1
|
Schafer CT, Pauszek RF, Gustavsson M, Handel TM, Millar DP. Distinct activation mechanisms of CXCR4 and ACKR3 revealed by single-molecule analysis of their conformational landscapes. eLife 2025; 13:RP100098. [PMID: 40232828 PMCID: PMC11999697 DOI: 10.7554/elife.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San DiegoLa JollaUnited States
| | - Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San DiegoLa JollaUnited States
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San DiegoLa JollaUnited States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
2
|
Luyckx B, Van Trimpont M, Declerck F, Staessens E, Verhee A, T'Sas S, Eyckerman S, Offner F, Van Vlierberghe P, Goossens S, Clarisse D, De Bosscher K. CCR1 inhibition sensitizes multiple myeloma cells to glucocorticoid therapy. Pharmacol Res 2025; 215:107709. [PMID: 40132675 DOI: 10.1016/j.phrs.2025.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Glucocorticoids (GC) are cornerstone drugs in the treatment of multiple myeloma (MM). Because MM cells exploit the bone marrow microenvironment to obtain growth and survival signals, resistance to glucocorticoid-induced apoptosis emerges, yet the underlying mechanisms remain poorly characterized. Here, we identify that the chemokine receptor CCR1, together with its main ligand CCL3, plays a pivotal role in reducing the glucocorticoid sensitivity of MM cells. We show that blocking CCR1 signaling with the antagonist BX471 enhances the anti-MM effects of the glucocorticoid dexamethasone in MM cell lines, primary patient material and a myeloma xenograft mouse model. Mechanistically, the drug combination shifts the balance between pro- and antiapoptotic proteins towards apoptosis and deregulates lysosomal proteins. Our findings suggest that CCR1 may play a role in glucocorticoid resistance, as the GC-induced downregulation of CCR1 mRNA and protein is blunted in a GC-resistance onset model. Moreover, we demonstrate that inhibiting CCR1 partially reverses this resistance, providing a promising strategy for resensitizing MM cells to GC treatment.
Collapse
Affiliation(s)
- Bert Luyckx
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Fien Declerck
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Eleni Staessens
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Sara T'Sas
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Dorien Clarisse
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium
| | - Karolien De Bosscher
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, Gent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Gent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, Gent 9000, Belgium.
| |
Collapse
|
3
|
Hahn H, Daly C, Little J, Perry-Hauser NA, Flores-Espinoza E, Inoue A, Plouffe B, Thomsen ARB. Endosomal chemokine receptor signalosomes regulate central mechanisms underlying cell migration. eLife 2025; 13:RP99373. [PMID: 39992711 PMCID: PMC11850004 DOI: 10.7554/elife.99373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Chemokine receptors are GPCRs that regulate the chemotactic migration of a wide variety of cells including immune and cancer cells. Most chemokine receptors contain features associated with the ability to stimulate G protein signaling during β-arrestin-mediated receptor internalization into endosomes. As endosomal signaling of certain non-GPCR receptors plays a major role in cell migration, we chose to investigate the potential role of endosomal chemokine receptor signaling on mechanisms governing this function. Applying a combination of pharmacological and cell biological approaches, we demonstrate that the model chemokine receptor CCR7 recruits G protein and β-arrestin simultaneously upon chemokine stimulation, which enables internalized receptors to activate G protein from endosomes. Furthermore, spatiotemporal-resolved APEX2 proteome profiling shows that endosomal CCR7 uniquely enriches specific Rho GTPase regulators as compared to plasma membrane CCR7, which is directly associated with enhanced activity of the Rho GTPase Rac1 and chemotaxis of immune T cells. As Rac1 drives the formation of membrane protrusions during chemotaxis, our findings suggest an important integrated function of endosomal chemokine receptor signaling in cell migration.
Collapse
Affiliation(s)
- Hyunggu Hahn
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
- NYU Pain Research Center, New York University College of DentistryNew YorkUnited States
| | - Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University BelfastBelfastUnited Kingdom
| | - John Little
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
- Department of Surgery, Columbia University Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Nicole A Perry-Hauser
- Department of Surgery, Columbia University Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Emmanuel Flores-Espinoza
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
- NYU Pain Research Center, New York University College of DentistryNew YorkUnited States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku UniversitySendaiJapan
- Graduate School of Pharmaceutical Science, Kyoto UniversityKyotoJapan
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University BelfastBelfastUnited Kingdom
| | - Alex RB Thomsen
- Department of Molecular Pathobiology, New York University College of DentistryNew YorkUnited States
- NYU Pain Research Center, New York University College of DentistryNew YorkUnited States
- Department of Surgery, Columbia University Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
| |
Collapse
|
4
|
Gu S, Maurya S, Lona A, Borrega Roman L, Salanga C, Gonzalez DJ, Kufareva I, Handel TM. Traffic control: Mechanisms of ligand-specific internalization and intracellular distribution of CCR5. Mol Pharmacol 2025; 107:100020. [PMID: 40199068 DOI: 10.1016/j.molpha.2025.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 04/10/2025] Open
Abstract
CC chemokine receptor (CCR) 5 promotes inflammatory responses by driving cell migration and scavenging chemokine. A CCR5 inhibitor Maraviroc has been approved for blocking HIV entry; however, inhibitors for the treatment of other diseases have had limited success, likely because of the complexity of CCR5 pharmacology and biology. CCR5 is activated by natural and engineered chemokines that elicit distinct signaling and trafficking responses, including receptor sequestration inside the cell. Intracellular sequestration may be therapeutically exploitable as a strategy for receptor inhibition, but the mechanisms by which different ligands promote receptor intracellular retention versus presence on the cell membrane are poorly understood. In this study, we systematically compared the time-dependent trafficking behavior of CCR5 following stimulation with its endogenous agonist, CCL5, and 2 CCL5 variants that promote CCR5 intracellular retention. Using a broad panel of pharmacologic assays, fluorescence microscopy, and live cell ascorbic acid peroxidase proximity labeling proteomics, we identified distinct ligand-dependent CCR5 trafficking patterns with temporal and spatial resolution. All 3 chemokines internalize CCR5 via β-arrestin-dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and varying dependencies on G protein-coupled receptor kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the cellular mechanisms behind CCR5 intracellular sequestration and suggest how trafficking can be exploited for the development of functional antagonists of CCR5. SIGNIFICANCE STATEMENT: CC chemokine receptor (CCR) 5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer, and transmission of HIV. It responds to different ligands with distinct signaling and trafficking behaviors; notably, some ligands induce retention of the receptor inside the cell. This study reveals the cellular basis for receptor sequestration that can be exploited as a therapeutic strategy for inhibiting CCR5 function.
Collapse
Affiliation(s)
- Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Svetlana Maurya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Alexis Lona
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Leire Borrega Roman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Catherina Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California.
| |
Collapse
|
5
|
Schafer CT, Pauszek RF, Gustavsson M, Handel TM, Millar DP. Distinct Activation Mechanisms of CXCR4 and ACKR3 Revealed by Single-Molecule Analysis of their Conformational Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.31.564925. [PMID: 37961571 PMCID: PMC10635023 DOI: 10.1101/2023.10.31.564925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - Raymond F. Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - David P. Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
6
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Becher B, Derfuss T, Liblau R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 2024; 23:862-879. [PMID: 39261632 DOI: 10.1038/s41573-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of 'sterile' neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Tobias Derfuss
- Department of Neurology and Biomedicine, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Roland Liblau
- Institute for inflammatory and infectious diseases, INSERM UMR1291 - CNRS UMR505, Toulouse, France.
| |
Collapse
|
8
|
Gu S, Maurya S, Lona A, Borrega-Roman L, Salanga C, Gonzalez DJ, Kufareva I, Handel TM. Ligand-Dependent Mechanisms of CC Chemokine Receptor 5 (CCR5) Trafficking Revealed by APEX2 Proximity Labeling Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565224. [PMID: 37961097 PMCID: PMC10635066 DOI: 10.1101/2023.11.01.565224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CC chemokine receptor 5 (CCR5) promotes inflammatory responses by driving cell migration and scavenging chemokine to shape directional chemokine gradients. A CCR5 inhibitor has been approved for blocking HIV entry into cells. However, targeting CCR5 for the treatment of other diseases has had limited success, likely because of the complexity of CCR5 pharmacology and biology. CCR5 is activated by natural and engineered chemokines that elicit distinct signaling and trafficking responses, including receptor sequestration inside the cell. Intracellular sequestration may be therapeutically exploitable as a strategy for receptor inhibition, but the mechanisms by which different ligands promote receptor retention in the cell versus presence on the cell membrane are poorly understood. We employed live cell ascorbic acid peroxidase (APEX2) proximity labeling and quantitative mass spectrometry proteomics for unbiased discovery of temporally resolved protein neighborhoods of CCR5 following stimulation with its endogenous agonist, CCL5, and two CCL5 variants that promote intracellular retention of the receptor. Along with targeted pharmacological assays, the data reveal distinct ligand-dependent CCR5 trafficking patterns with temporal and spatial resolution. All three chemokines internalize CCR5 via β-arrestin-dependent, clathrin-mediated endocytosis but to different extents, with different kinetics and varying dependencies on GPCR kinase subtypes. The agonists differ in their ability to target the receptor to lysosomes for degradation, as well as to the Golgi compartment and the trans-Golgi network, and these trafficking patterns translate into distinct levels of ligand scavenging. The results provide insight into the cellular mechanisms behind CCR5 intracellular sequestration and suggest how trafficking can be exploited for the development of functional antagonists of CCR5. Significance Statement CCR5 plays a crucial role in the immune system and is important in numerous physiological and pathological processes such as inflammation, cancer and transmission of HIV. It responds to different ligands with distinct signaling and trafficking behaviors; notably some ligands induce retention of the receptor inside the cell. Using time-resolved proximity labeling proteomics and targeted pharmacological experiments, this study reveals the cellular basis for receptor sequestration that can be exploited as a therapeutic strategy for inhibiting CCR5 function.
Collapse
|
9
|
Toy L, Huber ME, Lee M, Bartolomé AA, Ortiz Zacarías NV, Nasser S, Scholl S, Zlotos DP, Mandour YM, Heitman LH, Szpakowska M, Chevigné A, Schiedel M. Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1. ACS Pharmacol Transl Sci 2024; 7:2080-2092. [PMID: 39022357 PMCID: PMC11249626 DOI: 10.1021/acsptsci.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
Collapse
Affiliation(s)
- Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Minhee Lee
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
- Faculty
of Science, Technology and Medicine, University
of Luxembourg, 2 Avenue
de l’Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Natalia V. Ortiz Zacarías
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Sherif Nasser
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Stephan Scholl
- Institute
for Chemical and Thermal Process Engineering (ICTV), Technische Universität Braunschweig, Langer Kamp 7, Braunschweig 38106, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Oncode
Institute, Leiden University, Leiden 2333 CC, Netherlands
| | - Martyna Szpakowska
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
10
|
Flores-Espinoza E, Thomsen ARB. Beneath the surface: endosomal GPCR signaling. Trends Biochem Sci 2024; 49:520-531. [PMID: 38643023 PMCID: PMC11162320 DOI: 10.1016/j.tibs.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by β-arrestin (βarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these βarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex R B Thomsen
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; NYU Pain Research Center, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
11
|
Zeissig MN, Hewett DR, Mrozik KM, Panagopoulos V, Wallington-Gates CT, Spencer A, Dold SM, Engelhardt M, Vandyke K, Zannettino ACW. Expression of the chemokine receptor CCR1 decreases sensitivity to bortezomib in multiple myeloma cell lines. Leuk Res 2024; 139:107469. [PMID: 38479337 DOI: 10.1016/j.leukres.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.
Collapse
Affiliation(s)
- Mara N Zeissig
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Craig T Wallington-Gates
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Andrew Spencer
- Department of Haematology, Alfred Health-Monash University, Melbourne, Australia
| | - Sandra M Dold
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
12
|
Eiger DS, Hicks C, Gardner J, Pham U, Rajagopal S. Location bias: A "Hidden Variable" in GPCR pharmacology. Bioessays 2023; 45:e2300123. [PMID: 37625014 PMCID: PMC11900906 DOI: 10.1002/bies.202300123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and primarily signal through two main effector proteins: G proteins and β-arrestins. Many agonists of GPCRs promote "biased" responses, in which different cellular signaling pathways are activated with varying efficacies. The mechanisms underlying biased signaling have not been fully elucidated, with many potential "hidden variables" that regulate this behavior. One contributor is "location bias," which refers to the generation of unique signaling cascades from a given GPCR depending upon the cellular location at which the receptor is signaling. Here, we review evidence that GPCRs are expressed at and traffic to various subcellular locations and discuss how location bias can impact the pharmacologic properties and characterization of GPCR agonists. We also evaluate how differences in subcellular environments can modulate GPCR signaling, highlight the physiological significance of subcellular GPCR signaling, and discuss the therapeutic potential of exploiting GPCR location bias.
Collapse
Affiliation(s)
- Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
13
|
Aldossari AA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Ayadhi LY, Alanazi MM, Shahid M, Alwetaid MY, Hussein MH, Ahmad SF. Upregulation of Inflammatory Mediators in Peripheral Blood CD40 + Cells in Children with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24087475. [PMID: 37108638 PMCID: PMC10138695 DOI: 10.3390/ijms24087475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
Collapse
Affiliation(s)
- Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Gray AL, Karlsson R, Roberts ARE, Ridley AJL, Pun N, Khan B, Lawless C, Luís R, Szpakowska M, Chevigné A, Hughes CE, Medina-Ruiz L, Birchenough HL, Mulholland IZ, Salanga CL, Yates EA, Turnbull JE, Handel TM, Graham GJ, Jowitt TA, Schiessl I, Richter RP, Miller RL, Dyer DP. Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors. Cell Rep 2023; 42:111930. [PMID: 36640356 PMCID: PMC11064100 DOI: 10.1016/j.celrep.2022.111930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.
Collapse
Affiliation(s)
- Anna L Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Abigail R E Roberts
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, UK
| | - Amanda J L Ridley
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nabina Pun
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Bakhtbilland Khan
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rafael Luís
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Tumor Immunotherapy and Microenvironment, Department of Cancer Research, Luxembourg Institute of Health, 2012 Luxembourg, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Catherine E Hughes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Laura Medina-Ruiz
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Iashia Z Mulholland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ralf P Richter
- University of Leeds, School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, Leeds LS2 9JT, UK
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Shroka TM, Kufareva I, Salanga CL, Handel TM. The dual-function chemokine receptor CCR2 drives migration and chemokine scavenging through distinct mechanisms. Sci Signal 2023; 16:eabo4314. [PMID: 36719944 PMCID: PMC10091583 DOI: 10.1126/scisignal.abo4314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
C-C chemokine receptor 2 (CCR2) is a dual-function receptor. Similar to other G protein-coupled chemokine receptors, it promotes monocyte infiltration into tissues in response to the chemokine CCL2, and, like atypical chemokine receptors (ACKRs), it scavenges chemokine from the extracellular environment. CCR2 therefore mediates CCL2-dependent signaling as a G protein-coupled receptor (GPCR) and also limits CCL2 signaling as a scavenger receptor. We investigated the mechanisms underlying CCR2 scavenging, including the involvement of intracellular proteins typically associated with GPCR signaling and internalization. Using CRISPR knockout cell lines, we showed that CCR2 scavenged by constitutively internalizing to remove CCL2 from the extracellular space and recycling back to the cell surface for further rounds of ligand sequestration. This process occurred independently of G proteins, GPCR kinases (GRKs), β-arrestins, and clathrin, which is distinct from other "professional" chemokine scavenger receptors that couple to GRKs, β-arrestins, or both. These findings set the stage for understanding the molecular regulators that determine CCR2 scavenging and may have implications for drug development targeting this therapeutically important receptor.
Collapse
Affiliation(s)
- Thomas M. Shroka
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Catherina L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Vacchini A, Maffioli E, Di Silvestre D, Cancellieri C, Milanesi S, Nonnis S, Badanai S, Mauri P, Negri A, Locati M, Tedeschi G, Borroni EM. Phosphoproteomic mapping of CCR5 and ACKR2 signaling properties. Front Mol Biosci 2022; 9:1060555. [PMID: 36483536 PMCID: PMC9723398 DOI: 10.3389/fmolb.2022.1060555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 07/25/2024] Open
Abstract
ACKR2 is an atypical chemokine receptor which is structurally uncoupled from G proteins and is unable to activate signaling pathways used by conventional chemokine receptors to promote cell migration. Nonetheless, ACKR2 regulates inflammatory and immune responses by shaping chemokine gradients in tissues via scavenging inflammatory chemokines. To investigate the signaling pathways downstream to ACKR2, a quantitative SILAC-based phosphoproteomic analysis coupled with a systems biology approach with network analysis, was carried out on a HEK293 cell model expressing either ACKR2 or its conventional counterpart CCR5. The model was stimulated with the common agonist CCL3L1 for short (3 min) and long (30 min) durations. As expected, many of the identified proteins are known to participate in conventional signal transduction pathways and in the regulation of cytoskeleton dynamics. However, our analyses revealed unique phosphorylation and network signatures, suggesting roles for ACKR2 other than its scavenger activity. In conclusion, the mapping of phosphorylation events at a holistic level indicated that conventional and atypical chemokine receptors differ in signaling properties. This provides an unprecedented level of detail in chemokine receptor signaling and identifying potential targets for the regulation of ACKR2 and CCR5 function.
Collapse
Affiliation(s)
- Alessandro Vacchini
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Segrate, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Dario Di Silvestre
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | | | - Samantha Milanesi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Segrate, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | | | | | - Armando Negri
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Segrate, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
- CIMAINA, Milan, Italy
| | - Elena Monica Borroni
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Segrate, Italy
| |
Collapse
|
17
|
Vps37a regulates hepatic glucose production by controlling glucagon receptor localization to endosomes. Cell Metab 2022; 34:1824-1842.e9. [PMID: 36243006 DOI: 10.1016/j.cmet.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
During mammalian energy homeostasis, the glucagon receptor (Gcgr) plays a key role in regulating both glucose and lipid metabolisms. However, the mechanisms by which these distinct signaling arms are differentially regulated remain poorly understood. Using a Cy5-glucagon agonist, we show that the endosomal protein Vps37a uncouples glucose production from lipid usage downstream of Gcgr signaling by altering intracellular receptor localization. Hepatocyte-specific knockdown of Vps37a causes an accumulation of Gcgr in endosomes, resulting in overactivation of the cAMP/PKA/p-Creb signaling pathway to gluconeogenesis without affecting β-oxidation. Shifting the receptor back to the plasma membrane rescues the differential signaling and highlights the importance of the spatiotemporal localization of Gcgr for its metabolic effects. Importantly, since Vps37a knockdown in animals fed with a high-fat diet leads to hyperglycemia, although its overexpression reduces blood glucose levels, these data reveal a contribution of endosomal signaling to metabolic diseases that could be exploited for treatments of type 2 diabetes.
Collapse
|
18
|
Schulze AS, Kleinau G, Krakowsky R, Rochmann D, Das R, Worth CL, Krumbholz P, Scheerer P, Stäubert C. Evolutionary analyses reveal immune cell receptor GPR84 as a conserved receptor for bacteria-derived molecules. iScience 2022; 25:105087. [PMID: 36164652 PMCID: PMC9508565 DOI: 10.1016/j.isci.2022.105087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 10/31/2022] Open
Abstract
The G protein-coupled receptor 84 (GPR84) is found in immune cells and its expression is increased under inflammatory conditions. Activation of GPR84 by medium-chain fatty acids results in pro-inflammatory responses. Here, we screened available vertebrate genome data and found that GPR84 is present in vertebrates for more than 500 million years but absent in birds and a pseudogene in bats. Cloning and functional characterization of several mammalian GPR84 orthologs in combination with evolutionary and model-based structural analyses revealed evidence for positive selection of bear GPR84 orthologs. Naturally occurring human GPR84 variants are most frequent in Asian populations causing a loss of function. Further, we identified cis- and trans-2-decenoic acid, both known to mediate bacterial communication, as evolutionary highly conserved ligands. Our integrated set of approaches contributes to a comprehensive understanding of GPR84 in terms of evolutionary and structural aspects, highlighting GPR84 as a conserved immune cell receptor for bacteria-derived molecules.
Collapse
Affiliation(s)
- Amadeus Samuel Schulze
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, 10117 Berlin, Germany
| | - Rosanna Krakowsky
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - David Rochmann
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | - Catherine L Worth
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
20
|
Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022; 15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß1 strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and β-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maša Mavri
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sara Schuermans
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Pia C Rummel
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jon Våbenø
- Helgeland Hospital Trust, Prestmarkveien 1, 8800 Sandnessjøen, Norway
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
21
|
Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2022; 18:264-271. [PMID: 34949837 PMCID: PMC8885419 DOI: 10.1038/s41589-021-00918-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Biased signaling of G protein-coupled receptors describes an ability of different ligands that preferentially activate an alternative downstream signaling pathway. In this work, we identified and characterized different N-terminal truncations of endogenous chemokine CCL15 as balanced or biased agonists targeting CCR1, and presented three cryogenic-electron microscopy structures of the CCR1-Gi complex in the ligand-free form or bound to different CCL15 truncations with a resolution of 2.6-2.9 Å, illustrating the structural basis of natural biased signaling that initiates an inflammation response. Complemented with pharmacological and computational studies, these structures revealed it was the conformational change of Tyr291 (Y2917.43) in CCR1 that triggered its polar network rearrangement in the orthosteric binding pocket and allosterically regulated the activation of β-arrestin signaling. Our structure of CCL15-bound CCR1 also exhibited a critical site for ligand binding distinct from many other chemokine-receptor complexes, providing new insights into the mode of chemokine recognition.
Collapse
|
22
|
Agonist dependency of the second phase access of β-arrestin 2 to the heteromeric µ-V1b receptor. Sci Rep 2021; 11:15813. [PMID: 34349143 PMCID: PMC8339129 DOI: 10.1038/s41598-021-94894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
During the development of analgesic tolerance to morphine, the V1b vasopressin receptor has been proposed to bind to β-arrestin 2 and the µ-opioid receptor to enable their interaction. However, direct evidence of such a high-order complex is lacking. Using bioluminescent resonance energy transfer between a split Nanoluciferase and the Venus fluorescent protein, the NanoBit-NanoBRET system, we found that β-arrestin 2 closely located near the heteromer µ-V1b receptor in the absence of an agonist and moved closer to the receptor carboxyl-termini upon agonist stimulation. An additive effect of the two agonists for opioid and vasopressin receptors was detected on the NanoBRET between the µ-V1b heteromer and β-arrestin 2. To increase the agonist response of NanoBRET, the ratio of the donor luminophore to the acceptor fluorophore was decreased to the detection limit of luminescence. In the first phase of access, β-arrestin 2 was likely to bind to the unstimulated V1b receptor in both its phosphorylated and unphosphorylated forms. In contrast, the second-phase access of β-arrestin 2 was agonist dependent, indicating a possible pharmacological intervention strategy. Therefore, our efficient method should be useful for evaluating chemicals that directly target the vasopressin binding site in the µ-V1b heteromer to reduce the second-phase access of β-arrestin 2 and thereby to alleviate tolerance to morphine analgesia.
Collapse
|
23
|
CC Chemokine Ligand 7 Derived from Cancer-Stimulated Macrophages Promotes Ovarian Cancer Cell Invasion. Cancers (Basel) 2021; 13:cancers13112745. [PMID: 34206004 PMCID: PMC8198020 DOI: 10.3390/cancers13112745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
In the tumor microenvironment, macrophages have been suggested to be stimulated by tumor cells, becoming tumor-associated macrophages that promote cancer development and progression. We examined the effect of these macrophages on human ovarian cancer cell invasion and found that conditioned medium of macrophages stimulated by ovarian cancer cells (OC-MQs) significantly increased cell invasion. CC chemokine ligand 7 (CCL7) expression and production were significantly higher in OC-MQs than in the control macrophages. Peritoneal macrophages from patients with ovarian cancer showed higher CCL7 expression levels than those from healthy controls. Inhibition of CCL7 using siRNA and neutralizing antibodies reduced the OC-MQ-CM-induced ovarian cancer cell invasion. CC chemokine receptor 3 (CCR3) was highly expressed in human ovarian cancer cells, and a specific inhibitor of this receptor reduced the OC-MQ-CM-induced invasion. Specific signaling and transcription factors were associated with enhanced CCL7 expression in OC-MQs. CCL7-induced invasion required the expression of matrix metalloproteinase 9 via activation of extracellular signal-related kinase signaling in human ovarian cancer cells. These data suggest that tumor-associated macrophages can affect human ovarian cancer metastasis via the CCL7/CCR3 axis.
Collapse
|
24
|
Systematic Assessment of Chemokine Signaling at Chemokine Receptors CCR4, CCR7 and CCR10. Int J Mol Sci 2021; 22:ijms22084232. [PMID: 33921794 PMCID: PMC8073111 DOI: 10.3390/ijms22084232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chemokines interact with chemokine receptors in a promiscuous network, such that each receptor can be activated by multiple chemokines. Moreover, different chemokines have been reported to preferentially activate different signalling pathways via the same receptor, a phenomenon known as biased agonism. The human CC chemokine receptors (CCRs) CCR4, CCR7 and CCR10 play important roles in T cell trafficking and have been reported to display biased agonism. To systematically characterize these effects, we analysed G protein- and β-arrestin-mediated signal transduction resulting from stimulation of these receptors by each of their cognate chemokine ligands within the same cellular background. Although the chemokines did not elicit ligand-biased agonism, the three receptors exhibited different arrays of signaling outcomes. Stimulation of CCR4 by either CC chemokine ligand 17 (CCL17) or CCL22 induced β-arrestin recruitment but not G protein-mediated signaling, suggesting that CCR4 has the potential to act as a scavenger receptor. At CCR7, both CCL19 and CCL21 stimulated G protein signaling and β-arrestin recruitment, with CCL19 consistently displaying higher potency. At CCR10, CCL27 and CCL28(4-108) stimulated both G protein signaling and β-arrestin recruitment, whereas CCL28(1-108) was inactive, suggesting that CCL28(4-108) is the biologically relevant form of this chemokine. These comparisons emphasize the intrinsic abilities of different receptors to couple with different downstream signaling pathways. Comparison of these results with previous studies indicates that differential agonism at these receptors may be highly dependent on the cellular context.
Collapse
|
25
|
Smith JS, Pack TF. Noncanonical interactions of G proteins and β‐arrestins: from competitors to companions. FEBS J 2021; 288:2550-2561. [DOI: 10.1111/febs.15749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Jeffrey S. Smith
- Department of Dermatology Massachusetts General Hospital Boston MA USA
- Department of Dermatology Brigham and Women's Hospital Boston MA USA
- Department of Dermatology Beth Israel Deaconess Medical Center Boston MA USA
- Dermatology Program Boston Children's Hospital Boston MA USA
- Harvard Medical School Boston MA USA
| | | |
Collapse
|
26
|
Kline JM, Heusinkveld LE, Taranto E, Martin CB, Tomasi AG, Hsu IJ, Cho K, Khillan JS, Murphy PM, Pontejo SM. Structural and functional analysis of Ccr1l1, a Rodentia-restricted eosinophil-selective chemokine receptor homologue. J Biol Chem 2021; 296:100373. [PMID: 33548230 PMCID: PMC7949164 DOI: 10.1016/j.jbc.2021.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mouse Ccr1l1 (Ccr1-like 1) encodes an orphan G-protein-coupled receptor (GPCR) with the highest homology to the inflammatory and highly promiscuous chemokine receptors Ccr1 and Ccr3 (70 and 50% amino acid identity, respectively). Ccr1l1 was first cloned in 1995, yet current knowledge of this putative chemokine receptor is limited to its gene organization and chromosomal localization. Here we report that Ccr1l1 is a Rodentia-specific gene selectively expressed in eosinophils. However, eosinophil phenotypes, development, and responsiveness to chemokines were all normal in naïve Ccr1l1 knockout mice. We demonstrate for the first time that recombinant Ccr1l1 is expressed on the plasma membrane of transfected cells and contains an extracellular N terminus and an intracellular C terminus, consistent with GPCR topology. Using receptor internalization, β-arrestin recruitment, calcium flux, and chemotaxis assays, we excluded all 37 available mouse chemokines, including Ccr1 ligands, and two viral chemokines as Ccr1l1 ligands, and demonstrated that mouse Ccr1, but not Ccr1l1, exhibits constitutive signaling activity. However, sequence analysis and structural modeling revealed that Ccr1l1 is well equipped to act as a classical signaling GPCR, with N-terminal sulfotyrosines as the only signaling and chemokine-binding determinant absent in Ccr1l1. Hereof, we show that a sulfatable N-terminal Ccr1 Y18 residue is essential for chemotaxis and calcium responses induced by Ccl3 and Ccl9/10, but substituting the corresponding Ccr1l1 F19 residue with tyrosine failed to confer responsiveness to Ccr1 ligands. Although Ccr1l1 remains an extreme outlier in the chemokine receptor family, our study supports that it might respond to unidentified mouse chemokine ligands in eosinophil-driven immune responses.
Collapse
Affiliation(s)
- Jaclyn M Kline
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren E Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eleanor Taranto
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Clare B Martin
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandra G Tomasi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabel J Hsu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoungin Cho
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaspal S Khillan
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
27
|
Milan T, Celton M, Lagacé K, Roques É, Safa-Tahar-Henni S, Bresson E, Bergeron A, Hebert J, Meshinchi S, Cellot S, Barabé F, Wilhelm BT. Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis. Haematologica 2020; 107:86-99. [PMID: 33375773 PMCID: PMC8719083 DOI: 10.3324/haematol.2020.271619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/26/2022] Open
Abstract
Chromosomal translocations involving the KMT2A gene are among the most common genetic alterations found in pediatric acute myeloid leukemias although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we used a human model system of acute myeloid leukemia driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observed the development of a pronounced hypomethyl - ation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem-cell-associated genes and skewed expression of other genes, such as S100A8/9, implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-sequencing data showed that there were relatively few leukemia-specific changes and that the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed that the adenylate cyclase gene ADCY9 is an essential gene in KM3-acute myeloid leukemia, and suggested the potential for autocrine signaling through the chemokine receptor CCR1 and CCL23 ligand. Collectively, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Magalie Celton
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Karine Lagacé
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Élodie Roques
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Safia Safa-Tahar-Henni
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Eva Bresson
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Anne Bergeron
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Josée Hebert
- Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonia Cellot
- Department of pediatrics, division of Hematology, Ste-Justine Hospital, Montréal, QC
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC.
| |
Collapse
|
28
|
Blaess J, Walther J, Petitdemange A, Gottenberg JE, Sibilia J, Arnaud L, Felten R. Immunosuppressive agents for rheumatoid arthritis: a systematic review of clinical trials and their current development stage. Ther Adv Musculoskelet Dis 2020; 12:1759720X20959971. [PMID: 33403019 PMCID: PMC7747097 DOI: 10.1177/1759720x20959971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Aims With the arrival of conventional synthetic (csDMARDs), biological (bDMARDS) and then targeted synthetic (tsDMARDs) disease-modifying anti-rheumatic drugs, the therapeutic arsenal against rheumatoid arthritis (RA) has recently expanded. However, there are still some unmet needs for patients who do not achieve remission and continue to worsen despite treatments. Of note, most randomized controlled trials show that, for methotrexate-inadequate responders, only 20% of patients are ACR70 responders. With our better understanding of RA pathogenesis, finding new treatments is a necessary challenge. The objective of our study was to analyse the whole pipeline of immunosuppressive and immunomodulating drugs evaluated in RA and describe their mechanisms of action and stage of clinical development. Methods We conducted a systematic review of all drugs in clinical development in RA, in 17 online registries of clinical trials. Results The search yielded 4652 trials, from which we identified 243 molecules. Those molecules belong to csDMARDs (n = 22), bDMARDs (n = 118), tsDMARDs (n = 103). Twenty-four molecules are already marketed in RA in at least one country: eight csDMARDs, 10 bDMARDs and six tsDMARDs. Molecules under current development are mainly bDMARDs (n = 34) and tsDMARDs (n = 33). Seven of those have reached phase III. A large number of molecules (150/243, 61.7%) have been withdrawn. Conclusion Despite the availability of 24 marketed molecules, the development of new targeted molecules is ongoing with a total of 243 molecules in RA. With seven molecules currently reaching phase III, we can expect an increase in the armamentarium in the years to come.
Collapse
Affiliation(s)
- Julien Blaess
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Julia Walther
- Department of Pharmacy, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Arthur Petitdemange
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Jacques-Eric Gottenberg
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Jean Sibilia
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Laurent Arnaud
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Renaud Felten
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, Strasbourg, Cedex, 67098, France
| |
Collapse
|
29
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
30
|
Piyadasa H, Lloyd D, Lee AHY, Altieri A, Hemshekhar M, Osawa N, Basu S, Blimkie T, Falsafi R, Halayko AJ, Hancock REW, Mookherjee N. Characterization of immune responses and the lung transcriptome in a murine model of IL-33 challenge. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165950. [PMID: 32841733 DOI: 10.1016/j.bbadis.2020.165950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/26/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
IL-33 induces airway inflammation and hyper-responsiveness in respiratory diseases. Although defined as a therapeutic target, there are limited studies that have comprehensively investigated IL-33-mediated responses in the lungs in vivo. In this study, we characterized immunological and physiological responses induced by intranasal IL-33 challenge, in a mouse model. We identified specific cytokines, IL-4, IL-5, IL-6, IL-10, IP-10 and MIP1-α, that are increased in bronchoalveolar lavage and lung tissues by IL-33. Using transcriptomics (RNA-Seq) we demonstrated that 2279 transcripts were up-regulated and 1378 downregulated (≥ 2-fold, p < 0.01) in lung tissues, in response to IL-33. Bioinformatic interrogation of the RNA-Seq data was used to predict biological pathways and upstream regulators involved in IL-33-mediated responses. We showed that the mRNA and protein of STAT4, a predicted upstream regulator of IL-33-induced transcripts, was significantly enhanced in the lungs following IL-33 challenge. Overall, this study provides specific IL-33-induced molecular targets and endpoints that can be used as a resource for in vivo studies, e.g. in preclinical murine models examining novel interventions to target downstream effects of IL-33.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Dylan Lloyd
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Amy H Y Lee
- Centre for Microbial Disease and Immunity Research, University of British Columbia, Vancouver, Canada; Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Natasha Osawa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Sujata Basu
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Travis Blimkie
- Centre for Microbial Disease and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Reza Falsafi
- Centre for Microbial Disease and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Andrew J Halayko
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
31
|
Folcuti C, Horescu C, Barcan E, Alexandru O, Tuta C, Vatu BI, Artene SA, Dricu A. β-arrestin 1 transfection induced cell death in high grade glioma in vitro. J Immunoassay Immunochem 2020; 41:1021-1032. [PMID: 32807003 DOI: 10.1080/15321819.2020.1808990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The best known functions of β-arrestins (β-arr) are to regulate G protein-coupled receptors (GPCR) signaling through receptor desensitization and internalization. Many reports also suggest that β-arrs play important role in immune regulation and inflammatory responses, under physiological and pathological conditions. Recent studies have shown that β-arr 1 silencing halts proliferation and increases temozolomide (TMZ) response in glioblastoma (GBM) cells. The focus of this paper is to analyze the role of β-arr 1 overexpression in the 18 high grade glioma (HGG) cell line in terms of viability and their response to TMZ treatment. For this reason, the cell line was transfected with β-arr 1 and the effect was analyzed after 24 h, 48 h and 72 h in terms of proliferation and treatment response. We observed that β-arr 1 overexpression induced a time and dose dependant inhibition in the HGG cells. Unexpectedly, β-arr transfection resulted in a very mild increase in TMZ toxicity after 24 h, becoming non-statistically significant at 72 h. In conclusion, we showed that β-arr 1 overexpression inhibits cell proliferation in the 18 cell line but only has a very modest effect on treatment response with the alkylating agent TMZ.
Collapse
Affiliation(s)
- Catalin Folcuti
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Cristina Horescu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Edmond Barcan
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Cristian Tuta
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Bogdan-Ionel Vatu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Stefan-Alexandru Artene
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| |
Collapse
|
32
|
Chang HW, Kanegasaki S, Jin F, Deng Y, You Z, Chang J, Kim DY, Timilshina M, Kim J, Lee YJ, Toyama‐Sorimachi N, Tsuchiya T. A common signaling pathway leading to degranulation in mast cells and its regulation by CCR1-ligand. Allergy 2020; 75:1371-1381. [PMID: 31954080 DOI: 10.1111/all.14186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Signal transduction pathways mediated by various receptors expressed on mast cells are thought to be complex, and inhibitory signals that turn off activating signals are not known. METHODS Upstream signaling cascades mediated by several known receptors in bone marrow-derived mast cells that lead to degranulation and mediator release were studied by immunoblotting and immunoprecipitation. Small interfering RNAs and knockout mice were used to confirm findings. RESULTS All ligands tested including IgE/Ag, SCF, HSP70, CCL3, and its valiant eMIP induced phosphorylation of linker for activation of T cells (LAT), which triggered their receptor-mediated downstream signaling cascades that controlled degranulation and mediator release. Phosphorylation of lymphocyte-specific protein kinase (Lck) was induced by each ligand, which commonly played an indispensable role in LAT phosphorylation. In contrast, phosphorylation of spleen tyrosine kinase was additionally induced in cells stimulated only with IgE/Ag and SCF, which is also associated with LAT phosphorylation in part. Degranulation and mediator release induced by IgE/Ag, SCF, or HSP70 were enhanced by nanomolar doses of CCR1 ligands CCL3 and eMIP via enhanced LAT phosphorylation. On the other hand, micromolar doses of CCR1 ligand inhibited degranulation and mediator release from mast cells stimulated with IgE/Ag, SCF, or HSP70 by de-phosphorylation of phosphorylated Lck with Src homology region 2 domain-containing phosphatase-1. CONCLUSIONS Linker for activation of T cells plays a central role in signal transduction pathways in mast cells stimulated with any ligand tested. Dose-dependent alternate costimulation and inhibition of CCR1 ligands in IgE/Ag-, SCF-, or HSP70-stimulated mast cells occur at the level of Lck-LAT phosphorylation.
Collapse
Affiliation(s)
- Hyeun Wook Chang
- College of Pharmacy Yeungnam University Gyeongsan Republic of Korea
| | - Shiro Kanegasaki
- Research Institute National Center for Global Health and Medicine Shinjuku‐ku Japan
- College of Medicine Yeungnam University Daegu Republic of Korea
| | - Fansi Jin
- College of Pharmacy Yeungnam University Gyeongsan Republic of Korea
| | - Yifeng Deng
- College of Pharmacy Yeungnam University Gyeongsan Republic of Korea
| | - Zhiwei You
- College of Pharmacy Yeungnam University Gyeongsan Republic of Korea
| | - Jae‐Hoon Chang
- College of Pharmacy Yeungnam University Gyeongsan Republic of Korea
| | - Dong Young Kim
- College of Pharmacy Yeungnam University Gyeongsan Republic of Korea
| | | | - Jae‐Ryong Kim
- College of Medicine Yeungnam University Daegu Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology School of Medicine Catholic University of Daegu Daegu Republic of Korea
| | | | - Tomoko Tsuchiya
- Research Institute National Center for Global Health and Medicine Shinjuku‐ku Japan
- College of Medicine Yeungnam University Daegu Republic of Korea
| |
Collapse
|
33
|
Demircioglu F, Wang J, Candido J, Costa ASH, Casado P, de Luxan Delgado B, Reynolds LE, Gomez-Escudero J, Newport E, Rajeeve V, Baker AM, Roy-Luzarraga M, Graham TA, Foster J, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Balkwill FR, Sosabowski J, Cutillas PR, Frezza C, Sancho P, Hodivala-Dilke K. Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat Commun 2020; 11:1290. [PMID: 32157087 PMCID: PMC7064590 DOI: 10.1038/s41467-020-15104-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells.
Collapse
Affiliation(s)
- Fevzi Demircioglu
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Juliana Candido
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Beatriz de Luxan Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Emma Newport
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marina Roy-Luzarraga
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yu Wang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | | | - Rajinder Singh
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 Maude Ave, Mountain View, CA94043, USA
| | - Frances R Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- IIS Aragon, Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
34
|
Plouffe B, Thomsen ARB, Irannejad R. Emerging Role of Compartmentalized G Protein-Coupled Receptor Signaling in the Cardiovascular Field. ACS Pharmacol Transl Sci 2020; 3:221-236. [PMID: 32296764 PMCID: PMC7155194 DOI: 10.1021/acsptsci.0c00006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that for many years have been considered to function exclusively at the plasma membrane, where they bind to extracellular ligands and activate G protein signaling cascades. According to the conventional model, these signaling events are rapidly terminated by β-arrestin (β-arr) recruitment to the activated GPCR resulting in signal desensitization and receptor internalization. However, during the past decade, emerging evidence suggest that many GPCRs can continue to activate G proteins from intracellular compartments after they have been internalized. G protein signaling from intracellular compartments is in general more sustained compared to G protein signaling at the plasma membrane. Notably, the particular location closer to the nucleus is beneficial for selective cellular functions such as regulation of gene transcription. Here, we review key GPCRs that undergo compartmentalized G protein signaling and discuss molecular considerations and requirements for this signaling to occur. Our main focus will be on receptors involved in the regulation of important physiological and pathological cardiovascular functions. We also discuss how sustained G protein activation from intracellular compartments may be involved in cellular functions that are distinct from functions regulated by plasma membrane G protein signaling, and the corresponding significance in cardiovascular physiology.
Collapse
Affiliation(s)
- Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Alex R B Thomsen
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, New York 10010, United States
| | - Roshanak Irannejad
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
35
|
Lobingier BT, von Zastrow M. When trafficking and signaling mix: How subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic 2019; 20:130-136. [PMID: 30578610 DOI: 10.1111/tra.12634] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) physically connect extracellular information with intracellular signal propagation. Membrane trafficking plays a supportive role by "bookending" signaling events: movement through the secretory pathway delivers GPCRs to the cell surface where receptors can sample the extracellular environment, while endocytosis and endolysosomal membrane trafficking provide a versatile system to titrate cellular signaling potential and maintain homeostatic control. Recent evidence suggests that, in addition to these important effects, GPCR trafficking actively shapes the cellular signaling response by altering the location and timing of specific receptor-mediated signaling reactions. Here, we review key experimental evidence underlying this expanding view, focused on GPCR signaling mediated through activation of heterotrimeric G proteins located in the cytoplasm. We then discuss lingering and emerging questions regarding the interface between GPCR signaling and trafficking.
Collapse
Affiliation(s)
- Braden T Lobingier
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California
| | - Mark von Zastrow
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
36
|
Retamal JS, Ramírez-García PD, Shenoy PA, Poole DP, Veldhuis NA. Internalized GPCRs as Potential Therapeutic Targets for the Management of Pain. Front Mol Neurosci 2019; 12:273. [PMID: 31798411 PMCID: PMC6874167 DOI: 10.3389/fnmol.2019.00273] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 01/14/2023] Open
Abstract
Peripheral and central neurons in the pain pathway are well equipped to detect and respond to extracellular stimuli such as pro-inflammatory mediators and neurotransmitters through the cell surface expression of receptors that can mediate rapid intracellular signaling. Following injury or infection, activation of cell surface G protein-coupled receptors (GPCRs) initiates cell signaling processes that lead to the generation of action potentials in neurons or inflammatory responses such as cytokine secretion by immune cells. However, it is now appreciated that cell surface events alone may not be sufficient for all receptors to generate their complete signaling repertoire. Following an initial wave of signaling at the cell surface, active GPCRs can engage with endocytic proteins such as the adaptor protein β-arrestin (βArr) to promote clathrin-mediated internalization. Classically, βArr-mediated internalization of GPCRs was hypothesized to terminate signaling, yet for multiple GPCRs known to contribute to pain, it has been demonstrated that endocytosis can also promote a unique "second wave" of signaling from intracellular membranes, including those of endosomes and the Golgi, that is spatiotemporally distinct from initial cell-surface events. In the context of pain, understanding the cellular and molecular mechanisms that drive spatiotemporal signaling of GPCRs is invaluable for understanding how pain occurs and persists, and how current analgesics achieve efficacy or promote side-effects. This review article discusses the importance of receptor localization for signaling outcomes of pro- and anti-nociceptive GPCRs, and new analgesic opportunities emerging through the development of "location-biased" ligands that favor binding with intracellular GPCR populations.
Collapse
Affiliation(s)
- Jeffri S Retamal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Paulina D Ramírez-García
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Priyank A Shenoy
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| |
Collapse
|
37
|
Zhao BN, Campbell JJ, Salanga CL, Ertl LS, Wang Y, Yau S, Dang T, Zeng Y, McMahon JP, Krasinski A, Zhang P, Kufareva I, Handel TM, Charo IF, Singh R, Schall TJ. CCR2-Mediated Uptake of Constitutively Produced CCL2: A Mechanism for Regulating Chemokine Levels in the Blood. THE JOURNAL OF IMMUNOLOGY 2019; 203:3157-3165. [PMID: 31676674 DOI: 10.4049/jimmunol.1900961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
C-C chemokine receptor 2 (CCR2) is a key driver of monocyte/macrophage trafficking to sites of inflammation and has long been considered a target for intervention in autoimmune disease. However, systemic administration of CCR2 antagonists is associated with marked increases in CCL2, a CCR2 ligand, in the blood. This heretofore unexplained phenomenon complicates interpretation of in vivo responses to CCR2 antagonism. We report that CCL2 elevation after pharmacological CCR2 blockade is due to interruption in a balance between CCL2 secretion by a variety of cells and its uptake by constitutive internalization and recycling of CCR2. We observed this phenomenon in response to structurally diverse CCR2 antagonists in wild-type mice, and also found substantially higher CCL2 plasma levels in mice lacking the CCR2 gene. Our findings suggest that CCL2 is cleared from blood in a CCR2-dependent but G protein (Gαi, Gαs or Gαq/11)-independent manner. This constitutive internalization is rapid: on a given monocyte, the entire cell surface CCR2 population is turned over in <30 minutes. We also found that constitutive receptor internalization/recycling and ligand uptake are not universal across monocyte-expressed chemokine receptors. For example, CXCR4 does not internalize constitutively. In summary, we describe a mechanism that explains the numerous preclinical and clinical reports of increased CCL2 plasma levels following in vivo administration of CCR2 antagonists. These findings suggest that constitutive CCL2 secretion by monocytes and other cell types is counteracted by constant uptake and internalization by CCR2-expressing cells. The effectiveness of CCR2 antagonists in disease settings may be dependent upon this critical equilibrium.
Collapse
Affiliation(s)
- Bin N Zhao
- ChemoCentryx, Inc., Mountain View, CA 94043; and
| | | | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Linda S Ertl
- ChemoCentryx, Inc., Mountain View, CA 94043; and
| | - Yu Wang
- ChemoCentryx, Inc., Mountain View, CA 94043; and
| | - Simon Yau
- ChemoCentryx, Inc., Mountain View, CA 94043; and
| | - Ton Dang
- ChemoCentryx, Inc., Mountain View, CA 94043; and
| | - Yibin Zeng
- ChemoCentryx, Inc., Mountain View, CA 94043; and
| | | | | | | | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | | | | |
Collapse
|
38
|
Toth K, Nagi K, Slosky LM, Rochelle L, Ray C, Kaur S, Shenoy SK, Caron MG, Barak LS. Encoding the β-Arrestin Trafficking Fate of Ghrelin Receptor GHSR1a: C-Tail-Independent Molecular Determinants in GPCRs. ACS Pharmacol Transl Sci 2019; 2:230-246. [PMID: 32259059 DOI: 10.1021/acsptsci.9b00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/14/2022]
Abstract
G-protein-coupled receptors (GPCRs) can bias signaling through distinct biochemical pathways that originate from G-protein/receptor and β-arrestin/receptor complexes. Receptor conformations supporting β-arrestin engagement depend on multiple receptor determinants. Using ghrelin receptor GHR1a, we demonstrate by bioluminescence resonance energy transfer and fluorescence microscopy a critical role for its second intracellular loop 2 (ICL2) domain in stabilizing β-arrestin/GHSR1a core interactions and determining receptor trafficking fate. We validate our findings in ICL2 gain- and loss-of-function experiments assessing β-arrestin and ubiquitin-dependent internalization of the CC chemokine receptor, CCR1. Like all CC and CXC subfamily chemokine receptors, CCR1 lacks a critical proline residue found in the ICL2 consensus domain of rhodopsin-family GPCRs. Our study indicates that ICL2, C-tail determinants, and the orthosteric binding pocket that regulates β-arrestin/receptor complex stability are sufficient to encode a broad repertoire of the trafficking fates observed for rhodopsin-family GPCRs, suggesting they provide the essential elements for regulating a large fraction of β-arrestin signaling bias.
Collapse
Affiliation(s)
- Krisztian Toth
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Pharmaceutical Sciences, Campbell University, Buies Creek, North Carolina 27506, United States
| | - Karim Nagi
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lauren M Slosky
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Lauren Rochelle
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Caroline Ray
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Suneet Kaur
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Sudha K Shenoy
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Marc G Caron
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Larry S Barak
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
39
|
Xu W, Reith MEA, Liu-Chen LY, Kortagere S. Biased signaling agonist of dopamine D3 receptor induces receptor internalization independent of β-arrestin recruitment. Pharmacol Res 2019; 143:48-57. [PMID: 30844536 DOI: 10.1016/j.phrs.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is a significant step in receptor kinetics and is known to be involved in receptor down-regulation. However, the dopamine D3 receptor (D3R) has been an exception wherein agonist induces D3Rs to undergo desensitization followed by pharmacological sequestration - which is defined as the sequestration of cell surface receptors into a more hydrophobic fraction within the plasma membrane without undergoing the process of receptor internalization. Pharmacological sequestration renders the receptor in an inactive state on the membrane. In our previous study we demonstrated that a novel class of D3R agonists exemplified by SK608 have biased signaling properties via the G-protein dependent pathway and do not induce D3R desensitization. In this study, using radioligand binding assay, immunoblot or immunocytochemistry methods, we observed that SK608 induced internalization of human D3R stably expressed in CHO, HEK and SH-SY5Y cells which are derived from neuroblastoma cells, suggesting that it is not a cell-type specific event. Further, we have evaluated the potential mechanism of D3R internalization induced by these biased signaling agonists. SK608-induced D3R internalization was time- and concentration-dependent. In comparison, dopamine induced D3R upregulation and pharmacological sequestration in the same assays. GRK2 and clathrin/dynamin I/II are the key molecular players in the SK608-induced D3R internalization process, while β-arrestin 1/2 and GRK-interacting protein 1(GIT1) are not involved. These results suggest that SK608-promoted D3R internalization is similar to the type II internalization observed among peptide binding GPCRs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Microbiology and Immunology, Drexel University College of Medicine, PA 19129, United States
| | - Maarten E A Reith
- Department of Psychiatry, Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, PA 19129, United States; Department of Pharmacology and Physiology, Drexel University College of Medicine, PA 19102, United States.
| |
Collapse
|
40
|
Pease JE, Williams TJ. Tipping the balance: A biased nanobody antagonist of CCR3 with potential for the treatment of eosinophilic inflammation. J Allergy Clin Immunol 2018; 143:552-553. [PMID: 30452926 DOI: 10.1016/j.jaci.2018.10.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Affiliation(s)
- James E Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Timothy J Williams
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Mitori H, Izawa T, Kuwamura M, Matsumoto M, Yamate J. Gene expression profile in retinal excitotoxicity induced by L-glutamate in neonatal rats. J Toxicol Pathol 2018; 31:301-306. [PMID: 30393434 PMCID: PMC6206281 DOI: 10.1293/tox.2018-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/06/2018] [Indexed: 11/24/2022] Open
Abstract
In neonatal rats, glutamate could induce retinal thinning depending on the development
stage, and the severity peaked at treatment on postnatal day (PND) 8. To elucidate the
molecular mechanism of retinal thinning induced by L-glutamate in neonatal rats, we
investigated the time-course gene expression profile in the developing retina in addition
to initial histopathological changes. Histopathologically, apoptotic cells in the inner
retina were observed at 6 hours after treatment on PNDs 4, 6 and 8, and inflammatory cell
infiltration was noted at 24 hours. Comprehensive gene expression analysis conducted on
PNDs 4 and 8 indicated that cell death/proliferation- and inflammation-related genes were
upregulated and that neuron development- and neurotransmitter-related genes were
downregulated. Furthermore, quantitative RT-PCR analysis of apoptosis- and
inflammation-related genes performed on PNDs 4, 6, 8, 10 and 12 showed that the
time-course changes of the gene expression ratios of Gadd45b and
Ccl3 seemed to be related to histopathological changes of the retina
induced by L-glutamate. These results revealed that the association of initial
histopathological changes with the gene expression profile in the retina induced by
L-glutamate and that Gadd45b and Ccl3 are considered to
participate in retinal thinning induced by L-glutamate in neonatal rats.
Collapse
Affiliation(s)
- Hikaru Mitori
- Drug Safety Research Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan.,Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| | - Masahiro Matsumoto
- Drug Safety Research Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|
42
|
Ortiz Zacarías NV, van Veldhoven JPD, Portner L, van Spronsen E, Ullo S, Veenhuizen M, van der Velden WJC, Zweemer AJM, Kreekel RM, Oenema K, Lenselink EB, Heitman LH, IJzerman AP. Pyrrolone Derivatives as Intracellular Allosteric Modulators for Chemokine Receptors: Selective and Dual-Targeting Inhibitors of CC Chemokine Receptors 1 and 2. J Med Chem 2018; 61:9146-9161. [PMID: 30256641 PMCID: PMC6328288 DOI: 10.1021/acs.jmedchem.8b00605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
recent crystal structures of CC chemokine receptors 2 and 9
(CCR2 and CCR9) have provided structural evidence for an allosteric,
intracellular binding site. The high conservation of residues involved
in this site suggests its presence in most chemokine receptors, including
the close homologue CCR1. By using [3H]CCR2-RA-[R], a high-affinity, CCR2 intracellular ligand, we report
an intracellular binding site in CCR1, where this radioligand also
binds with high affinity. In addition, we report the synthesis and
biological characterization of a series of pyrrolone derivatives for
CCR1 and CCR2, which allowed us to identify several high-affinity
intracellular ligands, including selective and potential multitarget
antagonists. Evaluation of selected compounds in a functional [35S]GTPγS assay revealed that they act as inverse agonists
in CCR1, providing a new manner of pharmacological modulation. Thus,
this intracellular binding site enables the design of selective and
multitarget inhibitors as a novel therapeutic approach.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura Portner
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eric van Spronsen
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Salviana Ullo
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Margo Veenhuizen
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Wijnand J C van der Velden
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Annelien J M Zweemer
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Roy M Kreekel
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Kenny Oenema
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
43
|
Thomsen ARB, Jensen DD, Hicks GA, Bunnett NW. Therapeutic Targeting of Endosomal G-Protein-Coupled Receptors. Trends Pharmacol Sci 2018; 39:879-891. [PMID: 30180973 DOI: 10.1016/j.tips.2018.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) are conventionally considered to function at the plasma membrane, where they detect extracellular ligands and activate heterotrimeric G proteins that transmit intracellular signals. Consequently, drug discovery efforts have focused on identification of agonists and antagonists of cell surface GPCRs. However, β-arrestin (ARR)-dependent desensitization and endocytosis rapidly terminate G protein signaling at the plasma membrane. Emerging evidence indicates that GPCRs can continue to signal from endosomes by G-protein- and βARR-dependent processes. By regulating the duration and location of intracellular signaling events, GPCRs in endosomes control critically important processes, including gene transcription and ion channel activity. Thus, GPCRs in endosomes, in addition to at the cell surface, have emerged as important therapeutic targets.
Collapse
Affiliation(s)
- Alex R B Thomsen
- Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University in the City of New York, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| | - Dane D Jensen
- Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University in the City of New York, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| | - Gareth A Hicks
- Gastroenterology Drug Discovery Unit (GI DDU), Takeda Pharmaceuticals U.S.A. Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA
| | - Nigel W Bunnett
- Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University in the City of New York, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA.
| |
Collapse
|
44
|
CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Sci Rep 2018; 8:9466. [PMID: 29930254 PMCID: PMC6013489 DOI: 10.1038/s41598-018-27710-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. Here, we demonstrate that CXCL4 drives chemotaxis of the monocytic cell line THP-1. Migration and intracellular calcium responses induced by CXCL4 were pertussis toxin-sensitive, implicating a GPCR in signal transduction. Cell treatment with chondroitinase ABC ablated migration, suggesting that cis presentation of CXCL4 by cell surface glycosaminoglycans to a GPCR is required. Although CXCR3 has been previously described as a CXCL4 receptor, THP-1 cells were unresponsive to CXCR3 ligands and CXCL4-induced migration was insensitive to a CXCR3 antagonist, suggesting that an alternative receptor is involved. Interrogating CC-class chemokine receptor transfectants, we unexpectedly found that CXCL4 could induce the migration of CCR1-expressing cells and also induce CCR1 endocytosis. Extending our findings to primary human monocytes, we observed that CXCL4 induced CCR1 endocytosis and could induce monocyte chemotaxis in a CCR1 antagonist-sensitive manner. Collectively, our data identify CCR1 as a previously elusive monocyte CXCL4 receptor and suggest that CCR1 may play a role in inflammation where the release of CXCL4 is implicated.
Collapse
|
45
|
Latli B, Hrapchak M, Cheveliakov M, Reeves JT, Marsini M, Busacca CA, Senanayake CH. Potent and selective CC chemokine receptor 1 antagonists labeled with carbon-13, carbon-14, and tritium. J Labelled Comp Radiopharm 2018; 61:764-772. [PMID: 29766547 DOI: 10.1002/jlcr.3635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described.
Collapse
Affiliation(s)
- Bachir Latli
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Matt Hrapchak
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Maxim Cheveliakov
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Jonathan T Reeves
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Maurice Marsini
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Carl A Busacca
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Chris H Senanayake
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| |
Collapse
|
46
|
Sustained Activity of Metabotropic Glutamate Receptor: Homer, Arrestin, and Beyond. Neural Plast 2017; 2017:5125624. [PMID: 29359050 PMCID: PMC5735635 DOI: 10.1155/2017/5125624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
When activated, metabotropic glutamate receptors (mGlus) exert long-lasting changes within the glutamatergic synapses. One mechanism is a tonic effect of downstream signal transduction pathways via sustained activation of mGlu itself. Like many other G protein-coupled receptors (GPCRs), mGlu can exist in a constitutively active state, which persists agonist independently. In this paper, we review the current knowledge of the mechanisms underlying the constitutive activity of group I mGlus. The issues concerning Homer1a mechanism in the constitutive activity of group I mGlus and recent findings regarding the significant role of β-arrestin in sustained GPCR activity are also discussed. We propose that once in a state of sustained activation, the mGlu persistently activates downstream signaling pathways, including various adaptor proteins and kinases, such as β-arrestin and mitogen-activated protein kinases. In turn, these effector molecules bind to or phosphorylate the mGlu C-terminal binding domains and consequently regulate the activation state of the mGlu.
Collapse
|
47
|
Dyskova T, Gallo J, Kriegova E. The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening. Front Immunol 2017; 8:1026. [PMID: 28883822 PMCID: PMC5573717 DOI: 10.3389/fimmu.2017.01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Millions of total joint replacements are performed annually worldwide, and the number is increasing every year. The overall proportion of patients achieving a successful outcome is about 80–90% in a 10–20-years time horizon postoperatively, periprosthetic osteolysis (PPOL) and aseptic loosening (AL) being the most frequent reasons for knee and hip implant failure and reoperations. The chemokine system (chemokine receptors and chemokines) is crucially involved in the inflammatory and osteolytic processes leading to PPOL/AL. Thus, the modulation of the interactions within the chemokine system may influence the extent of PPOL. Indeed, recent studies in murine models reported that (i) blocking the CCR2–CCL2 or CXCR2–CXCL2 axis or (ii) activation of the CXCR4–CXCL12 axis attenuate the osteolysis of artificial joints. Importantly, chemokines, inhibitory mutant chemokines, antagonists of chemokine receptors, or neutralizing antibodies to the chemokine system attached to or incorporated into the implant surface may influence the tissue responses and mitigate PPOL, thus increasing prosthesis longevity. This review summarizes the current state of the art of the knowledge of the chemokine system in human PPOL/AL. Furthermore, the potential for attenuating cell trafficking to the bone–implant interface and influencing tissue responses through modulation of the chemokine system is delineated. Additionally, the prospects of using immunoregenerative biomaterials (including chemokines) for the prevention of failed implants are discussed. Finally, this review highlights the need for a more sophisticated understanding of implant debris-induced changes in the chemokine system to mitigate this response effectively.
Collapse
Affiliation(s)
- Tereza Dyskova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Gallo
- Faculty of Medicine and Dentistry, Department of Orthopaedics, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czechia
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
48
|
Oishi A, Karamitri A, Gerbier R, Lahuna O, Ahmad R, Jockers R. Orphan GPR61, GPR62 and GPR135 receptors and the melatonin MT 2 receptor reciprocally modulate their signaling functions. Sci Rep 2017; 7:8990. [PMID: 28827538 PMCID: PMC5566548 DOI: 10.1038/s41598-017-08996-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/14/2017] [Indexed: 01/14/2023] Open
Abstract
Understanding the function of orphan G protein-coupled receptors (GPCRs), whose cognate ligand is unknown, is of major importance as GPCRs are privileged drug targets for many diseases. Recent phylogenetic studies classified three orphan receptors, GPR61, GPR62 and GPR135 among the melatonin receptor subfamily, but their capacity to bind melatonin and their biochemical functions are not well characterized yet. We show here that GPR61, GPR62 and GPR135 do not bind [3H]-melatonin nor 2-[125I]iodomelatonin and do not respond to melatonin in several signaling assays. In contrast, the three receptors show extensive spontaneous ligand-independent activities on the cAMP, inositol phosphate and ß-arrestin pathways with distinct pathway-specific profiles. Spontaneous ß-arrestin recruitment internalizes all three GPRs in the endosomal compartment. Co-expression of the melatonin binding MT2 receptor with GPR61, GPR62 or GPR135 has several consequences such as (i) the formation of receptor heteromers, (ii) the inhibition of melatonin-induced ß-arrestin2 recruitment to MT2 and (iii) the decrease of elevated cAMP levels upon melatonin stimulation in cells expressing spontaneously active GPR61 and GPR62. Collectively, these data show that GPR61, GPR62 and GPR135 are unable to bind melatonin, but show a reciprocal regulatory interaction with MT2 receptors.
Collapse
Affiliation(s)
- Atsuro Oishi
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Olivier Lahuna
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Raise Ahmad
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR, 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France. .,CNRS UMR, 8104, Paris, France. .,University Paris Descartes, Paris, France.
| |
Collapse
|
49
|
Ahmadzai MM, Broadbent D, Occhiuto C, Yang C, Das R, Subramanian H. Canonical and Noncanonical Signaling Roles of β-Arrestins in Inflammation and Immunity. Adv Immunol 2017; 136:279-313. [PMID: 28950948 DOI: 10.1016/bs.ai.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
β-Arrestins are a highly conserved family of cytosolic adaptor proteins that contribute to many immune functions by orchestrating the desensitization and internalization of cell-surface G protein-coupled receptors (GPCRs) via well-studied canonical interactions. In cells of the innate and adaptive immune system, β-arrestins also subserve a parallel but less understood role in which they propagate, rather than terminate, intracellular signal transduction cascades. Because β-arrestins are promiscuous in their binding, they are capable of interacting with several different GPCRs and downstream effectors; in doing so, they vastly expand the repertoire of cellular responses evoked by agonist binding and the scope of responses that may contribute to inflammation during infectious and sterile insults. In this chapter, we attempt to provide an overview of the canonical and noncanonical roles of β-arrestins in inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Canchai Yang
- Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
50
|
Julian B, Gao K, Harwood BN, Beinborn M, Kopin AS. Mutation-Induced Functional Alterations of CCR6. J Pharmacol Exp Ther 2017; 360:106-116. [PMID: 27789680 DOI: 10.1124/jpet.116.237669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
The Cys-Cys chemokine receptor 6 (CCR6) is a well-established modulator of inflammation. Although several genetic associations have been identified between CCR6 polymorphisms and immune system disorders (e.g., rheumatoid arthritis and Crohn's disease), the pharmacological effects of naturally occurring missense mutations in this receptor have yet to be characterized. In this study, we initially assessed G protein-mediated signaling and observed that wild-type (WT) CCR6 exhibited ligand-independent activity. In addition, we found that the five most frequent CCR6 missense variants (A89T, A150V, R155W, G345S, and A369V) exhibited decreased basal and/or ligand induced Gαi protein signaling. To complement the study of these loss-of-function variants, we engineered a set of constitutively active CCR6 receptors. Selected mutations enhanced basal G protein-mediated signaling up to 3-fold relative to the WT value. Using a bioluminescence resonance energy transfer assay we investigated the ability of each naturally occurring and engineered CCR6 receptor mutant to recruit β-arrestin. In contrast to G protein-mediated signaling, β-arrestin mobilization was largely unperturbed by the naturally occurring loss-of-function CCR6 variants. Elevated recruitment of β-arrestin was observed in one of the engineered constitutively active mutants (T98P). Our results demonstrate that point mutations in CCR6 can result in either a gain or loss of receptor function. These observations underscore the need to explore how CCR6 natural variants may influence immune cell physiology and human disease.
Collapse
Affiliation(s)
- Bina Julian
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Kevin Gao
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Benjamin N Harwood
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Martin Beinborn
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| | - Alan S Kopin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts (B.J., K.G., B.N.H, M.B., A.S.K.); and Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (B.J., M.B., A.S.K.)
| |
Collapse
|