1
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
2
|
DiCiaccio B, Seehawer M, Li Z, Patmanidis A, Bui T, Foidart P, Nishida J, D'Santos CS, Papachristou EK, Papanastasiou M, Reiter AH, Qiu X, Li R, Jiang Y, Huang XY, Simeonov A, Kales SC, Rai G, Lal-Nag M, Jadhav A, Brown M, Carroll JS, Long HW, Polyak K. ZBTB7A is a modulator of KDM5-driven transcriptional networks in basal breast cancer. Cell Rep 2024; 43:114991. [PMID: 39570746 PMCID: PMC11694571 DOI: 10.1016/j.celrep.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024] Open
Abstract
We previously described that the KDM5B histone H3 lysine 4 demethylase is an oncogene in estrogen-receptor-positive breast cancer. Here, we report that KDM5A is amplified and overexpressed in basal breast tumors, and KDM5 inhibition (KDM5i) suppresses the growth of KDM5-amplified breast cancer cell lines. Using CRISPR knockout screens in a basal breast cancer cell line with or without KDM5i, we found that deletion of the ZBTB7A transcription factor and core SAGA complex sensitizes cells to KDM5i, whereas deletion of RHO-GTPases leads to resistance. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed co-localization of ZBTB7A and KDM5A/B at promoters with high histone H3K4me3 and dependence of KDM5A chromatin binding on ZBTB7A. ZBTB7A knockout altered the transcriptional response to KDM5i at NF-κB targets and mitochondrion-related pathways. High expression of ZBTB7A in triple-negative breast cancer is significantly associated with poor response to neoadjuvant chemotherapy. Our work furthers the understanding of KDM5-mediated gene regulation and identifies mediators of sensitivity to KDM5i.
Collapse
Affiliation(s)
- Benedetto DiCiaccio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Andriana Patmanidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Clive S D'Santos
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | | | | | - Andrew H Reiter
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yijia Jiang
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Yun Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason S Carroll
- Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Yan P, Jimenez ER, Li Z, Bui T, Seehawer M, Nishida J, Foidart P, Stevens LE, Xie Y, Gomez MM, Park SY, Long HW, Polyak K. Midkine as a driver of age-related changes and increase in mammary tumorigenesis. Cancer Cell 2024; 42:1936-1954.e9. [PMID: 39366375 PMCID: PMC11560576 DOI: 10.1016/j.ccell.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Aging is a pivotal risk factor for cancer, yet the underlying mechanisms remain poorly defined. Here, we explore age-related changes in the rat mammary gland by single-cell multiomics. Our findings include increased epithelial proliferation, loss of luminal identity, and decreased naive B and T cells with age. We discover a luminal progenitor population unique to old rats with profiles reflecting precancerous changes and identify midkine (Mdk) as a gene upregulated with age and a regulator of age-related luminal progenitors. Midkine treatment of young rats mimics age-related changes via activating PI3K-AKT-SREBF1 pathway and promotes nitroso-N-methylurea-induced mammary tumorigenesis. Midkine levels increase with age in human blood and mammary epithelium, and higher MDK in normal breast tissue is associated with higher breast cancer risk in younger women. Our findings reveal a link between aging and susceptibility to tumor initiation and identify midkine as a mediator of age-dependent increase in breast tumorigenesis.
Collapse
Affiliation(s)
- Pengze Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ernesto Rojas Jimenez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - So Yeon Park
- Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; Harvard Stem Cell Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Brown LK, Kanagasabai T, Li G, Celada SI, Rumph JT, Adunyah SE, Stewart LV, Chen Z. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis. Prostate 2024; 84:877-887. [PMID: 38605532 DOI: 10.1002/pros.24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated β-galactosidase (SA-β-Gal) staining. CONCLUSIONS Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.
Collapse
Affiliation(s)
- LaKendria K Brown
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Sherly I Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jelonia T Rumph
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - LaMonica V Stewart
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Li CY, Wang W, Leung CH, Yang GJ, Chen J. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Mol Cancer 2024; 23:109. [PMID: 38769556 PMCID: PMC11103982 DOI: 10.1186/s12943-024-02011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China.
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Macau, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Pérez-Sisqués L, Bhatt SU, Matuleviciute R, Gileadi TE, Kramar E, Graham A, Garcia FG, Keiser A, Matheos DP, Cain JA, Pittman AM, Andreae LC, Fernandes C, Wood MA, Giese KP, Basson MA. The Intellectual Disability Risk Gene Kdm5b Regulates Long-Term Memory Consolidation in the Hippocampus. J Neurosci 2024; 44:e1544232024. [PMID: 38575342 PMCID: PMC11079963 DOI: 10.1523/jneurosci.1544-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024] Open
Abstract
The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.
Collapse
Affiliation(s)
- Leticia Pérez-Sisqués
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Shail U Bhatt
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Rugile Matuleviciute
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Talia E Gileadi
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Eniko Kramar
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - Andrew Graham
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Franklin G Garcia
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - Ashley Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - Dina P Matheos
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - James A Cain
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Alan M Pittman
- St. George's University of London, London SW17 0RE, United Kingdom
| | - Laura C Andreae
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Cathy Fernandes
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, United Kingdom
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, United Kingdom
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| |
Collapse
|
7
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
8
|
Abstract
Epigenetics has major impact on normal development and pathogenesis. Regulation of histone methylation on lysine and arginine residues is a major epigenetic mechanism and affects various processes including transcription and DNA repair. Histone lysine methylation is reversible and is added by histone lysine methyltransferases and removed by histone lysine demethylases. As these enzymes are also capable of writing or erasing lysine modifications on non-histone substrates, they were renamed to lysine demethylases (KDMs) in 2007. Since the discovery of the first lysine demethylase LSD1/KDM1A in 2004, eight more subfamilies of lysine demethylases have been identified and further characterized. The joint efforts by academia and industry have led to the development of potent and specific small molecule inhibitors of KDMs for treatment of cancer and several other diseases. Some of these inhibitors have already entered clinical trials since 2013, less than 10 years after the discovery of the first KDM. In this chapter, we briefly summarize the major roles of histone demethylases in normal development and human diseases and the efforts to target these enzymes to treat various diseases.
Collapse
Affiliation(s)
- Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale Center for Immuno-Oncology, Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Zhang SM, Cao J, Yan Q. KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:113-137. [PMID: 37751138 DOI: 10.1007/978-3-031-38176-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The histone lysine demethylase 5 (KDM5) family proteins are Fe2+ and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.
Collapse
Affiliation(s)
- Shang-Min Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale Center for Immuno-Oncology, Yale Center for Research on Aging, Yale School of Medicine, P.O. Box 208023, New Haven, CT, 06520-8023, USA.
| |
Collapse
|
10
|
Schonfeld M, Averilla J, Gunewardena S, Weinman SA, Tikhanovich I. Alcohol-associated fibrosis in females is mediated by female-specific activation of lysine demethylases KDM5B and KDM5C. Hepatol Commun 2022; 6:2042-2057. [PMID: 35468265 PMCID: PMC9315128 DOI: 10.1002/hep4.1967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol-associated liver disease is a major cause of alcohol-related mortality. However, the mechanisms underlying disease progression are not fully understood. Recently we found that liver molecular pathways are altered by alcohol consumption differently in males and females. We were able to associate these sex-specific pathways with two upstream regulators: H3K4-specific demethylase enzymes KDM5B and KDM5C. Mice were fed the Lieber-DeCarli alcohol liquid diet for 3 weeks or a combination of a high-fat diet with alcohol in water for 16 weeks (western diet alcohol model [WDA] model). To assess the role of histone demethylases, mice were treated with AAV-shControl, AAV-shKdm5b, and/or AAV-shKdm5c and/or AAV-shAhR vectors. Gene expression and epigenetic changes after Kdm5b/5c knockdown were assessed by RNA-sequencing and H3K4me3 chromatin immunoprecipitation analysis. We found that less than 5% of genes affected by Kdm5b/Kdm5c knockdown were common between males and females. In females, Kdm5b/Kdm5c knockdown prevented fibrosis development in mice fed the WDA alcohol diet for 16 weeks and decreased fibrosis-associated gene expression in mice fed the Lieber-DeCarli alcohol liquid diet. In contrast, fibrosis was not affected by Kdm5b/Kdm5c knockdown in males. We found that KDM5B and KDM5C promote fibrosis in females through down-regulation of the aryl hydrocarbon receptor (AhR) pathway components in hepatic stellate cells. Kdm5b/Kdm5c knockdown resulted in an up-regulation of Ahr, Arnt, and Aip in female but not in male mice, thus preventing fibrosis development. Ahr knockdown in combination with Kdm5b/Kdm5c knockdown restored profibrotic gene expression. Conclusion: KDM5 demethylases contribute to differences between males and females in the alcohol response in the liver. The KDM5/AhR axis is a female-specific mechanism of fibrosis development in alcohol-fed mice.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Janice Averilla
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Steven A. Weinman
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
- Liver CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
- Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Irina Tikhanovich
- Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
11
|
Chauvistré H, Shannan B, Daignault-Mill SM, Ju RJ, Picard D, Egetemaier S, Váraljai R, Gibhardt CS, Sechi A, Kaschani F, Keminer O, Stehbens SJ, Liu Q, Yin X, Jeyakumar K, Vogel FCE, Krepler C, Rebecca VW, Kubat L, Lueong SS, Forster J, Horn S, Remke M, Ehrmann M, Paschen A, Becker JC, Helfrich I, Rauh D, Kaiser M, Gul S, Herlyn M, Bogeski I, Rodríguez-López JN, Haass NK, Schadendorf D, Roesch A. Persister state-directed transitioning and vulnerability in melanoma. Nat Commun 2022; 13:3055. [PMID: 35650266 PMCID: PMC9160289 DOI: 10.1038/s41467-022-30641-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2022] [Indexed: 12/30/2022] Open
Abstract
Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.
Collapse
Affiliation(s)
- Heike Chauvistré
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Batool Shannan
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Sheena M Daignault-Mill
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Ju
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Picard
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Egetemaier
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Renáta Váraljai
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Samantha J Stehbens
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Kirujan Jeyakumar
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Felix C E Vogel
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | - Linda Kubat
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, 45141, Essen, Germany
| | - Smiths S Lueong
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, 45122, Essen, Germany
| | - Jan Forster
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Department of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Marc Remke
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Ehrmann
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
- Department of Microbiology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Jürgen C Becker
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, 45141, Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Markus Kaiser
- Department of Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | | | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - José Neptuno Rodríguez-López
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany.
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
McQuerry JA, Mclaird M, Hartin SN, Means JC, Johnston J, Pastinen T, Younger ST. Massively parallel identification of functionally consequential noncoding genetic variants in undiagnosed rare disease patients. Sci Rep 2022; 12:7576. [PMID: 35534523 PMCID: PMC9085742 DOI: 10.1038/s41598-022-11589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical whole genome sequencing has enabled the discovery of potentially pathogenic noncoding variants in the genomes of rare disease patients with a prior history of negative genetic testing. However, interpreting the functional consequences of noncoding variants and distinguishing those that contribute to disease etiology remains a challenge. Here we address this challenge by experimentally profiling the functional consequences of rare noncoding variants detected in a cohort of undiagnosed rare disease patients at scale using a massively parallel reporter assay. We demonstrate that this approach successfully identifies rare noncoding variants that alter the regulatory capacity of genomic sequences. In addition, we describe an integrative analysis that utilizes genomic features alongside patient clinical data to further prioritize candidate variants with an increased likelihood of pathogenicity. This work represents an important step towards establishing a framework for the functional interpretation of clinically detected noncoding variants.
Collapse
Affiliation(s)
- Jasmine A McQuerry
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Merry Mclaird
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Samantha N Hartin
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - John C Means
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Jeffrey Johnston
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Scott T Younger
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
13
|
Jamshidi S, Catchpole S, Chen J, So CWE, Burchell J, Rahman KM, Taylor-Papadimitriou J. KDM5B protein expressed in viable and fertile ΔARID mice exhibit no demethylase activity. Int J Oncol 2021; 59:96. [PMID: 34713299 PMCID: PMC8562390 DOI: 10.3892/ijo.2021.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Post‑translational modification of histones serve a crucial role in the control of gene transcription. Trimethylation of lysine 4 on histone 3 is associated with transcription activation. There are currently six known methylases and six known demethylases that can control the methylation status of this site. Lysine demethylase 5B (KDM5B) is one such demethylase, which can repress gene expression. In particular KDM5B has been found to be overexpressed in a number of cancer types, and small‑molecular weight inhibitors of its demethylase activity have been identified. Previous characterisation of Kdm5b knock‑out mice has revealed that this genotype leads to either embryonic or neonatal lethality. However, the ΔA‑T rich interaction domain (ΔARID)‑KDM5B strain of mice, which have the ARID domain and five amino acids within the Jumonji (Jmj)N domain spliced out from KDM5B, remain viable and fertile. In the present study, ΔARID‑KDM5B was found to have no demethylase activity as determined by in vitro demethylase assays and by immunofluorescence in transfected Cos‑1 cells. Furthermore, molecular dynamic simulations revealed conformational changes within the ΔARID‑KDM5B structure compared with that in WT‑KDM5B, particularly in the JmjC domain, which is responsible for the catalytic activity of WT‑KDM5B. This supports the experimental data that shows the loss of demethylase activity. Since Kdm5b knock‑out mice show varying degrees of lethality, these data suggest that KDM5B serves a crucial function in development in a manner that is independent of its demethylase activity.
Collapse
Affiliation(s)
- Shirin Jamshidi
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NN, UK
| | - Steven Catchpole
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - Jie Chen
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, Denmark Hill Campus, King's College London, London SE5 9RJ, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, Denmark Hill Campus, King's College London, London SE5 9RJ, UK
| | - Joy Burchell
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NN, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
14
|
Bilmez Y, Talibova G, Ozturk S. Dynamic changes of histone methylation in mammalian oocytes and early embryos. Histochem Cell Biol 2021; 157:7-25. [PMID: 34599660 DOI: 10.1007/s00418-021-02036-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Histone methylation is a key epigenetic mechanism and plays a major role in regulating gene expression during oocyte maturation and early embryogenesis. This mechanism can be briefly defined as the process by which methyl groups are transferred to lysine and arginine residues of histone tails extending from nucleosomes. While methylation of the lysine residues is catalyzed by histone lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs) add methyl groups to the arginine residues. When necessary, the added methyl groups can be reversibly removed by histone demethylases (HDMs) by a process called histone demethylation. The spatiotemporal regulation of methylation and demethylation in histones contributes to modulating the expression of genes required for proper oocyte maturation and early embryonic development. In this review, we comprehensively evaluate and discuss the functional importance of dynamic histone methylation in mammalian oocytes and early embryos, regulated by KMTs, PRMTs, and HDMs.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
15
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
16
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
17
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
18
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
19
|
Yuan W, Yao Z, Veerapandian V, Yang X, Wang X, Chen D, Ma L, Li C, Zheng Y, Luo F, Zhao XY. The histone demethylase KDM2B regulates human primordial germ cell-like cells specification. Int J Biol Sci 2021; 17:527-538. [PMID: 33613110 PMCID: PMC7893587 DOI: 10.7150/ijbs.55873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022] Open
Abstract
Germline specification is a fundamental step for human reproduction and this biological phenomenon possesses technical challenges to study in vivo as it occurs immediately after blastocyst implantation. The establishment of in vitro human primordial germ cell-like cells (hPGCLCs) induction system allows sophisticated characterization of human primordial germ cells (hPGCs) development. However, the underlying molecular mechanisms of hPGCLC specification are not fully elucidated. Here, we observed particularly high expression of the histone demethylase KDM2B in male fetal germ cells (FGCs) but not in male somatic cells. Besides, KDM2B shared similar expression pattern with hPGC marker genes in hPGCLCs, suggesting an important role of KDM2B in germ cell development. Although deletion of KDM2B had no significant effects on human embryonic stem cell (hESC)'s pluripotency, loss of KDM2B dramatically impaired hPGCLCs differentiation whereas ectopically expressed KDM2B could efficiently rescue such defect, indicating this defect was due to KDM2B's loss in hPGCLC specification. Mechanistically, as revealed by the transcriptional profiling, KDM2B suppressed the expression of somatic genes thus inhibited somatic differentiation during hPGCLC specification. These data collectively indicate that KDM2B is an indispensable epigenetic regulator for hPGCLC specification, shedding lights on how epigenetic regulations orchestrate transcriptional events in hPGC development for future investigation.
Collapse
Affiliation(s)
- Weiyan Yuan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Veeramohan Veerapandian
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoman Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Dingyao Chen
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaohui Li
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Sino-America Joint Research Center for Translational Medicine in Developmental Disabilities
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- National Clinical Research Center for Kidney Disease, Guangzhou, China
| |
Collapse
|
20
|
Li G, Kanagasabai T, Lu W, Zou MR, Zhang SM, Celada SI, Izban MG, Liu Q, Lu T, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Yan Q, Chen Z. KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis. Cancer Res 2020; 80:4633-4643. [PMID: 32868382 DOI: 10.1158/0008-5472.can-20-0505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
KDM5B (lysine[K]-specific demethylase 5B) is frequently upregulated in various human cancers including prostate cancer. KDM5B controls H3K4me3/2 levels and regulates gene transcription and cell differentiation, yet the contributions of KDM5B to prostate cancer tumorigenesis remain unknown. In this study, we investigated the functional role of KDM5B in epigenetic dysregulation and prostate cancer progression in cultured cells and in mouse models of prostate epithelium-specific mutant Pten/Kdm5b. Kdm5b deficiency resulted in a significant delay in the onset of prostate cancer in Pten-null mice, whereas Kdm5b loss alone caused no morphologic abnormalities in mouse prostates. At 6 months of age, the prostate weight of Pten/Kdm5b mice was reduced by up to 70% compared with that of Pten mice. Pathologic analysis revealed Pten/Kdm5b mice displayed mild morphologic changes with hyperplasia in prostates, whereas age-matched Pten littermates developed high-grade prostatic intraepithelial neoplasia and prostate cancer. Mechanistically, KDM5B governed PI3K/AKT signaling in prostate cancer in vitro and in vivo. KDM5B directly bound the PIK3CA promoter, and KDM5B knockout resulted in a significant reduction of P110α and PIP3 levels and subsequent decrease in proliferation of human prostate cancer cells. Conversely, KDM5B overexpression resulted in increased PI3K/AKT signaling. Loss of Kdm5b abrogated the hyperactivation of AKT signaling by decreasing P110α/P85 levels in Pten/Kdm5b mice. Taken together, our findings reveal that KDM5B acts as a key regulator of PI3K/AKT signaling; they also support the concept that targeting KDM5B is a novel and effective therapeutic strategy against prostate cancer. SIGNIFICANCE: This study demonstrates that levels of histone modification enzyme KDM5B determine hyperactivation of PI3K/AKT signaling in prostate cancer and that targeting KDM5B could be a novel strategy against prostate cancer.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Mike R Zou
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee
| | - Michael G Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Lu
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, Connecticut.
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee.
| |
Collapse
|
21
|
Pan X, Liu W, Chai Y, Hu L, Wang J, Zhang Y. Identification of Hub Genes in Atypical Teratoid/Rhabdoid Tumor by Bioinformatics Analyses. J Mol Neurosci 2020; 70:1906-1913. [PMID: 32440821 DOI: 10.1007/s12031-020-01587-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is a devastating intracranial tumor in children. Currently, its molecular mechanisms cannot be studied effectively because patient samples are limited, and many factors are involved in its pathogenesis. In this study, we analyzed three gene expression profile data sets obtained from the Gene Expression Omnibus (GEO) database to identify genes that participate in ATRT. The datasets were integrated and analyzed using the RobustRankAggreg method to screen for differentially expressed genes (DEGs). We identified 197 DEGs, including 94 downregulated and 103 upregulated genes which were then used for gene set enrichment analysis. The results showed that the downregulated genes were mainly enriched in synaptic vesicle cycle, nicotine addiction, and GABAergic synapse, whereas the upregulated genes were enriched in the cell cycle, p53 signaling pathway, and cellular senescence. Consistent with these results, gene set enrichment analysis showed that E2F targets, G2M checkpoints, and MYC targets were significantly enriched in datasets. Protein-protein interaction (PPI) network revealed that CDK1, CCNA2, BUB1B, CDC20, KIF11, KIF20A, KIF2C, NCAPG, NDC80, NUSAP1, PBK, RRM2, TPX2, TOP2A, and TTK were hub genes. NetworkAnalyst algorithm was used to predict the transcription factor (TF), and the results showed that MYC, SOX2, and KDM5B could regulate these hub genes. In conclusion, the present study brings a new perspective of ATRT pathogenesis and the strategy targeted to cell cycle related gene may be promising treatments for the disease.
Collapse
Affiliation(s)
- Xin Pan
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Wei Liu
- School of Clinical Medicine, Tsinghua University, Beijing, 10084, China
| | - Yi Chai
- School of Clinical Medicine, Tsinghua University, Beijing, 10084, China
| | - Libo Hu
- School of Clinical Medicine, Tsinghua University, Beijing, 10084, China
| | - Junhua Wang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Yuqi Zhang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China.
| |
Collapse
|
22
|
Bamodu O, Chao TY. Dissecting the functional pleiotropism of lysine demethylase 5B in physiology and pathology. JOURNAL OF CANCER RESEARCH AND PRACTICE 2020. [DOI: 10.4103/jcrp.jcrp_5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Yeh IJ, Esakov E, Lathia JD, Miyagi M, Reizes O, Montano MM. Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer. Sci Rep 2019; 9:17663. [PMID: 31776402 PMCID: PMC6881367 DOI: 10.1038/s41598-019-54184-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers. However, the mechanisms by which KDM5B is regulated in breast cancer, in particular in response to post-translational signals is not well-defined. Here, we demonstrate that KDM5B is phosphorylated at Ser1456 by the cyclin-dependent kinase 1 (CDK1). Phosphorylation of KDM5B at Ser1456 attenuated the occupancy of KDM5B on the promoters of pluripotency genes. Moreover, KDM5B inhibited the expression of pluripotency genes, SOX2 and NANOG, and decreased the stem cell population in triple-negative breast cancer cell lines (TNBC). We previously reported that the tumor suppressor HEXIM1 is a mediator of KDM5B recruitment to its target genes, and HEXIM1 is required for the inhibition of nuclear hormone receptor activity by KDM5B. Similarly, HEXIM1 is required for regulation of pluripotency genes by KDM5B.
Collapse
Affiliation(s)
- I-Ju Yeh
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Emily Esakov
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA.
| |
Collapse
|
24
|
Research update and opportunity of non-hormonal male contraception: Histone demethylase KDM5B-based targeting. Pharmacol Res 2019; 141:1-20. [DOI: 10.1016/j.phrs.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/28/2022]
|
25
|
Liu X, Zhang SM, McGeary MK, Krykbaeva I, Lai L, Jansen DJ, Kales SC, Simeonov A, Hall MD, Kelly DP, Bosenberg MW, Yan Q. KDM5B Promotes Drug Resistance by Regulating Melanoma-Propagating Cell Subpopulations. Mol Cancer Ther 2019; 18:706-717. [PMID: 30523048 PMCID: PMC6397704 DOI: 10.1158/1535-7163.mct-18-0395] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Tumor heterogeneity is a major challenge for cancer treatment, especially due to the presence of various subpopulations with stem cell or progenitor cell properties. In mouse melanomas, both CD34+p75- (CD34+) and CD34-p75- (CD34-) tumor subpopulations were characterized as melanoma-propagating cells (MPC) that exhibit some of those key features. However, these two subpopulations differ from each other in tumorigenic potential, ability to recapitulate heterogeneity, and chemoresistance. In this study, we demonstrate that CD34+ and CD34- subpopulations carrying the BRAFV600E mutation confer differential sensitivity to targeted BRAF inhibition. Through elevated KDM5B expression, melanoma cells shift toward a more drug-tolerant, CD34- state upon exposure to BRAF inhibitor or combined BRAF inhibitor and MEK inhibitor treatment. KDM5B loss or inhibition shifts melanoma cells to the more BRAF inhibitor-sensitive CD34+ state. These results support that KDM5B is a critical epigenetic regulator that governs the transition of key MPC subpopulations with distinct drug sensitivity. This study also emphasizes the importance of continuing to advance our understanding of intratumor heterogeneity and ultimately develop novel therapeutics by altering the heterogeneous characteristics of melanoma.
Collapse
Affiliation(s)
- Xiaoni Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Ling Lai
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Daniel P Kelly
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
26
|
Vasconez AE, Janetzko P, Oo JA, Pflüger-Müller B, Ratiu C, Gu L, Helin K, Geisslinger G, Fleming I, Schröder K, Fork C, Brandes RP, Leisegang MS. The histone demethylase Jarid1b mediates angiotensin II-induced endothelial dysfunction by controlling the 3'UTR of soluble epoxide hydrolase. Acta Physiol (Oxf) 2019; 225:e13168. [PMID: 30076673 DOI: 10.1111/apha.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023]
Abstract
AIM The histone demethylase Jarid1b limits gene expression by removing the active methyl mark from histone3 lysine4 at gene promoter regions. A vascular function of Jarid1b is unknown, but a vasoprotective function to inflammatory and hypertrophic stimuli, like angiotensin II (AngII) could be inferred. This hypothesis was tested using Jarid1b knockout mice and the inhibitor PBIT. METHODS Mice or aortic segments were treated with AngII to induce endothelial dysfunction. Aortae from WT and Jarid1b knockout were studied in organ chambers and endothelium-dependent dilator responses to acetylcholine and endothelium-independent responses to DetaNONOate were recorded after pre-constriction with phenylephrine in the presence or absence of the NO-synthase inhibitor nitro-L-arginine. Molecular mechanisms were investigated with chromatin immunoprecipitation, RNA-Seq, RNA-3'-adaptor-ligation, actinomycin D and RNA-immunoprecipitation. RESULTS Knockout or inhibition of Jarid1b prevented the development of endothelial dysfunction in response to AngII. This effect was not a consequence of altered nitrite oxide availability but accompanied by a loss of the inflammatory response to AngII. As Jarid1b mainly inhibits gene expression, an indirect effect should account for this observation. AngII induced the soluble epoxide hydrolase (sEH), which degrades anti-inflammatory lipids, and thus promotes inflammation. Knockout or inhibition of Jarid1b prevented the AngII-mediated sEH induction. Mechanistically, Jarid1b maintained the length of the 3'untranslated region of the sEH mRNA, thereby increasing its stability and thus sEH protein expression. Loss of Jarid1b activity therefore resulted in sEH mRNA destabilization. CONCLUSION Jarid1b contributes to the pro-inflammatory effects of AngII by stabilizing sEH expression. Jarid1b inhibition might be an option for future therapeutics against cardiovascular dysfunction.
Collapse
Affiliation(s)
- Andrea E. Vasconez
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Patrick Janetzko
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - James A. Oo
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Corina Ratiu
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- Department of Functional Sciences - Pathophysiology; “Victor Babes” University of Medicine and Pharmacy Timisoara; Timisoara Romania
| | - Lunda Gu
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
- Centre for Epigenetics; University of Copenhagen; Copenhagen Denmark
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - Ingrid Fleming
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
- Institute for Vascular Signalling; Centre for Molecular Medicine; Goethe-University; Frankfurt Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| |
Collapse
|
27
|
Xhabija B, Kidder BL. KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer. Semin Cancer Biol 2018; 57:79-85. [PMID: 30448242 DOI: 10.1016/j.semcancer.2018.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation of chromatin plays a critical role in controlling stem cell function and tumorigenesis. The histone lysine demethylase, KDM5B, which catalyzes the demethylation of histone 3 lysine 4 (H3K4), is important for embryonic stem (ES) cell differentiation, and is a critical regulator of the H3K4-methylome during early mouse embryonic pre-implantation stage development. KDM5B is also overexpressed, amplified, or mutated in many cancer types. In cancer cells, KDM5B regulates expression of oncogenes and tumor suppressors by modulating H3K4 methylation levels. In this review, we examine how KDM5B regulates gene expression and cellular fates of stem cells and cancer cells by temporally and spatially controlling H3K4 methylation levels.
Collapse
Affiliation(s)
- Besa Xhabija
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
28
|
Abstract
Differentiation of stem cells into highly specialised cells requires gene expression changes brought about by remodelling of the chromatin architecture. During this lineage-commitment process, the majority of DNA needs to be packaged into inactive heterochromatin, allowing only a subset of regulatory elements to remain open and functionally required genes to be expressed. Epigenetic mechanisms such as DNA methylation, post-translational modifications to histone tails, and nucleosome positioning all potentially contribute to the changes in higher order chromatin structure during differentiation. The mammary gland is a particularly useful model to study these complex epigenetic processes since the majority of its development is postnatal, the gland is easily accessible, and development occurs in a highly reproducible manner. Inappropriate epigenetic remodelling can also drive tumourigenesis; thus, insights into epigenetic remodelling during mammary gland development advance our understanding of breast cancer aetiology. We review the current literature surrounding DNA methylation and histone modifications in the developing mammary gland and its implications for breast cancer.
Collapse
Affiliation(s)
- Holly Holliday
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Laura A Baker
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Simon R Junankar
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Susan J Clark
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.,Epigenetics Research Program, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
29
|
The Histone Demethylase KDM5 Is Essential for Larval Growth in Drosophila. Genetics 2018; 209:773-787. [PMID: 29764901 PMCID: PMC6028249 DOI: 10.1534/genetics.118.301004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Regulated gene expression is necessary for developmental and homeostatic processes. The KDM5 family of transcriptional regulators are histone H3 lysine 4 demethylases that can function through both demethylase-dependent and -independent mechanisms. While loss and overexpression of KDM5 proteins are linked to intellectual disability and cancer, respectively, their normal developmental functions remain less characterized. Drosophila melanogaster provides an ideal system to investigate KDM5 function, as it encodes a single ortholog in contrast to the four paralogs found in mammalian cells. To examine the consequences of complete loss of KDM5, we generated a null allele of Drosophila kdm5, also known as little imaginal discs (lid), and show that it is essential for viability. Animals lacking KDM5 show a dramatically delayed larval development that coincides with decreased proliferation and increased cell death in wing imaginal discs. Interestingly, this developmental delay is independent of the well-characterized Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, suggesting key functions for less characterized domains. Consistent with the phenotypes observed, transcriptome analyses of kdm5 null mutant wing imaginal discs revealed the dysregulation of genes involved in several cellular processes, including cell cycle progression and DNA repair. Together, our analyses reveal KDM5 as a key regulator of larval growth and offer an invaluable tool for defining the biological activities of KDM5 family proteins.
Collapse
|
30
|
Cui Y, Zhang Y, Wei Z, Gao J, Yu T, Chen R, Lv X, Pan C. Pig KDM5B: mRNA expression profiles of different tissues and testicular cells and association analyses with testicular morphology traits. Gene 2018; 650:27-33. [DOI: 10.1016/j.gene.2018.01.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
|
31
|
Histone demethylase lysine demethylase 5B in development and cancer. Oncotarget 2018; 8:8980-8991. [PMID: 27974677 PMCID: PMC5352456 DOI: 10.18632/oncotarget.13858] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
Histone methylation is one of the most important chromatin posttranslational modifications. It has a range of influences on nuclear functions including epigenetic inheritance, transcriptional regulation and the maintenance of genome integrity. Changes in histone methylation status take part in various physiological and pathological processes. KDM5B (lysine demethylase 5B, also called JARID1B or PLU-1) encodes the histone H3 lysine4 (H3K4) demethylase and exhibits a strong transcriptional repression activity. KDM5B plays a role in cell differentiation, stem cell self-renewal and other developmental progresses. Recent studies showed that KDM5B expression was increased in breast, bladder, lung, prostate and many other tumors and promotes tumor initiation, invasion and metastasis. Given its association with tumor progression and prognosis of cancer patients, KDM5B was proposed to be a novel target for the prevention and treatment of human cancers. In this review, we will summarize recent advances in our understanding of the regulation and function of KDM5B in development and cancer.
Collapse
|
32
|
Facompre ND, Harmeyer KM, Sahu V, Gimotty PA, Rustgi AK, Nakagawa H, Basu D. Targeting JARID1B's demethylase activity blocks a subset of its functions in oral cancer. Oncotarget 2017; 9:8985-8998. [PMID: 29507668 PMCID: PMC5823649 DOI: 10.18632/oncotarget.23739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Upregulation of the H3K4me3 demethylase JARID1B is linked to acquisition of aggressive, stem cell-like features by many cancer types. However, the utility of emerging JARID1 family inhibitors remains uncertain, in part because JARID1B’s functions in normal development and malignancy are diverse and highly context-specific. In this study, responses of oral squamous cell carcinomas (OSCCs) to catalytic inhibition of JARID1B were assessed using CPI-455, the first tool compound with true JARID1 family selectivity. CPI-455 attenuated clonal sphere and tumor formation by stem-like cells that highly express JARID1B while also depleting the CD44-positive and Aldefluor-high fractions conventionally used to designate OSCC stem cells. Silencing JARID1B abrogated CPI-455’s effects on sphere formation, supporting that the drug acted through this isoform. To further delineate CPI-455’s capacity to block JARID1B’s functions, its biologic effects were compared against those indicated by pathway analysis of the transcriptional profile produced by JARID1B knockdown. Downregulation of multiple gene sets related to stem cell function was consistent with the drug’s observed actions. However, strong E-Cadherin upregulation seen upon silencing JARID1B surprisingly could not be reproduced using CPI-455. Expressing a demethylase-inactive mutant of JARID1B demonstrated suppression of this transcript to be demethylase-independent, and the capacity of mutant JARID1B but not CPI-455 to modulate invasion provided a functional correlate of this finding. These results show that JARID1B catalytic inhibition effectively targets some stem cell-like features of malignancy but also reveal demethylase-independent actions refractory to inhibition. Future application of JARID1 inhibitors in combinatorial use for cancer therapy may be guided by these findings.
Collapse
Affiliation(s)
- Nicole D Facompre
- Department of Otorhinolaryngology, Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA
| | - Kayla M Harmeyer
- Department of Otorhinolaryngology, Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA
| | - Varun Sahu
- Department of Otorhinolaryngology, Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics Epidemiology and Informatics, The University of Pennsylvania, Philadelphia, PA, USA
| | - Anil K Rustgi
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroshi Nakagawa
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Devraj Basu
- Department of Otorhinolaryngology, Head and Neck Surgery, The University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia VA Medical Center, Philadelphia, PA, USA.,The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
33
|
Harmeyer KM, Facompre ND, Herlyn M, Basu D. JARID1 Histone Demethylases: Emerging Targets in Cancer. Trends Cancer 2017; 3:713-725. [PMID: 28958389 DOI: 10.1016/j.trecan.2017.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/04/2023]
Abstract
JARID1 proteins are histone demethylases that both regulate normal cell fates during development and contribute to the epigenetic plasticity that underlies malignant transformation. This H3K4 demethylase family participates in multiple repressive transcriptional complexes at promoters and has broader regulatory effects on chromatin that remain ill-defined. There is growing understanding of the oncogenic and tumor suppressive functions of JARID1 proteins, which are contingent on cell context and the protein isoform. Their contributions to stem cell-like dedifferentiation, tumor aggressiveness, and therapy resistance in cancer have sustained interest in the development of JARID1 inhibitors. Here we review the diverse and context-specific functions of the JARID1 proteins that may impact the utilization of emerging targeted inhibitors of this histone demethylase family in cancer therapy.
Collapse
Affiliation(s)
- Kayla M Harmeyer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole D Facompre
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA; Philadelphia VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Nanashima N, Horie K, Chiba M, Nakano M, Maeda H, Nakamura T. Anthocyanin-rich blackcurrant extract inhibits proliferation of the MCF10A healthy human breast epithelial cell line through induction of G0/G1 arrest and apoptosis. Mol Med Rep 2017; 16:6134-6141. [DOI: 10.3892/mmr.2017.7391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
|
35
|
Frey WD, Chaudhry A, Slepicka PF, Ouellette AM, Kirberger SE, Pomerantz WCK, Hannon GJ, Dos Santos CO. BPTF Maintains Chromatin Accessibility and the Self-Renewal Capacity of Mammary Gland Stem Cells. Stem Cell Reports 2017; 9:23-31. [PMID: 28579392 PMCID: PMC5783326 DOI: 10.1016/j.stemcr.2017.04.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022] Open
Abstract
Chromatin remodeling is a key requirement for transcriptional control of cellular differentiation. However, the factors that alter chromatin architecture in mammary stem cells (MaSCs) are poorly understood. Here, we show that BPTF, the largest subunit of the NURF chromatin remodeling complex, is essential for MaSC self-renewal and differentiation of mammary epithelial cells (MECs). BPTF depletion arrests cells at a previously undefined stage of epithelial differentiation that is associated with an incapacity to achieve the luminal cell fate. Moreover, genome-wide analysis of DNA accessibility following genetic or chemical inhibition, suggests a role for BPTF in maintaining the open chromatin landscape at enhancers regions in MECs. Collectively, our study implicates BPTF in maintaining the unique epigenetic state of MaSCs.
Collapse
Affiliation(s)
- Wesley D Frey
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Anisha Chaudhry
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Priscila F Slepicka
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Adam M Ouellette
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, MN 55455, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, MN 55455, USA
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB20RE, UK.
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
36
|
Fundamental Pathways in Breast Cancer 4: Signaling to Chromatin in Breast Development. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3956485. [PMID: 28105421 PMCID: PMC5220417 DOI: 10.1155/2016/3956485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy.
Collapse
|
38
|
Blair LP, Liu Z, Labitigan RLD, Wu L, Zheng D, Xia Z, Pearson EL, Nazeer FI, Cao J, Lang SM, Rines RJ, Mackintosh SG, Moore CL, Li W, Tian B, Tackett AJ, Yan Q. KDM5 lysine demethylases are involved in maintenance of 3'UTR length. SCIENCE ADVANCES 2016; 2:e1501662. [PMID: 28138513 PMCID: PMC5262454 DOI: 10.1126/sciadv.1501662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The complexity by which cells regulate gene and protein expression is multifaceted and intricate. Regulation of 3' untranslated region (UTR) processing of mRNA has been shown to play a critical role in development and disease. However, the process by which cells select alternative mRNA forms is not well understood. We discovered that the Saccharomyces cerevisiae lysine demethylase, Jhd2 (also known as KDM5), recruits 3'UTR processing machinery and promotes alteration of 3'UTR length for some genes in a demethylase-dependent manner. Interaction of Jhd2 with both chromatin and RNA suggests that Jhd2 affects selection of polyadenylation sites through a transcription-coupled mechanism. Furthermore, its mammalian homolog KDM5B (also known as JARID1B or PLU1), but not KDM5A (also known as JARID1A or RBP2), promotes shortening of CCND1 transcript in breast cancer cells. Consistent with these results, KDM5B expression correlates with shortened CCND1 in human breast tumor tissues. In contrast, both KDM5A and KDM5B are involved in the lengthening of DICER1. Our findings suggest both a novel role for this family of demethylases and a novel targetable mechanism for 3'UTR processing.
Collapse
Affiliation(s)
- Lauren P. Blair
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Zheng Xia
- Division of Biostatistics, Dan L Duncan Comprehensive Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica L. Pearson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Fathima I. Nazeer
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rachel J. Rines
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72032, USA
| | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wei Li
- Division of Biostatistics, Dan L Duncan Comprehensive Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72032, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
39
|
Bansal N, Petrie K, Christova R, Chung CY, Leibovitch BA, Howell L, Gil V, Sbirkov Y, Lee E, Wexler J, Ariztia EV, Sharma R, Zhu J, Bernstein E, Zhou MM, Zelent A, Farias E, Waxman S. Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer. Oncotarget 2016; 6:34087-105. [PMID: 26460951 PMCID: PMC4741438 DOI: 10.18632/oncotarget.6048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic α-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic disease in vivo. In support of these findings, knockdown of PF1 expression phenocopied treatment with Tat-SID both in vitro and in vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting.
Collapse
Affiliation(s)
- Nidhi Bansal
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Petrie
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Rossitza Christova
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Department of Genetics and Genomic Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boris A Leibovitch
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Howell
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Veronica Gil
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - Yordan Sbirkov
- Division of Clinical Studies, Institute of Cancer Research, Sutton, United Kingdom
| | - EunJee Lee
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joanna Wexler
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgardo V Ariztia
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajal Sharma
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Ming Zhou
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Zelent
- Division of Hemato-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eduardo Farias
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Waxman
- Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Navarro-Costa P, McCarthy A, Prudêncio P, Greer C, Guilgur LG, Becker JD, Secombe J, Rangan P, Martinho RG. Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling. Nat Commun 2016; 7:12331. [PMID: 27507044 PMCID: PMC4987523 DOI: 10.1038/ncomms12331] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/22/2016] [Indexed: 12/12/2022] Open
Abstract
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.
Collapse
Affiliation(s)
- Paulo Navarro-Costa
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12222, USA
| | - Pedro Prudêncio
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Leonardo G. Guilgur
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D. Becker
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12222, USA
| | - Rui G. Martinho
- Departamento de Ciências Biomédicas e Medicina, and Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
41
|
Denis H, Van Grembergen O, Delatte B, Dedeurwaerder S, Putmans P, Calonne E, Rothé F, Sotiriou C, Fuks F, Deplus R. MicroRNAs regulate KDM5 histone demethylases in breast cancer cells. MOLECULAR BIOSYSTEMS 2016; 12:404-13. [DOI: 10.1039/c5mb00513b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression.
Collapse
|
42
|
Chakravarty S, Essel F, Lin T, Zeigler S. Histone Peptide Recognition by KDM5B-PHD1: A Case Study. Biochemistry 2015; 54:5766-80. [PMID: 26266342 DOI: 10.1021/acs.biochem.5b00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A detailed understanding of the energetic contributions to histone peptide recognition would be valuable for a better understanding of chromatin anchoring mechanisms and histone diagnostic design. Here, we probed the energetic contributions to recognize the same unmodified histone H3 by three different plant homeodomain (PHD) H3K4me0 readers: hKDM5B-PHD1 (first PHD finger of hKDM5B), hBAZ2A-PHD, and hAIRE-PHD1. The energetic contributions of residues differ significantly from one complex to the next. For example, H3K4A substitution completely aborts the formation of the hAIRE-histone peptide complex, while it has only a small destabilizing effect on binding of the other readers, even though H3K4 methylation disrupts all three complexes. Packing density suggests that methylation of more tightly packed Lys/Arg residues can disrupt binding, even if the energetic contribution is small. The binding behavior of hKDM5B-PHD1 and hBAZ2A-PHD is similar, and like PHD H3R2 readers, both possess a pair of Asp residues in the treble clef for interaction with H3R2. PHD subtype sequences, especially the tandem PHD-PHD fingers, show enrichment in the treble clef Asp residues, suggesting that it is a subtype-specific property. These Asp residues make significant energetic contributions to the formation of the hKDM5B-histone peptide complex, suggesting that there are interactions in addition to those reported in the recent NMR structure. However, the presence of the treble clef Asp in PHD sequences may not always be sufficient for histone peptide binding. This study showcases reader-histone peptide interactions in the context of residue conservation, energetic contributions, interfacial packing, and sequence-based reader subtype predictability.
Collapse
Affiliation(s)
- Suvobrata Chakravarty
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Francisca Essel
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Tao Lin
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| | - Stad Zeigler
- Department of Chemistry & Biochemistry, South Dakota State University , Box-2202, SAV367, Brookings, South Dakota 57007, United States
| |
Collapse
|
43
|
Fork C, Gu L, Hitzel J, Josipovic I, Hu J, SzeKa Wong M, Ponomareva Y, Albert M, Schmitz SU, Uchida S, Fleming I, Helin K, Steinhilber D, Leisegang MS, Brandes RP. Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. Arterioscler Thromb Vasc Biol 2015; 35:1645-52. [PMID: 26023081 DOI: 10.1161/atvbaha.115.305561] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. APPROACH AND RESULTS To identify chromatin modifying enzymes in endothelial cells, histone demethylases were screened by microarray and polymerase chain reaction. The histone 3 lysine 4 demethylase JARID1B was identified as a highly expressed enzyme at the mRNA and protein levels. Knockdown of JARID1B by shRNA in human umbilical vein endothelial cells attenuated cell migration, angiogenic sprouting, and tube formation. Similarly, pharmacological inhibition and overexpression of a catalytic inactive JARID1B mutant reduced the angiogenic capacity of human umbilical vein endothelial cells. To identify the in vivo relevance of JARID1B in the vascular system, Jarid1b knockout mice were studied. As global knockout results in increased mortality and developmental defects, tamoxifen-inducible and endothelial-specific knockout mice were generated. Acute knockout of Jarid1b attenuated retinal angiogenesis and endothelial sprout outgrowth from aortic segments. To identify the underlying mechanism, a microarray experiment was performed, which led to the identification of the antiangiogenic transcription factor HOXA5 to be suppressed by JARID1B. Importantly, downregulation or inhibition of JARID1B, but not of JARID1A and JARID1C, induced HOXA5 expression in human umbilical vein endothelial cells. Consistently, chromatin immunoprecipitation revealed that JARID1B occupies and reduces the histone 3 lysine 4 methylation levels at the HOXA5 promoter, demonstrating a direct function of JARID1B in endothelial HOXA5 gene regulation. CONCLUSIONS JARID1B, by suppressing HOXA5, maintains the endothelial angiogenic capacity in a demethylase-dependent manner.
Collapse
Affiliation(s)
- Christian Fork
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.).
| | - Lunda Gu
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Juliane Hitzel
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Ivana Josipovic
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Jiong Hu
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Michael SzeKa Wong
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Yuliya Ponomareva
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Mareike Albert
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Sandra U Schmitz
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Shizuka Uchida
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Ingrid Fleming
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Kristian Helin
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Dieter Steinhilber
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Matthias S Leisegang
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| | - Ralf P Brandes
- From the Institute for Cardiovascular Physiology, Medical Faculty (C.F., L.G., J.H., I.J., M.S.W., M.S.L., R.P.B.), Institutes of Vascular Signalling (J.H., I.F.) and Cardiovascular Regeneration (Y.P., S.U.), Centre for Molecular Medicine, and Institute of Pharmaceutical Chemistry/ZAFES (D.S.), Goethe-University Frankfurt, Frankfurt am Main, Germany; Biotech Research and Innovation Centre (BRIC) (M.A., S.U.S., K.H.), Centre for Epigenetics (M.A., S.U.S., K.H.), University of Copenhagen, Copenhagen, Denmark; and German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany (C.F., L.G., J.H., I.J., M.S.W., Y.P., S.U., I.F., M.S.L., R.P.B.)
| |
Collapse
|
44
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
45
|
Huang J, Zhang H, Wang X, Dobbs KB, Yao J, Qin G, Whitworth K, Walters EM, Prather RS, Zhao J. Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications. Biol Reprod 2015; 92:72. [PMID: 25609834 DOI: 10.1095/biolreprod.114.122762] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
KDM5B (JARID1B/PLU1) is a H3K4me2/3 histone demethylase that is implicated in cancer development and proliferation and is also indispensable for embryonic stem cell self-renewal, cell fate, and murine embryonic development. However, little is known about the role of KDM5B during preimplantation embryo development. Here we show that KDM5B is critical to porcine preimplantation development. KDM5B was found to be expressed in a stage-specific manner, consistent with demethylation of H3K4me3, with the highest expression being observed from the 4-cell to the blastocyst stages. Knockdown of KDM5B by morpholino antisense oligonucleotides injection impaired porcine embryo development to the blastocyst stage. The impairment of embryo development might be caused by increased expression of H3K4me3 at the 4-cell and blastocyst stages, which disturbs the balance of bivalent H3K4me3-H3K27me3 modifications at the blastocyst stage. Decreased abundance of H3K27me3 at blastocyst stage activates multiple members of homeobox genes (HOX), which need to be silenced for faithful embryo development. Additionally, the histone demethylase KDM6A was found to be upregulated by knockdown of KDM5B, which indicated it was responsible for the decreased abundance of H3K27me3 at the blastocyst stage. The transcriptional levels of Ten-Eleven Translocation gene family members (TET1, TET2, and TET3) are found to be increased by knockdown of KDM5B, which indicates cross talk between histone modifications and DNA methylation. The studies above indicate that KDM5B is required for porcine embryo development through regulating the balance of bivalent H3K4me3-H3K27me3 modifications.
Collapse
Affiliation(s)
- Jiaojiao Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Hongyong Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xianlong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kyle B Dobbs
- National Swine Resource and Research Center & Division of Animal Science, University of Missouri, Columbia, Missouri Department of Biology, Northeastern University, Boston, Massachusetts
| | - Jing Yao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kristin Whitworth
- National Swine Resource and Research Center & Division of Animal Science, University of Missouri, Columbia, Missouri
| | - Eric M Walters
- National Swine Resource and Research Center & Division of Animal Science, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- National Swine Resource and Research Center & Division of Animal Science, University of Missouri, Columbia, Missouri
| | - Jianguo Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|