studies have pinpointed a special participation of actomyosin at various MCSs involving the endoplasmic reticulum (ER), the most extensive membranous organelle in the cell. Here, I summarize emerging roles of ER MCSs in modulating actomyosin structures and discuss feedback functions of such actomyosin regulation at these MCSs.
Collapse
Affiliation(s)
- Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Subramanian B, Chun J, Perez-Gill C, Yan P, Stillman IE, Higgs HN, Alper SL, Schlöndorff JS, Pollak MR. FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes. J Am Soc Nephrol 2020; 31:374-391. [PMID: 31924668 DOI: 10.1681/asn.2019050443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. METHODS We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. RESULTS The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. CONCLUSIONS INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.
Collapse
Affiliation(s)
| | - Justin Chun
- Division of Nephrology, Department of Medicine, and
| | | | - Paul Yan
- Division of Nephrology, Department of Medicine, and
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical center, Harvard Medical School, Boston, Massachusetts
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; and
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, and.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Martin R Pollak
- Division of Nephrology, Department of Medicine, and .,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
22
|
Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. Proc Natl Acad Sci U S A 2019; 117:439-447. [PMID: 31871199 DOI: 10.1073/pnas.1914072117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INF2 is a formin protein that accelerates actin polymerization. A common mechanism for formin regulation is autoinhibition, through interaction between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD). We recently showed that INF2 uses a variant of this mechanism that we term "facilitated autoinhibition," whereby a complex consisting of cyclase-associated protein (CAP) bound to lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, in a manner requiring INF2-DID. Deacetylation of actin in the CAP/KAc-actin complex activates INF2. Here we use lysine-to-glutamine mutations as acetylmimetics to map the relevant lysines on actin for INF2 regulation, focusing on K50, K61, and K328. Biochemically, K50Q- and K61Q-actin, when bound to CAP2, inhibit full-length INF2 but not INF2 lacking DID. When not bound to CAP, these mutant actins polymerize similarly to WT-actin in the presence or absence of INF2, suggesting that the effect of the mutation is directly on INF2 regulation. In U2OS cells, K50Q- and K61Q-actin inhibit INF2-mediated actin polymerization when expressed at low levels. Direct-binding studies show that the CAP WH2 domain binds INF2-DID with submicromolar affinity but has weak affinity for actin monomers, while INF2-DAD binds CAP/K50Q-actin 5-fold better than CAP/WT-actin. Actin in complex with full-length CAP2 is predominately ATP-bound. These interactions suggest an inhibition model whereby CAP/KAc-actin serves as a bridge between INF2 DID and DAD. In U2OS cells, INF2 is 90-fold and 5-fold less abundant than CAP1 and CAP2, respectively, suggesting that there is sufficient CAP for full INF2 inhibition.
Collapse
|
23
|
|
24
|
Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission. Nat Cell Biol 2019; 21:603-613. [PMID: 30988424 PMCID: PMC6499663 DOI: 10.1038/s41556-019-0313-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Mitochondrial fission involves the preconstriction of an organelle followed by scission by dynamin-related protein Drp1. Preconstriction is facilitated by actin and non-muscle myosin II through a mechanism that remains unclear, largely due to the unknown cytoskeletal ultrastructure at mitochondrial constrictions. Here, using platinum replica electron microscopy, we show that mitochondria in cells are embedded in an interstitial cytoskeletal network that contains abundant unbranched actin filaments. Both spontaneous and induced mitochondrial constrictions typically associate with a criss-cross array of long actin filaments that comprise part of this interstitial network. Non-muscle myosin II is found adjacent to mitochondria but is not specifically enriched at the constriction sites. During ionomycin-induced mitochondrial fission, F-actin clouds colocalize with mitochondrial constriction sites, whereas dynamic myosin II clouds are present in the vicinity of constrictions. We propose that myosin II promotes mitochondrial constriction by inducing stochastic deformations of the interstitial actin network, which applies pressure on the mitochondrial surface and thus initiates curvature-sensing mechanisms that complete mitochondrial constriction.
Collapse
|
25
|
A M, Fung TS, Kettenbach AN, Chakrabarti R, Higgs HN. A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol 2019; 21:592-602. [PMID: 30962575 PMCID: PMC6501848 DOI: 10.1038/s41556-019-0307-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022]
Abstract
Inverted formin 2 (INF2) is a member of the formin family of actin assembly factors. Dominant missense mutations in INF2 are linked to two diseases: focal segmental glomerulosclerosis, a kidney disease, and Charcot-Marie-Tooth disease, a neuropathy. All of the disease mutations map to the autoinhibitory diaphanous inhibitory domain. Interestingly, purified INF2 is not autoinhibited, suggesting the existence of other cellular inhibitors. Here, we purified an INF2 inhibitor from mouse brain tissue, and identified it as a complex of lysine-acetylated actin (KAc-actin) and cyclase-associated protein (CAP). Inhibition of INF2 by CAP-KAc-actin is dependent on the INF2 diaphanous inhibitory domain (DID). Treatment of CAP-KAc-actin-inhibited INF2 with histone deacetylase 6 releases INF2 inhibition, whereas inhibitors of histone deacetylase 6 block the activation of cellular INF2. Disease-associated INF2 mutants are poorly inhibited by CAP-KAc-actin, suggesting that focal segmental glomerulosclerosis and Charcot-Marie-Tooth disease result from reduced CAP-KAc-actin binding. These findings reveal a role for KAc-actin in the regulation of an actin assembly factor by a mechanism that we call facilitated autoinhibition.
Collapse
Affiliation(s)
- Mu A
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
26
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Mietkowska M, Schuberth C, Wedlich-Söldner R, Gerke V. Actin dynamics during Ca 2+-dependent exocytosis of endothelial Weibel-Palade bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1218-1229. [PMID: 30465794 DOI: 10.1016/j.bbamcr.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/24/2023]
Abstract
Weibel-Palade bodies (WPBs) are specialized secretory organelles of endothelial cells that serve important functions in the response to inflammation and vascular injury. WPBs actively respond to different stimuli by regulated exocytosis leading to full or selective release of their contents. Cellular conditions and mechanisms that distinguish between these possibilities are only beginning to emerge. To address this we analyzed dynamic rearrangements of the actin cytoskeleton during histamine-stimulated, Ca2+-dependent WPB exocytosis. We show that most WPB fusion events are followed by a rapid release of von-Willebrand factor (VWF), the large WPB cargo, and that this occurs concomitant with a softening of the actin cortex by the recently described Ca2+-dependent actin reset (CaAR). However, a considerable fraction of WPB fusion events is characterized by a delayed release of VWF and observed after the CaAR reaction peak. These delayed VWF secretions are accompanied by an assembly of actin rings or coats around the WPB post-fusion structures and are also seen following direct elevation of intracellular Ca2+ by plasma membrane wounding. Actin ring/coat assembly at WPB post-fusion structures requires Rho GTPase activity and is significantly reduced upon expression of a dominant-active mutant of the formin INF2 that triggers a permanent CaAR peak-like sequestration of actin to the endoplasmic reticulum. These findings suggest that a rigid actin cortex correlates with a higher proportion of fused WPB which assemble actin rings/coats most likely required for efficient VWF expulsion and/or stabilization of a WPB post-fusion structure. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Magdalena Mietkowska
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany
| | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation and Cells-in-Motion Cluster of Excellence, University of Münster, Germany.
| |
Collapse
|
28
|
Chan FY, Silva AM, Saramago J, Pereira-Sousa J, Brighton HE, Pereira M, Oegema K, Gassmann R, Carvalho AX. The ARP2/3 complex prevents excessive formin activity during cytokinesis. Mol Biol Cell 2018; 30:96-107. [PMID: 30403552 PMCID: PMC6337913 DOI: 10.1091/mbc.e18-07-0471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis completes cell division by constriction of an actomyosin contractile ring that separates the two daughter cells. Here we use the early Caenorhabditis elegans embryo to explore how the actin filament network in the ring and the surrounding cortex is regulated by the single cytokinesis formin CYK-1 and the ARP2/3 complex, which nucleate nonbranched and branched filaments, respectively. We show that CYK-1 and the ARP2/3 complex are the predominant F-actin nucleators responsible for generating distinct cortical F-actin architectures and that depletion of either nucleator affects the kinetics of cytokinesis. CYK-1 is critical for normal F-actin levels in the contractile ring, and acute inhibition of CYK-1 after furrow ingression slows ring constriction rate, suggesting that CYK-1 activity is required throughout ring constriction. Surprisingly, although the ARP2/3 complex does not localize in the contractile ring, depletion of the ARP2 subunit or treatment with ARP2/3 complex inhibitor delays contractile ring formation and constriction. We present evidence that the delays are due to an excess in formin-nucleated cortical F-actin, suggesting that the ARP2/3 complex negatively regulates CYK-1 activity. We conclude that the kinetics of cytokinesis are modulated by interplay between the two major actin filament nucleators.
Collapse
Affiliation(s)
- Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Saramago
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Pereira-Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Hailey E Brighton
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Marisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
29
|
Fernández-Barrera J, Alonso MA. Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cell Mol Life Sci 2018; 75:3181-3191. [PMID: 29947928 PMCID: PMC11105221 DOI: 10.1007/s00018-018-2855-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The acetylation of the lysine 40 residue of α-tubulin was described more than 30 years ago and has been the subject of intense research ever since. Although the exact function of this covalent modification of tubulin in the cell remains unknown, it has been established that tubulin acetylation confers resilience to mechanical stress on the microtubules. Formins have a dual role in the fate of the actin and tubulin cytoskeletons. On the one hand, they catalyze the formation of actin filaments, and on the other, they bind microtubules, act on their stability, and regulate their acetylation and alignment with actin fibers. Recent evidence indicates that formins coordinate the actin cytoskeleton and tubulin acetylation by modulating the levels of free globular actin (G-actin). G-actin, in turn, controls the activity of the myocardin-related transcription factor-serum response factor transcriptional complex that regulates the expression of the α-tubulin acetyltransferase 1 (α-TAT1) gene, which encodes the main enzyme responsible for tubulin acetylation. The effect of formins on tubulin acetylation is the combined result of their ability to activate α-TAT1 gene transcription and of their capacity to regulate microtubule stabilization. The contribution of these two mechanisms in different formins is discussed, particularly with respect to INF2, a formin that is mutated in hereditary human renal and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
30
|
Heuser VD, Mansuri N, Mogg J, Kurki S, Repo H, Kronqvist P, Carpén O, Gardberg M. Formin Proteins FHOD1 and INF2 in Triple-Negative Breast Cancer: Association With Basal Markers and Functional Activities. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418792247. [PMID: 30158824 PMCID: PMC6109849 DOI: 10.1177/1178223418792247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Basal-like breast cancer is an aggressive form of breast cancer with limited treatment options. The subgroup can be identified immunohistochemically, by lack of hormone receptor expression combined with expression of basal markers such as CK5/6 and/or epidermal growth factor receptor (EGFR). In vitro, several regulators of the actin cytoskeleton are essential for efficient invasion of basal-like breast cancer cell lines. Whether these proteins are expressed in vivo determines the applicability of these findings in clinical settings. The actin-regulating formin protein FHOD1 participates in invasion of the triple-negative breast cancer cell line MDA-MB-231. Here, we measure the expression of FHOD1 protein in clinical triple-negative breast cancers by using immunohistochemistry and further characterize the expression of another formin protein, INF2. We report that basal-like breast cancers frequently overexpress formin proteins FHOD1 and INF2. In cell studies using basal-like breast cancer cell lines, we show that knockdown of FHOD1 or INF2 interferes with very similar processes: maintenance of cell shape, migration, invasion, and proliferation. Inhibition of EGFR, PI3K, or mitogen-activated protein kinase activity does not alter the expression of FHOD1 and INF2 in these cell lines. We conclude that the experimental studies on these formins have implications in the clinical behavior of basal-like breast cancer.
Collapse
Affiliation(s)
- Vanina D Heuser
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Naziha Mansuri
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jasper Mogg
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Samu Kurki
- Auria Biobank, Turku University Hospital and University of Turku, Turku, Finland
| | - Heli Repo
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Olli Carpén
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Gardberg
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
31
|
Fernández-Barrera J, Bernabé-Rubio M, Casares-Arias J, Rangel L, Fernández-Martín L, Correas I, Alonso MA. The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via α-TAT1 gene expression. J Cell Biol 2018; 217:929-944. [PMID: 29321169 PMCID: PMC5839776 DOI: 10.1083/jcb.201702157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/28/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
The role of formins in microtubules is not well understood. In this study, we have investigated the mechanism by which INF2, a formin mutated in degenerative renal and neurological hereditary disorders, controls microtubule acetylation. We found that silencing of INF2 in epithelial RPE-1 cells produced a dramatic drop in tubulin acetylation, increased the G-actin/F-actin ratio, and impaired myocardin-related transcription factor (MRTF)/serum response factor (SRF)-dependent transcription, which is known to be repressed by increased levels of G-actin. The effect on tubulin acetylation was caused by the almost complete absence of α-tubulin acetyltransferase 1 (α-TAT1) messenger RNA (mRNA). Activation of the MRTF-SRF transcriptional complex restored α-TAT1 mRNA levels and tubulin acetylation. Several functional MRTF-SRF-responsive elements were consistently identified in the α-TAT1 gene. The effect of INF2 silencing on microtubule acetylation was also observed in epithelial ECV304 cells, but not in Jurkat T cells. Therefore, the actin-MRTF-SRF circuit controls α-TAT1 transcription. INF2 regulates the circuit, and hence microtubule acetylation, in cell types where it has a prominent role in actin polymerization.
Collapse
Affiliation(s)
- Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Casares-Arias
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Rangel
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Fernández-Martín
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Correas
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA, Higgs HN. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol 2018; 217:251-268. [PMID: 29142021 PMCID: PMC5748994 DOI: 10.1083/jcb.201709111] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial division requires division of both the inner and outer mitochondrial membranes (IMM and OMM, respectively). Interaction with endoplasmic reticulum (ER) promotes OMM division by recruitment of the dynamin Drp1, but effects on IMM division are not well characterized. We previously showed that actin polymerization through ER-bound inverted formin 2 (INF2) stimulates Drp1 recruitment in mammalian cells. Here, we show that INF2-mediated actin polymerization stimulates a second mitochondrial response independent of Drp1: a rise in mitochondrial matrix calcium through the mitochondrial calcium uniporter. ER stores supply the increased mitochondrial calcium, and the role of actin is to increase ER-mitochondria contact. Myosin IIA is also required for this mitochondrial calcium increase. Elevated mitochondrial calcium in turn activates IMM constriction in a Drp1-independent manner. IMM constriction requires electron transport chain activity. IMM division precedes OMM division. These results demonstrate that actin polymerization independently stimulates the dynamics of both membranes during mitochondrial division: IMM through increased matrix calcium, and OMM through Drp1 recruitment.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Wei-Ke Ji
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | | | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
33
|
Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 2017; 18:717-727. [PMID: 29044247 DOI: 10.1038/nrm.2017.101] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well established that cells sense chemical signals from their local microenvironment and transduce them to the nucleus to regulate gene expression programmes. Although a number of experiments have shown that mechanical cues can also modulate gene expression, the underlying mechanisms are far from clear. Nevertheless, we are now beginning to understand how mechanical cues are transduced to the nucleus and how they influence nuclear mechanics, genome organization and transcription. In particular, recent progress in super-resolution imaging, in genome-wide application of RNA sequencing, chromatin immunoprecipitation and chromosome conformation capture and in theoretical modelling of 3D genome organization enables the exploration of the relationship between cell mechanics, 3D chromatin configurations and transcription, thereby shedding new light on how mechanical forces regulate gene expression.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Electrical Engineering and Computer Science, Laboratory of Information and Decision Systems, Institute for Data, Systems and Society, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 119077 Singapore.,Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| |
Collapse
|
34
|
Hegsted A, Yingling CV, Pruyne D. Inverted formins: A subfamily of atypical formins. Cytoskeleton (Hoboken) 2017; 74:405-419. [PMID: 28921928 DOI: 10.1002/cm.21409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Formins are a family of regulators of actin and microtubule dynamics that are present in almost all eukaryotes. These proteins are involved in many cellular processes, including cytokinesis, stress fiber formation, and cell polarization. Here we review one subfamily of formins, the inverted formins. Inverted formins as a group break several formin stereotypes, having atypical biochemical properties and domain organization, and they have been linked to kidney disease and neuropathy in humans. In this review, we will explore recent research on members of the inverted formin sub-family in mammals, zebrafish, fruit flies, and worms.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
35
|
New nuclear and perinuclear functions of formins. Biochem Soc Trans 2017; 44:1701-1708. [PMID: 27913680 DOI: 10.1042/bst20160187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
Formin family proteins (formins) represent an evolutionary conserved protein family encoded in the genome of a wide range of eukaryotes. Formins are hallmarked by a formin homology 1 (FH1) domain juxtaposed to an FH2 domain whereby they control actin and microtubule dynamics. Not surprisingly, formins are best known as key regulators of the cytoskeleton in a variety of morphogenetic processes. However, mounting evidence implicates several formins in the assembly and organization of actin within and around the nucleus. In addition, actin-independent roles for formins have recently been discovered. In this mini-review, we summarize these findings and highlight the novel nuclear and perinulcear functions of formins. In light of the emerging new biology of formins, we also discuss the fundamental principles governing the versatile activity and multimodal regulation of these proteins.
Collapse
|
36
|
Wales P, Schuberth CE, Aufschnaiter R, Fels J, García-Aguilar I, Janning A, Dlugos CP, Schäfer-Herte M, Klingner C, Wälte M, Kuhlmann J, Menis E, Hockaday Kang L, Maier KC, Hou W, Russo A, Higgs HN, Pavenstädt H, Vogl T, Roth J, Qualmann B, Kessels MM, Martin DE, Mulder B, Wedlich-Söldner R. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. eLife 2016; 5. [PMID: 27919320 PMCID: PMC5140269 DOI: 10.7554/elife.19850] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress. DOI:http://dx.doi.org/10.7554/eLife.19850.001 Our skeleton plays a vital role in giving shape and structure to our body, it also allows us to make coordinated movements. Similarly, each cell contains a microscopic network of structures and supports called the cytoskeleton that helps cells to adopt specific shapes and is crucial for them to move around. Unlike our skeleton, which is relatively unchanging, the cytoskeleton of each cell constantly changes and adapts to the specific needs of the cell. One part of the cytoskeleton is a dense, flexible meshwork of fibers called the cortex that lies just beneath the surface of the cell. The cortex is constructed using a protein called actin, and many of these proteins join together to form each fiber. When cells need to adapt rapidly to an injury or other sudden changes in their environment they activate a so-called stress response. This response often begins with a rapid increase in the amount of calcium ions inside a cell, which can then trigger changes in actin organization. However, it is not clear how cells under stress are able to globally remodel their actin cytoskeleton without compromising stability and integrity of the cortex. Wales, Schuberth, Aufschnaiter et al. used a range of mammalian cells to investigate how actin responds to stress signals. All cells responded to the resulting influx of calcium ions by deconstructing large parts of the actin cortex and simultaneously forming actin filaments near the center of the cell. Wales, Schuberth, Aufschnaiter et al. termed this response calcium-mediated actin reset (CaAR), as it lasted for only a few minutes before the actin cortex reformed. The experiments show that a protein called INF2 controls CaAR by rapidly removing actin from the cortex and forming new filaments near a cell compartment called the endoplasmic reticulum. CaAR allows cells to rapidly and drastically alter the cortex in response to stress. The experiments also show that this sudden shift in actin can change the activity of certain genes, leading to longer-term effects on the cell. The findings of Wales, Schuberth, Aufschnaiter et al. suggest that calcium ions globally regulate the actin cytoskeleton and hence cell shape and movement under stress. This could be relevant for many important processes and conditions such as wound healing, inflammation and cancer. A future challenge will be to understand the role of CaAR in these processes. DOI:http://dx.doi.org/10.7554/eLife.19850.002
Collapse
Affiliation(s)
- Pauline Wales
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Christian E Schuberth
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Roland Aufschnaiter
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Johannes Fels
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | | | - Annette Janning
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Christopher P Dlugos
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany.,Medical Clinic D, University Clinic of Muenster, Muenster, Germany
| | - Marco Schäfer-Herte
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Christoph Klingner
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany.,AG Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Julian Kuhlmann
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Ekaterina Menis
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Laura Hockaday Kang
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| | - Kerstin C Maier
- Department of Biochemistry, University of Munich, Munich, Germany
| | - Wenya Hou
- Institute of Biochemistry I, Friedrich Schiller University Jena, Jena, Germany
| | - Antonella Russo
- Institute of Immunology, University of Münster, Münster, Germany
| | - Henry N Higgs
- Department of Biochemistry, Dartmouth Medical School, Hanover, United States
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Friedrich Schiller University Jena, Jena, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Friedrich Schiller University Jena, Jena, Germany
| | - Dietmar E Martin
- Department of Biochemistry, University of Munich, Munich, Germany
| | - Bela Mulder
- Theory of Biological Matter, FOM Institute AMOLF, Amsterdam, Netherlands
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Muenster, Muenster, Germany.,Cells-In-Motion Cluster of Excellence (EXC1003 - CiM), University of Münster, Muenster, Germany
| |
Collapse
|
37
|
The WH2 Domain and Actin Nucleation: Necessary but Insufficient. Trends Biochem Sci 2016; 41:478-490. [PMID: 27068179 DOI: 10.1016/j.tibs.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 11/22/2022]
Abstract
Two types of sequences, proline-rich domains (PRDs) and the WASP-homology 2 (WH2) domain, are found in most actin filament nucleation and elongation factors discovered thus far. PRDs serve as a platform for protein-protein interactions, often mediating the binding of profilin-actin. The WH2 domain is an abundant actin monomer-binding motif comprising ∼17 amino acids. It frequently occurs in tandem repeats, and functions in nucleation by recruiting actin subunits to form the polymerization nucleus. It is found in Spire, Cordon Bleu (Cobl), Leiomodin (Lmod), Arp2/3 complex activators (WASP, WHAMM, WAVE, etc.), the bacterial nucleators VopL/VopF and Sca2, and some formins. Yet, it is argued here that the WH2 domain plays only an auxiliary role in nucleation, always synergizing with other domains or proteins for this activity.
Collapse
|
38
|
Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ α-1) and profilin 2. Biosci Rep 2016; 36:e00302. [PMID: 26764407 PMCID: PMC4770304 DOI: 10.1042/bsr20150252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a devastating form of nephrotic syndrome which ultimately leads to end stage renal failure (ESRF). Mutations in inverted formin 2 (INF2), a member of the formin family of actin-regulating proteins, have recently been associated with a familial cause of nephrotic syndrome characterized by FSGS. INF2 is a unique formin that can both polymerize and depolymerize actin filaments. How mutations in INF2 lead to disease is unknown. In the present study, we show that three mutations associated with FSGS, E184K, S186P and R218Q, reduce INF2 auto-inhibition and increase association with monomeric actin. Furthermore using a combination of GFP-INF2 expression in human podocytes and GFP-Trap purification coupled with MS we demonstrate that INF2 interacts with profilin 2 and the F-actin capping protein, CapZ α-1. These interactions are increased by the presence of the disease causing mutations. Since both these proteins are involved in the dynamic turnover and restructuring of the actin cytoskeleton these changes strengthen the evidence that aberrant regulation of actin dynamics underlies the pathogenesis of disease.
Collapse
|
39
|
Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 2015; 4:e08828. [PMID: 26305500 PMCID: PMC4574297 DOI: 10.7554/elife.08828] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.
Collapse
Affiliation(s)
- Uri Manor
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Sadie Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Gonen Golani
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Eric Christenson
- Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Michael Kozlov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Henry Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, United States
| | - James Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
40
|
Skau CT, Plotnikov SV, Doyle AD, Waterman CM. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly. Proc Natl Acad Sci U S A 2015; 112:E2447-56. [PMID: 25918420 PMCID: PMC4434736 DOI: 10.1073/pnas.1505035112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Actin filaments and integrin-based focal adhesions (FAs) form integrated systems that mediate dynamic cell interactions with their environment or other cells during migration, the immune response, and tissue morphogenesis. How adhesion-associated actin structures obtain their functional specificity is unclear. Here we show that the formin-family actin nucleator, inverted formin 2 (INF2), localizes specifically to FAs and dorsal stress fibers (SFs) in fibroblasts. High-resolution fluorescence microscopy and manipulation of INF2 levels in cells indicate that INF2 plays a critical role at the SF-FA junction by promoting actin polymerization via free barbed end generation and centripetal elongation of an FA-associated actin bundle to form dorsal SF. INF2 assembles into FAs during maturation rather than during their initial generation, and once there, acts to promote rapid FA elongation and maturation into tensin-containing fibrillar FAs in the cell center. We show that INF2 is required for fibroblasts to organize fibronectin into matrix fibers and ultimately 3D matrices. Collectively our results indicate an important role for the formin INF2 in specifying the function of fibrillar FAs through its ability to generate dorsal SFs. Thus, dorsal SFs and fibrillar FAs form a specific class of integrated adhesion-associated actin structure in fibroblasts that mediates generation and remodeling of ECM.
Collapse
Affiliation(s)
- Colleen T Skau
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, and
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | - Andrew D Doyle
- Cell Biology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892; and
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart Lung and Blood Institute, and
| |
Collapse
|
41
|
The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat Commun 2015; 6:7088. [PMID: 25963737 PMCID: PMC4432619 DOI: 10.1038/ncomms8088] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/31/2015] [Indexed: 11/08/2022] Open
Abstract
Formins are actin polymerization factors that elongate unbranched actin filaments at the barbed end. Rho family GTPases activate Diaphanous-related formins through the relief of an autoregulatory interaction. The crystal structures of the N-terminal domains of human FMNL1 and FMNL2 in complex with active Cdc42 show that Cdc42 mediates contacts with all five armadillo repeats of the formin with specific interactions formed by the Rho-GTPase insert helix. Mutation of three residues within Rac1 results in a gain-of-function mutation for FMNL2 binding and reconstitution of the Cdc42 phenotype in vivo. Dimerization of FMNL1 through a parallel coiled coil segment leads to formation of an umbrella-shaped structure that—together with Cdc42—spans more than 15 nm in diameter. The two interacting FMNL–Cdc42 heterodimers expose six membrane interaction motifs on a convex protein surface, the assembly of which may facilitate actin filament elongation at the leading edge of lamellipodia and filopodia. FMNL formins polymerize actin filaments to generate cellular protrusions such as lamellipodia and filopodia at the leading edge of a cell. Here the authors provide detailed mechanistic insights into the formation of actin-based protrusions through GTPase dependent activation and membrane localization of FMNL1 and FMNL2.
Collapse
|
42
|
Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc Natl Acad Sci U S A 2015; 112:E2595-601. [PMID: 25941386 DOI: 10.1073/pnas.1504837112] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells constantly sense and respond to mechanical signals by reorganizing their actin cytoskeleton. Although a number of studies have explored the effects of mechanical stimuli on actin dynamics, the immediate response of actin after force application has not been studied. We designed a method to monitor the spatiotemporal reorganization of actin after cell stimulation by local force application. We found that force could induce transient actin accumulation in the perinuclear region within ∼ 2 min. This actin reorganization was triggered by an intracellular Ca(2+) burst induced by force application. Treatment with the calcium ionophore A23187 recapitulated the force-induced perinuclear actin remodeling. Blocking of actin polymerization abolished this process. Overexpression of Klarsicht, ANC-1, Syne Homology (KASH) domain to displace nesprins from the nuclear envelope did not abolish Ca(2+)-dependent perinuclear actin assembly. However, the endoplasmic reticulum- and nuclear membrane-associated inverted formin-2 (INF2), a potent actin polymerization activator (mutations of which are associated with several genetic diseases), was found to be important for perinuclear actin assembly. The perinuclear actin rim structure colocalized with INF2 on stimulation, and INF2 depletion resulted in attenuation of the rim formation. Our study suggests that cells can respond rapidly to external force by remodeling perinuclear actin in a unique Ca(2+)- and INF2-dependent manner.
Collapse
|
43
|
Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W, Chen C, Zhang XM, Tian C, Gao C, Wang J, Han J, Dong XP. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 2015; 14:854-69. [PMID: 25616867 PMCID: PMC4390265 DOI: 10.1074/mcp.m114.038018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 01/28/2023] Open
Abstract
Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases.
Collapse
Affiliation(s)
- Qi Shi
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Li-Na Chen
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Bao-Yun Zhang
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Kang Xiao
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Wei Zhou
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Cao Chen
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Xiao-Mei Zhang
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Chan Tian
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Chen Gao
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Jing Wang
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Jun Han
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China
| | - Xiao-Ping Dong
- From the ‡State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou 310003), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, People's Republic of China; §Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
44
|
Guo B, Gurel PS, Shu R, Higgs HN, Pellegrini M, Mierke DF. Monitoring ATP hydrolysis and ATPase inhibitor screening using (1)H NMR. Chem Commun (Camb) 2014; 50:12037-9. [PMID: 25170530 PMCID: PMC4262093 DOI: 10.1039/c4cc04399e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a versatile method to characterize ATPase and kinase activities and discover new inhibitors of these proteins. The proton NMR-based assay directly monitors ATP turnover and is easy to implement, requires no additional reagents and can potentially be applied to GTP. We validated the method's accuracy, applied it to the monitoring of ATP turnover by actin and to the screening of ATPase inhibitors, and showed that it is also applicable for the monitoring of GTP hydrolysis.
Collapse
Affiliation(s)
- Bingqian Guo
- Department of Chemistry, Dartmouth College, Hanover 03755, USA
| | - Pinar S. Gurel
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover 03755, USA
| | - Rui Shu
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover 03755, USA
| | - Henry N. Higgs
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover 03755, USA
| | | | - Dale F. Mierke
- Department of Chemistry, Dartmouth College, Hanover 03755, USA
| |
Collapse
|
45
|
Vizcarra CL, Bor B, Quinlan ME. The role of formin tails in actin nucleation, processive elongation, and filament bundling. J Biol Chem 2014; 289:30602-30613. [PMID: 25246531 DOI: 10.1074/jbc.m114.588368] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.
Collapse
Affiliation(s)
- Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Batbileg Bor
- Molecular Biology Interdepartmental Ph.D. Program, and University of California Los Angeles, Los Angeles, California 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
46
|
Hatch AL, Gurel PS, Higgs HN. Novel roles for actin in mitochondrial fission. J Cell Sci 2014; 127:4549-60. [PMID: 25217628 DOI: 10.1242/jcs.153791] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals.
Collapse
Affiliation(s)
- Anna L Hatch
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pinar S Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
47
|
Truong D, Copeland JW, Brumell JH. Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. Bioessays 2014; 36:687-96. [PMID: 24849003 DOI: 10.1002/bies.201400038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The host actin nucleation machinery is subverted by many bacterial pathogens to facilitate their entry, motility, replication, and survival. The majority of research conducted in the past primarily focused on exploitation of a host actin nucleator, the Arp2/3 complex, by bacterial pathogens. Recently, new studies have begun to explore the role of formins, another family of host actin nucleators, in bacterial pathogenesis. This review provides an overview of recent advances in the study of the exploitation of the Arp2/3 complex and formins by bacterial pathogens. Secreted bacterial effector proteins seem to manipulate the regulation of these actin nucleators or functionally mimic them to drive bacterial entry, motility and survival within host cells. An enhanced understanding of how formins are exploited will provide us with greater insight into how a fundamental eurkaryotic cellular process is utilized by bacteria and will also advance our knowledge of host-pathogen interactions.
Collapse
Affiliation(s)
- Dorothy Truong
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
48
|
Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. PLoS Biol 2014; 12:e1001795. [PMID: 24586110 PMCID: PMC3934834 DOI: 10.1371/journal.pbio.1001795] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
An in vitro study reveals how the three actin binding proteins profilin, formin 2, and Spire functionally cooperate by a ping-pong mechanism to regulate actin assembly during reproductive cell division. In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic measurements of actin assembly dynamics. We show that by capping filament barbed ends, Spire recruits Fmn2 and facilitates its association with barbed ends, followed by rapid processive assembly and release of Spire. In the presence of actin, profilin, Spire, and Fmn2, filaments display alternating phases of rapid processive assembly and arrested growth, driven by a “ping-pong” mechanism, in which Spire and Fmn2 alternately kick off each other from the barbed ends. The results are validated by the effects of injection of Spire, Fmn2, and their interacting moieties in mouse oocytes. This original mechanism of regulation of a Rho-GTPase–independent formin, recruited by Spire at Rab11a-positive vesicles, supports a model for modulation of a dynamic actin-vesicle meshwork in the oocyte at the origin of asymmetric positioning of the meiotic spindle. Mammalian reproduction requires successful meiosis, which consists of two strongly asymmetric cell divisions. In meiosis I, movement of the spindle (the subcellular structure that segregates chromosomes during division) toward the oocyte cortex (the outer layer of the egg) is essential for fertility. This process requires that actin filaments assemble in a dynamic mesh, driven by three actin binding proteins, profilin, formin 2, and Spire. To date the molecular mechanisms by which these three proteins cooperate are not known. We now explore this in vitro by a combination of bulk solution and single actin filament assembly assays in the presence of profilin, Spire, and formin 2. Individually, Spire binds to actin filament ends to block their growth, and by itself, formin 2 associates poorly with filament ends, promoting fast processive assembly from the profilin-actin complex. However, when present together, Spire and formin 2 interact with one another (the formin 2 C-terminal binds to the N terminal Spire KIND domain), forming transient complexes at filament ends from which each binds alternately to the filament ends to regulate actin assembly by a ping-pong mechanism. Our in vitro observations are validated by injection studies in mouse oocytes. In oocytes, the additional interaction of Spire and formin 2 with Rab11a-myosin Vb vesicles couples high actin dynamics to vesicle traffic.
Collapse
|
49
|
Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers. Curr Biol 2014; 24:579-85. [PMID: 24560576 DOI: 10.1016/j.cub.2014.01.072] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 12/30/2022]
Abstract
Controlling the quantity and size of organelles through competition for a limited supply of components is quickly emerging as an important cellular regulatory mechanism. Cells assemble diverse actin filament (F-actin) networks for fundamental processes including division, motility, and polarization. F-actin polymerization is tightly regulated by activation of assembly factors such as the Arp2/3 complex and formins at specific times and places. We directly tested an additional hypothesis that diverse F-actin networks are in homeostasis, whereby competition for actin monomers (G-actin) is critical for regulating F-actin network size. Here we show that inhibition of Arp2/3 complex in the fission yeast Schizosaccharomyces pombe not only depletes Arp2/3-complex-mediated endocytic actin patches, but also induces a dramatic excess of formin-assembled F-actin. Conversely, disruption of formin increases the density of Arp2/3-complex-mediated patches. Furthermore, modification of actin levels significantly perturbs the fission yeast actin cytoskeleton. Increasing actin favors Arp2/3-complex-mediated actin assembly, whereas decreasing actin favors formin-mediated contractile rings. Therefore, the specific actin concentration in a cell is critical, and competition for G-actin helps regulate the proper amount of F-actin assembly for diverse processes.
Collapse
|