1
|
Horbatok K, Semchuk I, Horbach O, Khranovska N, Kosach V, Borysko P, Koniev S, Ulrich AS, Afonin S, Komarov IV. In vitro evaluation of the immunogenic potential of gramicidin S and its photocontrolled analogues. RSC Med Chem 2025:d5md00075k. [PMID: 40270993 PMCID: PMC12013366 DOI: 10.1039/d5md00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Three hallmarks of ICD (immunogenic cell death), release of adenosine triphosphate (ATP), release of high mobility group box 1 protein, and calreticulin exposure on the cell surface, were studied upon treatment of mammalian cells with small cyclic peptides, namely, the natural antibiotic gramicidin S (GS) and two photocontrolled GS analogues (LMB002 and LMB033). The analogues contained a photoisomerizable diarylethene fragment, and they exhibited different bioactivities in their "open" and "closed" photoisomeric forms. The data (obtained from cell cultures and spheroids) were collected in a concentration-dependent manner to assess cytotoxicity. Results showed that treatment with all peptides induced ICD at sub-IC50 and higher concentrations, indicating that GS and its derivatives have promising immunogenic potential. The "open" photoisomers of the photoswitchable GS analogues generated using visible light were as efficient as ICD inducers and the parent GS, while the UV-generated "closed" photoforms induced ICD only at higher concentrations. Herein, the cell specificity and time dependency of the observed effects are presented.
Collapse
Affiliation(s)
- Kateryna Horbatok
- Taras Shevchenko National University of Kyiv Volodymyrska street 60 01601 Kyiv Ukraine
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
| | - Iryna Semchuk
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | - Oleksandr Horbach
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | - Natalia Khranovska
- Nonprofit organization "National Cancer Institute" Yulii Zdanovskoi street 33/43 03022 Kyiv Ukraine
| | | | - Petro Borysko
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry Akademician Kukhar street 1 02094 Kyiv Ukraine
| | - Serhii Koniev
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology POB 3640 76021 Karlsruhe Germany
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv Volodymyrska street 60 01601 Kyiv Ukraine
- Enamine Ltd. Winston Churchill street 78 02094 Kyiv Ukraine
- Lumobiotics Auerstraße 2 76227 Karlsruhe Germany
| |
Collapse
|
2
|
Gentile R, Feudi D, Sallicandro L, Biagini A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers (Basel) 2025; 17:1244. [PMID: 40227837 PMCID: PMC11988140 DOI: 10.3390/cancers17071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Neoplastic cells are characterized by metabolic reprogramming, known as the Warburg effect, in which glucose metabolism is predominantly directed toward aerobic glycolysis, with reduced mitochondrial oxidative phosphorylation and increased lactate production even in the presence of oxygen. This phenomenon provides cancer cells with a proliferative advantage, allowing them to rapidly produce energy (in the form of ATP) and generate metabolic intermediates necessary for the biosynthesis of macromolecules essential for cell growth. It is important to understand the role of ion channels in the tumor context since they participate in various physiological processes and in the regulation of the tumor microenvironment. These changes may contribute to the development and transformation of cancer cells, as well as affect the communication between cells and the surrounding microenvironment, including impaired or altered expression and functionality of ion channels. Therefore, the aim of this review is to elucidate the impact of the tumor microenvironment on the electrical properties of the cellular membranes in several cancers as a possible therapeutic target.
Collapse
Affiliation(s)
- Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
| | - Davide Feudi
- Department of Biostatistics, Epidemiology and Public Health, University of Padua, Via L. Loredan 18, 35131 Padova, Italy;
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
3
|
O'Donnell BL, Stefan D, Chiu YH, Zeitz MJ, Tang J, Johnston D, Leighton SE, Van Kessel C, Barr K, Gyenis L, Freeman TJ, Kelly JJ, Sayedyahossein S, Isakson BE, Litchfield DW, Roth K, Smyth JW, Hebb M, Ronald J, Bayliss DA, Penuela S. Novel Pannexin 1 isoform is increased in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.612143. [PMID: 39314291 PMCID: PMC11419113 DOI: 10.1101/2024.09.09.612143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pannexin 1 (PANX1) is upregulated in many cancers, where its channel activity and signalling promote tumorigenic properties. Here, we report that potential internal translation start sites exist in mouse and human PANX1 which have implications in trafficking and protein interaction. Using mouse PANX1 constructs for each internal methionine (M) we saw that the shorter PANX1 isoforms were glycosylated, able to traffic to the cell surface and PANX1-M37 formed channels which could be activated by C-terminus cleavage or α1-adrenoceptor stimulation. Furthermore, we report a novel ∼25 kDa isoform of human PANX1 (hPANX1-25K) which lacks the N-terminus and was detected in several human cancer cell lines including melanoma, osteosarcoma, breast cancer, and glioblastoma multiforme. This isoform was increased upon hPANX1 CRISPR/Cas9 deletion targeting the first exon near M1, and using Expasy PeptideCutter we did not find any evidence of hPANX1 cleavage sites which would produce a 25 kDa fragment, suggesting a potential alternative translation initiation site as the source of hPANX1-25K. hPANX1-25K was confirmed to be a hPANX1 isoform via mass spectrometry, can be N-linked glycosylated at multiple sites including the canonical N255 and novel N338 and N394 residues, and can interact with both β-catenin and full length hPANX1. Using cell surface biotinylation and immunocytochemistry, we also determined hPANX1-25K exhibits a predominantly intracellular localization. hPANX1-25K is prevalent throughout melanoma progression, and its levels are increased in squamous cell carcinoma cells and patient-derived tumours, compared to keratinocytes and patient-matched normal skin, indicating that it may be differentially regulated in normal and cancer cells.
Collapse
|
4
|
Li L, Li M. Modular Engineering of Aptamer-Based Nanobiotechnology for Conditional Control of ATP Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302972. [PMID: 38009471 DOI: 10.1002/adma.202302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/24/2023] [Indexed: 11/29/2023]
Abstract
Dynamic changes of intracellular, extracellular, and subcellular adenosine triphosphates (ATPs) have fundamental interdependence with the physio-pathological states of cells. Spatially selective in situ imaging of such ATP dynamics offers valuable mechanistic insights into the related biological activities. Despite significant advances in the design of aptamer sensors for ATP detection, the dearth of methods that enable precise ATP imaging in specific cellular locations remains a challenge in this field. This review focuses on the modular engineering of regulatable sensing technology via the integration of aptamer probe designs with advanced functional nanomaterials, allowing conditional control of ATP sensing and imaging with high spatial precision from subcellular organelles to living animals. Highlighting the recent advances in the design of photo-triggered nanosensors for spatiotemporally controlled ATP imaging, endogenously-triggered ATP sensing in a cell-selective manner, and spatially-controlled nanodevices for ATP imaging in specific organelles and extracellular microenvironments. Emphasis will be put on elucidating the principles of how nanotechnology can be applied to regulate the spatial precision of aptamer-based ATP sensing activities. The authors envision that this perspective provides insights into the engineering of aptamer-based nanobiotechnology for opening new frontiers in precise molecular sensing and other bio-applications.
Collapse
Affiliation(s)
- Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Xing Q, Cibelli A, Yang GL, Dohare P, Li QH, Scemes E, Guan FX, Spray DC. Neuronal Panx1 drives peripheral sensitization in experimental plantar inflammatory pain. Mil Med Res 2024; 11:27. [PMID: 38685116 PMCID: PMC11057180 DOI: 10.1186/s40779-024-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and β-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. β-galactosidase (β-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/β-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/β-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of β-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.
Collapse
Affiliation(s)
- Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Antonio Cibelli
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, 70125, Italy
| | - Greta Luyuan Yang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, 06459, USA
| | - Preeti Dohare
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qing-Hua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eliana Scemes
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Fang-Xia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450001, China.
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Huang KCY, Chiang SF, Lin PC, Hong WZ, Yang PC, Chang HP, Peng SL, Chen TW, Ke TW, Liang JA, Chen WTL, Chao KSC. TNFα modulates PANX1 activation to promote ATP release and enhance P2RX7-mediated antitumor immune responses after chemotherapy in colorectal cancer. Cell Death Dis 2024; 15:24. [PMID: 38195677 PMCID: PMC10776587 DOI: 10.1038/s41419-023-06408-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
ATP and its receptor P2RX7 exert a pivotal effect on antitumor immunity during chemotherapy-induced immunogenic cell death (ICD). Here, we demonstrated that TNFα-mediated PANX1 cleavage was essential for ATP release in response to chemotherapy in colorectal cancer (CRC). TNFα promoted PANX1 cleavage via a caspase 8/3-dependent pathway to enhance cancer cell immunogenicity, leading to dendritic cell maturation and T-cell activation. Blockade of the ATP receptor P2RX7 by the systemic administration of small molecules significantly attenuated the therapeutic efficacy of chemotherapy and decreased the infiltration of immune cells. In contrast, administration of an ATP mimic markedly increased the therapeutic efficacy of chemotherapy and enhanced the infiltration of immune cells in vivo. High PANX1 expression was positively correlated with the recruitment of DCs and T cells within the tumor microenvironment and was associated with favorable survival outcomes in CRC patients who received adjuvant chemotherapy. Furthermore, a loss-of-function P2RX7 mutation was associated with reduced infiltration of CD8+ immune cells and poor survival outcomes in patients. Taken together, these results reveal that TNFα-mediated PANX1 cleavage promotes ATP-P2RX7 signaling and is a key determinant of chemotherapy-induced antitumor immunity.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan, ROC
| | - Pei-Chun Lin
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Wei-Ze Hong
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Hui-Ping Chang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, Taichung, 41354, Taiwan, ROC
| | - Tao-Wei Ke
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC
- School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
7
|
Zhang HL, Sandai D, Zhang ZW, Song ZJ, Babu D, Tabana Y, Dahham SS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Zhao R, Barakat K, Harun MSR, Shapudin SNM, Lok B. Adenosine triphosphate induced cell death: Mechanisms and implications in cancer biology and therapy. World J Clin Oncol 2023; 14:549-569. [PMID: 38179405 PMCID: PMC10762532 DOI: 10.5306/wjco.v14.i12.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Doblin Sandai
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Sabbar Saad Dahham
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mohammad Syamsul Reza Harun
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Siti Nurfatimah Mohd Shapudin
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Bronwyn Lok
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| |
Collapse
|
8
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
9
|
Li C, Zhang L, Jin Q, Jiang H, Wu C. CD39 (ENTPD1) in tumors: a potential therapeutic target and prognostic biomarker. Biomark Med 2023; 17:563-576. [PMID: 37713234 DOI: 10.2217/bmm-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
As a regulator of the dynamic balance between immune-activated extracellular ATP and immunosuppressive adenosine, CD39 ectonucleotidase impairs the ability of immune cells to exert anticancer immunity and plays an important role in the immune escape of tumor cells within the tumor microenvironment. In addition, CD39 has been studied in cancer patients to evaluate the prognosis, the efficacy of immunotherapy (e.g., PD-1 blockade) and the prediction of recurrence. This article reviews the importance of CD39 in tumor immunology, summarizes the preclinical evidence on targeting CD39 to treat tumors and focuses on the potential of CD39 as a biomarker to evaluate the prognosis and the response to immune checkpoint inhibitors in tumors.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
10
|
Guo S, Han F, Zhu W. CD39 - A bright target for cancer immunotherapy. Biomed Pharmacother 2022; 151:113066. [PMID: 35550530 DOI: 10.1016/j.biopha.2022.113066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
The ATP-adenosine pathway functions as a key modulator of innate and adaptive immunity within the tumor microenvironment, and cancer immune evasion largely involves the generation of high amounts of immunosuppressive extracellular adenosine (eADO). Consequently, inhibition of eADO-generating enzymes and/or eADO receptors can effectively restore the antitumor immunity of multiple immune cells. With several clinical strategies currently being explored to modulating the eADO pathway in patients with cancer, recent clinical data with antagonists targeting CD73 and A2A receptor have demonstrated a promising therapeutic potential in cancer. Recent findings reveal that the ectonucleotidase CD39, the limiting enzyme been viewed as "immunological switch", converts ATP-driven pro-inflammatory milieu to an anti-inflammatory state mediated by adenosine. Owing to its superior feature of CD39 antagonism that rely not only on preventing the accumulation of adenosine but also on the stabilization of extracellular ATP to restore antitumor immunity, several inhibitors and clinical trials based on CD39 are being evaluated. Consequently, there is currently a focus on understanding the role of CD39 in governing immunity and how therapeutic strategies targeting this pathway alter the antitumor potential. We herein review the impact of CD39 on tumor microenvironment with a focus on treatment preference. Additionally, we also discuss the implication for rational combination therapies, molecular regulation, as well as potential limitations.
Collapse
Affiliation(s)
- Shuwei Guo
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengfeng Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Kong H, Zhao H, Chen T, Song Y, Cui Y. Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy. Cell Death Dis 2022; 13:336. [PMID: 35410316 PMCID: PMC9001662 DOI: 10.1038/s41419-022-04786-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Retinal endothelial cells (RECs) are the primary target cells for diabetes-induced vascular damage. The P2X7/NLRP3 pathway plays an essential role in amplifying inflammation via an ATP feedback loop, promoting the inflammatory response, pyroptosis, and apoptosis of RECs in the early stages of diabetic retinopathy induced by hyperglycemia and inflammation. 3TC, a type of nucleoside reverse transcriptase inhibitor, is effective against inflammation, as it can targeting formation of the P2X7 large pore formation. Hence, our aim was to evaluated the anti-inflammatory effects and potential mechanisms of action of 3TC in vitro in retinal microvascular endothelial cells treated with high-glucose (HG) and lipopolysaccharide (LPS), as well as in vivo in the retinas of C57BL/6J male mice with streptozotocin-induced diabetes. The expression of inflammasome-related proteins P2X7 and NLRP3, and apoptosis in the retinas of 3TC-treated diabetic mice were compared to those of untreated diabetic mice. Furthermore, the anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects of 3TC were evaluated in vitro in cultured mice retinal endothelial cells. Co-application of HG and LPS significantly increased the secretion of IL-6, IL-1β, and TNF-α, and ATP levels, whereas 3TC decreased cell inflammation, apoptosis, and pyroptosis. Inhibition of P2X7R and NLRP3 inflammasome activation decreased NLRP3 inflammasome-mediated injury. 3TC prevented cytokine and ATP release following co-application of HG and LPS/BzATP. Our findings provide new insights regarding the mechanisms of action of 3TC in diabetic environment-induced retinal injury, including apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Hui Kong
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Ophthalmology, Qianfoshan Hospital of Shandong First Medical University, Jinan, Shandong Province, China
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongran Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- Shandong University, Jinan, Shandong Province, China
| | - Tianran Chen
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- Shandong University, Jinan, Shandong Province, China
| | - Yanling Song
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China.
- Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
12
|
Lei Y, Zhou X, Zhao Y, Zhang J. Effects of Exogenous ATP on Melanoma Growth and Tumor Metabolism in C57BL/6 Mice. Comp Med 2022; 72:93-103. [PMID: 35410634 DOI: 10.30802/aalas-cm-21-000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Altered energy metabolism (glucose, lipid, amino acid) is a hallmark of cancer growth that provides the theoretical basis for the development of metabolic therapies as cancer treatments. ATP is one of the major biochemical constituents of the tumor microenvironment. ATP promotes tumor progression or suppression depending on various factors, including concentration and tumor type. Here we evaluated the antitumor effect of extracellular ATP on melanoma and the potential underlying mechanisms. A subcutaneous tumor model in mice was used to investigate the antitumor effects of ATP. Major lymphocyte cell changes and intratumoral metabolic changes were assessed. Metabolomic analysis (1H nuclear magnetic resonance spectroscopy) was performed on tumor samples. We measured the activities of lactate dehydrogenase A (LDHA) and LDHB in the excised tumors and serum and found that ATP and its metabolites affected the proliferation of and LDHA activity in B16F10 cells, a murine melanoma cell line. In addition, treatment with ATP dose-dependently reduced tumor size in melanoma-bearing mice. Moreover, flow cytometry analysis demonstrated that the antitumor effect of ATP was not achieved through changes in T-cell or B-cell subsets. Metabolomics analysis revealed that ATP treatment simultaneously reduced multiple intratumoral metabolites related to energy metabolism as well as serum and tumor LDHA activities. Furthermore, both ATP and its metabolites significantly suppressed both tumor cell proliferation and LDHA activity in the melanoma cell line. Our results in vivo and in vitro indicate that exogenous ATP inhibits melanoma growth in association with altered intratumoral metabolism.
Collapse
|
13
|
Yuan M, Yao Y, Wu D, Zhu C, Dong S, Tong X. Pannexin1 inhibits autophagy of cisplatin-resistant testicular cancer cells by mediating ATP release. Cell Cycle 2022; 21:1651-1661. [PMID: 35373707 PMCID: PMC9291690 DOI: 10.1080/15384101.2022.2060655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pannexin1 (Panx-1) is a gap junction channel protein that mediates the release of intracellular ATP during autophagy, and thus plays an important role in tumor cell apoptosis and chemo-resistance. However, the role of Panx-1 in cisplatin-resistance of testicular cancer cells remains unclear. We found that cisplatin-resistant I-10 testicular cancer cell lines (I-10/CDDP) autophagy-associated proteins (p62, p-mTOR, mTOR and LC3) exhibited high levels of autophagy in their expression, while LC3-II expression was more significantly in the presence of lysosomal degradation blocked by chloroquine (CQ). Xenograft models using I-10/CDDP cells with knockdown ATG5 and ATG7 were established in mouse models and showed blockade of autophagic flux and inhibition of tumor growth. In addition, inhibition of Panx-1 by carbenoxolone (CBX) and probenecid (PBN), as well as shRNA-mediated knockdown promoted autophagy in the I-10/CDDP cells, which was accompanied by a decrease in the levels of extracellular ATP. In contrast, overexpression of Panx-1 decreased autophagy of I-10/CDDP cells and increased extracellular ATP levels. To further determine the effect of panx-1-mediated ATP release on the autophagy of I-10/CDDP cells, apyrase was used to hydrolyze the extracellular ATP. Apyrase promoted autophagy in I-10/CDDP cells city by decreasing extracellular ATP, regardless of Panx-1 expression. This study demonstrated for the first time that Panx-1-mediated ATP release inhibits autophagy of I-10/CDDP cells, which provides a potential therapeutic strategy for cisplatin-resistant testicular cancer.
Collapse
Affiliation(s)
- Min Yuan
- School of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Yanxue Yao
- School of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Dandan Wu
- State KeyLaboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Xiang, China
| | - Chenlu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Shuying Dong
- School of Pharmacy, Bengbu Medical College, Bengbu, PR China
| | - Xuhui Tong
- School of Pharmacy, Bengbu Medical College, Bengbu, PR China
| |
Collapse
|
14
|
Caspase-11 promotes NLRP3 inflammasome activation via the cleavage of pannexin1 in acute kidney disease. Acta Pharmacol Sin 2022; 43:86-95. [PMID: 33758356 PMCID: PMC8724289 DOI: 10.1038/s41401-021-00619-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/25/2021] [Indexed: 01/03/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in clinic. The activation of NLRP3 inflammasome is associated with inflammation and renal injury in I/R-induced AKI. In the current study we explored the molecular and cellular mechanisms for NLRP3 inflammasome activation following renal I/R. Mice were subjected to I/R renal injury by clamping bilateral renal pedicles. We showed that I/R injury markedly increased caspase-11 expression and the cleavage of pannexin 1 (panx1) in the kidneys accompanied by NLRP3 inflammasome activation evidenced by the activation of caspase-1 and interlukin-1β (IL-1β) maturation. In Casp-11-/- mice, I/R-induced panx1 cleavage, NLRP3 inflammasome activation as well as renal functional deterioration and tubular morphological changes were significantly attenuated. In cultured primary tubular cells (PTCs) and NRK-52E cells, hypoxia/reoxygenation (H/R) markedly increased caspase-11 expression, NLRP3 inflammasome activation, IL-1β maturation and panx1 cleavage. Knockdown of caspase-11 attenuated all those changes; similar effects were observed in PTCs isolated from Casp-11-/- mice. In NRK-52E cells, overexpression of caspase-11 promoted panx1 cleavage; pretreatment with panx1 inhibitor carbenoxolone or knockdown of panx1 significantly attenuated H/R-induced intracellular ATP reduction, extracellular ATP elevation and NLRP3 inflammasome activation without apparent influence on H/R-induced caspase-11 increase; pretreatment with P2X7 receptor inhibitor AZD9056 also attenuated NLRP3 inflammasome activation. The above results demonstrate that the cleavage of panx1 by upregulated caspase-11 is involved in facilitating ATP release and then NLRP3 inflammasome activation in I/R-induced AKI. This study provides new insight into the molecular mechanism of NLRP3 inflammasome activation in AKI.
Collapse
|
15
|
Mehrzad J, Zahraei Salehi T, Khosravi A, Hosseinkhani S, Tahamtani Y, Hajizadeh-Saffar E, Moazenchi M, Malvandi AM. Environmentally occurring aflatoxins B1 and M1 notifyably harms pancreatic islets. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2010758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Khosravi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
16
|
Wurm M, Schaaf O, Reutner K, Ganesan R, Mostböck S, Pelster C, Böttcher J, de Andrade Pereira B, Taubert C, Alt I, Serna G, Auguste A, Stadermann KB, Delic D, Han F, Capdevila J, Nuciforo PG, Kroe-Barrett R, Adam PJ, Vogt AB, Hofmann I. A Novel Antagonistic CD73 Antibody for Inhibition of the Immunosuppressive Adenosine Pathway. Mol Cancer Ther 2021; 20:2250-2261. [PMID: 34482286 PMCID: PMC9398120 DOI: 10.1158/1535-7163.mct-21-0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023]
Abstract
Despite some impressive clinical results with immune checkpoint inhibitors, the majority of patients with cancer do not respond to these agents, in part due to immunosuppressive mechanisms in the tumor microenvironment. High levels of adenosine in tumors can suppress immune cell function, and strategies to target the pathway involved in its production have emerged. CD73 is a key enzyme involved in adenosine production. This led us to identify a novel humanized antagonistic CD73 antibody, mAb19, with distinct binding properties. mAb19 potently inhibits the enzymatic activity of CD73 in vitro, resulting in an inhibition of adenosine formation and enhanced T-cell activation. We then investigated the therapeutic potential of combining CD73 antagonism with other immune modulatory and chemotherapeutic agents. Combination of mAb19 with a PD-1 inhibitor increased T-cell activation in vitro Interestingly, this effect could be further enhanced with an agonist of the adenosine receptor ADORA3. Adenosine levels were found to be elevated upon doxorubicin treatment in vivo, which could be blocked by CD73 inhibition. Combining CD73 antagonism with doxorubicin resulted in superior responses in vivo Furthermore, a retrospective analysis of rectal cancer patient samples demonstrated an upregulation of the adenosine pathway upon chemoradiation, providing further rationale for combining CD73 inhibition with chemotherapeutic agents.This study demonstrates the ability of a novel CD73 antibody to enhance T-cell function through the potent suppression of adenosine levels. In addition, the data highlight combination opportunities with standard of care therapies as well as with an ADORA3 receptor agonist to treat patients with solid tumors.
Collapse
Affiliation(s)
- Melanie Wurm
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Pharmacology and Disease Positioning, Vienna, Austria
| | - Otmar Schaaf
- Boehringer Ingelheim RCV, GmbH & Co KG, Drug Discovery Sciences, Vienna, Austria
| | - Katharina Reutner
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Rajkumar Ganesan
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Conneticut
| | - Sven Mostböck
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Christina Pelster
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Jark Böttcher
- Boehringer Ingelheim RCV, GmbH & Co KG, Drug Discovery Sciences, Vienna, Austria
| | | | | | | | - Garazi Serna
- Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Aurelie Auguste
- Boehringer Ingelheim Pharma GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach, Germany
| | - Kai B Stadermann
- Boehringer Ingelheim Pharma GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach, Germany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach, Germany
| | - Fei Han
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Conneticut
| | - Jaume Capdevila
- Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Paolo G Nuciforo
- Vall d´Hebron University Hospital, Vall d´Hebron Institute of Oncology, CIBERONC, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Conneticut
| | - Paul J Adam
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Anne B Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Irmgard Hofmann
- Boehringer Ingelheim RCV, GmbH & Co KG, Cancer Immunology and Immune Modulation, Vienna, Austria.
| |
Collapse
|
17
|
Prince DJ, Patel D, Kachlany SC. Leukotoxin (LtxA/Leukothera) induces ATP expulsion via pannexin-1 channels and subsequent cell death in malignant lymphocytes. Sci Rep 2021; 11:18086. [PMID: 34508147 PMCID: PMC8433231 DOI: 10.1038/s41598-021-97545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Leukotoxin (LtxA) (Trade name, Leukothera) is a protein that is secreted from the oral bacterium Aggregatibacter actinomycetemcomitans, which targets and kills activated white blood cells (WBCs) by binding to lymphocyte function associated antigen-1 (LFA-1). Interaction between LtxA and Jurkat T-cells results in cell death and is characterized by increased intracellular Ca2+, activation of caspases, clustering of LtxA and LFA-1 within lipid rafts, and involvement of the Fas death receptor. Here, we show that LtxA can kill malignant lymphocytes via apoptotic and necrotic forms of cell death. We show that LtxA causes activation of caspases and PARP, cleavage of pannexin-1 (Panx1) channels, and expulsion of ATP, ultimately leading to cell death via apoptosis and necrosis. CRISPR-Cas9 mediated knockout (K/O) of Panx1 in Jurkat cells prevented ATP expulsion and resulted in resistance to LtxA for both apoptotic and necrotic forms of death. Resistance to necrosis could only be overcome when supplementing LtxA with endogenous ATP (bzATP). The combination of LtxA and bzATP promoted only necrosis, as no Panx1 K/O cells stained positive for phosphatidylserine (PS) exposure following the combined treatment. Inhibition of LtxA/bzATP-induced necrosis was possible when pretreating Jurkat cells with oATP, a P2X7R antagonist. Similarly, blockage of P2X7Rs with oATP prevented the intracellular mobilization of Ca2+, an important early step in LtxA induced cell death. We show that LtxA is able to kill malignant lymphocytes through an apoptotic death pathway which is potentially linked to a Panx1/P2X7R mediated necrotic form of death. Thus, inhibition of ATP release appears to significantly delay the onset of LtxA induced apoptosis while completely disabling the necrotic death pathway in T-lymphocytes, demonstrating the crucial role of ATP release in LtxA-mediated cell death.
Collapse
Affiliation(s)
- Derek J Prince
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
18
|
Wei Z, Ren F, Gong S, Shi B, Ouyang K, Wu C. A humanized monoclonal antibody targeting CD39 with novel mechanism for cancer treatment. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Logic-Gated Proximity Aptasensing for Cell-Surface Real-Time Monitoring of Apoptosis. Angew Chem Int Ed Engl 2021; 60:20858-20864. [PMID: 34309152 DOI: 10.1002/anie.202106651] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/15/2022]
Abstract
In nature, intact apoptotic cells release ATP as a signaling molecule to trigger prompt phagocytic clearance, even at the earliest stage of apoptosis. Inspired by this, here we introduce a straightforward strategy for real-time monitoring ATP exocytosis and drug-stimulated apoptosis in the cancer cell surroundings. Triplex-boosted G-quadruplexes (tb-G4s) responding to cell environmental factors (H+ and K+ ) are engineered to construct a DNA logic-gated nanoplatform for proximity ATP aptasensing on the cell surface. It enables the real-time monitoring of cell apoptosis by capturing released endogenous ATP during chemotherapy drug stimulation, providing a sensitive approach for dynamically evaluating drug-induced apoptosis and therapeutic efficacy.
Collapse
Affiliation(s)
- Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
20
|
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Logic‐Gated Proximity Aptasensing for Cell‐Surface Real‐Time Monitoring of Apoptosis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Zheng
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Qiwei Wang
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Lin Shi
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Pai Peng
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Lili Shi
- Department of Chemistry Anhui University 111 Jiulong Road Hefei Anhui 230601 China
| | - Tao Li
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
21
|
Laird DW, Penuela S. Pannexin biology and emerging linkages to cancer. Trends Cancer 2021; 7:1119-1131. [PMID: 34389277 DOI: 10.1016/j.trecan.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Pannexins are a family of glycoproteins that comprises three members, PANX1, PANX2, and PANX3. The widely expressed and interrogated PANX1 forms heptameric membrane channels that primarily serve to connect the cytoplasm to the extracellular milieu by being selectively permeable to small signaling molecules when activated. Apart from notable exceptions, PANX1 in many tumor cells appears to facilitate tumor growth and metastasis, suggesting that pannexin-blocking therapeutics may have utility in cancer. Attenuation of PANX1 function must also consider the fact that PANX1 is found in stromal cells of the tumor microenvironment (TME), including immune cells. This review highlights the key discoveries of the past 5 years that suggest pannexins facilitate, or in some cases inhibit, tumor cell growth and metastasis via direct protein interactions and through the regulated efflux of signaling molecules.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Oncology, Divisions of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Abstract
Significance: Genomic instability, a hallmark of cancer, renders cancer cells susceptible to genomic stress from both endogenous and exogenous origins, resulting in the increased tendency to accrue DNA damage, chromosomal instability, or aberrant DNA localization. Apart from the cell autonomous tumor-promoting effects, genomic stress in cancer cells could have a profound impact on the tumor microenvironment. Recent Advances: Recently, it is increasingly appreciated that harnessing genomic stress could provide a promising strategy to revive antitumor immunity, and thereby offer new therapeutic opportunities in cancer treatment. Critical Issues: Genomic stress is closely intertwined with antitumor immunity via mechanisms involving the direct crosstalk with DNA damage response components, upregulation of immune-stimulatory/inhibitory ligands, release of damage-associated molecular patterns, increase of neoantigen repertoire, and activation of DNA sensing pathways. A better understanding of these mechanisms will provide molecular basis for exploiting the genomic stress to boost antitumor immunity. Future Directions: Future research should pay attention to the heterogeneity between individual cancers in the genomic instability and the associated immune response, and how to balance the toxicity and benefit by specifying the types, potency, and treatment sequence of genomic stress inducer in therapeutic practice. Antioxid. Redox Signal. 34, 1128-1150.
Collapse
Affiliation(s)
- Congying Pu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Siyao Tao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
24
|
Tukaramrao DB, Malla S, Saraiya S, Hanely RA, Ray A, Kumari S, Raman D, Tiwari AK. A Novel Thienopyrimidine Analog, TPH104, Mediates Immunogenic Cell Death in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13081954. [PMID: 33919653 PMCID: PMC8074041 DOI: 10.3390/cancers13081954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer that lacks an estrogen receptor, the progesterone receptor and the human epidermal growth factor receptor 2 (HER2), making it unsuitable for hormonal- or HER2-based therapy. TNBC is known for its higher relapse rate, poorer prognosis and higher rate of metastasis compared to non-TNBC because although patients initially respond to chemotherapy that kills cancer cells through a form of programmed cell death called apoptosis, they later develop chemoresistance and stop responding to the treatment, accounting for one fourth of all breast cancer deaths. In this study, we report a novel compound, TPH104, that elicits a unique, non-apoptotic cell death in TNBC cells. Upon treatment with TPH104, TNBC cells swell and burst, releasing immunogenic markers that alert and activate the immune system to further recognize and attack the neighboring breast cancer cells. Abstract Enhancing the tumor immunogenic microenvironment has been suggested to circumvent triple-negative breast cancer (TNBC) resistance and increase the efficacy of conventional chemotherapy. Here, we report a novel chemotherapeutic compound, TPH104, which induces immunogenic cell death in the TNBC cell line MDA-MB-231, by increasing the stimulatory capacity of dendritic cells (DCs), with an IC50 value of 140 nM. TPH104 (5 µM) significantly increased ATP levels in the supernatant and mobilized intracellular calreticulin to the plasma membrane in MDA-MB-231 cells, compared to cells incubated with the vehicle. Incubating MDA-MB-231 cells for 12 h with TPH104 (1–5 µM) significantly increased TNF-α mRNA levels. The supernatants of dying MDAMB-231 cells incubated with TPH104 increased mouse bone marrow-derived DC maturation, the expression of MHC-II and CD86 and the mRNA expression of TNF-α, IL-6 and IL-12. Overall, these results indicate that TPH104 induces immunogenic cell death in TNBC cells, in part, by activating DCs.
Collapse
Affiliation(s)
- Diwakar Bastihalli Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Siddharth Saraiya
- Department of Radiation Oncology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Ross Allen Hanely
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Aniruddha Ray
- Department of Physics, College of Natural Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (D.B.T.); (S.M.); (R.A.H.); (S.K.)
- Department of Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614, USA;
- Correspondence: ; Tel.: +1-419-383-1913
| |
Collapse
|
25
|
Abstract
PANX2 forms large-pore channels mediating ATP release in response to physiological and pathological stimuli. Although PANX2 shows involvements in glioma genesis, the underlying mechanism remains unclear. PANX2 mRNA expression was analyzed via Oncomine and was confirmed via Gene Expression Profiling Interactive Analysis (GEPIA). The influence of PANX2 on overall survival (OS) of glioma was evaluated using LinkedOmics and further assessed through Cox regression analysis. The correlated genes with PANX2 acquired from LinkedOmics were validated through GEPIA and cBioPortal. Protein-protein interaction (PPI) of these genes was then obtained using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with MCODE plug-in. All the PANX2-related genes underwent Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The correlation between PANX2 and cancer immune infiltrates was evaluated via Tumor Immune Estimation Resource (TIMER). A higher expression of PANX2 only revealed a better OS in brain low grade glioma (LGG). PANX2-related genes in LGG functionally enriched in neuroactive ligand-receptor interaction, synaptic vesicle cycle, and calcium signaling. The hub genes from highest module of PPI were mainly linked to chemical synaptic transmission, plasma membrane, neuropeptide, and the pathway of neuroactive ligand-receptor interaction. Besides, PANX2 expression was negatively associated with infiltrating levels of macrophage, dendritic cells, and CD4+ T cells. This study demonstrated that PANX2 likely participated in LGG pathogenesis by affecting multiple molecular pathways and immune-related processes. PANX2 was associated with LGG prognosis and might become a promising therapeutic target of LGG.
Collapse
Affiliation(s)
- XiaoXue Xu
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - YueHan Hao
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - Shuang Xiong
- Liaoning Academy of Analytic Science,
Construction Engineering Center of Important Technology Innovation and Research and
Development Base in Liaoning Province, Shenyang, China
| | - ZhiYi He
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| |
Collapse
|
26
|
Villamañan L, Martínez-Escardó L, Arús C, Yuste VJ, Candiota AP. Successful Partnerships: Exploring the Potential of Immunogenic Signals Triggered by TMZ, CX-4945, and Combined Treatment in GL261 Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms22073453. [PMID: 33810611 PMCID: PMC8036897 DOI: 10.3390/ijms22073453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The relevance of the cancer immune cycle in therapy response implies that successful treatment may trigger the exposure or the release of immunogenic signals. Previous results with the preclinical GL261 glioblastoma (GB) showed that combination treatment of temozolomide (TMZ) + CX-4945 (protein kinase CK2 inhibitor) outperformed single treatments, provided an immune-friendly schedule was followed. Our purpose was to study possible immunogenic signals released in vitro by GB cells. METHODS GL261 GB cells were treated with TMZ and CX-4945 at different concentrations (25 µM-4 mM) and time frames (12-72 h). Cell viability was measured with Trypan Blue and propidium iodide. Calreticulin exposure was assessed with immunofluorescence, and ATP release was measured with bioluminescence. RESULTS TMZ showed cytostatic rather than cytotoxic effects, while CX-4945 showed remarkable cytotoxic effects already at low concentrations. Calreticulin exposure after 24 h was detected with TMZ treatment, as well as TMZ/CX-4945 low concentration combined treatment. ATP release was significantly higher with CX-4945, especially at high concentrations, as well as with TMZ/CX-4945. CONCLUSIONS combined treatment may produce the simultaneous release of two potent immunogenic signals, which can explain the outperformance over single treatments in vivo. A word of caution may be raised since in vitro conditions are not able to mimic pharmacokinetics observed in vivo fully.
Collapse
Affiliation(s)
- Lucía Villamañan
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (L.V.); (C.A.)
| | - Laura Martínez-Escardó
- Cell Death, Senescence and Survival Group, Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (L.M.-E.); (V.J.Y.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (C.I.B.E.R.N.E.D.), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (L.V.); (C.A.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Victor J. Yuste
- Cell Death, Senescence and Survival Group, Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (L.M.-E.); (V.J.Y.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (C.I.B.E.R.N.E.D.), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana P. Candiota
- Unitat de Bioquímica de Biociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (L.V.); (C.A.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence:
| |
Collapse
|
27
|
The bovine dialysable leukocyte extract IMMUNEPOTENT CRP induces immunogenic cell death in breast cancer cells leading to long-term antitumour memory. Br J Cancer 2021; 124:1398-1410. [PMID: 33531687 PMCID: PMC8039030 DOI: 10.1038/s41416-020-01256-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cancer recurrence is a serious problem in breast cancer (BC) patients, and immunogenic cell death (ICD) has been proposed as a strategy to overcome this recurrence. IMMUNEPOTENT CRP (ICRP) acts as an immunomodulator and can be cytotoxic to cancer cells. Thus, we evaluated if ICRP induces ICD in BC cells. Methods Immunogenicity of ICRP-induced cell death was evaluated in vitro, analysing the principal biochemical characteristics of ICD in MCF-7, MDA-MB-231 and 4T1 cells. Ex vivo, we assessed the ability of killed cancer cells (KCC) obtained from ICRP-treated 4T1 cells (ICRP-KCC) to induce DC maturation, T-cell priming and T-cell-mediated cancer cytotoxicity. In vivo, we evaluated tumour establishment and antitumour immune memory after prophylactic ICRP-KCC vaccination in BALB/c mice. Results ICRP induced caspase-independent, ROS-dependent cell death, autophagosome formation, P-eIF2α, chaperone protein exposure, CD47 loss, ATP and HMBG1 release in BC cells. Additionally, ICRP-KCC promoted DC maturation, which triggered T-cell priming and cancer cytotoxicity. Prophylactic vaccination with ICRP-KCC prevented tumour establishment and induced long-term antitumour memory in BALB/c mice, involving DC maturation in lymph nodes, CD8+ T-cell augmentation in lymph nodes, peripheral blood and tumour site and ex vivo tumour-specific cytotoxicity by splenocytes. Conclusions ICRP induces ICD in BC cells, leading to long-term antitumour memory.
Collapse
|
28
|
Purinergic Signaling Within the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:73-87. [PMID: 33123994 DOI: 10.1007/978-3-030-47189-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Accumulating studies have clearly demonstrated high concentrations of extracellular ATP (eATP) within the tumor microenvironment (TME). Implications of these findings are multifold as ATP-mediated purinergic signaling has been shown to mediate a variety of cancer-related processes, including cell migration, resistance to cytotoxic therapy, and immune regulation. Broad roles of ATP within the tumor microenvironment are linked to the abundance of ATP-regulated purinergic receptors on cancer and stromal and various immune cell types, as well as on the importance of ATP release and signaling in the regulation of multiple cellular processes. ATP release and downstream purinergic signaling are emerging as a central regulator of tumor growth and an important target for therapeutic intervention. In this chapter, we summarize the major roles of purinergic signaling in the tumor microenvironment with a specific focus on its critical roles in the induction of immunogenic cancer cell death and immune modulation.
Collapse
|
29
|
Imamura H, Sakamoto S, Yoshida T, Matsui Y, Penuela S, Laird DW, Mizukami S, Kikuchi K, Kakizuka A. Single-cell dynamics of pannexin-1-facilitated programmed ATP loss during apoptosis. eLife 2020; 9:61960. [PMID: 33052098 PMCID: PMC7556867 DOI: 10.7554/elife.61960] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
ATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hr. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a 'programmed' process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP.
Collapse
Affiliation(s)
- Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Tomoki Yoshida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yusuke Matsui
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Akira Kakizuka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Maldifassi MC, Momboisse F, Guerra MJ, Vielma AH, Maripillán J, Báez-Matus X, Flores-Muñoz C, Cádiz B, Schmachtenberg O, Martínez AD, Cárdenas AM. The interplay between α7 nicotinic acetylcholine receptors, pannexin-1 channels and P2X7 receptors elicit exocytosis in chromaffin cells. J Neurochem 2020; 157:1789-1808. [PMID: 32931038 DOI: 10.1111/jnc.15186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/18/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.
Collapse
Affiliation(s)
- María C Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Universidad de Valparaíso, Chile
| | - Bárbara Cádiz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias Biológicas, Universidad de Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
31
|
Yao Y, Dong S, Zhu C, Hu M, Du B, Tong X. [Down-regulation of pannexin 2 channel enhances cisplatin-induced apoptosis in testicular cancer I-10 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1090-1096. [PMID: 32895173 DOI: 10.12122/j.issn.1673-4254.2020.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of down-regulation of pannexin 2 (Panx-2) channels on cisplatin-induced apoptosis in I-10 cells. METHODS The expression of Panx-2 protein in testicular cancer cells was detected with Western blotting. The testicular cancer cell line I-10 was transfected with two short hairpin RNA (shRNA1 and shRNA2) via Lipofectamine2000, the empty vector (NC group) or Lipofectamine2000 (blank control group), and the changes in the expression of Panx-2 was detected with Western blotting. The effects of transfection with a Panx-2 inhibitor on surviving fraction of the cells treated with cisplatin (16 μmol/L) for 24 h, 48 h and 72 h was assessed with MTT assay, and the clonogenic capacity of the cells was evaluated with colony-forming assay. At 8 h after incubation with 16 μmol/L cisplatin, AnnexinV/PI double staining was used to detect the early apoptosis of the cells. After 24 h of treatment with 16 μmol/L cisplatin, the cells were examined for expressions of caspase-3, Bcl-2 and Bax using Western blotting. RESULTS The expression of Panx-2 was significantly increased in cisplatin-resistant I-10/DDP (P < 0.001) cells and Tcam-2/DDP (P < 0.01) cells as compared with I-10 cells and Tcam-2 cells. Transfection of I-10 cells with shRNA1 and shRNA2 resulted in significantly decreased Panx-2 expression (P < 0.05) and significantly reduced cell surviving fraction (P < 0.001). In the presence of cisplatin, the cells in NC group showed a higher clonogenic efficiency than those in shRNA1 and shRNA2 groups (P < 0.001). The early-stage apoptosis rate of the cells in shRNA1 and shRNA2 groups were significantly higher than that in NC group (P < 0.01). Panx-2 knockdown in I-10 cells significantly increased caspase-3 and Bax expressions (P < 0.05) and significantly decreased the expression of Bcl-2 (P < 0.01). CONCLUSIONS Down-regulation of Panx-2 channel enhances cisplatin-induced apoptosis in cultured testicular cancer cells.
Collapse
Affiliation(s)
- Yanxue Yao
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Shuying Dong
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Chenlu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Miao Hu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Baolong Du
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Xuhui Tong
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
32
|
|
33
|
Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295:4902-4911. [PMID: 32132172 DOI: 10.1074/jbc.ra119.010868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Collapse
Affiliation(s)
- Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | | | - Kenneth Roth
- Eli Lilly and Company, Indianapolis, Indiana 46285
| | - C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
34
|
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, Draganov D, Edelson RL, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Gameiro SR, Garg AD, Golden E, Han J, Harrington KJ, Hemminki A, Hodge JW, Hossain DMS, Illidge T, Karin M, Kaufman HL, Kepp O, Kroemer G, Lasarte JJ, Loi S, Lotze MT, Manic G, Merghoub T, Melcher AA, Mossman KL, Prosper F, Rekdal Ø, Rescigno M, Riganti C, Sistigu A, Smyth MJ, Spisek R, Stagg J, Strauss BE, Tang D, Tatsuno K, van Gool SW, Vandenabeele P, Yamazaki T, Zamarin D, Zitvogel L, Cesano A, Marincola FM. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020; 8:e000337. [PMID: 32209603 PMCID: PMC7064135 DOI: 10.1136/jitc-2019-000337] [Citation(s) in RCA: 666] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York City, New York, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Université de Paris, Paris, France
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sarah Warren
- NanoString Technologies, Seattle, Washington, USA
| | - Sandy Adjemian
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Cancer Biology, KU Leuevn, Leuven, Belgium
| | - Aitziber Buqué Martinez
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM "Molecular Radiotherapy and therapeutic innovation", U1030 Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- SIRIC SOCRATES, DHU Torino, Faculté de Medecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | | | - Richard L Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Udo S Gaipl
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jian Han
- iRepertoire, Inc, Huntsville, Alabama, USA
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Tim Illidge
- University of Manchester, NIHR Manchester Biomedical Research Centre, Christie Hospital, Manchester, UK
| | - Michael Karin
- Department of Pharmacology and Pathology, University of California at San Diego (UCSD) School of Medicine, La Jolla, California, USA
| | - Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Replimune, Inc, Woburn, Massachusetts, USA
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Sorbonne Université, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, MSKCC, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
- Parker Institute for Cancer Immunotherapy, MSKCC, New York City, New York, USA
| | | | | | - Felipe Prosper
- Hematology and Cell Therapy, Clinica Universidad de Navarra, Pamplona, Spain
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
- Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | - Antonella Sistigu
- UOSD Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec City, Canada
- Institut du Cancer de Montréal, Montréal, Quebec City, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Quebec City, Canada
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kazuki Tatsuno
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Methusalem program, Ghent University, Ghent, Belgium
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Dmitriy Zamarin
- Department of Medicine, Weill Cornell Medical College, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Gustave Roussy, Villejuif, France
- Faculty of Medicine, University of Paris Sud/Paris Saclay, Le Kremlin-Bicêtre, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | | | | |
Collapse
|
35
|
Jiang MJ, Gu DN, Dai JJ, Huang Q, Tian L. Dark Side of Cytotoxic Therapy: Chemoradiation-Induced Cell Death and Tumor Repopulation. Trends Cancer 2020; 6:419-431. [PMID: 32348737 DOI: 10.1016/j.trecan.2020.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Accelerated tumor repopulation following chemoradiation is often observed in the clinic, but the underlying mechanisms remain unclear. In recent years, dying cells caused by chemoradiation have attracted much attention, and they may manifest diverse forms of cell death and release complex factors and thus orchestrate tumor repopulation cascades. Dying cells potentiate the survival of residual living tumor cells, remodel the tumor microenvironment, boost cell proliferation, and accelerate cancer cell metastasis. Moreover, dying cells also mediate the side effects of chemoradiation. These findings suggest more caution when weighing the benefits of cytotoxic therapy and the need to accordingly develop new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Chemoradiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
36
|
Mehrzad J, Fazel F, Pouyamehr N, Hosseinkhani S, Dehghani H. Naturally Occurring Level of Aflatoxin B 1 Injures Human, Canine and Bovine Leukocytes Through ATP Depletion and Caspase Activation. Int J Toxicol 2019; 39:30-38. [PMID: 31868052 DOI: 10.1177/1091581819892613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aflatoxin (AF) B1 is a potent hepatotoxic, mutagenic, teratogenic mycotoxin and may cause immune suppression/dysregulation in humans and animals. Toxic effects of AFB1 on key mammalian immune cells (ie, leukocytes) needs to be mechanistically elucidated. In this study, along with the determination of AFB1's LC50 for certain leukocytes, we analyzed the effect of naturally occurring levels of AFB1 on apoptosis/necrosis of neutrophils, lymphocytes, and monocytes from healthy young humans (20- to 25-year-old male), dogs (1- to 2-year-old Persian/herd breed), and cattle (1- to 2-year-old cattle). Leukocytes were incubated for approximately 24 hours with naturally occurring levels of AFB1 (10 ng/mL). Intracellular adenosine triphosphate (ATP) depletion and caspase-3/7 activity were then determined by luciferase-dependent bioluminescence (BL). Furthermore, the necrotic leukocytes were measured using propidium iodide (PI)-related flow cytometry. A significant decrease (24%-45%, 33.2% ± 2.7%) in intracellular ATP content was observed in AFB1-treated neutrophils, lymphocytes, and monocytes in all studied mammals. Also, with such a low level (10 ng/mL) of AFB1, BL-based caspase-3/7 activity (BL intensity) in all 3 tested mammalian leukocyte lineages was noticeably increased (∼>2-fold). Flow cytometry-based PI staining (for viability assay) of the AFB1-treated leukocytes showed slightly/insignificantly more increase of necrotic (PI+) neutrophils, lymphocytes, and monocytes in human, dogs, and cattle. Even though in vitro LC50s for AFB1' (∼20,000-40,000 ng/mL) were approximately 2,000 to 4,000 times higher than background, these studies demonstrate leukocytes from human and farm/companion animals are sensitive to naturally occurring levels of AFB1. The observed in vitro ATP depletion and caspase activation in AFB1-exposed leukocytes can partially explain the underlying mechanisms of AFB1-induced immune disorders in mammals.
Collapse
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fazel
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nazaninzeynam Pouyamehr
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
37
|
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019; 11:cancers11121920. [PMID: 31810265 PMCID: PMC6966454 DOI: 10.3390/cancers11121920] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Collapse
|
38
|
Branca JJV, Maresca M, Morucci G, Mello T, Becatti M, Pazzagli L, Colzi I, Gonnelli C, Carrino D, Paternostro F, Nicoletti C, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Effects of Cadmium on ZO-1 Tight Junction Integrity of the Blood Brain Barrier. Int J Mol Sci 2019; 20:E6010. [PMID: 31795317 PMCID: PMC6928912 DOI: 10.3390/ijms20236010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant released from the smelting and refining of metals and cigarette smoking. Oral exposure to cadmium may result in adverse effects on a number of tissues, including the central nervous system (CNS). In fact, its toxicity has been related to neurological disorders, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Under normal conditions, Cd barely reaches the brain in adults because of the presence of the blood-brain barrier (BBB); however, it has been demonstrated that Cd-dependent BBB alteration contributes to pathogenesis of neurodegeneration. However, the mechanism underlying Cd-dependent BBB alteration remain obscure. Here, we investigated the signaling pathway of Cd-induced tight junction (TJ), F-actin, and vimentin protein disassembly in a rat brain endothelial cell line (RBE4). RBE4 cells treated with 10 μM cadmium chloride (CdCl2) showed a dose- and time-dependent significant increase in reactive oxygen species (ROS) production. This phenomenon was coincident with the alteration of the TJ zonula occludens-1 (ZO-1), F-actin, and vimentin proteins. The Cd-dependent ROS increase elicited the upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum (ER) stress that induces caspase-3 activation. Further signal profiling by the pannexin-1 (PANX1) specific inhibitor 10Panx revealed a PANX1-independent increase in ATP spillage in Cd-treated endothelial cells. Our results point out that a ROS-dependent ER stress-mediated signaling pathway involving caspase-3 activation and ATP release is behind the BBB morphological alterations induced by Cd.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Ilaria Colzi
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Cristina Gonnelli
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| |
Collapse
|
39
|
Pathogenic Salmonella weakens avian enriched blood monocytes through ATP depletion, apoptosis induction and phagocytosis inefficiency. Vet Microbiol 2019; 240:108505. [PMID: 31902485 DOI: 10.1016/j.vetmic.2019.108505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Salmonella enterica Subsp enterica serovar Typhimurium (S. Typhimurium, ST) is one of the most important serovars of the genus Salmonella in human and animals. Because of its intracellular tropism, monocytes/macrophages are pivotal in killing of Salmonella serovars; they are also responsible for transporting of ST to extra-intestinal organs. To investigate the effect of the ST on the functions of avian innate immune cells, almost homogeneous enriched monocytes (EMo) were isolated from peripheral blood mononuclear cells of 2-3 weeks-old of healthy broilers. The EMo were then divided in three groups: control (media only), treatments (challenged with ST clinical isolates) and [doxorubicin (Dox), specifically as positive control for EMo apoptosis] groups. Cellular-molecular damage caused by ST in EMo was assessed with bioluminescence (for caspase-3, 7, and 9 activities and intracellular ATP content), chemiluminescence (for pro/anti-oxidant capacities) and flow cytometry (for apoptosis/necrosis). Further, phagocytosis capacity of post-ST challenged EMo was assessed using a flow cytometry-based internalisation of FITC-loaded polystyrene microparticles. Like the effects of Dox, in post-ST challenged EMo much higher caspase-3, 7 and 9 activities and ATP depletion along with decreased phagocytosis capacity and anti-oxidant load were observed. The results herein indicate that ST weakens EMo particularly through caspases activation/apoptosis. These findings can open a new window on the molecular aspects of Salmonella-macrophage interactions and immunopathology/pathogenicity of salmonellosis in animals especially avian species.
Collapse
|
40
|
Dubyak GR. Luciferase-assisted detection of extracellular ATP and ATP metabolites during immunogenic death of cancer cells. Methods Enzymol 2019; 629:81-102. [PMID: 31727258 DOI: 10.1016/bs.mie.2019.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The efficacy of cancer chemotherapy is enhanced by induction of sustainable anti-tumor immune responses. Such responses involve accumulation of immunogenic mediators, such as extracellular ATP and ATP metabolites, within the tumor microenvironment. Recent studies have identified nucleotide-permeable plasma membrane channels or pores that are activated as early downstream consequences of different regulated cell death pathways: pannexin-1 channels in apoptosis, MLKL pores in necroptosis, and gasdermin-family pores in pyroptosis. This chapter describes the use of highly quantitative and semi-high-throughput methods based on the ATP sensor luciferase to measure dynamic changes in extracellular ATP, ADP, and AMP in tissue/cell culture models of cancer cells during various modes of regulated cell death in response to chemotherapeutic drugs, death receptors, or metabolic perturbation.
Collapse
Affiliation(s)
- George R Dubyak
- Department of Physiology & Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
41
|
Abstract
Following activation, CD8 T cells transition from reliance on mitochondrial respiration to increasing utilization of aerobic glycolysis. After the effector phase, however, reversion to mitochondrial metabolism is pivotal generating memory CD8 T cells. We recently showed that sensing of extracellular ATP (eATP) through the receptor P2RX7 is crucial for both production and the long-term survival of memory CD8 T cells, evidently through promoting mitochondrial maintenance. Unexpectedly, these results indicated that sustained P2RX7 activation is required for memory CD8 T cell homeostasis, suggesting constant exposure to eATP, in contrast with the proposed role of eATP as an acute "danger" signal released by dying cells. Active release through transmembrane channels is another path for eATP export. Indeed, CD8 T cells express Pannexin 1 (Panx1) which has a reported eATP release function in vitro and is itself induced by P2RX7 and/or TCR engagement. Such a role for Panx1 could potentially provide a feed-forward mechanism for cell-autonomous P2RX7 signaling. This model envisages that memory CD8 T cells maintain themselves at the cost of reduced intracellular ATP levels, which at first glance would seem to be detrimental for sustained T cell maintenance. On the other hand, the need to tightly regulate levels of intracellular ATP may be critical for the durability and adaptability of memory CD8 T cells, hence engagement of the P2RX7/Panx1 axis may allow these cells to fine tune their metabolic status to meet changing demands. In this Perspective, we discuss how this pathway may influence memory T cell maintenance.
Collapse
|
42
|
Liu H, Yuan M, Yao Y, Wu D, Dong S, Tong X. In vitro effect of Pannexin 1 channel on the invasion and migration of I-10 testicular cancer cells via ERK1/2 signaling pathway. Biomed Pharmacother 2019; 117:109090. [PMID: 31202174 DOI: 10.1016/j.biopha.2019.109090] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Pannexin (Panx) plays a crucial role in several cellular processes such as immune cell death, cell proliferation, invasion, and migration, apoptosis, and autophagy. However, the role of Panx in regulating cell migration and invasion in testicular cancer remains to be elucidated. In the present study, we determined the correlation between Panx-1 channel function and migration and invasion in I-10 testicular cancer cells. Transwell and wound healing assays showed that inhibition of Panx-1 by carbenoxolone (CBX) and probenecid (PBN) attenuated the migration and invasion of testicular cancer cells in vitro. Moreover, knockdown of Panx-1 with short hairpin RNA (shRNA) remarkably decreased the migration and invasion ability of I-10 cells. In shRNA-transfected cells, extracellular ATP (released through Panx channel) was also found to be decreased. Similarly, overexpression of Panx-1 with mPanx-1 increased the migration and invasion ability of I-10 cells. Moreover, we found that in mPanx-1-transfected cells treated with U0126 (inhibitor of p-ERK1/2), the migration and invasion of I-10 cells were remarkably attenuated. Overall, increased Panx-1 promotes migration and invasion in testicular cancer cells, and the effect is probably be related with ERK1/2 kinase activity. Thus, Panx-1 can serve as a potential therapeutic target for the treatment of testicular cancer.
Collapse
Affiliation(s)
- Haofeng Liu
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Min Yuan
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Yanxue Yao
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Dandan Wu
- College of Life Sciences, Nanjing University, Jiangsu, Nanjing, 210093, PR China
| | - Shuying Dong
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China
| | - Xuhui Tong
- School of Pharmacy, Bengbu Medical College, Anhui, Bengbu, 233030, PR China.
| |
Collapse
|
43
|
Liu C, Huang L, Li C, Shen Y, Wang J. [Blocking pannexin-1 alleviates cisplatin-induced acute kidney injury in mice by reducing renal inflammatory cell infiltration]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:508-514. [PMID: 31140412 DOI: 10.12122/j.issn.1673-4254.2019.05.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of blocking pannexin-1 against acute kidney injury induced by cisplatin. METHODS Twenty-six male C57BL/6 mice aged 6-8 weeks were randomly divided into control group, cisplatin model (Cis) group and cisplatin + carbenoxolone treatment group (Cis + CBX). In Cis group and Cis + CBX group, the mice were injected intraperitoneally with 20 mg/kg of cisplatin and with CBX (20 mg/kg) at 30 min before and 24 and 48 h after cisplatin inhjection, respectively. All the mice were sacrificed at 72 h after cisplatin injection, and plasma and kidney samples were collected for testing mRNA and protein expression levels of pannexin-1 in the renal tissue using RT-qPCR and Western blotting and for detecting plasma creatinine and BUN levels; the pathological changes in the renal tissues were observed using Periodic Acid-Schiff staining. The expression of kidney injury molecule 1 (KIM-1) was examined using immunohistochemistry and the mRNA expressions of KIM-1 and neutrophil gelatinase- related lipid transport protein (NGAL) were detected by RT-qPCR to evaluate the injuries of the renal tubules. The infiltration of F4/80-positive macrophages and CD4-positive T cells were observed by immunofluorescence. In the in vitro experiment, human proximal tubule epithelial cell line HK-2 was stimulated with 50 μmol/L cisplatin to establish a cell model of acute kidney injury, and the mRNA and protein expressions of pannexin-1 were detected by RT-qPCR and Western blotting at 4, 6, 12, 18 and 24 h after the stimulation. RESULTS Compared with the control mice, the cisplatin-treated mice showed significantly up-regulated protein levels (P < 0.05) and mRNA levels (P < 0.005) of pannexin-1 in the kidney tissue. Cisplatin stimulation also caused significant increases in the protein levels (P < 0.005) and mRNA levels (P < 0.005) of pannexin-1 in cultured HK-2 cells. Compared with cisplatin-treated mice, the mice treated with both cisplatin and the pannexin-1 inhibitor CBX showed obviously lessened kidney pathologies and milder renal tubular injuries with significantly reduced plasma BUN and Scr levels (P < 0.01), expressions of KIM-1 and NGAL in the kidney (P < 0.05), and infiltration of F4/80-positive macrophages (P < 0.01) and CD4- positive T cells (P < 0.05) in the kidney tissues. CONCLUSIONS In cisplatin induced acute kidney injury mice model, Pannexin-1 expression is up-regulated in the kidneys tissue, and blocking pannexin-1 alleviates the acute kidney injury via reducing renal inflammatory cell infiltration.
Collapse
Affiliation(s)
- Chongbin Liu
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liuwei Huang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Caizhen Li
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanting Shen
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- National Clinical Research Center of Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
44
|
Rahman M, Sun R, Mukherjee S, Nilius B, Janssen LJ. TRPV4 Stimulation Releases ATP via Pannexin Channels in Human Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2019; 59:87-95. [PMID: 29393654 DOI: 10.1165/rcmb.2017-0413oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously described several ionic conductances in human pulmonary fibroblasts, including one activated by two structurally distinct TRPV4 (transient receptor potential, vanilloid-type, subtype 4)-channel agonists: 4αPDD (4α-phorbol-12,13-didecanoate) and GSK1016790A. However, the TRPV4-activated current exhibited peculiar properties: it developed slowly over many minutes, exhibited reversal potentials that could vary by tens of millivolts even within a given cell, and was not easily reversed by subsequent addition of two distinct TRPV4-selective blockers (RN-1734 and HC-067047). In this study, we characterized that conductance more carefully. We found that 4αPDD stimulated a delayed release of ATP into the extracellular space, which was reduced by genetic silencing of pannexin expression, and that the 4αPDD-evoked current could be blocked by apyrase (which rapidly degrades ATP) or by the P2Y purinergic receptor/channel blocker pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and could be mimicked by exogenous addition of ATP. In addition, we found that the 4αPDD-evoked current was blocked by pretreatment with RN-1734 or HC-067047, by Gd3+ or La3+, or by two distinct blockers of pannexin channels (carbenoxolone and probenecid), but not by a blocker of connexin hemichannels (flufenamic acid). We also found expression of TRPV4- and pannexin-channel proteins. 4αPDD markedly increased calcium flashing in our cells. The latter was abrogated by the P2Y channel blocker PPADS, and the 4αPDD-evoked current was eliminated by loading the cytosol with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or by inhibiting Ca2+/calmodulin-sensitive kinase II using KN93. Altogether, we interpret these findings as suggesting that 4αPDD triggers the release of ATP via pannexin channels, which in turn acts in an autocrine and/or paracrine fashion to stimulate PPADS-sensitive purinergic receptors on human pulmonary fibroblasts.
Collapse
Affiliation(s)
- Mozibur Rahman
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Rui Sun
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Subhendu Mukherjee
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Bernd Nilius
- 3 Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Luke J Janssen
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
45
|
Inhibition of Pannexin 1 Reduces the Tumorigenic Properties of Human Melanoma Cells. Cancers (Basel) 2019; 11:cancers11010102. [PMID: 30654593 PMCID: PMC6356688 DOI: 10.3390/cancers11010102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/19/2023] Open
Abstract
Pannexin 1 (PANX1) is a channel-forming glycoprotein expressed in many tissues including the skin. PANX1 channels allow the passage of ions and molecules up to 1 kDa, including ATP and other metabolites. In this study, we show that PANX1 is highly expressed in human melanoma tumors at all stages of disease progression, as well as in patient-derived cells and established melanoma cell lines. Reducing PANX1 protein levels using shRNA or inhibiting channel function with the channel blockers, carbenoxolone (CBX) and probenecid (PBN), significantly decreased cell growth and migration, and increased melanin production in A375-P and A375-MA2 cell lines. Further, treatment of A375-MA2 tumors in chicken embryo xenografts with CBX or PBN significantly reduced melanoma tumor weight and invasiveness. Blocking PANX1 channels with PBN reduced ATP release in A375-P cells, suggesting a potential role for PANX1 in purinergic signaling of melanoma cells. In addition, cell-surface biotinylation assays indicate that there is an intracellular pool of PANX1 in melanoma cells. PANX1 likely modulates signaling through the Wnt/β-catenin pathway, because β-catenin levels were significantly decreased upon PANX1 silencing. Collectively, our findings identify a role for PANX1 in controlling growth and tumorigenic properties of melanoma cells contributing to signaling pathways that modulate melanoma progression.
Collapse
|
46
|
Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 2018; 18:601-618. [PMID: 30006588 DOI: 10.1038/s41568-018-0037-0] [Citation(s) in RCA: 503] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modulation of the biochemical composition of the tumour microenvironment is a new frontier of cancer therapy. Several immunosuppressive mechanisms operate in the milieu of most tumours, a condition that makes antitumour immunity ineffective. One of the most potent immunosuppressive factors is adenosine, which is generated in the tumour microenvironment owing to degradation of extracellular ATP. Accruing evidence over the past few years shows that ATP is one of the major biochemical constituents of the tumour microenvironment, where it acts at P2 purinergic receptors expressed on both tumour and host cells. Stimulation of P2 receptors has different effects depending on the extracellular ATP concentration, the P2 receptor subtype engaged and the target cell type. Among P2 receptors, the P2X purinergic receptor 7 (P2X7R) subtype appears to be a main player in host-tumour cell interactions. Preclinical studies in several tumour models have shown that P2X7R targeting is potentially a very effective anticancer treatment, and many pharmaceutical companies have now developed potent and selective small molecule inhibitors of P2X7R. In this Review, we report on the multiple mechanisms by which extracellular ATP shapes the tumour microenvironment and how its stimulation of host and tumour cell P2 receptors contributes to determining tumour fate.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
47
|
van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. THE JOURNAL OF IMMUNOLOGY 2018; 200:450-458. [PMID: 29311387 DOI: 10.4049/jimmunol.1701021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
48
|
Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int J Mol Sci 2018; 19:ijms19061645. [PMID: 29865195 PMCID: PMC6032133 DOI: 10.3390/ijms19061645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.
Collapse
|
49
|
Branca JJV, Maresca M, Morucci G, Becatti M, Paternostro F, Gulisano M, Ghelardini C, Salvemini D, Di Cesare Mannelli L, Pacini A. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018; 9:23426-23438. [PMID: 29805744 PMCID: PMC5955120 DOI: 10.18632/oncotarget.25193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 12/23/2022] Open
Abstract
Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer. Despite its beneficial effects in tumor reduction, the most prevalent side-effect of oxaliplatin treatment is a chemotherapy-induced neuropathy that frequently forces to discontinue the therapy. Indeed, along with direct damage to peripheral nerves, the chemotherapy-related neurotoxicity involves also the central nervous system (CNS) as demonstrated by pain chronicity and cognitive impairment (also known as chemobrain), a newly described pharmacological side effect. The presence of the blood brain barrier (BBB) is instrumental in preventing the entry of the drug into the CNS; here we tested the hypothesis that oxaliplatin might enter the endothelial cells of the BBB vessels and trigger a signaling pathway that induce the disassembly of the tight junctions, the critical components of the BBB integrity. By using a rat brain endothelial cell line (RBE4) we investigated the signaling pathway that ensued the entry of oxaliplatin within the cell. We found that the administration of 10 μM oxaliplatin for 8 and 16 h induced alterations of the tight junction (TJs) proteins zonula occludens-1 (ZO-1) and of F-actin, thus highlighting BBB alteration. Furthermore, we reported that intracellular oxaliplatin rapidly induced increased levels of reactive oxygen species and endoplasmic reticulum stress, assessed by the evaluation of glucose-regulated protein GRP78 expression levels. These events were accompanied by activation of caspase-3 that led to extracellular ATP release. These findings suggested a possible novel mechanism of action for oxaliplatin toxicity that could explain, at least in part, the chemotherapy-related central effects.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology Saint Louis University, Saint Louis, Missouri, United States
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| |
Collapse
|
50
|
Wang J, Dahl G. Pannexin1: a multifunction and multiconductance and/or permeability membrane channel. Am J Physiol Cell Physiol 2018; 315:C290-C299. [PMID: 29719171 DOI: 10.1152/ajpcell.00302.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Of the three pannexins in vertebrate proteomes, pannexin1 (Panx1) is the only one well characterized, and it is generally accepted that Panx1 functions as an ATP release channel for signaling to other cells. However, the ATP permeability of the channel is only observed with certain stimuli, including low oxygen, mechanical stress, and elevated extracellular potassium ion concentration. Otherwise, the Panx1 channel is selective for chloride ions and exhibits no ATP permeability when stimulated simply by depolarization to positive potentials. A third, irreversible activation of Panx1 follows cleavage of carboxyterminal amino acids by caspase 3. The selectivity/permeability properties of the caspase cleaved channel are unclear as it reportedly has features of both channel conformations. Here we describe the biophysical properties of the channel formed by the truncation mutant Panx1Δ378, which is identical to the caspase-cleaved protein. Consistent with previous findings for the caspase-activated channel, the Panx1Δ378 channel was constitutively active. However, like the voltage-gated channel, the Panx1Δ378 channel had high chloride selectivity, lacked cation permeability, and did not mediate ATP release unless stimulated by extracellular potassium ions. Thus, the caspase-cleaved Panx1 channel should be impermeable to ATP, contrary to previous claims.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| |
Collapse
|